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Abstract

This paper addresses the ill-posedness of the classical Rayleigh variational model
of conducting charged liquid drops by incorporating the discreteness of the elementary
charges. Introducing the model that describes two immiscible fluids with the same
dielectric constant, with a drop of one fluid containing a fixed number of elementary
charges together with their solvation spheres, we interpret the equilibrium shape of
the drop as a global minimizer of the sum of its surface energy and the electrostatic
repulsive energy between the charges under fixed drop volume. For all model param-
eters, we establish existence of generalized minimizers that consist of at most a finite
number of components “at infinity”. We also give several existence and non-existence
results for classical minimizers consisting of only a single component. In particular, we
identify an asymptotically sharp threshold for the number of charges to yield existence
of minimizers in a regime corresponding to macroscopically large drops containing a
large number of charges. The obtained non-trivial threshold is significantly below the
corresponding threshold for the Rayleigh model, consistently with the ill-posedness of
the latter and demonstrating a particular regularizing effect of the charge discreteness.
However, when a minimizer does exist in this regime, it approaches a ball with the
charge uniformly distributed on the surface as the number of charges goes to infinity,
just as in the Rayleigh model. Finally, we provide an explicit solution for the problem
with two charges and a macroscopically large drop.
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1 Introduction

There has recently been a growing interest in geometric variational problems featuring a
competition of attractive and repulsive interactions [6]. A prototypical model giving rise
to the problems of this kind is the celebrated Gamow’s liquid drop model of the atomic
nucleus [15], in which a competition of the cohesive action of the surface tension with the
Coulombic repulsion gives rise to delicate questions about the existence and the shape of
minimizers, etc. There are now many studies of this model and its various generalizations
and extensions that are too numerous to list here (for some recent works, see, e.g., [13,31,34]
and references therein).

We focus on a closely related problem arising from the classical model introduced
by Lord Rayleigh that describes the energetics of a perfectly conducting charged liquid
drop [29] (for the technical details of the model, see section 2). In 1882, Rayleigh demon-
strated that a spherical liquid drop becomes linearly unstable with respect to asymmetric
distortions of its shape when the amount of charge on the droplet exceeds a critical value
called the Rayleigh charge. Such an interfacial instability driven by the electric field was
first observed experimentally by Zeleny [41, 42] and subsequently studied by great many
authors (see, e.g., [1, 9, 10, 17, 21]), not least because of its important applications to ana-
lytical chemistry [16]. Surprisingly, however, the linear stability of the charged drop below
the critical charge in the Rayleigh model was recently shown not to imply stability of a
spherical drop with respect to arbitrarily small perturbations of its shape [33]. In fact, the
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Rayleigh model leads to a problem that is variationally ill-posed [18, 20, 33]. Mathemat-
ically, this is because the regularizing action of the perimeter is not sufficient to control
the electric charges at small scales [19]. Physically, it manifests itself in the formation of
singularities in the form of Taylor cones and jets [12,26,37].

The variational ill-posedness of the above problem indicates that the Rayleigh model
does not contain all the physics that is necessary to describe the equilibrium shapes of
conducting charged drops. Several regularizing mechanisms have, therefore, been proposed,
including thermal effects that restore existence of minimizers under certain conditions due
to the spreading of the charges into a thin Debye layer beneath the droplet surface [7,32,33].
Nevertheless, in some situation such as cryogenic liquids or nanoscale droplets, in which
the thermal motion of free charges is suppressed, another physical mechanisms may be
necessary. One such mechanism relies on the fundamental discreteness of the electric
charges [11, 25, 26, 28]. In this paper, we explore this possibility in the special case of
dielectrically matched fluids, in which there is no dielectric contrast between the droplet
and its surroundings (again, see section 2 for technical details).

For a model that keeps track of the positions of individual charges inside the droplet, we
establish existence of generalized minimizers, a suitable notion of minimality for this kind
of problems that accounts for a possibility of components that are infinitely far apart, first
introduced in [27]. We also establish the regularity and connectedness of the components
of the generalized minimizers. We then proceed to investigate under which conditions
classical minimizers, consisting of only a single component, are possible in the physically
important regime of sufficiently strong repulsion between the charges in comparison to the
surface tension. Here we establish a sharp existence/non-existence criterion in the case of
many charges, which yields a critical charge for existence that is significantly smaller than
the Rayleigh charge. We also establish some structural information about the locations
of the charges when the minimizers do exist and show that in a suitable continuum limit
within the existence range the minimizer converges in an appropriate sense to a ball with
the charges uniformly distributed on its surface. Lastly, we present an explicit solution of
the variational problem in the case of only two point charges.

Our paper is organized as follows. In section 2, we introduce the model considered
in this paper and discuss the relevant parameter ranges. In section 3, we state the main
results of our paper. In section 4, we present the proof of Theorem 3.2 that gives existence
of generalized minimizers. In section 5, we present the proofs of the existence result of
Theorem 3.3, the non-existence result of Theorem 3.4, and the asymptotic characterization
of minimizers with many charges in Theorem 3.5. Lastly, in section 6 we present the
analysis of the two-charge problem that yields Theorem 3.6. This section also gives an
explicit characterization of the energy minimizers.

Acknowledgements The work of C.B.M. was supported, in part, by NSF via grant
DMS-1908709. M. Novaga was supported by the PRIN-MUR Project 2019/24.
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2 Model

We consider a system consisting of two immiscible fluids with matched dielectric constants,
i.e., both fluids have the relative dielectric constant equal to εd. Because of this, we do
not need to worry about the shape dependent dielectric polarization of the liquid drop in
the presence of charges, which would otherwise considerably complicate the analysis [7].
In the following, we simply refer to the first fluid of finite volume surrounded by the sec-
ond ambient fluid as the liquid drop. A notable example of such a fluid system is liquid
helium in equilibrium with its vapor, which has been used to investigate the phenomenon
of Wigner crystallization of charges at the liquid-vapor interface and is known to undergo
charge-driven interfacial instabilities [2, 22, 23, 38]. More recently, charge-containing he-
lium nanodroplets have been considered as a host medium for a variety of applications in
molecular spectroscopy and quantum chemistry [5].

At the level of the continuum, the equilibrium shape of a charged, perfectly conducting
liquid drop may be investigated with the help of a model that goes back over 140 years to
Lord Rayleigh [29]. In this model, an equilibrium drop is viewed as a minimizer (at least
local) of the energy

E(Ω) := σP (Ω) +
Q2

2C(Ω)
, (2.1)

where Ω ⊂ R3 is the set occupied by the drop that carries the charge Q, with the volume
of the drop |Ω| = m. Here, σ is the surface tension of the liquid interface, P (Ω) is the
perimeter of the set Ω defined by

P (Ω) := sup

{∫
Ω
∇ · φ(y) dy : φ ∈ C1

c (R3;R3), |φ| ≤ 1

}
, (2.2)

which is a suitable measure-theoretic generalization of the surface measure for smooth sets,
and C is the electrostatic capacity defined by

C−1(Ω) := inf
µ(Ω)=1

∫
Ω

∫
Ω

1

4πε0εd|x− y|
dµ(x) dµ(y), (2.3)

where ε0 is the permeability of vacuum, and the minimization is carried out over probability
measures µ supported on Ω. However, as was already mentioned, this model was recently
shown to be variationally ill-posed [18, 33]. Thus, a regularization of the electrostatic
problem is necessary to enable existence of even local energy minimizers in the natural
classes of liquid configurations.

In this paper, we appeal to the discrete nature of electric charges as a possible physical
regularizing mechanism [11, 25, 26, 28], while ignoring the entropic effects associated with
thermal agitation of the charges (appropriate for nanoscale droplets or cryogenic fluids).
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This amounts to restricting the measures appearing in (2.3) to those associated with N
point charges:

µ =
1

N

N∑
i=1

δxi , (2.4)

where xi ∈ R3 are the positions of the charges and δxi are the Dirac delta-measures centered
at xi. Note that in doing so we must exclude the self-interaction of charges. Setting x 6= y
in the integral in (2.3) then yields the following expression for the energy:

EN (Ω, X) := σP (Ω) +
e2

8πε0εd

∑
i 6=j

1

|xi − xj |
. (2.5)

Here the set Ω ⊂ R3 again denotes the domain occupied by the liquid drop, the discrete
set X = ∪Ni=1{xi} ⊂ R3 specifies the positions of N point charges, and e is the elementary
charge (positive), so that |Q| = Ne. For simplicity, we assume a single species of monovalent
ions dissolved in the liquid drop, with the ambient fluid a perfect dielectric.

Notice that every charge in the liquid drop strongly attracts a cluster of liquid (solvent)
molecules forming a solvation shell around the charge (ion). We model this effect by
requiring that the liquid drop contains a ball of radius r0, called the solvation radius,
around each charge [25], i.e., we have Br0(xi) ⊂ Ω for each i = 1, . . . , N , with Br0(xi)
mutually disjoint. The solvation radius of simple monoatomic ions in polar solvents like
water usually measures to fractions of a nanometer.

To assess the relative strengths of the two terms in the energy and to carry out an
appropriate non-dimensionalization, we introduce the molecular length scale

rσ :=

√
kBT

σ
, (2.6)

where kBT is the temperature in the energy units, above which the interface may be
considered as sharp and well defined in the presence of thermal noise. For low molecular
weight liquids at room temperature, rσ is on the order of a fraction of a nanometer. This
scale may be compared with the Bjerrum length

rB :=
e2

4πε0εdkBT
, (2.7)

which measures the scale at which the Coulombic energy of a pair of elementary charges
in a dielectric liquid is comparable to the thermal energy. In polar solvents at room
temperature, this length is on the order of a few nanometers. Rescaling lengths with rσ and
measuring the energy in the units of kBT then yields EN (rσΩ, rσX) = kBTEρ,λ,N (Ω, X),
where

Eρ,λ,N (Ω, X) := P (Ω) + λ

N−1∑
i=1

N∑
j=i+1

1

|xi − xj |
, (2.8)
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and we introduced the dimensionless parameters

ρ :=
r0

rσ
, λ :=

rB
rσ
. (2.9)

From the basic physical considerations already mentioned, for typical liquids at room tem-
perature both ρ and λ are expected to be of order one [25]. For example, for small mono-
valent ions in ethanol (a common solvent for electrospray) we have ρ ≈ 1 and λ ≈ 5. In
contrast, for liquid helium at T = 2 K, for which rσ ≈ 0.3 nm and rB ≈ 8µm we get
ρ ∼ 1 and λ ∼ 106 � 1. As a point of reference, let us note that for the parameters of
liquid helium above our Theorem 3.6 yields existence of an equilibrium configuration only
for droplets whose volume corresponds to a ball of radius greater than ∼ 10µm even with
just two point charges.

The case of the main physical interest corresponds to that of the volume of the charged
drop becoming macroscopically large (m→∞), while the number of charges N simultane-
ously tends to infinity with a suitable rate. To study this regime, we can carry out another
rescaling in which the volume is instead normalized to a constant while the radius of the
solvation sphere vanishes. Introducing the parameter ε > 0 that will eventually be sent to
zero, we have Eρ,λ,N (ε−1ρΩ, ε−1ρX) = ε−2ρ2Eε(Ω, X), where

Eε(Ω, X) := P (Ω) + γε3
Nε−1∑
i=1

Nε∑
j=i+1

1

|xi − xj |
, (2.10)

Bε(xi) ⊂ Ω are disjoint for all 1 ≤ i ≤ Nε, and γ := λ/ρ3 is a single dimensionless parameter
that characterizes the physical properties of the liquid and is kept fixed throughout the
analysis. The considerations following (2.9) motivate us to focus on the physically most
relevant regime of γ & 1. The assumptions on the dependence of Nε → ∞ on ε → 0
that yield information about the equilibrium shape of the charged drops turn out to be
non-trivial and will be specified in the following sections.

3 Main results

We now state the main results of our paper concerning the minimizers of the energy Eρ,λ,N
and its rescaled version Eε. We begin by defining the admissible class Am,N,ρ of config-
urations consisting of a set of finite perimeter Ω ⊂ R3 of volume m > 0 and N ∈ N
non-overlapping charges of radius ρ > 0 contained in Ω, whose centers are collected into a
discrete set X ⊂ R3:

Am,N,ρ := {(Ω, X) :

Ω ⊂ R3 measurable, |Ω| = m, P (Ω) <∞,
X = ∪Ni=1{xi}, (xi)

N
i=1 ∈ R3,

|Ω ∩Bρ(xi)| = |Bρ(0)| for all 1 ≤ i ≤ N,
Bρ(xi) ∩Bρ(xj) = ∅ for all 1 ≤ i < j ≤ N}.

(3.1)
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2ρ
Ω

Figure 1: Schematics of an admissible configuration consisting of N = 4 charges indicated
with “+” when Ω is a ball.

An example of an admissible configuration is shown in Fig. 1. Notice that the set
∪Ni=1Bρ(xi) representing the charges is assumed to be contained inside the set Ω in the
measure theoretic sense.

We would like to investigate under which conditions the energy Eρ,λ,N admits a mini-
mizer in the class Am,N,ρ. Notice that the question of existence of such minimizers is far
from obvious because of the possibility of splitting of the set Ω into disjoint pieces that
carry the charges apart to lower the Coulombic energy at the expense of increasing the
interfacial energy. This issue is well known in the studies of geometric variational prob-
lems with competing interactions [6]. In the context of Gamow’s liquid drop model, it was
shown that an appropriate extension of the notion of minimizers for this kind of problems
is given by generalized minimizers [27]. In our problem, these are defined as follows.

Definition 3.1. Let ρ, λ > 0, N ∈ N and m ≥ 4π
3 Nρ

3. Suppose there exists K ∈ N,

mk > 0 and Nk ∈ N∪ {0} with m =
∑K

k=1mk, N =
∑K

k=1Nk, and a family of minimizers
(Ωk, Xk) ∈ Amk,Nk,ρ of Eρ,λ,Nk which satisfies

K∑
k=1

Eρ,λ,Nk(Ωk, Xk) = inf
(Ω,X)∈Am,N,ρ

Eρ,λ,N (Ω, X). (3.2)

Then the family of (Ωk, Xk) is called a generalized minimizer of Eρ,λ,N over Am,N,ρ.
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Ω

Figure 2: A schematic of a classical minimizer for N = 7.

Intuitively, a generalized minimizer can be thought of as a finite collection of droplets
containing all the charges, with each droplet being a minimizer for the charge it contains
and different droplets being “infinitely far apart” and thus not interacting. Each set Ωk in
a generalized minimizer is referred to as a component. Notice that a generalized minimizer
is simply a minimizer if and only if it has only one component. An illustration of a
classical minimizer of Eρ,λ,N with N = 7 is presented in Fig. 2, while a possible generalized
minimizer is shown in Fig. 3. Our first result establishes existence of generalized minimizers
for all nontrivial values of the parameters.

Theorem 3.2. Let ρ, λ > 0, N ∈ N and m ≥ 4π
3 Nρ

3. Then there exists a generalized
minimizer of Eρ,λ,N over Am,N,ρ. Moreover, each component of the generalized minimizer
has boundary of class C1,1 and is connected.

In view of the regularity of the components of generalized minimizers, in the following
we always refer to the regular representatives when talking about the energy minimizing
sets. In particular, we can choose these sets to be open.

We next establish a parameter regime in which the generalized minimizers are also
classical, i.e., when there is a minimizer of Eρ,λ,N over Am,N,ρ. Naturally, as the most
interesting case to consider is that of many charges, we will instead work with the energy
Eε defined in (2.10) and minimize it over the class Aε obtained as a suitable modification
of the definition in (3.1) corresponding to sets of volume m = 4π

3 of a unit ball (without
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Ω1

Ω2

Ω3

Figure 3: A schematic of a generalized minimizer with K = 3 for N = 7.

loss of generality) containing Nε � 1 charges of radius ε� 1:

Aε := A 4π
3
,Nε,ε

. (3.3)

Notice that existence vs. non-existence of classical minimizers in the class Aε for ε� 1
must clearly depend on the rate of Nε →∞ as ε→ 0. To begin with, due to the constraint
Bε(xi) ∩ Bε(xj) = ∅ for i 6= j we must have Nε . ε−3 in order for the admissible class
Aε to be non-empty, limiting the possible growth rate of Nε. On the other hand, for Ω
fixed and ε sufficiently small depending on Nε � 1, one would be able to approximate
infX⊂ΩEε(Ω, X) by

E0(Ω) := P (Ω) +
q2

2
inf

µ(Ω)=1

∫
Ω

∫
Ω

dµ(x) dµ(y)

|x− y|
, (3.4)

with q = γ
1
2 ε

3
2Nε, which is nothing but the dimensionless continuum energy in (2.1).

Nevertheless, this energy is known to give inf |Ω|= 4π
3
E0(Ω) = 4π for all q ≥ 0, thus failing

to yield a minimizer for any q > 0 [18]. Therefore, it would be natural to expect existence

of minimizers of Eε over Aε only for Nε � γ−
1
2 ε−

3
2 . Still, the threshold Nε for existence

of minimizers in this regime is far from obvious.
We begin with the following existence result, which shows that for γ & 1 classical

minimizers exist as soon as Nε . γ−1ε−1 and all ε > 0 sufficiently small universal.

Theorem 3.3. There exist universal constants ε0 > 0, γ0 > 0 and C > 0 such that
for all γ > γ0 and 1 < Nε <

C
εγ there exists a minimizer of Eε over Aε for all ε ∈

(0, ε0). Furthermore, if (Ω, X) ∈ Aε is a minimizer of Eε then dist(xi, ∂Ω) = ε and
dist(xi, X\xi) ≥ cγε for all xi ∈ X with 1 ≤ i ≤ Nε and c > 0 universal.
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We note that one of the conclusions of the above theorem is that all the balls Bε(xi)
containing the charges xi ∈ X in a minimizer touch the drop boundary ∂Ω. This is
consistent with the expectation at the level of the continuum that the measure µ minimizing
the Coulombic energy in (3.4) is supported on ∂Ω. Furthermore, we find that in this regime
the charges are uniformly separated from one another at scale O(γε) which exceeds that
imposed by the constraint Bε(xi) ∩Bε(xj) = ∅ for i 6= j.

Surprisingly, the existence threshold in Theorem 3.3 is considerably lower than Nε ∼
γ−

1
2 ε−

3
2 for which the Coulombic energy matches the perimeter in the continuum as ε→ 0,

see (3.4). Nevertheless, this is not simply a limitation of our analysis, as we demonstrate
with our next non-existence result. To give some heuristics for the threshold appearing in
Theorem 3.3, consider the basic mechanism in which a drop may lose its energy minimizing
property by evaporating a single charge [11,25,26,28]. If (Ω, X) is a minimizer of Eε, then
(Ω′, X ′) with Ω′ = (Ω\Bε(xi))∪Bε(Re1) and X ′ = (X\{xi})∪{Re1}, obtained by cutting
a single ball Bε(xi) with a charge in its center and sending it far off, is an admissible
configuration. Here e1 is the unit vector along the first coordinate direction, xi ∈ X with
1 ≤ i ≤ Nε arbitrary, and R > 0 is sufficiently large. Letting R → ∞, we then conclude
that

Eε(Ω, X) ≤ Eε(Ω′, X ′) ≤ Eε(Ω, X) + 8πε2 − γε3
∑
j 6=i

1

|xi − xj |
, (3.5)

which implies that

diam(Ω) ≥ CγεNε, (3.6)

for some C > 0 universal and all Nε > 1.
We would expect that at least whenever the perimeter is not overwhelmed by the

Coulombic energy the diameter of a minimizer of Eε, if it exists, should not greatly exceed
that of a unit ball corresponding to the mass constraint. From this and (3.6), we imme-
diately get a contradiction if Nε � γ−1ε−1, suggesting that in this regime the existence
should fail, provided that the perimeter term indeed dominates the Coulombic energy. For
the latter, we can consider a competitor of the form (Ω, X), where Ω = Br(0)∪Nεi=1Bε(iRe1)
and X = ∪Nεi=1{iRe1}, for r3+ε3Nε = 1 with ε� 1 and R� 1, corresponding to all charges
evaporated from the drop. This yields infAε Eε ≤ 4π(r2 +ε2Nε) by sending R→∞. Thus,
we have infAε Eε . 1 whenever Nε . ε−2 and ε � 1 independently of γ, and the isoperi-
metric deficit becomes small when Nε � ε−2.

Under the condition of smallness of ε2Nε, we now get our non-existence result that
yields a sharp scaling for the threshold value of Nε with γ & 1 for ε� 1.

Theorem 3.4. Let γ > γ0, where γ0 is as in Theorem 3.3. Then there exists a universal
constant C > 0 and constants ε0, δ0 > 0 depending only on γ such that if ε ∈ (0, ε0) and
C
γε < Nε <

δ0
ε2

then Eε does not attain its infimum in Aε.
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We note that by (3.6) the minimizer is expected to be highly elongated for Nε & ε−2,
if it exists. Thus, although we do not believe minimizers could exist in this Coulombic
dominated regime far beyond Rayleigh instability, i.e., for all Nε � γ−

1
2 ε−

3
2 , a different

approach would be needed to rule out existence of minimizers in this regime.
We now turn to the asymptotic behavior of the minimizers in the range of existence

given by Theorem 3.3. In the next theorem, we show that when the minimizers of Eε exist
for ε � 1, they are always nearly spherical with a uniformly distributed charge over the
boundary, as one would have expected on physical grounds. Notice that as was already
mentioned, in the regime of Theorem 3.3 the isoperimetric deficit for minimizers vanishes
as ε → 0, which by the quantitative isoperimetric inequality implies that the minimizers
converge to balls in the L1 topology after suitable translations [14]. Nevertheless, a stronger
control on the deviation of the minimizer Ω from a ball is necessary to establish convergence
of the Coulombic energy and, as a result, of the charge density, which is given by the
following theorem.

Theorem 3.5. Let εn > 0 and Nn ∈ N be such that εn → 0 and Nn →∞ as n→∞, and
Nn <

C
γεn

for γ > γ0, where C and γ0 are as in Theorem 3.3. Then if (Ωn, Xn) ∈ Aεn are

minimizers of Eεn and Xn = ∪Nni=1{xi,n}, we have, up to translations, Ωn ⊂ B1+δ(0) for all
δ > 0 and all n ∈ N large enough, and

1

Nn

Nn∑
i=1

δxi,n ⇀
1

4π
H2(∂B1(0)), (3.7)

in the sense of measures, as n→∞.

Lastly, we present an asymptotically sharp existence result for the minimization prob-
lem in the special case of Nε = 2 charges and ε� 1. Actually, in this case the minimization
problem admits and explicit solution in terms of the unduloid surfaces that span the space
between the two charges. We present the rather technical details of these solutions in Sec.
6. Here instead we summarize our existence results for minimizers of Eε with Nε = 2 for
ε� 1.

Theorem 3.6. Let Nε = 2 and c > 0. Then there exists ε0 > 0 such that for all ε ∈ (0, ε0)
we have:

(i) if c < 8π and γ < c
ε then there exists a unique, up to translations and rotations,

minimizer of Eε in Aε.

(ii) if c > 8π and γ > c
ε then there is no minimizer of Eε in Aε.

Note that the threshold for existence in the above theorem is consistent with the one
found in Theorems 3.3 and 3.4, but without an a priori assumption on γ. A further
quantitative characterization of these minimizers is presented in Theorem 6.15, with all

11



the necessary notations defined in Sec. 6. The proof of the latter is rather technical and
involves a careful asymptotic analysis of the exact global minimizers constructed in that
case. Finally, we note that in the case Nε = 1 the minimizers are trivially balls, so in the
following we can always assume Nε ≥ 2 without loss of generality.

4 Existence of generalized minimizers

Lemma 4.1. For every P > 0 there exists γ > 0 such that if Ω ⊂ B̊c
R(0) for some R > 0

and
|Ω| ≥ 1, P (Ω) ≤ P, (4.1)

then there exists a vector field η ∈ C1
c (B̊c

R(0)) with ‖η‖C1(B̊cR(0)) ≤ 1 such that∫
Ω

div η dx ≥ γ. (4.2)

Proof. We reason as in [7, Lemma 3.5] and assume by contradiction that there exist a
sequence of radii Rk > 0 and a sequence of sets Ωk satisfying (4.1) such that

lim
k→∞

sup
η∈Ak

∫
Ωk

div η dx = 0, (4.3)

where Ak := {η ∈ C1
c (B̊c

Rk
(0)) such that ‖η‖C1(B̊cRk

(0)) ≤ 1}. By [30, Remark 29.11] for all

k ∈ N there exists xk ∈ R3 such that

|Ωk ∩B1(xk)| ≥ δ̄, (4.4)

with δ̄ = δ̄(P ) > 0. Letting Fk = Ωk − xk, up to a subsequence we have that Rk → R ∈
[0,+∞], Fk → F ⊂ R3 in L1

loc(R3), with P (F ) ≤ P . We only deal with the case R < +∞
and xk → x ∈ R3, since the other cases can be treated analogously and are easier.

Passing to the limit in (4.4), we get that |F ∩ B1(0)| ≥ δ̄. In particular, by Almgren
lemma [7, Lemma 3.4] (see also [3,30]) there exists ηF ∈ C1

c (B̊c
R(−x)) with ‖ηF ‖C1(B̊cR(−x)) ≤

1 such that ∫
F

div ηF dx ≥ γF , (4.5)

for some γF > 0. Letting now ηk := ηF (· + xk), which belongs to C1
c (B̊c

Rk
(0)) for k large

enough, we have that

lim
k→∞

∫
Ωk

div ηk dx ≥ γF > 0, (4.6)

thus contradicting (4.3).
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Remark 4.2. It is not difficult to see that the conclusion of Lemma 4.1 in fact holds for
general sets Ω ⊂ Rn of finite perimeter and supported on a complement of a bounded open
set U ⊂ Rn, with the constant γ depending only on the perimeter of Ω and n.

Following [7], from Lemma 4.1 we derive the following uniform density estimate.

Lemma 4.3. For every η, δ > 0 there exist a c0 > 0 depending only on η such that if
Ω ⊂ R3 is a minimizer of

min
{
P (E,Bc

R(0)) : E ∩BR(0) = Ω ∩BR(0), |E| = |Ω|
}
, (4.7)

with P (Ω ∩Bc
R(0)) < η|Ω ∩Bc

R(0)|2/3 and |Ω ∩Bc
R(0)| > δ, then

|Ω ∩Br(x)| ≥ cr3, (4.8)

for all x ∈ Ω \BR(0) and r ∈ (0, c0δ
1
3 ) such that Br(x) ⊂ Bc

R(0), where the constant c > 0
is universal and Ω is understood in the measure theoretic sense.

Proof. Up to a rescaling, we can assume that δ = 1. Notice that by a projection argument
we have

P (Ω, Bc
R(0)) +H2(Ω ∩ ∂BR(0)) = P (Ω ∩Bc

R(0)) ≥ 2H2(Ω ∩ ∂BR(0)). (4.9)

Then reasoning as in [7, Proposition 4.4] and applying Lemma 4.1 to the set Ω ∩ Bc
R(0),

we get that Ω is a (Λ, r0)-minimizer of the perimeter in Bc
R(0), where Λ, r0 are positive

constants depending only on P . The result then follows by [30, Theorem 21.11].

Proof of Theorem 3.2. Let (Ωn, Xn) be a minimizing sequence and let Xn = ∪Ni=1{xi,n}.
As the total number of charges is fixed, up to extraction of a subsequence (not relabeled)
the charges segregate into 1 ≤ K ≤ N clusters moving apart as n → ∞. More precisely,
for each k ∈ {1, 2, . . . ,K} there exist Nk ∈ N and an index set Ik = {ik1, ik2, . . . , ikNk} such

that ∪Kk=1Ik forms a disjoint partition of {1, . . . , N} for each n ∈ N and

lim sup
n→∞

|xi,n − xj,n| <∞ ∀i ∈ Ik and ∀j ∈ Ik, (4.10)

lim inf
n→∞

|xi,n − xj,n| =∞ ∀i ∈ Ik and ∀j 6∈ Ik. (4.11)

Consider now Ωk
n := Ωn − xik1 ,n and Xk

n := ∪i∈Ik{xi,n − xik1 ,n}. By (4.10) and (4.11),

there exists R0 ≥ 1 such that Bρ(xi,n) ⊂ BR0(xik1 ,n
) for all i ∈ Ik and all 1 ≤ k ≤ K, and

for every R̃ > 0 we have Bρ(xi,n) ⊂ Bc
R̃

(xik1 ,n
) for all i 6∈ Ikn and all n large enough. Then,

for R0 < R < R̃ and L > 0 we define a competitor set

Ω̃R,L
n :=

(
K⋃
k=1

(Ωk
n ∩BR(0)) + e1kL)

)⋃
Ω0
n, (4.12)
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where for r :=
(

3
4π |Ωn \ (∪Kk=1BR(xik1 ,n

))|
)1/3

we have Ω0
n := ∅ if r = 0 or Ω0

n := Br(0) if

r > 0, together with

X̃R,L
n =

K⋃
k=1

(Xk
n + ekkL). (4.13)

By construction, (Ω̃R,L
n , X̃R,L

n ) ∈ Am,N,ρ for all n and L large enough independent of
R. Notice that

P (Ω̃R,L
n ) =

K∑
k=1

P (Ωk
n, BR(0)) +

K∑
k=1

H2(Ωk
n ∩ ∂BR(0)) + 4πr2, (4.14)

for almost all R0 < R < R̃, and

∑
i 6=j

1

|xi,n − xj,n|
≥

K∑
k=1

∑
i,j∈Ik
i 6=j

1

|x̃i,n − x̃j,n|
, (4.15)

where X̃R,L
n = ∪Ni=1{x̃

R,L
i,n }. Thus, by the isoperimetric inequality we have

Eρ,λ,N (Ω̃R,L
n , X̃R,L

n ) ≤ Eρ,λ,N (Ωn, Xn) + 2

K∑
k=1

H2(Ωk
n ∩ ∂BR(0)) +

C

L
, (4.16)

for some C > 0 independent of n, L and R. Furthermore, since

K∑
k=1

|Ωk
n ∩ (B

R̃
(0)\BR0(0))| =

K∑
k=1

∫ R̃

R0

H2(Ωk
n ∩ ∂BR(0)) dR ≤ m, (4.17)

for every R̃ ≥ 2R0 it is possible to choose R ∈ (R̃/2, R̃) ⊂ (R0, R̃) such that

K∑
k=1

H2(Ωk
n ∩ ∂BR(0)) ≤ 2m

R̃
. (4.18)

Therefore, up to a subsequence (again, not relabeled) we can choose R̃ = R̃n → ∞ and
R = Rn → ∞ such that (4.18) holds, as well as L = Ln → ∞ sufficiently fast, so that by
(4.16) we have that (Ω̃n, X̃n) := (Ω̃Rn,Ln

n , X̃Rn,Ln
n ) is also a minimizing sequence.

We now modify the sets Ω̃n as follows to further reduce the energy: For each 1 ≤ k ≤ K,
we replace the set (Ω̃n− x̃ik1 ,n)∩BRn(0), where X̃n = ∪Ni=1{x̃i,n}, with the minimizer Ω̃k

n of

the perimeter among all sets supported in BRn(0), containing ∪
x̃∈X̃k

n
Bρ(x̃), and satisfying

14



|Ω̃k
n| = |Ωk

n ∩ BRn(0)|. Existence of such a minimizer follows from the direct method
of calculus of variations (see, e.g., [30, Section 12.5]). We may also assume that each
set Ω̃k

n ∪ BR0(0) is connected, since otherwise all the mass of the disconnected pieces of
Ω̃k
n\BR0(0) may be absorbed into the ball Ω0

n at the origin, producing a new set Ω̃0
n without

increasing the perimeter while conserving the total mass. We denote by Ωn the set obtained
by replacing Ωk

n with Ω̃k
n in the definition of Ω̃n. By construction we have (Ωn, X̃n) ∈ Am,N,ρ

and Eρ,λ,N (Ωn, X̃n) ≤ Eρ,λ,N (Ω̃n, X̃n), so (Ωn, X̃n) is again a minimizing sequence.

Notice that if we compare the perimeter of Ω̃k
n with the one of (Ω̃k

n ∩Br(0))∪B, where
B ⊂ Bc

Rn
(0) is a ball of volume v(r) := |Ω̃k

n \Br(0)|, after some simple calculations we get
that

P (Ω̃k
n \Br(0)) ≤ c̄v

2
3 (r)− 2

dv(r)

dr
(4.19)

for a.e. r ∈ (R0, Rn), where c̄ = (36π)
1
3 . It follows that if v(R0 + 1) > 0, then for all large

enough n we have ∫ R0+1

R0

P (Ω̃k
n \Br(0))

v
2
3 (r)

dr ≤ c̄+ 6v
1
3 (R0) ≤ c̄+ 6m

1
3 . (4.20)

In particular, there exists R′0 ∈ (R0, R0 + 1), depending on n and k, such that

P (Ω̃k
n \BR′0(0))

|Ω̃k
n \BR′0(0)|

2
3

≤ c̄+ 6m
1
3 . (4.21)

Then, by Lemma 4.3 applied with Ω = Ω̃k
n and R = R′0, the minimizer Ω̃k

n satisfies a
uniform density estimate of the form

|Ω̃k
n ∩Br(x)| ≥ cr3, (4.22)

for some universal c > 0 and for all x ∈ Ω̃k
n\BR′0

(0) and 0 < r ≤ r0 := c(m)|Ω̃k
n\BR′0(0)|1/3.

Moreover, we claim that Ω̃k
n ⊂ BR∞(0) for some R∞ > 0 independent of n. Indeed, if

|Ω̃k
n\BR0+1(0)| = 0, there is nothing to prove. At the same time, in view of the connect-

edness of Ω̃k
n ∪ BR0(0), the claim follows easily by applying the density estimate in (4.22)

with r = r0 to a sequence of x = xl ∈ Ω̃k
n ∩

(
∂BR0+1+(3l−1)r0(0)\BR0+1+(3l−2)r0(0)

)
, for

l ∈ N, and the fact that |Ω̃k
n\BR0(0)| is bounded by m.

We now send n → ∞. By compactness in BV (BR∞(0)), upon extraction of a subse-
quence we have Ω̃k

n → Ωk
∞ in the L1-topology for all 1 ≤ k ≤ K. Also, since by construc-

tion Ω̃0
n are balls containing the excess mass or are empty, we likewise have Ω̃0

n → Ω0
∞ in

L1(R3) and P (Ω̃0
n)→ P (Ω0

∞). Then, by the lower-semicontinuity of the perimeter we have
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lim infn→∞ P (Ω̃k
n) ≥ P (Ωk

∞) for all 1 ≤ k ≤ K. Upon a further extraction of a subse-
quence we may also assume that xi,n− xik1 ,n → xki,∞ for all i ∈ Ik, and by continuity of the
Coulombic energy we have

lim
n→∞

∑
i,j∈Ik
i 6=j

1

|xi,n − xj,n|
=
∑
i,j∈Ik
i 6=j

1

|x̃ki,∞ − x̃kj,∞|
. (4.23)

Thus, letting Xk
∞ := ∪i∈Ik{xki } we have

inf
(Ω,X)∈Am,N,ρ

Eρ,λ,N = lim inf
n→∞

Eρ,λ,N (Ωn, Xn) ≥ lim inf
n→∞

Eρ,λ,N (Ωn, X̃n)

≥ P (Ω0
∞) +

K∑
k=1

P (Ωk
∞) +

λ

2

∑
i,j∈Ik
i 6=j

1

|x̃ki,∞ − x̃kj,∞|

 (4.24)

= P (Ω0
∞) +

K∑
k=1

Eρ,λ,Nk(Ωk
∞, X

k
∞).

Moreover, (Ωk
∞, X

k
∞) minimize Eρ,λ,Nk over Amk,Nk,ρ, where mk := |Ωk

∞|, and by construc-

tion Ω0
∞ minimizes the perimeter among all sets with mass m0 = m −

∑K
k=1mk. Indeed,

otherwise it would be possible to construct a test configuration of the form of (4.12) from
those in Amk,Nk,ρ such that (4.24) is violated. Finally, using (Ωk

∞, X
k
∞) to form a test

function of the form of (4.12) and sending L→∞ yields equality in (4.24).
Finally, the regularity of ∂Ωj follows by standard regularity theory for minimal surfaces

with smooth obstacles (see for instance [30, Theorem 21.8]).

5 Case of many charges

5.1 Preliminaries

From here on we are concerned with minimizing the energy given in (2.10) among (Ω, X) ∈
Aε. Note that since by Theorem 3.2 generalized minimizers always exist whenever Aε is
non-empty, it is convenient to formulate our energy estimates in terms of the energy of
such minimizers. Furthermore, as competitors we may consider finite collections of pairs
(Ωi, Xi), where Ωi ⊂ R3 are open sets with sufficiently smooth boundaries and Xi ⊂ R3

are finite discrete sets satisfying∑
i

|Ωi| =
4π

3
,

∑
i

|Xi| = Nε. (5.1)
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With some abuse of notation, we will denote k copies of the component (Ωi, Xi) of a
competitor as (Ωi, Xi)

k, with the obvious convention that (Ωi, Xi)
0 = (∅,∅). We also

define the Coulombic interaction energy Vε(X) as

Vε(X) := γε3
Nε−1∑
i=1

Nε∑
j=i+1

1

|xi − xj |
. (5.2)

Lastly, we note that in the statements and proofs that follow we sometimes utilize explicit
constants in the estimates, which, however, are not intended to be optimal.

As a starting point, we have the following basic upper bound on the minimal energy,
which is obtained by considering a non-interacting configuration of one large ball and Nε−1
individual discrete charges. In particular, it gives a universal upper bound on the minimal
energy for Nε ≤ 1

ε2
.

Lemma 5.1. If {(Ω1, X1), . . . , (Ωk, Xk)} is a generalized minimizer then

k∑
i=1

Eε(Ωi, Xi) < 4π(1 + ε2Nε). (5.3)

Proof. Testing the energy with the configuration of one charge in the center of a large ball
and Nε − 1 single charges in balls of radius ε, namely, taking as a candidate
{(Br1(0), {0}), (Bε(0), {0})Nε−1}, where r1 = 3

√
1− (Nε − 1)ε3 ≤ 1, we have

k∑
i=1

Eε(Ωi, Xi) ≤ 4πr2
1 + 4πε2(Nε − 1), (5.4)

which yields the desired inequality.

Note that as a convention from here on we order the elements of a generalized minimizer
{(Ω1, X1), (Ω2, X2), . . . , (Ωk, Xk)} in terms of the decreasing magnitude of |Ωi|.

Lemma 5.2. There exists a universal constant C > 0 such that if {(Ω1, X1), . . . , (Ωk, Xk)}
is a generalized minimizer then |Ω1| ≥ 4π

3 − Cε
3N

3
2
ε .

Proof. Without loss of generality let k > 1. Let ri :=
(

3
4π |Ωi|

) 1
3 , then by the isoperimetric

inequality and positivity of Vε we have

k∑
i=1

Eε(Ωi) ≥
k∑
i=1

4πr2
i . (5.5)
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Eliminating r1 via the volume constraint
∑k

i=1 r
3
i = 1 and using the fact that t

2
3 > t for

t ∈ (0, 1), we obtain

k∑
i=1

Eε(Ωi) ≥
k∑
i=2

4πr2
i + 4π

(
1−

k∑
i=2

r3
i

) 2
3

≥ 4π +
k∑
i=2

4πr2
i (1− ri). (5.6)

On the other hand, note that since r2 ≤ 1
3√2

, for all 1 < i ≤ k we have

r2
i (1− ri) ≥

(
1− 1

3
√

2

)
r2
i . (5.7)

Therefore, by Lemma 5.1 we obtain

4π(1 +Nεε
2) >

k∑
i=1

Eε(Ωi) ≥ 4π +
k∑
i=2

4πr2
i (1− ri) ≥ 4π + C

k∑
i=2

r2
i , (5.8)

for some universal C > 0. Finally, by monotonicity of the lp-norm in p, this implies

3

√√√√ k∑
i=2

r3
i ≤

√√√√ k∑
i=2

r2
i ≤ C

′ε
√
Nε, (5.9)

for some C ′ > 0 universal, yielding the claim.

Our next lemma provides further information about the volume of the small components
of generalized minimizers. Notice that the conditions on Nε throughout the rest of this
section tacitly imply that ε is small.

Lemma 5.3. There exist universal constants C, δ > 0 such that for 1 < Nε <
δ
ε2

, if

{(Ω1, X1), (Ω2, X2), . . . , (Ωk, Xk)} is a generalized minimizer then |Ωi| ≤ C|Xi|
3
2 ε3 for all

i > 1.

Proof. For i > 1 create a minimizing candidate
{(cΩ1, cX1), . . . , (cΩi−1, cXi−1), (cΩi+1, cXi+1), . . . , (cΩk, cXk), (Bε(0), {0})|Xi|}, which is ob-
tained by deleting the i-th component, transferring its charges into |Xi| non-interacting
balls of radius ε and rescaling the remaining components to adjust for the volume change.
Here

c = 3

√
4π
3 −

4π
3 |Xi|ε3

4π
3 − |Ωi|

= 3

√
1 +
|Ωi| − 4π

3 |Xi|ε3

4π
3 − |Ωi|

≤ 3

√
1 +

3

2π

(
|Ωi| −

4π

3
|Xi|ε3

)
(5.10)

≤ 1 +
1

2π

(
|Ωi| −

4π

3
|Xi|ε3

)
, (5.11)
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where we used that |Ωi| ≤ 2π
3 for all i > 1. Furthermore, from Lemma 5.2, |Ωi| ≤ Cε3N

3
2
ε ≤

Cδ
3
2 for some universal constant C > 0. Thus, we can pick δ > 0 so that |Ωi| ≤ 1, which

gives us

k∑
j=1

Eε(Ωj , Xj) ≤ 4π|Xi|ε2 +
∑
j 6=i

(
c2P (Ωj) + Vε(Xj)

)
≤ 4π|Xi|ε2 +

(
1 + 2

(
|Ωi| −

4π

3
|Xi|ε3

))∑
j 6=i

P (Ωj) +
∑
j 6=i

Vε(Xj). (5.12)

From Lemma 5.1, we can pick C ′ > 0 so that
∑k

j=1 P (Ωj) ≤ 4π+4πε2Nε ≤ 4π(1+δ) ≤ C ′.
This gives us that

k∑
j=1

Eε(Ωj , Xj) ≤ 4π|Xi|ε2 − P (Ωi) + 2C ′
(
|Ωi| −

4π

3
|Xi|ε3

)
+

k∑
j=1

Eε(Ωj , Xj). (5.13)

Thus, with the help of the isoperimetric inequality for Ωi we have

3
√

36π|Ωi|
2
3 − 2C ′|Ωi| ≤ 3

√
36π|Ωi|

2
3 − 2C ′

(
|Ωi| −

4π

3
|Xi|ε3

)
≤ 4π|Xi|ε2. (5.14)

Finally, since |Ωi| ≤ Cδ
3
2 , possibly decreasing δ we can ensure that |Ωi|

1
3 < 1

C′ , yielding
the desired inequality.

Next we rule out the case where our generalized minimizer {(Ω1, X1), . . . , (Ωk, Xk)}
contains Xi’s that are null, which means that each component of the generalized minimizer
has to contain at least one charge, provided that Nε is not too large and ε is sufficiently
small. In this case, if a small component contains only one charge then it is a ball of radius
ε.

Lemma 5.4. There exist a universal constant δ > 0 such that for 1 < Nε < δ
ε2

, if
{(Ω1, X1), . . . , (Ωk, Xk)} is a generalized minimizer then k ≤ Nε, and each Xi for 1 ≤ i ≤ k
is non-empty. Furthermore, if |Xi| = 1 for some 1 < i ≤ k, then |Ωi| = 4π

3 ε
3.

Proof. First note that if Xi is empty, then Lemma 5.3 implies that |Ωi| = 0, a contradiction.
Thus, all that remains, is to show that if |Xi| = 1 for some 1 < i ≤ k, then |Ωi| = 4π

3 ε
3.

To do this, note that when |Xi| = 1, rearranging (5.14) provides

3
√

36π|Ωi|
2
3 − 4πε2 ≤ 2C ′

(
|Ωi| −

4π

3
ε3

)
, (5.15)

19



which implies that |Ωi| = 4π
3 ε

3 whenever δ is chosen to ensure that |Ωi|
1
3 < 1

C′ . To see this,
note that if 4π

3 ε
3 < |Ωi| < 1

(C′)3 , then

∫ |Ωi|
4π
3
ε3
C ′dt <

∫ |Ωi|
4π
3
ε3
t−

1
3dt <

(
4π

3

) 1
3
∫ |Ωi|

4π
3
ε3
t−

1
3dt, (5.16)

which implies

C ′
(
|Ωi| −

4π

3
ε3

)
<

1

2

(
3
√

36π|Ωi|
2
3 − 4πε2

)
. (5.17)

Thus, (5.17) contradicts (5.15), and we conclude that |Ωi| = 4π
3 ε

3.

Lastly, we state a lower density estimate for generalized minimizers which will be useful
for both the Nε = 2 and the Nε � 1 cases.

Lemma 5.5. There exists a universal constant C > 0 such that for any M > 0, if Nε <
M
ε2

, {(Ω1, X1), . . . , (Ωk, Xk)} is a generalized minimizer, x0 ∈ Ωi \
⋃

xj∈Xi
Bε(xj) for some

1 ≤ i ≤ k, and r < min

(
R, min

xj∈Xi
|x0 − xj | − ε

)
, where R > 0 depends only on M , then

|Ωi ∩Br(x0)| > Cr3. (5.18)

Proof. We may assume for convenience that R < 1
2 and that BR+ε(x0)∩Xi = ∅. Consider

{(cΩ1, cX1), . . . , (c(Ωi \Br(x0)), cXi), . . . , (cΩk, cXk)}, where c > 1 is defined as

c := 3

√
4π
3

4π
3 − |Ωi ∩Br(x0)|

≤ 1 + |Ωi ∩Br(x0)|, (5.19)

as a possible minimizing candidate. Then

P (c(Ωi \Br(x0))) +
∑
j 6=i

P (cΩj)

≤ (1 + |Ωi ∩Br(x0)|)2

P (Ωi \Br(x0)) +
∑
j 6=i

P (Ωj)


≤ (1 + 3|Ωi ∩Br(x0)|)

P (Ωi \Br(x0)) +
∑
j 6=i

P (Ωj)

 . (5.20)

Furthermore, applying the isoperimetric inequality to the set Ωi ∩Br(x0) we have that

P (Ωi \Br(x0)) ≤ P (Ωi) + 2H2(Ωi ∩ ∂Br(x0))− 3
√

36π|Ωi ∩Br(x0)|
2
3 . (5.21)
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Thus combining (5.20) and (5.21) and using Lemma 5.1, we get

P (c(Ωi \Br(x0))) +
∑
j 6=i

P (cΩj)

≤ (1 + 3|Ωi ∩Br(x0)|)

2H2(Ωi ∩ ∂Br(x0))− 3
√

36π|Ωi ∩Br(x0)|
2
3 +

k∑
j=1

P (Ωj)


≤

− 3
√

36π + 3|Ωi ∩Br(x0)|
1
3

k∑
j=1

P (Ωj)

 |Ωi∩Br(x0)|
2
3 +C1H2(Ωi∩∂Br(x0))+

k∑
j=1

P (Ωj)

≤ C1H2(Ωi ∩ ∂Br(x0))− C2|Ωi ∩Br(x0)|
2
3 +

k∑
j=1

P (Ωj), (5.22)

for some universal constants C1, C2 > 0 whenever r < R is small enough depending only
on M .

By (5.22) we have

k∑
j=1

Eε(Ωj , Xj) ≤ Eε (c(Ωi \Br(x0)), cXi) +
∑
j 6=i

Eε(cΩj , cXj)

≤ C1H2(Ωi ∩ ∂Br(x0))− C2|Ωi ∩Br(x0)|
2
3 +

k∑
j=1

Eε(Ωj , Xj), (5.23)

which implies

C1H2(Ωi ∩ ∂Br(x0)) ≥ C2|Ωi ∩Br(x0)|
2
3 . (5.24)

Finally, by letting U(r) := |Ωi∩Br(x0)| > 0 and applying Fubini’s theorem with the co-area

formula to obtain dU(r)
dr = H2(Ωi ∩ ∂Br(x0)) for a.e. r ∈ (0, R), we arrive at

dU(r)

dr
≥ CU

2
3 , (5.25)

for some universal constant C > 0. Integrating this inequality yields the claim.

5.2 Localizing the minimizers

In this subsection we perform a suitable localization of minimizers, which leads to outer
convergence of minimizers to a unit ball as ε → 0. For x0 ∈ R3 and r > 0, we define
the spherical cut of a set-charge pair (Ω, X) ∈ Am,N,ε by the ball Br(x0) to be the two
set-charge pairs (Ω±x0,r, X

±
x0,r) defined as follows: If H2

(
∂Br(x0)∩

(
∪x∈X Bε(x)

))
= 0, then

Ω+
x0,r = Ω ∩Br(x0), (5.26)
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X+
x0,r = {x ∈ X : Bε(x) ⊂ Ω+

x0,r}, (5.27)

Ω−x0,r = Ω \ Ω+
x0,r, (5.28)

and
X−x0,r = X \X+

x0,r. (5.29)

If, on the contrary, H2
(
∂Br(x0) ∩

(
∪x∈X Bε(x)

))
> 0, then we set

X+
x0,r =

{
x ∈ X : H2(∂Bε(x) ∩Br(x0)) > H2(∂Bε(x) ∩Bc

r(x0))
}
, (5.30)

X−x0,r = X \X+
x0,r, (5.31)

Ω+
x0,r =

(
(Br(x0) ∩ Ω) ∪

(
∪x∈X+

x0,r
Bε(x)

))
\
(
∪x∈X−x0,rBε(x)

)
(5.32)

Ω−x0,r = Ω \ Ω+
x0,r. (5.33)

For these spherical cuts we have the following result.

Lemma 5.6. Let ε,m > 0, N ∈ N, and let (Ω, X) be a classical minimizer of Eε over
Am,N,ε. Then if x0 ∈ R3 and r > 0, we have

P (Ω+
x0,r) + P (Ω−x0,r) ≤ P (Ω) + 4H2(Ω ∩ ∂Br(x0)). (5.34)

Proof. By construction, we have

P (Ω+
x0,r) = H2(∂Ω ∩Br(x0)) +H2(∂Br(x0) ∩ Ω)−

∑
x∈X
H2(∂Br(x0) ∩Bε(x))

+
∑

x∈X+
x0,r

H2(∂Bε(x) ∩Bc
r(x0)) +

∑
x∈X−x0,r

H2(∂Bε(x) ∩Br(x0)), (5.35)

and

P (Ω−x0,r) = H2(∂Ω ∩Bc
r(x0)) +H2(∂Br(x0) ∩ Ω)−

∑
x∈X
H2(∂Br(x0) ∩Bε(x))

+
∑

x∈X+
x0,r

H2(∂Bε(x) ∩Bc
r(x0)) +

∑
x∈X−x0,r

H2(∂Bε(x) ∩Br(x0)). (5.36)

Observe that for each x ∈ X+
x0,r the set ∂Bε(x)∩Bc

r(x0) is either empty or a spherical cap
with the base radius ax ∈ (0, ε] and height hx ∈ (0, ε]. Therefore, we have H2(∂Bε(x) ∩
Bc
r(x0)) = 2πεhx and H2(∂Br(x0) ∩ Bε(x)) ≥ πa2

x. Noting that (ε − hx)2 + a2
x = ε2, we

then conclude that

H2(∂Bε(x) ∩Bc
r(x0))

H2(∂Br(x0) ∩Bε(x))
≤ 2ε

2ε− hx
≤ 2. (5.37)
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By a similar argument, for every x ∈ X−x0,r we also have

H2(∂Bε(x) ∩Br(x0))

H2(∂Br(x0) ∩Bε(x))
≤ 2. (5.38)

Thus, we obtain

P (Ω+
x0,r) + P (Ω−x0,r) ≤ P (Ω) + 2H2(∂Br(x0) ∩ Ω) + 2

∑
x∈X
H2(∂Br(x0) ∩Bε(x))

≤ P (Ω) + 4H2(∂Br(x0) ∩ Ω), (5.39)

which is the desired inequality.

Next we obtain an estimate for the L1 convergence of classical minimizers to a ball as
ε→ 0.

Lemma 5.7. There exist universal constants C,C ′, δ0 such that if δ < δ0, 1 < Nε <
δ
ε2

,
and (Ω, X) is a classical minimizer, then

|Ω ∩Bc
r∗(x0)| < CN

3
2
ε ε

3, (5.40)

for some 1 ≤ r∗ ≤ 1 + C ′δ
1
6 and some x0 ∈ R3.

Proof. First note that Lemma 5.1 provides an upper bound on the isoperimetric deficit of
Ω, which is given by

P (Ω)− 4π

4π
≤ Nεε

2. (5.41)

In turn, by the quantitative isoperimetric inequality [14] this gives us an upper bound on
the Fraenkel asymmetry of Ω, which tells us that there exists x0 ∈ R3 and a universal
constant C0 > 0 such that

|Ω∆B1(x0)| ≤ C0

√
Nεε < C0

√
δ. (5.42)

Arguing by contradiction, assume that

|Ω ∩Bc
r(x0)| ≥ CN

3
2
ε ε

3 (5.43)

for all 1 ≤ r ≤ 1 + C ′δ
1
6 and C,C ′, δ > 0 arbitrary, provided that 1 < Nε <

δ
ε2

. Picking

C ′ = 15C
1
3 , for 1 ≤ r ≤ 1 + 15(C

√
δ)

1
3 we then have that

|Ω−x0,r| ≥ CN
3
2
ε ε

3 − 4π

3
Nεε

3 >
C

2
N

3
2
ε ε

3, (5.44)

provided that C is sufficiently large universal. To construct a minimizing candidate we first
cut (Ω, X) into (Ω+

x0,r, X
+
x0,r) and (Ω−x0,r, X

−
x0,r) and then split off the individual charges
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from (Ω−x0,r, X
−
x0,r) and move any remaining mass into Ω+

x0,r. More precisely, this minimizing

candidate is
{

(cΩ+
x0,r, cX

+
x0,r), (Bε(0), {0})k

}
, where

c = 3

√
|Ω+
x0,r|+ |Ω−x0,r| − 4π

3 kε
3

|Ω+
x0,r|

, (5.45)

and k = |X−x0,r|. Letting δ < δ0 <
1
C2

0
, from (5.42) we get that |Ω+

x0,r| ≥
4π
3 −1− 4π

3 Nεε
3 > 2

for all ε sufficiently small universal, which gives

c ≤ 3

√
1 +
|Ω−x0,r|

2
≤ 1 +

1

6
|Ω−x0,r|. (5.46)

Now, by cutting and re-scaling in this way we have that

Eε(c(Ω
+
x0,r, X

+
x0,r)) + 4πkε2 ≤ Vε(X+

x0,r) + c2P (Ω+
x0,r) + 4πkε2

≤ Vε(X) + P (Ω+
x0,r) + |Ω−x0,r|P (Ω+

x0,r) + 4πkε2. (5.47)

Furthermore, from Lemma 5.6 we have that

P (Ω+
x0,r) ≤ P (Ω) + 4H2(Ω ∩ ∂Br(x0))− P (Ω−x0,r), (5.48)

which together with the isoperimetric inequality applied to Ω−x0,r gives

P (Ω+
x0,r) ≤ P (Ω) + 4H2(Ω ∩ ∂Br(x0))− 3

√
36π|Ω−x0,r|

2
3 . (5.49)

Thus, combining (5.47) and (5.49) and using Lemma 5.1 we get that

Eε
(
c(Ω+

x0,r, X
+
x0,r)

)
+ 4πkε2 ≤

Eε(Ω, X)+4H2(Ω∩∂Br(x0))− 3
√

36π|Ω−x0,r|
2
3 +4πNεε

2+|Ω−x0,r|
(
P (Ω) + 4H2(Ω ∩ ∂Br(x0))

)
≤ Eε(Ω, X) + 5H2(Ω ∩ ∂Br(x0))− 3|Ω−x0,r|

2
3 + 4πNεε

2, (5.50)

provided that δ0 and, hence, |Ω−x0,r| is sufficiently small universal (see (5.42)).

Finally, by (5.44) we can pick C large enough so that |Ω−x0,r|
2
3 ≥ 4πNεε

2. Hence from
(5.50) and the minimality of (Ω, X) we obtain

Eε(Ω, X) ≤ Eε(c(Ω+
x0,r, X

+
x0,r))+4πkε2 ≤ Eε(Ω, X)+5H2(Ω∩∂Br(x0))−2|Ω−x0,r|

2
3 , (5.51)

which with the help of (5.43) gives us

H2(Ω ∩ ∂Br(x0)) ≥ 2

5
|Ω−x0,r|

2
3 ≥ 2

5
|Ω ∩Bc

r(x0)|
2
3 − 8π

15
Nεε

3 ≥ 1

5
|Ω ∩Bc

r(x0)|
2
3 , (5.52)
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whenever 1 ≤ r ≤ 1 + 15(C
√
δ)

1
3 and C large enough. Now, letting U(r) := |Ω ∩ Bc

r(x0)|
and applying Fubini’s theorem and the co-area formula, from (5.52) we get that

U
2
3 (r) ≤ −5

dU(r)

dr
(5.53)

for a.e. 1 ≤ r ≤ 1 + 15(C
√
δ)

1
3 . Integrating over this interval gives us

0 ≤ U
1
3

(
1 + 15(C

√
δ)

1
3

)
≤ U

1
3 (1)−

(
C
√
δ
) 1

3
. (5.54)

But this is a contradiction for C large enough, since from (5.42) we know that U(1) <
C0

√
δ.

Using the L1 convergence from Lemma 5.7 and the density estimate from Lemma 5.5,
we have that classical minimizers converge to a ball from the outside.

Lemma 5.8. For δ > 0 there exists δ0 depending only on δ and γ such that if 1 < Nε <
δ0
ε2

,
and (Ω, X) is a classical minimizer then Ω ⊂ B1+δ(x̂) for some x̂ ∈ R3.

Proof. Without loss of generality, we may assume that δ is sufficiently small universal.

From Lemma 5.7, the constant δ0 > 0 can be picked so that |Ω∩Bc
1+ δ

2

(x̂)| < CN
3
2
ε ε3 < Cδ

3
2
0 ,

where C > 0 is a universal constant and x̂ ∈ R3. Now let L = 1
6

(
supx∈Ω |x− x̂| − 1− δ

2

)
,

and, arguing by contradiction, assume that L > δ
12 .

For r > 0 and y ∈ R3, define ky(r) to be the number of charges inside of Ω+
y,r. Then

there exists x0 ∈ ∂Ω such that BL(x0) ∩ B1+ δ
2
(x̂) = ∅ and kx0(L) ≤ Nε

3 . Also, define

U(r) := |Ω ∩ Br(x0)|, then since U(r) is a continuous monotone increasing function and
kx0(r) is a lower semi-continuous piecewise-constant function with a finite number of jumps,

we have that S :=
{
r ∈ [0, L] : U(r) ≥ (4πkx0(r)ε2)

3
2

}
= [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [aq, bq].

Now by cutting and rescaling we will show that the set S is small whenever δ is small.
Let r ∈ S. Create a minimizing candidate

{(
cΩ−x0,r, cX

−
x0,r

)
, (B1

ε (0), {0})kx0 (r)
}

, where

c = 3

√
4π
3 −

4π
3 kx0(r)ε3

4π
3 − |Ω

+
x0,r|

≤ 3

√
4π
3

4π
3 − |Ω

+
x0,r|

≤ 1 +
3

2π
|Ω+
x0,r|, (5.55)

where from Lemma 5.7, δ0 is chosen so that |Ω+
x0,r| < Cδ

3
2
0 is small universal. Then by the

minimality of (Ω, X) we have

P (Ω∩Br(x0))+P (Ω∩Bc
r(x0))−2H2(∂Br(x0)∩Ω)+Vε(X) ≤ P (Ω)+Vε(X) = Eε(Ω, X)

≤ c2P (Ω−x0,r) + 4πkx0(r)ε2 + Vε(X). (5.56)
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Furthermore, from the argument in the proof of Lemma 5.6 we have that P (Ω−x0,r) <
P (Ω ∩Bc

r(x0)) + 2H2(Ω ∩ ∂Br(x0)), and from (5.56) and (5.55) we get that

P (Ω ∩Br(x0)) + P (Ω ∩Bc
r(x0))− 2H2(Ω ∩ ∂Br(x0))

≤
(

1 +
3

2π
|Ω+
x0,r|

)2 (
P (Ω ∩Bc

r(x0)) + 2H2(Ω ∩ ∂Br(x0))
)

+ 4πkx0(r)ε2

≤
(
1 + 2|Ω+

x0,r|
) (
P (Ω ∩Bc

r(x0)) + 2H2(Ω ∩ ∂Br(x0))
)

+ 4πkx0(r)ε2. (5.57)

Since |Ω+
x0,r| ≤ U(r) + 4π

3 kx0(r)ε3, we get that

P (Ω ∩Br(x0)) + P (Ω ∩Bc
r(x0))− 2H2(Ω ∩ ∂Br(x0))

≤
(

1 + 2U(r) +
8π

3
kx0(r)ε3

)(
P (Ω ∩Bc

r(x0)) + 2H2(Ω ∩ ∂Br(x0))
)

+ 4πkx0(r)ε2,

(5.58)

and using the assumption that r ∈ S gives

P (Ω ∩Br(x0)) + P (Ω ∩Bc
r(x0))− 2H2(Ω ∩ ∂Br(x0))

≤ (1 + 3U(r))
(
P (Ω ∩Bc

r(x0)) + 2H2(Ω ∩ ∂Br(x0))
)

+ 4πkx0(r)ε2

≤ P (Ω∩Bc
r(x0)) + 2H2(∂Br(x0)∩Ω) + 3U(r)P (Ω) + 9U(r)H2(Ω∩ ∂Br(x0)) + 4πkx0(r)ε2

≤ P (Ω ∩Bc
r(x0)) + 3H2(Ω ∩ ∂Br(x0)) + 15πU(r) + 4πkx0(r)ε2, (5.59)

after possibly decreasing the value of δ0.
We now apply the isoperimetric inequality to Ω ∩Br(x0) in (5.59) to obtain

3
√

36πU
2
3 (r)− 15πU(r)− 4πkx0(r)ε2 ≤ 5H2(Ω ∩ ∂Br(x0)). (5.60)

Since U(r) < Cδ
3
2
0 , we can pick δ0 to give

3
√

36π

2
U

2
3 (r)− 4πkx0(r)ε2 ≤ 5H2(Ω ∩ ∂Br(x0)). (5.61)

Finally, since r ∈ S we have that
3√36π

4 U
2
3 (r) ≥ U

2
3 (r) ≥ 4πkx0(r)ε2. Thus

U
2
3 (r) ≤ 5H2(Ω ∩ ∂Br(x0)) ∀r ∈ S. (5.62)

Noting that dU(r)/dr = H2(Ω ∩ ∂Br(x0)) for a.e. r and integrating this expression for
r ∈ [ai, bi] then gives us that

U
1
3 (bi)− U

1
3 (ai) ≥

1

15
(bi − ai). (5.63)

26



However, since by monotonicity of U(r) we have U(ai) ≥ U(bi−1), it holds that

U
1
3 (bq) ≥

1

15

q∑
i=1

(bi − ai). (5.64)

At the same time, since we also have U
1
3 (bq) < C

√
δ0 for some C > 0 universal, we obtain

that
q∑
i=1

(bi − ai) ≤ 15C
√
δ0 ≤

δ

24
<
L

2
, (5.65)

whenever δ0 ≤
(

δ
360C

)2
, where C > 0 is a universal constant. In particular, the set S has

a small measure controlled by δ, as claimed.
Now let r < L and r ∈ Sc. Then from Lemma 5.6 and a comparison of the energy of

(Ω, X) with that of {(Ω+
x0,r, X

+
x0,r), (Ω

−
x0,r, X

−
x0,r)} we get

P (Ω+
x0,r) + P (Ω−x0,r)− 4H2(Ω ∩ ∂Br(x0)) + Vε(X) ≤ P (Ω) + Vε(X) = Eε(Ω, X)

≤ P (Ω+
x0,r) + P (Ω−x0,r) + Vε(X)− γε3

(3 + 12L)
kx0(r)(Nε − kx0(r)), (5.66)

since from the definition of L the diameter of Ω is less or equal than 2 + δ+ 12L < 3 + 12L.
Thus, (5.66) implies that

γε3

(3 + 12L)
kx0(r)(Nε − kx0(r)) ≤ 4H2(Ω ∩ ∂Br(x0)). (5.67)

However, we chose x0 and L so that kx0(L) ≤ Nε
3 , which gives us that

γε3Nε

1 + L
kx0(r) ≤ C ′H2(Ω ∩ ∂Br(x0)). (5.68)

for some new universal constant C ′ > 0 that will change from line to line in the remainder

of the proof. Furthermore, since r ∈ Sc, U(r) <
(
4πkx0(r)ε2

) 3
2 , which implies that U

2
3 (r)

4πε2
≤

kx0(r). Thus

γεNεU
2
3 (r)

1 + L
≤ C ′H2(Ω ∩ ∂Br(x0)). (5.69)

Integrating this expression from [bi, ai+1], with aq+1 := L, gives us that

C ′
(
U

1
3 (ai+1)− U

1
3 (bi)

)
≥ γεNε

1 + L
(ai+1 − bi), (5.70)

which again by monotonicity of U(r) implies that

U
1
3 (L) ≥ γεNε

C ′(1 + L)

q∑
i=1

(ai+1 − bi). (5.71)
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From (5.65), we have that
∑q

i=1(ai+1 − bi) ≥ L
2 , which gives that

U
1
3 (L) ≥ γεNεL

C ′(1 + L)
. (5.72)

However, from Lemma 5.7 we have that U(L) < CN
3
2
ε ε3, which implies that

Nε ≤ C ′
(

1 + L

γL

)2

. (5.73)

Since L > δ
12 , this gives that Nε ≤ C′

δ2γ2
. Then by Lemma 5.7 we have

|Ω ∩Bc
1+ δ

2

(x̂)| ≤ C ′ε3

δ3γ3
(5.74)

Finally, to arrive at a contradiction observe that the set Ω∩Bc
r(x̂) must have a connected

component whose diameter exceeds 1
2δ. A slicing argument at scale ε then gives

|Ω ∩Bc
1+ δ

2

(x̂)| ≥ Cε2δ, (5.75)

for some universal constant C > 0. Indeed, if a slice contains a charge then it trivially
contains a volume of at least of order ε3. If, however, the slice does not contain any charges,
then it still contains at least that much volume by Lemma 5.5. Together, the above two
inequalities give a contradiction for ε < Cδ4γ3, with C > 0 universal.

5.3 Existence results

We now proceed to proving our existence and non-existence results for ε� 1. We begin by
adapting the arguments in the proof of Lemma 5.8 to show that for not too large values of
Nε the diameter of all but the first component of a generalized minimizer must be small.

Lemma 5.9. There exist universal constants C, δ > 0 such that for 1 < Nε <
δ
ε2

, if

{(Ω1, X1), ...(Ωk, Xk)} is a generalized minimizer and i > 1, then diam(Ωi) ≤ C max
(
ri,

ε
γ3

)
,

where ri :=
(

3
4π |Ωi|

) 1
3 .

Proof. Let i > 1. First note that Lemma 5.3 provides an upper bound on |Ωi|, which
implies smallness of |Ωi| for δ sufficiently small universal. If Li := diam(Ωi), then arguing

by contradiction we may assume that Li > C max
(
ri,

ε
γ3

)
, where C > 0 is arbitrary.

Arguing exactly as in the proof of Lemma 5.8 for the components Ωi, we may then obtain
the estimate

Li <
C ′ε

γ3
, (5.76)
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for some C ′ > 0 universal: we can first find a point x0 ∈ ∂Ωi such that (Ωi)
+
x0,r contains

only a universally small fraction of the total number of charges |Xi|, then by cutting and
rescaling we get an analog of the estimate in (5.65) in which the right-hand side is instead

bounded by a universal multiple of |Ωi|
1
3 , and finally by cutting and separating the pieces

we get an analog of the estimate in (5.71) with C ′γε|Xi|/Li multiplying the sum in the
right-hand side instead. This provides a contradiction by choosing C > C ′.

Our next lemma gives a precise characterization of the generalized minimizers when γ
is sufficiently large universal.

Lemma 5.10. There exist universal constants δ, γ0 > 0 such that for 1 < Nε <
δ
ε2

and
γ > γ0, if {(Ω1, X1), ...(Ωk, Xk)} is a generalized minimizer then up to translations it has
the form {(Ω1, X1), (Bε(0), {0})k−1}.

Proof. Without loss of generality, assume that k > 1 and consider (Ωi, Xi) for i > 1.
Arguing by contradiction, assume that |Xi| > 1 (the case of |Xi| ≤ 1 is taken care by
Lemma 5.4). First note that from the definition of generalized minimizers and Lemma 5.3

we have that cε3 < |Ωi| < C|Xi|
3
2 ε3 for some universal c, C > 0. Therefore, from Lemma

5.9 there exists γ0 > 0 such that if γ > γ0 then diam(Ωi) ≤ C|Ωi|
1
3 for some universal

C > 0. Thus
diam(Ωi) ≤ Cε

√
|Xi|. (5.77)

Now construct a minimizing candidate by cutting one charge at x0 ∈ Xi together
with the ball Bε(x0) from Ωi and adding a new component (Bε(0), {0}), i.e., consider
a competitor {(Ω1, X1), . . . , (Ωi \Bε(x0), Xi \ x0), . . . , (Ωk, Xk), (Bε(0), {0})}. Comparing
the energies then yields

8πε2 − ε2γ(|Xi| − 1)

C
√
|Xi|

≥ 8πε2 − ε3γ(|Xi| − 1)

diam(Ωi)

≥ Eε(Ωi\Bε(x0), Xi\x0) + Eε(Bε(0), {0})− Eε(Ωi, Xi) ≥ 0. (5.78)

Since |Xi| ≥ 2, this gives γ ≤ 16πC, contradicting the assumption on γ. Thus, for i > 1
we have that |Xi| = 1.

Proof of Theorem 3.3. First note that from Lemma 5.10, without loss of generality we
may assume that our generalized minimizer takes the form {(Ω1, X1), (Bε(0), {0})k−1}.
Arguing by contradiction, assume that k > 1. We will construct a competitor by bringing
one of the isolated charges into (Ω1, X1) and reducing the total energy. Since (Ω1, X1) is a
classical minimizer of Eε in the admissible class A|Ω1|,|X1|,ε, by considering a ball with |X1|
approximately hexagonally packed charges, from [40, Theorem C] we obtain

Eε(Ω1, X1) ≤ 3
√

36π|Ω1|
2
3 +

γε3

2
(

3

√
3

4π |Ω1| − ε
) |X1|2. (5.79)
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Note that in view of Lemma 5.2 the distance between the charges in this construction is
at least of order 1√

Nε
>
√
γε� ε, for Nε <

1
γε , γ > 1 and ε small enough universal. Thus,

letting X1 = {x1, x2, . . . , x|X1|}, by isoperimetric inequality we get that

Vε(X1) =
γε3

2

|X1|∑
i=1

∑
j 6=i

1

|xi − xj |
≤ γε3

2
(

3

√
3

4π |Ω1| − ε
) |X1|2 ≤ γε3|X1|2, (5.80)

in view of

3

√
3

4π
|Ω1| − ε ≥

1

2
, (5.81)

for all ε sufficiently small universal. This implies that there exists xi∗ ∈ X1 such that∑
j 6=i∗

1

|xi∗ − xj |
≤ 2|X1|. (5.82)

Consider d := 1
2 min
j 6=i∗
|xi∗ − xj |. First note that arguing as in (3.5) we have that

γε3

2d
≤ γε3

∑
j 6=i∗

1

|xi∗ − xj |
≤ 8πε2, (5.83)

which implies that

d ≥ γε

16π
≥ 4ε, (5.84)

whenever γ0 ≥ 64π. In addition, (3.5) implies |xi − xj | > cγε for i 6= j and some universal
c > 0, which proves the statement about charge separation.

Let x0 ∈ Ω1 ∩ ∂Bd(xi∗), which exists since by Theorem 3.2 the set Ω1 is connected.
Now our hope is to place a charge inside of Ω1 at x0 and lower the energy. Using (5.84),
we have that x0 is sufficiently far away from all the charges:

|x0 − xj | ≥ 4ε ∀xj ∈ X1. (5.85)

Therefore, by Lemma 5.5 we have that

4π

3
ε3 ≥ |Ω1 ∩Bε(x0)| > Cε3, (5.86)

for some universal constant C > 0. Thus, for ε small enough universal we can create a new
minimizing candidate {c(Ω1 ∪Bε(x0), X1 ∪ {x0}), (Bε(0), {0})k−2}, where

c = 3

√
|Ω1|+ 4π

3 ε
3

|Ω1| − |Ω1 ∩Bε(x0)|+ 4π
3 ε

3
≤ 3

√
1

1− 8ε3
< 1 + 3ε3, (5.87)
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in which the first inequality is due to (5.81). Thus, (5.86) with the isoperimetric inequality
and (5.87) gives us the following upper bound on the perimeter of c(Ω1 ∪Bε(x0)):

P (c(Ω1 ∪Bε(x0))) = c2P (Ω1 ∪Bε(x0)) ≤ c2
(
P (Ω1) + 4πε2 − P (Ω1 ∩Bε(x0))

)
≤ (1 + 10ε3)

(
P (Ω1) + 4πε2 − 3

√
36πC2ε2

)
≤ P (Ω1) + 4πε2 − 3

√
36πC2ε2 + 40πε3(1 +Nεε

2)

≤ P (Ω1) + 4πε2 − C ′ε2, (5.88)

for ε small enough universal, where C ′ > 0 is a universal constant and in the third inequality
we used Lemma 5.1.

Lastly, we will obtain an upper bound on Vε(c(X1∪{x0})) ≤ Vε(X1∪{x0}). To do this,
first note that from the definition of d we have

|x0 − xj | ≥
1

2
|xi∗ − xj | (5.89)

for all j 6= i∗, while

|x0 − xi∗ | =
1

2
|xj∗ − xi∗ | (5.90)

for some j∗ 6= i∗. This gives us that

Vε(X1 ∪ {x0}) = Vε(X1) + γε3
∑
xj∈X1

1

|x0 − xj |

≤ Vε(X1) +
2γε3

|xj∗ − xi∗ |
+ 2γε3

∑
j 6=i∗

1

|xi∗ − xj |

≤ Vε(X1) + 4γε3
∑
j 6=i∗

1

|xi∗ − xj |
. (5.91)

Now using (5.82), this gives that

Vε(X1 ∪ {x0}) ≤ Vε(X1) + 8γε3|X1|. (5.92)

Finally, combining the bound on the perimeter of c(Ω1 ∪ Bε(x0)) given in (5.88) with the
bound on Vε(c(X1 ∪ {x0}) given in (5.92), we obtain

Eε (c(Ω1 ∪Bε(x0)), c(X1 ∪ {x0})) + 4π(k − 2)ε2

≤ P (Ω1) + 4π(k − 1)ε2 − C ′ε2 + Vε(X1) + 8γε3|X1|

= Eε(Ω1, X1) + 4π(k − 1)ε2 − C ′ε2 + 8γε3|X1| <
k∑
j=1

Eε(Ωj , Xj) (5.93)
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whenever |X1| < Nε <
C′

8γε , a contradiction. Thus, generalized minimizers that are not
classical minimizers cannot exist for these values of Nε, with ε sufficiently small and γ
sufficiently large universal, and the existence statement of the theorem holds.

To conclude the proof of Theorem 3.3, let X = ∪Nεi=1{xi} be the minimizing set of
the positions of the charges. To prove that each Bε(xi) touches ∂Ω, suppose that, to
the contrary, there exists 1 ≤ i∗ ≤ Nε such that Bε(xi∗) b Ω. Therefore, xi∗ is a local
minimizer of vi∗(x) :=

∑
j 6=i∗ |x − xj |−1, since otherwise it would be possible to lower

the energy by slightly displacing the ball Bε(xi∗) ⊂ Ω without touching the other balls
Bε(xj) with j 6= i∗. However, vi∗ is a harmonic function in some neighborhood of xi∗ and
must, therefore, be constant there, which is impossible as vi∗ is a real analytic function in
R3\{X\xi∗} that goes to infinity at X\xi∗ .

Proof of Theorem 3.4. Assume that (Ω, X) is a classical minimizer. First note that for a
fixed γ > 0, from Lemma 5.8 we have that ε0, δ > 0 can be chosen to make Ω ⊂ B2(x) for
some x ∈ R. Thus, Lemma 5.1, and [39, Theorem 2] imply that there exists a universal
constant C0 > 0 such that

4π + 4πNεε
2 ≥ Eε(Ω, X) ≥ 4π +

γε3

2

(
N2
ε

2
− C0N

3
2
ε

)
≥ 4π +

1

8
γN2

ε ε
3, (5.94)

whenever Nε >
C
γε is large enough universal. Thus

Nε ≤
32π

εγ
, (5.95)

a contradiction.

5.4 Convergence

Proof of Theorem 3.5. The fact that Ωn ⊂ B1+δ(0) for any δ > 0 and all n ∈ N large
enough, after suitable translations, follows from Lemma 5.8. Now, for N distinct points
xi ∈ R3 define

FN (µ) :=

{
2
N2

∑N−1
i=1

∑N
j=i+1

1
|xi−xj | if µ = 1

N

∑N
i=1 δxi ,

+∞ otherwise,
(5.96)

Then by [36, Proposition 2.8] we have that Γ− limN→∞ FN = F∞ with respect to the weak
convergence of probability measures in R3, where

F∞(µ) :=

∫
R3

∫
R3

dµ(x) dµ(y)

|x− y|
. (5.97)
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Therefore, for µn := 1
Nn

∑
xi∈Xn δxi we have that, upon suitable translations and extraction

of subsequences, µn → µ∞ in the sense of measures as n→∞, where µ∞ is a probability
measure supported on B1(0), and lim infn→∞ FNn(µn) ≥ F (µ∞). At the same time, testing
the energy with Ω = B1(0) and uniformly distributed Nn points supported on ∂B1−εn(0)
(the existence of the latter follows from the construction of the recovery sequence for the
above Γ-convergence, together with a scaling argument and the fact that Nn � ε−2

n , or an
explicit construction in [40]), with the help of the isoperimetric inequality we obtain

4π + 1
2γε

3
nN

2
n

(
F∞( 1

4πH
2b∂Ω) + on(1)

)
≥ Eεn(Ωn, Xn) ≥ 4π + 1

2γε
3
nN

2
nF∞(µ∞). (5.98)

Thus F∞( 1
4πH

2b∂Ω) ≥ F∞(µ∞). However, µ = 1
4πH

2b∂Ω is the unique minimizer of F∞
among all probability measures supported on B1(0). Hence µ∞ = 1

4πH
2b∂Ω and the limit

is in fact a full limit.

6 Case of two charges

In this section, we give an explicit characterization of the minimizers in the simplest non-
trivial case of N = 2 point charges. Note that when N = 1, the minimizer of Eε is always
a unit ball with the charge located anywhere inside.

6.1 Existence results

For N = 2 and X = {x1, x2}, the energy in (2.10) becomes simply

Eε(Ω, X) = P (Ω) +
γε3

|x2 − x1|
. (6.1)

In this case, the energy of a generalized minimizer that is not classical is known explicitly
and satisfies the estimate below.

Lemma 6.1. There exists a universal constant ε0 > 0 such that if ε < ε0 and a classical
minimizer of the energy in (6.1) does not exist, then the generalized minimizer has the
form {(Ω1, {x1}), (Ω2, {x2})} with x1, x2 ∈ R3, and

4π(1 + ε2 − ε3) < Eε(Ω1, {x1}) + Eε(Ω2, {x2}) < 4π(1 + ε2). (6.2)

Proof. From Lemma 5.4, we have that all the components of a generalized minimizer
have at least one charge. Hence in the absence of classical minimizers the generalized
minimizer consists of precisely two components, each of which has exactly one charge.
Thus each component of the generalized minimizer is a ball, and again by Lemma 5.4 we
have |Ω2| = 4π

3 ε
3. Then

Eε(Ω1, {x1}) + Eε(Ω2, {x2}) = 4π
(
ε2 + (1− ε3)

2
3

)
, (6.3)

and the statement follows.
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Using the density estimates from Lemma 5.5, we have that if (Ω, X) is a minimizer to
(6.1) then it is contained inside a ball of radius close to one.

Lemma 6.2. There exist universal constants ε0, C > 0 such that if ε < ε0 and (Ω, X) is a
minimizer to (6.1) then Ω ⊂ B1+C 3√ε(x0) for some x0 ∈ R3.

Proof. Let (Ω, X) be a minimizer. Then from Lemma 6.1 we have that

P (Ω) < Eε(Ω, X) < 4π(1 + ε2). (6.4)

By quantitative isoperimetric inequality [14], this gives us a bound on the Fraenkel asym-
metry of Ω, namely, that there exists x0 ∈ R3 and a universal constant C0 > 0 such
that

|Ω∆B1(x0)| < C0ε. (6.5)

Now assume that the claim of the lemma is false, i.e., that Ω is not contained in B1+C 3√ε(x0)
for arbitrary C > 0 and ε small enough. Then Lemma 5.5 tells us that there exist universal
constants C1 > 0 and ε0 > 0 such that when ε < ε0 we have

|Ω∆B1(x0)| > C1C
3ε, (6.6)

which contradicts (6.5) for a suitable choice of C.

From the above lemmas, we have the following existence/non-existence result for clas-
sical minimizers.

Lemma 6.3. There exist universal constants ε0, C > 0 such that if ε < ε0 and γ < 8π
ε −C

then there exists a minimizer (Ω, X) to (6.1) among all (Ω, X) admissible, and if γ >
8π
ε + C

ε
2
3

then there is no minimizer.

Proof. If γ < 8π
ε −C and ε� 1, then consider an admissible test configuration in the form of

a ball with two charges at the opposite extremes, (Ω, X) =
(
B1(0), {−(1−ε)e1, (1−ε)e1}

)
,

for which we have

Eε(Ω, X) = 4π +
γε3

2− 2ε
< 4π +

8πε2 − Cε3

2− 2ε
. (6.7)

Picking C > 16π, from (6.7) we then get that

Eε(Ω, X) < 4π + 4πε2 − 8πε3

2− 2ε
< 4π + 4πε2 − 4πε3. (6.8)

Thus from Theorem 3.2 and Lemma 6.1, we have that the energy in (6.1) must have a
classical minimizer.
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To prove non-existence, note that when γ > 8π
ε + C

ε
2
3

, from Lemma 6.2 we have that

for (Ω, X) admissible and ε� 1 there exists a universal constant C0 > 0 such that

Eε(Ω, X) ≥ 4π +
γε3

2 + C0
3
√
ε
> 4π +

8πε2 + Cε
7
3

2 + C0
3
√
ε
> 4π + 4πε2, (6.9)

whenever C > 4πC0 and ε is sufficiently small. However, Lemma 6.1 implies that (Ω, X)
cannot be a minimizer and the Lemma is proved.

In the case N = 2, we can use rotational symmetry of the problem about the axis
passing through the two charges to explicitly solve for global minimizers. Without loss of
generality, let X = {x1, x2}, with x1 and x2 located on the x-axis. Furthermore, let T Ω
denote the Schwarz symmetrization of Ω with respect to the x-axis, i.e. let

T Ω = {(x, y, z) ∈ R3 : (y, z) ∈ A∗x}, (6.10)

where Ax = {(y, z) ∈ R2 : (x, y, z) ∈ Ω} and A∗x = Br(0) ∈ R2 such that L2(A∗x) = L2(Ax)
denotes the two dimensional symmetric rearrangement of Ax.

Lemma 6.4. Let N = 2, let x1, x2 ∈ R × (0, 0) and let (Ω, {x1, x2}) ∈ Am,N,ρ be a
minimizer of Eρ,λ,N . Then Ω = T Ω.

Proof. Note that from Fubini’s theorem we have that |T Ω| = |Ω| = m. Furthermore,
|T Ω ∩ Bρ(x1)| = |T Ω ∩ Bρ(x2)| = |Bρ(0)|. To see this, note that |Ω ∩ Bρ(x1)| = |Bρ(x1)|
implies that L2(Ax) ≥ L2({(y, z) ∈ R2 : (x, y, z) ∈ Bρ(x1)}) for almost every x ∈ R. Since
{(y, z) ∈ R2 : (x, y, z) ∈ Bρ(x1)} is also a ball in R2, we have that {(y, z) ∈ R2 : (x, y, z) ∈
Bρ(x1)} ⊂ A∗x for almost every x ∈ R. Thus, by Fubini’s theorem |T Ω∩Bρ(x1)| = |Bρ(x1)|,
which gives that (T Ω, {x1, x2}) is also admissible.

By [4, Theorem 1.1], we have that P (T Ω) ≤ P (Ω), so T Ω is also a minimizer, and by
minimality of the energy this inequality is in fact an equality. Therefore, by [4, Theorem
1.2] the sets Ω and T Ω are equal up to a translation in the yz-plane. The latter follows
from the fact that as a minimizer the set T Ω is open and connected, and away from Bρ(x1)
and Bρ(x2) the set Ω is a local volume-constrained minimizer of the perimeter, implying
that ∂Ω is analytic [30] and, hence, that the non-degeneracy assumptions of [4, Theorem
1.2] are satisfied.

Finally, assume by contradiction that Ω = T Ω + v for some vector v 6= 0 contained in
the yz-plane. Since T Ω contains the two balls Bρ(x1,2), it follows that Ω also contains the
translated balls Bρ(x1,2) + λv, for all λ ∈ [−1, 1]. Therefore, each ∂Bρ(x1,2) could touch
∂(T Ω) only at a point lying on the x-axis. But that is also impossible, since in that case
∂Ω would be flat near those points, contradicting once again the analyticity of ∂Ω. Thus,
Bρ(x1,2) are both strictly contained in T Ω. However, the latter contradicts the minimizing
property of (T Ω, {x1, x2}), since one could reduce the energy by moving Bρ(x1,2) slightly
further apart while still keeping them in T Ω.
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Since, according to Lemma 6.4, every minimizer to (6.1) coincides with its Schwarz
symmetrization around the axis connecting the two charges, it can be defined with the
help of a profile function ϕ : R→ [0,∞), defining Ω, up to a rotation, as

Ω =
{

(x, y, z) ∈ R3 : 0 <
√
y2 + z2 < ϕ(x)

}
. (6.11)

By Theorem 3.2, the function ϕ is of class C1,1 on the set {x ∈ R : ϕ(x) > 0}. Furthermore,
the support of ϕ is a single bounded interval.

Lemma 6.5. There exists a universal constant ε0 > 0 such that if ε < ε0, N = 2,
(Ω, {x1, x2}) ∈ A 4π

3
,N,ε, and (Ω, {x1, x2}) is a minimizer to (6.1), then its free surface

∂Ω \ (∂Bε(x1) ∪ ∂Bε(x2)) is a single section of an unduloid.

Proof. By Lemma 6.4, every minimizer (Ω, {x1, x2}) to (6.1) is rotationally symmetric, and
away from the obstacles ∂Bε(x1,2) the surface ∂Ω has constant mean curvature as a local
minimizer of the perimeter [30]. Then the profile function ϕ defined in (6.11) must satisfy
the Euler-Lagrange equation [8, 35, Section 3.6]

ϕ′ = ±

√
ϕ2

(Hϕ2 + C0)2
− 1 (6.12)

away from the obstacles. Here H is the mean curvature (the average of the principal
curvatures) and C0 ∈ R. Furthermore, when the free surface ∂Ω\(∂Bε(x1) ∪ ∂Bε(x2))
touches the obstacle, say, ∂Bε(x1) at height h (distance from the x-axis), then from the
C1,1 regularity of the minimizers the tangency condition at the point of contact gives

C0 =
±1−Hε

ε
h2. (6.13)

Rewriting this equation by solving for the positive height of contact h, gives that h is
unique for a fixed C0, H, and ε. This tells us that a segment of ϕ satisfying (6.12) must
leave and connect to the obstacles at the same height.

If C0 < 0, then (6.12) gives that the graph of ϕ is an arc of a nodary curve. However,
this is impossible. To see why, without loss of generality let the nodary arc touch Bε(x1)
at a least one point, then the maximum height of the nodary arc is either h or a local
maximum of a complete nodary curve. If the maximum is a local maximum, then the
nodary arc must attain a local maximum, which contradicts the analyticity of ∂Ω, since
the height of contact given in (6.13) is below the point of infinite slope given in (6.12), which
in turn is below the local maxima of a nodary curve. This implies that the nodary arc
stays below h ≤ ε and thus must contact both of the two charges, which either contradicts
our volume constraint or Lemma 6.2 when ε is sufficiently small universal. Thus, C0 ≥ 0.

If C0 = 0, we get that Ω is a ball of radius one, which is the limit case of C0 > 0 and for
which the charges would touch the boundary of the ball from inside at the diametrically
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opposite points. However, it is not difficult to see that this is impossible, using a first
variation type argument by displacing the charges further away by distance 0 < δ �
1 and gaining O(δ) in the Coulombic energy, while losing only O(δ2) in the perimeter.
Hence C0 > 0, and we get that the graph of ϕ is an arc of an elliptic catenary creating
a corresponding unduloid section as its surface of revolution. Up to translations we will
characterize an unduloid by its minimum height a and its maximum height c. Thus, Ω is
the graph of ϕ that consists of arcs of elliptic catenary curves.

To show that ϕ contains only one section of an elliptic catenary arc, note that the
maximum height c1 of at least one elliptic catenary arc contained in ϕ satisfies

c1 = 1 + o(1), (6.14)

where o(1) is with respect to ε� 1. This follows directly from our volume constraint and
Lemma 6.2. Furthermore, let a1 ≤ ε denote the minimum height of this elliptic catenary.
Thus, the mean curvature of the unduloid formed by this elliptic catenary arc is given by

H1 =
1

a1 + c1
. (6.15)

Since the mean curvature of the free surface is constant, this implies that

H = 1 + o(1). (6.16)

Assume that the graph of ϕ contains more than one elliptic catenary arc, then at least
one arc must contact the same charge at two distinct points. Furthermore, (6.13) implies
that both contact points happen at the same height 0 < h < ε. Now let a2 and c2 denote
the minimum and maximum of this elliptic catenary, then for ε sufficiently small (6.16)
gives us that c2 = 1 + o(1). However, for sufficiently small ε this is impossible, since the
elliptic catenary contacts the same charge at two distinct points.

Here we state the following parametrization for an elliptic catenary, which is obtained
from [24].

Lemma 6.6. Up to translations, one period of an elliptic catenary with minimum height
a and maximum height c has the following parametrization:

x(t) = aF

(
t

2
− π

4
,
c2 − a2

c2

)
+ cE

(
t

2
− π

4
,
c2 − a2

c2

)
, (6.17)

and

z(t) =

√
c2 − a2

2
sin (t) +

c2 + a2

2
, (6.18)

where −π
2 ≤ t ≤ 3π

2 , F (u, k) is the elliptic integral of the first kind, and E(u, k) is the
elliptic integral of the second kind which are defined as,

F (u, k) :=

∫ u

0

1√
1− k sin2(θ)

dθ, (6.19)
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and

E(u, k) :=

∫ u

0

√
1− k sin2(θ)dθ. (6.20)

From the parametrization given in Lemma 6.6 and Lemmas 6.5 and 6.2 we have the
following result.

Lemma 6.7. There exists a universal constant ε0 > 0 such that if ε < ε0 and if (Ω, {x1, x2})
is a minimizer to (6.1), then the profile function of the free surface ∂Ω\(∂Bε(x1)∪∂Bε(x2))
is a graph of a single arc of an elliptic catenary that has exactly one maximum.

Proof. Let ϕ be the profile function defined in (6.11). Then by Lemma 6.5 the graph of ϕ
must consist of a single arc of an elliptic catenary. Thus, we must show that ϕ has exactly
one maximum. To do this, define M to be the number of maximum points of ϕ. First,
note that M is nonzero, since if M = 0 then Lemma 6.2 implies that we cannot satisfy our
volume constraint.

Now assume that M > 1, and let h be the height of contact between ϕ and the charges.
Using the parametrization given in Lemma 6.6, we can find a lower bound on the distance
between the two contact points, which gives us that

diam(Ω) ≥ 2

(
aF

(
t0
2
− π

4
,
c2 − a2

c2

)
+ cE

(
t0
2
− π

4
,
c2 − a2

c2

))
+2(M − 1)

(
aF

(
π

2
,
c2 − a2

c2

)
+ cE

(
π

2
,
c2 − a2

c2

))
, (6.21)

where

t0 = π − arcsin

(
2h2 − (c2 + a2)

c2 − a2

)
. (6.22)

However, as ε −→ 0 we have that a −→ 0 and c −→ 1. Thus, (6.21) implies that

diam(Ω) ≥ 2M − o(1), (6.23)

and we have that ε0 can be chosen small enough universal to provide a contradiction to
Lemma 6.2.

Lastly, we state some expansions for elliptic integrals.

Lemma 6.8. Let F (u, k) and E(u, k) be the incomplete elliptic integrals of the first and
second kind as defined in (6.19) and (6.20), then

F
(π

2
, z
)

= −1

2
log (1− z) + O (1) , (6.24)

E
(π

2
, z
)

= 1 +
z − 1

4
log (1− z) + O ((z − 1)) , (6.25)
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(a) (b) (c)

Figure 4: Three possibilities of the energy minimizing candidates for N = 2: (a) case 1,
(b) case 2, (c) case 3.

F (arcsin (u), z) = arctanh (u)−O

(
z − 1

u− 1

)
, (6.26)

E(arcsin (u), z) = u− z − 1

2
arctanh (u) + O

(
z − 1,

(z − 1)2

u− 1

)
, (6.27)

F (arcsin (u), z) = −1

2
log (1− z) + O

(
1,

√
1− u√
1− z

)
, (6.28)

and

E(arcsin (u), z) = 1 +
z − 1

4
log (1− z) + O

(
(z − 1),

√
(1− u)(1− zu2)

)
. (6.29)

Here and below we are using the notation O (a, b), etc., to denote the quantities that
are bounded by universal multiples of max(|a|, |b|) for |a|, |b| � 1.

6.2 Classification of cases

Let (Ω∗, X) ∈ A 4π
3
,2,ε be a minimizer to (6.1), then from Lemma 6.7, we have that Ω∗

falls into one of three cases. In case 1, we have that the free surface of Ω∗ has the profile
function whose graph is an arc of an elliptic catenary that does not attain its minimum
value a. In case 2, we have that this elliptic catenary arc attains its minimum value a at
exactly one point. Lastly, in case 3, this elliptic catenary arc obtains its minimum value a
at exactly two points. These three alternatives are illustrated in Figure 4. Thus, from here
on we only need to consider test configurations (Ω, X) ∈ A 4π

3
,2,ε, which fall into one of the

three cases defined above. Furthermore, without loss of generality we define the maximum
of the profile function to be located at (0, c), which is consistent with the parametrization
given in Lemma 6.6 and fixes translations along the x-axis.

In case 1, the unduloid arc joining the two charges does not attain its minimum and
the minimizer is symmetric about the z-axis. In this case, we have that our minimizer is
of the form

(
Ω∗, {(−L

2 , 0, 0), (L2 , 0, 0)}
)
, where L is the distance between the charges. For

a case 1 test configuration we have the following lemma, which implicitly expresses the
energy as a function of the contact height h (see Figure 5 for a schematic of a case 1 test
configuration).
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c

a h
L

ε

Figure 5: The schematics of the cross-section of the case 1 candidate for a minimizer.

Lemma 6.9. Let (Ω, X) ∈ A 4π
3
,2,ε be a case 1 test configuration with contact height h.

Then

Eε (Ω, X) = Êε(h) = 4π

(
(a+ c)cE

(
t0
2
− π

4
,
c2 − a2

c2

)
+ ε

(
ε−

√
ε2 − h2

))
+

γε3

2
(
aF
(
t0
2 −

π
4 ,

c2−a2
c2

)
+ cE

(
t0
2 −

π
4 ,

c2−a2
c2

)
−
√
ε2 − h2

) , (6.30)

where

a =
ch2 − εh2

cε− h2
, (6.31)

t0 = π − arcsin

(
2h2 − (c2 + a2)

c2 − a2

)
, (6.32)

and c is given implicitly by

2 = 2ε3 −
√
ε2 − h2(2ε2 + h2) +

h(c2 − a2)

2

√
1−

(
2h2 − c2 − a2

c2 − a2

)2

−

a2cF

(
t0
2
− π

4
,
c2 − a2

c2

)
+ (2c(a2 + c2) + 3ac2)E

(
t0
2
− π

4
,
c2 − a2

c2

)
. (6.33)

Proof. Let the unduloid section that joins the two charges have minimum height a and
maximum height c. Since the charges contact the unduloid section at height h, we can use
the parameterization given in (6.18) to find that the contact between the unduloid and the
right charge happens when t = t0, with t0 defined in (6.32). Then from (6.17) we obtain
that

L = 2

(
aF

(
t0
2
− π

4
,
c2 − a2

c2

)
+ cE

(
t0
2
− π

4
,
c2 − a2

c2

)
−
√
ε2 − h2

)
, (6.34)
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where L is the distance between the charges. Now, since our unduloid has mean curvature
H = 1

a+c , from (6.12) we have that each monotone arc of our elliptic catenary is given by
the equation,

ϕ′ = ±

√
(a+ c)2ϕ2

(ϕ2 + ac)2
− 1. (6.35)

Thus, our tangency condition between the charges and the elliptic catenary implies (6.31).
In addition, calculating the volume of the unduloid section, which is given in [24], and
accounting for the volume of the excess charges gives (6.33). Finally, (6.34) explains the
interaction energy given in (6.30), and the perimeter term is derived directly from account-
ing for the surface area of the unduloid section (given in [24]) and the surface area over
the charges.

Lemma 6.10. Let (Ω, X) ∈ A 4π
3
,2,ε be a case 2 test configuration with contact height h.

Then

Eε (Ω, X) = Êε(h) = 4πc(a+ c)E

(
π

2
,
c2 − a2

c2

)
+ 4πε2

+λε3

(
2aF

(
π

2
,
c2 − a2

c2

)
+ 2cE

(
π

2
,
c2 − a2

c2

))−1

, (6.36)

where a is given by (6.31) and c is given implicitly by

2 = (2(a2 + c2)c+ 3ac2)E

(
π

2
,
c2 − a2

c2

)
− a2cF

(
π

2
,
c2 − a2

c2

)
+ 2ε3. (6.37)

Proof. Note that the equation for a comes from the tangency condition, as in Lemma 6.9.
Furthermore, (6.36) and (6.37) follow directly from [24].

Lemma 6.11. Let (Ω, X) ∈ A 4π
3
,2,ε be a case 3 test configuration with contact height h.

Then

Eε (Ω, X) = Êε(h) = 8πc(a+ c)E

(
π

2
,
c2 − a2

c2

)
−4πc(a+ c)E

(
t0
2
− π

4
,
c2 − a2

c2

)
+ 4πε(ε+

√
ε2 − h2)

+λε3

(
2

(√
ε2 − h2 + 2aF

(
π

2
,
c2 − a2

c2

)
+ 2cE

(
π

2
,
c2 − a2

c2

)
−

aF

(
t0
2
− π

4
,
c2 − a2

c2

)
− cE

(
t0
2
− π

4
,
c2 − a2

c2

)))−1

,

(6.38)
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where the equations for a and t0 are given by (6.31) and (6.32), respectively, and c is given
implicitly by

2 = (2(a2 + c2)c+ 3ac2)

(
2E

(
π

2
,
c2 − a2

c2

)
− E

(
t0
2
− π

4
,
c2 − a2

c2

))
−a2c

(
2F

(
π

2
,
c2 − a2

c2

)
− F

(
t0
2
− π

4
,
c2 − a2

c2

))

−(c2 − a2)h

2

√
1−

(
2h2 − c2 − a2

c2 − a2

)2

+ 2ε3 +
√
ε2 − h2(2ε2 + h2).

(6.39)

Proof. Note that for case 3 candidates our tangency condition between the charges and
the elliptic catenary remains unchanged. Furthermore, the distance between charges and
the volume and surface area of the unduloid section follow directly from [24].

Proposition 6.12. There exists a universal ε0 > 0 such that if ε < ε0 and (Ω, X) ∈ A 4π
3
,2,ε

is a case 1 test configuration with contact height h ≤ ε then

Eε (Ω, X) > 4π − 2πh4

ε2
log

(
h2

ε

)
+ O

(
ε2
)
, (6.40)

whenever h > ε
2 . Furthermore, we have

Eε (Ω, X) = 4π +
γε3

2
(1 + ε+ ε2)−

(
2πh4

ε2
− γh2ε2

2

)
log (h) + O

(
γε6, (γ + 1)h2ε2,

h4

ε2

)
,

(6.41)
whenever h ≤ ε

2 .

Proof. Let (Ω, X) be a case 1 test configuration with contact height h. Now we will expand
the expressions for the energy of (Ω, X) and volume of Ω given in Lemma 6.9 in terms of
ε and the contact height 0 < h ≤ ε. To do this, first we will obtain a lower bound on the
energy in the regime where h > ε

2 .
Let h > ε

2 . Using the notation from Lemma 6.9, we have that the minimum a of the
extended unduloid section of Ω is given by,

a =
ch2 − εh2

cε− h2
=
h2

ε
− h2

c
+
h4

cε2
+ O

(
h4

ε

)
. (6.42)

This gives us that

t0
2
− π

4
=
π

4
− 1

2
arcsin

(
2h2 − (c2 + a2)

c2 − a2

)
= arcsin

(√
c2 − h2

c2 − a2

)

= arcsin

(
1− h2

2c2
+

h4

2c2ε2
+ O

(
h4

ε
,
h6

ε3

))
. (6.43)
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Since h > ε
2 , from (6.42), (6.43), and (6.28) we get that

F

(
t0
2
− π

4
,
c2 − a2

c2

)
= F

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.44)

and from (6.42), (6.43), and (6.29) we get

E

(
t0
2
− π

4
,
c2 − a2

c2

)
= E

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
= 1− h4

2c2ε2
log

(
h2

εc

)
+ O

(
h2
)
. (6.45)

Expanding our volume constraint given in (6.33) we obtain

2 = 2c3 +
3h2c2

ε
+ O

(
ε2
)
. (6.46)

Thus, (6.46) implies

c > 1− h2

2ε
+ O

(
ε2
)
. (6.47)

Lastly, using (6.44), (6.45), and (6.47) to expand the contribution of the perimeter to our
energy given in (6.30), we obtain

Eε (Ω, X) > 4πc2 + 4π
h2c

ε
− 2πh4

ε2
log

(
h2

cε

)
+ O

(
ε2
)

> 4π − 2πh4

ε2
log

(
h2

cε

)
+ O

(
ε2
)
, (6.48)

for ε < ε0 with ε0 small enough. This proves (6.40).
Now we move on to the case where

h ≤ ε

2
. (6.49)

First note that from (6.26), (6.42), (6.43), and (6.49) we get that

F

(
t0
2
− π

4
,
c2 − a2

c2

)
= F

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
= arctanh

(
1 +

h2

2c2

(
−1 +

h2

ε2

))
+ O (1) , (6.50)

and from (6.27), (6.42), (6.43), and (6.49) we also have that

E

(
t0
2
− π

4
,
c2 − a2

c2

)
= E

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
=

1 +
h2

2c2

(
−1 +

h2

ε2

(
1 + arctanh

(
1 +

h2

2c2

(
−1 +

h2

ε2

))))
+ O

(
h4

ε2

)
. (6.51)
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Thus, from (6.50), (6.51), and (6.30) we get that

Eε (Ω, X) = 4πc2 + 4π
h2c

ε
− 4πh2 +

2πh4

ε2
arctanh

(
1− h2

2c2

(
1− h2

ε2

))
+ O

(
h4

ε2

)
+γε3

(
1

2c
− h2

2c2ε
arctanh

(
1− h2

2c2

(
1− h2

ε2

))
+

√
ε2 − h2

2c2
+

ε2

2c3
+ O

(
ε3,

h2

ε

))
.

(6.52)

Furthermore, from expanding our volume constraint given in (6.33) we get that

2 = 2c3 +
3h2c2

ε
− 3h2c+ O

(
h4

ε2

)
. (6.53)

Expanding (6.53) we get that

h =

√
2ε

3

(
1

c2
− c
)(

1 +
ε

c
+
ε2

c2
+ O

(
h2

ε
, ε3

))
. (6.54)

Now we introduce the new variable α, which is defined via

c = 1− αε. (6.55)

Thus, (6.54) allows us to express h in terms of α,

h =
√

2αε2 + 2αε3 + 2αε4 + O (αε5, α2ε3, αεh2) (6.56)

Finally, plugging (6.56) into (6.52) we obtain the following leading order equation for the
energy:

Eε (Ω, X) = 4π + 8πα2ε2 arctanh (1− αε2) + O
(
αε4, α2ε2, αh2

)
+γε3

(
1

2
− αε arctanh (1− αε2) +

ε

2
+
ε2

2
+ O

(
ε3, αε

))
. (6.57)

Simplifying further gives

Eε (Ω, X) = 4π +
γε3

2
(1 + ε+ ε2) + (8πα2ε2 − γαε4) arctanh (1− αε2)

+ O
(
γε6, (γ + 1)αε4, α2ε2, αh2

)
, (6.58)

which gives us

Eε (Ω, X) = 4π+
γε3

2
(1+ε+ε2)−(4πα2ε2−γαε

4

2
) log (αε2)+O

(
γε6, (γ + 1)αε4, α2ε2, αh2

)
.

(6.59)
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Furthermore, we use (6.56) to convert (6.59) into

Eε (Ω, X) = 4π +
γε3

2
(1 + ε+ ε2)−

(
2πh4

ε2
− γh2ε2

2

)
log (h) + O

(
γε6, (γ + 1)h2ε2,

h4

ε2

)
,

(6.60)
which completes the proof.

Proposition 6.13. There exists a universal ε0 > 0 such that if ε < ε0 and (Ω, X) ∈ A 4π
3
,2,ε

is a case 2 test configuration then (Ω, X) cannot be a minimizer to (6.1).

Proof. We will argue by contradiction. Thus, first assume that (Ω, X) is a case 2 minimizer
with contact height h. Now we will expand the expressions for the energy of (Ω, X) and
volume of Ω given in Lemma 6.10 in terms of ε and the contact height 0 < h ≤ ε. To do
this, first note that from (6.24) and (6.31) we have

F

(
π

2
,
c2 − a2

c2

)
= F

(
π

2
, 1− h4

ε2c2
+ O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.61)

and from (6.25) and (6.31) we get

E

(
π

2
,
c2 − a2

c2

)
= E

(
π

2
, 1− h4

ε2c2
+ O

(
h4

ε

))
= 1− h4

2ε2c2
log

(
h2

εc

)
+ O

(
h4

ε2

)
. (6.62)

Expanding the the volume constraint given in (6.37) gives us

2 = 2c3 +
3c2h2

ε
+ O

(
h2, ε3

)
. (6.63)

Using (6.61) and (6.62) we expand the energy given in (6.36), to obtain

Eε (Ω, X) > 4πc2+
4πch2

ε
−2πh4

ε2
log

(
h2

εc

)
+4πε2+

γε3

2
+O

(
h2, γε2h2 log

(
h2

εc

))
. (6.64)

Furthermore, (6.63) implies that

c > 1− c2h2

2ε
+ O

(
h2, ε3

)
, (6.65)

and from (6.64) and (6.65) we get

Eε (Ω, X) > 4π − 2πh4

ε2
log

(
h2

εc

)
+ 4πε2 +

γε3

2
+ O

(
ε3, h2, γε2h2 log

(
h2

εc

))
. (6.66)
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Lastly, since we assumed that (Ω, X) is a minimizer, from considering the test configuration
given by

(
B1(0, 0, 0), {(ε− 1, 0, 0), (1− ε, 0, 0)}

)
we obtain

4π +
γε3

2(1− ε)
≥ Eε (Ω, X) = 4π − 2πh4

ε2
log

(
h2

εc

)
+4πε2 +

γε3

2
+ O

(
ε3, h2, γε2h2 log

(
h2

εc

))
. (6.67)

Thus, for ε < ε0 small enough, (6.67) implies that

γε4 ≥ 2πε2 + O

(
γε2h2 log

(
h2

εc

))
. (6.68)

However, this implies that γ > − c0
ε2 log(ε)

, where c0 > 0 is a universal constant, which

contradicts Lemma 6.3 for ε < ε0 small enough. Thus, (Ω, X) cannot be a minimizer.

Proposition 6.14. There exists a universal ε0 > 0 such that if ε < ε0 and (Ω, X) ∈ A 4π
3
,2,ε

is a case 3 test configuration then (Ω, X) cannot be a minimizer to (6.1).

Proof. Assume that (Ω, X) is a case 3 minimizer with contact height h. Now we will expand
the expressions for the energy of (Ω, X) and volume of Ω given in Lemma 6.11 in terms of
ε and the contact height 0 < h ≤ ε.

However, first we will eliminate the regime where h > ε
2 . To do this, assume that h > ε

2 ,
then from (6.24) and (6.31) we get

F

(
π

2
,
c2 − a2

c2

)
= F

(
π

2
, 1− h4

ε2c2
+ O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.69)

and from (6.25) and (6.31) we get

E

(
π

2
,
c2 − a2

c2

)
= E

(
π

2
, 1− h4

ε2c2
+ O

(
h4

ε

))
= 1− h4

2ε2c2
log

(
h2

εc

)
+ O

(
h4

ε2

)
. (6.70)

Since by assumption h > ε
2 , from (6.28), (6.31) and (6.32) we get that

F

(
t0
2
− π

4
,
c2 − a2

c2

)
= F

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
= − log

(
h2

εc

)
+ O (1) , (6.71)

and from (6.29), (6.31) and (6.32) we get

E

(
t0
2
− π

4
,
c2 − a2

c2

)
= E

(
t0
2
− π

4
, 1− h4

ε2c2
+ O

(
h4

ε

))
= 1− h4

2c2ε2
log

(
h2

εc

)
+ O

(
h2
)
. (6.72)

46



Thus, using (6.69), (6.70), (6.71), and (6.72) to expand the contribution of the perimeter
to (6.38), we obtain

Eε (Ω, X) > 4πc2 +
4πch2

ε
− 2πh4

ε2
log

(
h2

εc

)
+ O

(
ε2
)
, (6.73)

and from our volume constraint given in (6.39) we obtain

2 = 2c3 +
3h2c2

ε
+ O

(
ε2
)
, (6.74)

which implies that

c > 1− c2h2

2ε
+ O

(
ε2
)
. (6.75)

Thus, from (6.73) and (6.75) we get that

Eε (Ω, X) > 4π − 2πh4

ε2
log

(
h2

εc

)
+ O

(
ε2
)
, (6.76)

which contradicts Lemma 6.1 whenever ε < ε0 with ε0 small, and we conclude that (6.49)
holds.

Now from (6.26), (6.27), (6.31), (6.32) and (6.49) we obtain

F

(
t0
2
− π

4
,
c2 − a2

c2

)
= −1

2
log

(
h2

2c2

(
1− h2

ε2

))
+ O (1) , (6.77)

and

E

(
t0
2
− π

4
,
c2 − a2

c2

)
= 1− h2

2c2
− h4

4c2ε2
log

(
h2

2c2

(
1− h2

ε2

))
+ O

(
h4

ε2

)
. (6.78)

Using (6.69), (6.70), (6.77), and (6.78) to expand the contribution of perimeter to (6.38)
we obtain

Eε (Ω, X) > 4πc2 + 4πc
h2

ε
− 2πh2 +

πh4

ε2
log

(
ε4c2

2h6

(
1− h2

ε2

))
+4πε2 + 4πε

√
ε2 − h2 + O

(
h4

ε2
, h2

)
. (6.79)

and from our volume constraint given in (6.39) we obtain

2 = 2c3 +
3h2c2

ε
+ O

(
ε3, h2

)
. (6.80)

Thus, from (6.80) we have

c ≥ 1− h2c2

2ε
+ O

(
ε3, h2

)
. (6.81)
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Lastly, from (6.81), (6.49), and (6.79) we obtain

Eε (Ω, X) > 4π +
πh4

ε2
log

(
ε4c2

2h6

(
1− h2

ε2

))
+4πε2 + 4πε

√
ε2 − h2 + O

(
ε3, h2,

h4

ε2

)
(6.82)

≥ 4π + 4πε2, (6.83)

for ε < ε0 with ε0 small. Thus, from Lemma 6.1 we conclude that (Ω, X) cannot be a
minimizer.

Theorem 6.15. There exist universal constants C, C1, ε0 > 0 such that if ε < ε0

and γ < 8π
ε − C then there exists a unique, up to translations and rotations, minimizer

(Ω∗, {(−L∗

2 , 0, 0), (L
∗

2 , 0, 0)}) to (6.1). Furthermore, it is a case 1 configuration, and if
C1

log ε−1 < γ < 8π
ε − C, then

Eε

(
Ω∗,

{(
−L

∗

2
, 0, 0

)
,

(
L∗

2
, 0, 0

)})
= 4π +

γε3

2
(1 + ε+ ε2) +

γ2ε6

64π
log (γε4) + O

(
ε6γ

7
4 (1 + γ)

1
4 (log ε−1)

3
4

)
, (6.84)

L∗ = 2− 2ε− γε3

8π
log (γε4) + O

(
γ

3
4 (1 + γ)

1
4 ε3(log ε−1)

3
4

)
, (6.85)

and (Ω∗, {(−L∗

2 , 0, 0), (L
∗

2 , 0, 0)}) has contact height h∗ satisfying

h∗ =

√
γε4

8π
+ O

(
ε2γ(γ + 1)

log ε−1

1
4

)
. (6.86)

Proof. First note that the existence and rotational symmetry of a minimizer follows directly
from Theorem 3.2, Lemma 6.3 and Lemma 6.4. Furthermore, Lemma 6.7 implies that this
minimizer is either a case 1, case 2, or case 3 configuration. Thus, Propositions 6.13 and
6.14 rule out all but a case 1 minimizer (Ω∗, {(−L∗

2 , 0, 0), (L
∗

2 , 0, 0)}).
Let h∗ be the contact height of the minimizer above. Then from (6.40) and Lemma 6.1

we conclude that
h∗ ≤ ε

2
. (6.87)
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Thus, from (6.41) we conclude that

Eε

(
Ω∗,

{(
−L

∗

2
, 0, 0

)
,

(
L∗

2
, 0, 0

)})
= 4π +

γε3

2
(1 + ε+ ε2)−

(
2πh∗4

ε2
− γh∗2ε2

2

)
log (h∗)

+ O

(
γε6, (γ + 1)h∗2ε2,

h∗4

ε2

)
. (6.88)

Now let
(
Ω,
{(
−L

2 , 0, 0
)
,
(
L
2 , 0, 0

)})
be a case 1 candidate minimizer with a contact

height h given by

h =

√
γε4

8π
. (6.89)

From the minimality of
(
Ω∗,

{(
−L∗

2 , 0, 0
)
,
(
L∗

2 , 0, 0
)})

and from (6.41) and (6.88) we obtain

4π +
γε3

2
(1 + ε+ ε2)−

(
2πh∗4

ε2
− γh∗2ε2

2

)
log (h∗) + O

(
γε6, (γ + 1)h∗2ε2,

h∗4

ε2

)
≤ 4π +

γε3

2
(1 + ε+ ε2) +

γ2ε6

32π
log

(√
γε4

8π

)
+ O

(
γ(γ + 1)ε6

)
.

(6.90)

Thus

−
(

2πh∗4

ε2
− γh∗2ε2

2

)
log (h∗) + O

(
γ(γ + 1)ε6, (γ + 1)h∗2ε2,

h∗4

ε2

)
≤ γ2ε6

32π
log

(√
γε4

8π

)
.

(6.91)
Now note that (6.91) implies that

h∗ ≥
√
γε4

8
, (6.92)

since otherwise (6.91) implies

γ2ε6

128
log

(√
γε4

8

)
+ O

(
γ(γ + 1)ε6

)
≤ γ2ε6

32π
log

(√
γε4

8π

)
. (6.93)

However, this implies

γ2ε6

256
log
(
γε4
)

+ O
(
γ(γ + 1)ε6

)
≤ γ2ε6

64π
log
(
γε4
)
. (6.94)

Now pick ε0 > 0 so that | log (γε4)| > O
(
γ+1
γ

)
, then (6.94) provides a contradiction. Thus,

(6.92) holds.

49



Finally, let

h∗ =

√
γε4

8π
+ he, (6.95)

then from (6.91) we obtain

−
(
γε2h2

e +
√

8πγh3
e +

2π

ε2
h4
e

)
log h∗

≤ −γ
2ε6

32π
log

(
1 +

√
8π

γε4
he

)
+ O

(
γ(γ + 1)ε6, (γ + 1)h∗2ε2,

h∗4

ε2

)
(6.96)

If he > 0, then (6.95) implies h∗ >
√

γε4

8π , and (6.96) gives

− 2π

ε2
h4
e log h∗ ≤ O

(
h∗4(γ + 1)

γε2

)
. (6.97)

Thus,

he ≤ O

h∗( γ + 1

γ log
(
h∗−1

)) 1
4

 . (6.98)

Now (6.98) and (6.95) imply that

h∗ ≤
√
γε4

8π

(
1 + O

((
γ + 1

γ log (h∗−1)

) 1
4

))
, (6.99)

whenever h∗ ≤ ε < ε0 is sufficiently small.

If he < 0, then from (6.95) we have 0 < h∗ <
√

γε4

8π and (6.96) implies

− 2π

ε2
h4
e log h∗ ≤ −γ

2ε6

32π
log

(
1 +

√
8π

γε4
he

)
+ O

(
γ(γ + 1)ε6

)
. (6.100)

Furthermore, (6.92) implies that he ≥
√
γε4

8 −
√
γε4√
8π

. Thus, from (6.100) we obtain

he ≥ O

(
ε2

(
γ(γ + 1)

log (h∗−1)

) 1
4

)
. (6.101)

Hence, (6.99) and (6.101) imply that

h∗ =

√
γε4

8π
+ O

(
ε2

(
γ(γ + 1)

log ε−1

) 1
4

)
. (6.102)
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Thus, from (6.88) and (6.102) we obtain

Eε

(
Ω∗,

{(
−L

∗

2
, 0, 0

)
,

(
L∗

2
, 0, 0

)})
= 4π +

γε3

2
(1 + ε+ ε2) +

γ2ε6

64π
log (γε4) + O

(
ε6γ

7
4 (1 + γ)

1
4 (log ε−1)

3
4

)
. (6.103)

Lastly, from (6.50), (6.51), and (6.30) we obtain

L∗ = 2− 2ε− γε3

8π
log (γε4) + O

(
γ

3
4 (1 + γ)

1
4 ε3(log ε−1)

3
4

)
. (6.104)

To conclude the proof, observe that (Ω∗, {(−L∗

2 , 0, 0), (L
∗

2 , 0, 0)}) is unique, since ex-
panding the second derivative of (6.30) gives

Ê′′ε (h) =

(
24πh2

ε2
− γε2

)
log h−1 + O

(
h2

ε2
, γε2

)
, (6.105)

which implies that Êε(h) is strictly convex in the neighborhood of the minimum.

Proof of Theorem 3.6. The proof is obtained by combining the statements of Propositions
6.13 and 6.14 with that of Theorem 6.15.

References

[1] M. A. Abbas and J. Latham. The instability of evaporating charged drops. J. Fluid
Mech., 30:663–670, 1967.

[2] L. V. Abdurahimov, A. A. Levchenko, L. P. Mezhov-Deglin, and I. M. Khalatnikov.
The surface instability of liquid hydrogen and helium. Low Temp. Phys., 38:1013–1025,
2012.

[3] F. J. Almgren, Jr. Existence and regularity almost everywhere of solutions to elliptic
variational problems with constraints. Mem. Amer. Math. Soc., 4:viii+199, 1976.

[4] M. Barchiesi, F. Cagnetti, and N. Fusco. Stability of the steiner symmetrization of
convex sets. J. Eur. Math. Soc., 15:1245–1278, 2013.

[5] M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, and M. Pi. Helium
nanodroplets: An overview. J. Low Temp. Phys., 142:1–81, 2006.

[6] R. Choksi, C. B. Muratov, and I. Topaloglu. An old problem resurfaces nonlocally:
Gamow’s liquid drops inspire today’s research and applications. Notices Amer. Math.
Soc., 64:1275–1283, 2017.

51



[7] G. De Philippis, J. Hirsch, and G. Vescovo. Regularity of minimizers for a model of
charged droplets. arXiv:1901.02546, 2019.
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