
Front propagation in infinite cylinders. I.

A variational approach.

C. B. Muratov∗ M. Novaga†

Abstract

In their classical 1937 paper, Kolmogorov, Petrovsky and Piskunov proved
that for a particular class of reaction-diffusion equations on the line the so-
lution of the initial value problem with the initial data in the form of a unit
step propagates at long times with constant velocity equal to that of a cer-
tain special traveling wave solution. This type of a propagation result has
since been established for a number of general classes of reaction-diffusion-
advection problems in cylinders. Here we show that actually in the problems
without advection or in the presence of transverse advection by a potential
flow these results do not rely on the specifics of the problem. Instead, they
are a consequence of the fact that the considered equation is a gradient flow in
an exponentially weighted L2-space generated by a certain functional, when
the dynamics is considered in the reference frame moving with constant ve-
locity along the cylinder axis. We show that independently of the details
of the problem only three propagation scenarios are possible in the above
context: no propagation, a “pulled” front, or a “pushed” front. The choice
of the scenario is completely characterized via a minimization problem.

1 Introduction

This paper is concerned with the study of front propagation in reaction-diffusion-
advection problems in cylinders which arise in numerous applications [11, 15, 32].
Let Ω ⊂ Rn−1 be a bounded domain (not necessarily simply connected), and
consider Σ = Ω × R, an infinite cylinder in Rn. In Σ, we shall consider the
following parabolic equation

ut + v · ∇u = ∆u+ f(u, y). (1.1)

Here u = u(x, t) ∈ R is the dependent variable (corresponding, e.g., to temperature
in combustion problems), v = v(y) ∈ Rn is an imposed advective flow, and f :
R × Ω → R is a nonlinear reaction term. By x = (y, z) ∈ Σ, we denote a point
with coordinate y ∈ Ω on the cylinder cross-section and z ∈ R along the cylinder
axis. We also assume that u = 0 is a trivial solution of (1.1).
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We are considering a particular situation in which the flow v is transverse to the
axis of the cylinder, i.e., when v does not have a component along z. Furthermore,
we assume that the flow v(y) is potential:

v = (−∇yϕ, 0), ϕ : Ω → R. (1.2)

Respectively, those parts of ∂Ω, denoted by ∂Ω+, on which ν · ∇yϕ > 0 are the
inlets and those, denoted by ∂Ω−, where ν · ∇yϕ < 0 are the outlets (of fuel
in combustion problems, e.g.). Here and below ν is the outward normal to ∂Ω
(or ∂Σ). We denote those parts of ∂Ω on which ν · ∇yϕ = 0 by ∂Ω0, these are
impermeable walls. Consistently with this interpretation of the flow v, we impose
the following boundary conditions:

u
∣∣
∂Σ±

= 0, ν · ∇u
∣∣
∂Σ0

= 0. (1.3)

on ∂Σ± = ∂Ω± ×R and ∂Σ0 = ∂Ω0 ×R. Naturally, the case of a purely reaction-
diffusion equation (ϕ = 0) with either Dirichlet or Neumann boundary conditions
is included in our formulation. In fact, it is the diffusion part in combination with
Dirichlet boundary conditions and/or inhomogeneous reaction term that present
the main difficulties in the analysis of this problem; nevertheless, for the sake of
generality and because of the importance to applications (see e.g. [8, 40]) we will
treat the case of a general transverse potential flow here.

Equation (1.1) has been the subject of great many studies (see e.g. [2–4,7,18,27,
35,45] and references therein, this list is certainly incomplete), beginning with the
pioneering work of Fisher [17] and Kolmogorov, Petrovsky and Piskunov [23]. The
celebrated result of Kolmogorov, Petrovsky and Piskunov applied to the Fisher’s
equation:

ut = uxx + u(1− u), (x, t) ∈ R× R+, (1.4)

states that the solution of the initial value problem for this equation with the initial
data u(x, 0) = θ(−x), where θ is the Heaviside step, propagates at long times with
the asymptotic speed c∗ = 2 (in the sense of average velocity of the level sets).
The speed c∗ is that of a special traveling wave solution and is determined by the
linearization of (1.4) around u = 0 (the so-called minimal “pulled” front in the
terminology of [39]).

One might ask whether this kind of propagation result holds more generally
for equations like (1.1). For example, given that the solutions of (1.1) take values
in the unit interval, what can one say about propagation of solutions of the initial
value problem with front-like initial data, say,

u(x, 0) = θ(−z) tanh(ε−1dist(x, ∂Σ± ∪ {z = 0})), (1.5)

with ε sufficiently small? Previous work on this subject relied heavily on the
applications of the Maximum and Comparison Principles which require a rather
detailed knowledge of certain special types of solutions of (1.1), in particular,
traveling waves [1,2,16,21,27,35] (see also [9,18,28,38] for an alternative approach
using probabilistic methods). If no assumptions on the type of the nonlinearity,
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the geometry of the domain, or the flow are made, then there is no hope to obtain
a sharp characterization of propagation within this setup using such techniques.

What we found, however, is that a sharp characterization of propagation can
be made without relying on any a priori detailed knowledge about the problem
using instead a variational approach. This approach relies on the observation,
first made in the case of gradient reaction-diffusion systems [30] and generalized
here to the considered class of reaction-diffusion-advection problems, that (1.1)
written in the reference frame moving with speed c along the axis of the cylinder
is a gradient flow in the exponentially weighted L2-space:

ut = −e−cz−ϕ(y) δΦc[u]
δu

, (1.6)

generated by the functional in (2.3). In particular, traveling wave solutions with
the right decay at z = +∞ are critical points of Φc, and it is natural to look for
the minimizers of this functional [24, 25]. It turns out, as we will show below,
that the speed of these minimizers, if they exist, in fact determines the asymptotic
propagation speed for the solutions of the initial value problem for (1.1) (in the
sense of the leading edge, see the following sections for precise definitions) with the
initial data from (1.5) for sufficiently small ε. This is the situation of “nonlinear
selection” in the terminology of [39], with the minimizer being the fastest “pushed”
front.

If, on the other hand, these minimizers do not exist, but at the same time
the solution u = 0 is linearly unstable, then, as we show below, there exists
a certain traveling wave solution (a minimal wave), whose speed is determined
by the linearization of the problem around u = 0 and governs the asymptotic
propagation speed for the initial data from (1.5) with ε� 1. This is the situation
of “linear selection” in the terminology of [39], with the traveling wave solution
in question being the slowest “pulled” front. Finally, if neither the minimizer nor
the minimal wave exist, then no propagation is possible.

Thus, we demonstrate that independently of the specifics of the problem un-
der consideration and, in particular, independently of whether the nonlinearity
in (1.1) is of KPP, monostable, ignition, bistable, or any other type whatsoever,
there are only three scenarios possible for front-like initial data in (1.5) with ε
small enough: either no propagation at all, or propagation with the speed of the
minimal wave, or propagation with the speed of the minimizer; these statements
are a simple consequence of Corollary 5.3 and Theorem 5.8. It appears from our
analysis that the phenomenon of propagation from front-like initial data is a con-
sequence of the structure of the equation (1.1) alone, and not the precise details
of f , Ω, or ϕ. This is the main result of this paper. We have also obtained a
series of results characterizing the relevant traveling wave solutions, such as their
existence, uniqueness (up to translations), monotonicity, asymptotic decay, as well
as the way to estimate the propagation speed, together with general statement of
propagation results for wide classes of initial data, including localized initial data
leading to pairs of counter-propagating fronts. Note that we have not addressed
the questions of convergence of solutions of (1.1) to traveling waves, which is part
of the conclusions of [16,23,27,35], this will be the subject of future study.
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This paper is organized as follows. In Sec. 2, we present all the basic assump-
tions used throughout the paper. In Secs. 3 and 4, we present our results, given
by Theorems 3.3, 3.9, and 4.2 on the existence and properties of certain special
traveling wave solutions which play the key role for the propagation results of Sec.
5. In the next section, Sec. 5, we establish general propagation results for the
leading edge of the solutions of the initial value problem in (1.1), see Theorem
5.8. Finally, in Sec. 6 we compare the obtained results with other studies in the
literature, and then discuss some open problems.

Notation. Throughout the paper Ck, C∞0 , Ck,α denote the usual spaces of con-
tinuous functions with k continuous derivatives, smooth functions with compact
support, continuously differentiable functions with Hölder-continuous derivatives
of order k for α ∈ (0, 1) (or Lipschitz-continuous when α = 1), respectively. Unless
it is otherwise clear from the context, “·” denotes a scalar product and | · | the
Euclidean norm in Rn. The symbol ∇ is reserved for the gradient in Rn, while
∇y stands for the gradient in Ω ⊂ Rn−1. Similarly, the symbol ∆ stands for the
Laplacian in Rn, and ∆y for the Laplacian in Ω. By a classical solution of (3.1)
we mean a function u ∈ C2(Σ) ∩ C1(Σ) that satisfies this equation with a given
value of c > 0 and the boundary conditions in (1.3). The classical solution of (1.1)
is understood to be a C2

1 (Σ× (0,∞))∩C0(Σ× [0,∞)) function [13]. The numbers
C,K,M, λ, etc., will denote generic positive constants.

2 Preliminaries and main hypotheses

In this section, we summarize all the hypotheses used in this paper in the analysis
of (1.1). Throughout the paper, Ω ⊂ Rn−1 is assumed to be a bounded, connected
(possibly multiply connected) open set with boundary of class C2. We also assume
that ∂Ω± and ∂Ω0 are a collection of finitely many (possibly one) closed disjoint
portions of ∂Ω.

Now we discuss the assumptions on the nonlinearity f(u, y). Our method
is quite general, and so we do not need to explicitly prescribe the type of the
nonlinearity in our problem. We basically need to assume that f(·, y) is sufficiently
regular on some compact subset of R which is an invariant set with respect to the
evolution governed by (1.1). Since the Maximum Principle holds for (1.1), without
the loss of generality we may assume that u(x, t) ∈ [0, 1], as long as:

(H1) The function f : [0, 1]× Ω → R satisfies

f(0, y) = 0, f(1, y) ≤ 0. ∀y ∈ Ω. (2.1)

(H2) For some γ ∈ (0, 1)

f ∈ C0,γ([0, 1]× Ω), fu ∈ C0,γ([0, 1]× Ω), ϕ ∈ C1,γ(Ω), (2.2)

where fu = ∂f/∂u.
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The starting point of our variational approach is the functional

Φc[u] =
∫

Σ

ecz+ϕ(y)

(
1
2
|∇u|2 + V (u, y)

)
dx, (2.3)

where

V (u, y) =


0, u < 0,
−
∫ u
0
f(s, y) ds, 0 ≤ u ≤ 1,

−
∫ 1

0
f(s, y) ds, u > 1.

(2.4)

From the definition of V and the assumptions on f it readily follows that
|V (u)| ≤ Cu2, and so Φc[u] is naturally defined in an exponentially weighted
Sobolev space H1

c (Σ) (for shortness we do not explicitly mention ϕ, which is part
of the definition of H1

c (Σ)). Formally, let D(Σ) be the subspace of C∞(Σ) defined
by the restrictions to Σ of all the functions u ∈ C∞0 (Rn) which vanish on ∂Σ±.
Then

Definition 2.1. For c > 0, denote by H1
c (Σ) the completion of D(Σ) with respect

to the norm

||u||2H1
c (Σ) = ||u||2L2

c(Σ) + ||∇u||2L2
c(Σ), ||u||2L2

c(Σ) =
∫

Σ

ecz+ϕ(y)|u|2dx. (2.5)

These are the spaces in which we will consider both the minimizers of Φc and
the solutions of the initial value problem for (1.1).

Let us mention an important general property of the spaces H1
c (Σ) which is an

analogue of the Poincaré inequality and will be needed to establish the existence
result (for the proof we refer to [25]).

Lemma 2.2. For all u ∈ H1
c (Σ), we have

c2

4

∫ +∞

R

∫
Ω

ecz+ϕ(y)u2dydz ≤
∫ +∞

R

∫
Ω

ecz+ϕ(y)u2
zdydz, (2.6)∫

Ω

eϕ(y)u2(y,R)dy ≤ e−cR

c

∫ +∞

R

∫
Ω

ecz+ϕ(y)u2
z dydz, (2.7)

for any R ∈ R ∪ {−∞}.

We also have the following obvious inclusions for spaces H1
c (Σ) with different

values of c:

Lemma 2.3. Let c′ > c > 0 then

H1
c′(Σ) ∩W 1,∞(Σ) ⊂ H1

c (Σ) ∩W 1,∞(Σ). (2.8)

We now turn to the hypothesis that is crucial to the existence of the minimizers
of Φc:
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(H3) There exist c > 0, satisfying c2 + 4ν0 > 0, where

ν0 = min
ψ∈H1(Ω)
ψ|∂Ω±=0

R(ψ), (2.9)

with R(ψ) given by (3.5), and u ∈ H1
c (Σ), such that Φc[u] ≤ 0 and u 6≡ 0.

This type of condition was already used in [25] in the context of Ginzburg-Landau
problems as a sufficient condition for existence of variation traveling waves, and
is needed for proving sequential lower semicontinuity of Φc in the weak topology
of H1

c (Σ). What we will show here, however, is that for scalar equations this
condition is also necessary for existence of minimizers of Φc.

Let us also introduce an auxiliary functional

E[v] =
∫

Ω

eϕ(y)

(
1
2
|∇yv|2 + V (v, y)

)
dy, (2.10)

defined for all v ∈ H1(Ω) satisfying Dirichlet boundary conditions on ∂Ω±. By
regularity of V and ϕ the critical points of E satisfy

∆yv +∇yϕ · ∇yv + f(v, y) = 0, v|∂Ω± = 0, ν · ∇v|∂Ω0 = 0. (2.11)

Clearly, v = 0 is a critical point of E, and in general there may exist a non-trivial
minimizer of E over all v ∈ H1(Ω) subject to v|∂Ω± = 0, call it v0 [12]. In this
case necessarily v0 > 0 and E[v0] ≤ 0. Thus, existence of a non-trivial minimizer
of E guarantees existence of a critical point of E with negative energy.

3 Existence and properties of the minimizers

In this and the following section we analyze existence of certain traveling wave
solutions for (1.1). A traveling wave solution is a pair (c, ū), with c > 0, such that
u(x, t) = ū(y, z − ct) solves (1.1). Substituting this form into (1.1), we obtain an
elliptic equation for ū with the respective boundary conditions

∆ū+ cūz +∇yϕ · ∇yū+ f(ū, y) = 0, ū
∣∣
∂Σ±

= 0, ν · ∇ū
∣∣
∂Σ0

= 0. (3.1)

Note that (3.1) may in general have many solutions [7,14,29]. In the context of the
initial value problem for (1.1) one is interested in the particular type of traveling
waves in the form of fronts that invade the u = 0 equilibrium at z = +∞. From the
basic energy estimates for (3.1), one expects the solution to connect two distinct
equilibria: v+ = 0 at z = +∞ and v− = v(y) at z = −∞, where v is a solution of
(2.11), when c > 0 [7,14,43]. The speed c of such a front is part of the problem of
finding solutions of (3.1).

Suppose there exists a solution of (3.1) with a particular speed c > 0. Lin-
earlizing (3.1) with respect to u = 0, we obtain that (here we present a formal
discussion of the decay of the solutions in order to clarify the key issues, these
statements will be justified later on)

ū(y, z) ∼
∑
k

akψk(y)e−λkz, (3.2)
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which describes the asymptotic behavior of the traveling wave solution at z = +∞,
provided that all λk > 0. Here λk satisfy a quadratic equation

λ2
k − cλk − νk = 0. (3.3)

where νk are the eigenvalues of

∆yψk +∇yϕ · ∇yψk + fu(0, y)ψk + νkψk = 0, (3.4)

with the same boundary conditions as in (3.1). The eigenvalue problem in (3.4)
can be easily characterized.

Proposition 3.1. There exists a countable set of eigenvalues {νk} and a complete
set of orthonormal (in L2(Ω; eϕ(y)dy)) eigenfunctions ψk for problem (3.4). All νk
are real, and ν0 < ν1 ≤ ν2 ≤ . . . νk →∞. One can choose ψ0 > 0 in Ω, conversely
all the other eigenfunctions change sign for k ≥ 1.

Proof. The existence of an increasing sequence of real eigenvalues converging to
+∞ follows from the spectral representation theorem for compact self-adjoint op-
erators (see for instance [10, Theorem VI.11]). The fact that ν0 has multiplicity
one follows from the characterization of ψ0 as a minimizer of the Rayleigh quotient

R(ψ) =

∫
Ω
eϕ(y)(|∇yψ|2 − fu(0, y)ψ2)dy∫

Ω
eϕ(y)ψ2dy

, (3.5)

which also gives ψ0 > 0, by Strong Maximum Principle. Since the other eigenvec-
tors are orthogonal to ψ0, they must necessarily change sign.

Remark 3.2. Notice that if ν0 6= 0, then v = 0 is an isolated critical point for the
functional E in the cone C =

{
v ∈ H1(Ω) : v ≥ 0

}
.

Proof. Assume by contradiction that there exists a sequence of critical points
vn → 0 in H1(Ω), such that vn ≥ 0. Letting ṽn = vn/‖vn‖H1(Ω), since each vn
solves (2.11), by elliptic regularity we have the estimate

‖ṽn‖H1(Ω) = 1 ‖ṽn‖H2(Ω) ≤ C, (3.6)

for some C > 0. In particular, there exists a function ṽ ∈ H1(Ω), with ‖ṽ‖H1 = 1
and ṽ ≥ 0, such that ṽn → ṽ in H1(Ω). Recalling that ṽn satisfies the equation

∆y ṽn +∇yϕ · ∇ṽn +
1

‖vn‖H1(Ω)
f
(
‖vn‖H1(Ω)ṽn, y

)
= 0, (3.7)

passing to the limit as n → +∞, we obtain that ṽ solves (3.4) with νk = 0, thus
contradicting Proposition 3.1.

In the following, we always assume that ψ0 > 0. Then, in order for ū to remain
positive for all z > 0 we need a0 > 0 and λ0 < λk for all k > 0. Let us first consider
the simpler case of ν0 > 0, which corresponds to the situation in which u = 0 is
locally stable with respect to (1.1). In this case (3.3) has a unique positive solution
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for each k, and, furthermore, λk are increasing with k. Therefore, the asymptotic
behavior of ū is given by a0ψ0(y)e−λ

+
0 z, where a0 > 0 and λ±k = λ±(c, νk) with

λ±(c, νk) =
c±

√
c2 + 4νk
2

. (3.8)

Note that λ+
0 > c

2 , and so these solutions are expected to lie in the exponentially
weighted Sobolev space H1

c (Σ).
On the other hand, the case of ν0 < 0, when u = 0 is unstable, requires a more

careful consideration. First of all, it is clear that we should have c2 + 4ν0 ≥ 0 in
order for ū to remain positive (otherwise the approach to zero is oscillatory due
to the imaginary part of λk). However, when c2 + 4ν0 > 0, there are two positive
solutions of (3.3) for λ0, according to (3.8). In fact, one would generically expect
the decay of the solution to be governed by λ−0 = λ−(c, ν0), since λ−(c, ν0) <
λ+(c, ν0) in this case. On the other hand, if the solution is also known to lie in
H1
c (Σ), then λ−0 is not allowed, since λ−0 < c

2 would make ū fail to lie in H1
c (Σ).

Therefore, those traveling wave solutions that lie in H1
c (Σ) are expected to have a

non-generic exponential decay a0ψ0(y)e−λ
+
0 z, with a0 > 0. This is still true in the

case ν0 = 0 for exponentially decaying solutions.
One can repeat the above arguments to study the behavior of the solution at

z = −∞. Linearizing around u = v(y), we obtain u− v ∼
∑
k ãkψ̃k(y)e

−λ̃kz and

∆yψ̃k +∇yϕ · ∇yψ̃k + fu(v, y)ψ̃k + ν̃kψ̃k = 0. (3.9)

Here we should require that λ̃k < 0, where λ̃k satisfy (3.3) with ν̃k instead of νk.
Assuming that all ν̃k 6= 0, one sees immediately that ãk = 0 for all ν̃k < 0. If,
furthermore, it is known that ū − v < 0 for large negative z, then we must have
ν̃0 > 0 and ã0 < 0, and choose λ̃0 = λ̃−0 = λ−(c, ν̃0). In other words, under the
assumptions of non-degeneracy of v and approach from below, the equilibrium v
is necessarily a local minimum of E.

If ū ∈ H1
c (Σ), then, at least formally, ū is a critical point of the functional Φc,

since the first variation of Φc is

δΦc[u] =
∫

Σ

ecz+ϕ(y) (∇u · ∇δu+ Vu(u, y)δu) dx

= −
∫

Σ

ecz+ϕ(y)

(
∆u+ cuz +∇yϕ · ∇yu+ f(u, y)

)
δu dx, (3.10)

where we integrated by parts, using the boundary conditions from (1.1), and as-
sumed that 0 ≤ u(x) ≤ 1. We call this type of traveling wave solutions variational
traveling waves [25, 30]. Among these solutions, of special interest are the travel-
ing wave solutions which are in fact minimizers of Φc in H1

c (Σ). Let us note that
existence of a minimizer ū of Φc implies that

Φc[ū] = 0. (3.11)

This follows immediately from the way the functional Φc transforms under trans-
lations

Φc[u(y, z − a)] = ecaΦc[u(y, z)], (3.12)
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and the fact that Φc[ū] should not change under infinitesimal translations of ū. We
also point out that for the same reason (3.11) should in fact hold for any critical
point of Φc and, hence, for any variational traveling wave.

Let us note that not all variational traveling waves can be minimizers of Φc, and
not all traveling wave solutions, of course, have to be variational. Nevertheless,
as was shown in [24, 30], for a large class of nonlinearities and sufficiently rapidly
decaying initial data only the variational traveling waves can be selected as the
long-time attractors for the initial value problem governed by (1.1). It may also
happen that the minimizer of Φc is the only variational traveling wave among all
traveling wave solutions satisfying 0 < ū(x) < 1 in Σ, hence, the only candidate
for the long-time asymptotic behavior of the solutions of the initial value problem.

Since the variational traveling waves and minimizers, in particular, play a key
role in the propagation phenomena governed by (1.1), we will concentrate our
efforts on establishing their existence and uniqueness. Later, in Sec. 5, we will
show that their speed in fact determines the asymptotic long time propagation
speed for the solutions of the initial value problem for (1.1) with sufficiently rapidly
decaying front-like initial data (for more precise definitions and results, see Sec.
5). Below is our main result concerning the existence of minimizers of Φc.

Theorem 3.3. Under hypotheses (H1)–(H3), there exists a unique c† ∈ R such
that c† ≥ c > 0 (where c is the “trial velocity” given by assumption (H3)), and
ū ∈ H1

c†(Σ), ū 6≡ 0, such that

(i) ū ∈ C2(Σ) ∩W 1,∞(Σ), ū solves (3.1) with c = c†, and ū is a minimizer of
Φc† .

(ii) ū(y, z) is strictly monotone decreasing in z for all y ∈ Ω, limz→+∞ ū(·, z) = 0
in C1(Ω), and limz→−∞ ū(·, z) = v in C1(Ω), where v is a critical point of
E, with E[v] < 0 and 0 < v ≤ 1 in Ω.

(iii) ū(y, z) = a0ψ0(y)e−λ+(c†,ν0)z+O(e−λz), with some a0 > 0 and λ > λ+(c†, ν0),
uniformly in C1(Ω× [R,+∞)), as R→ +∞.

(iv) ν̃0 ≥ 0, moreover, if ν̃0 > 0, then ū(y, z) = v(y) + ã0ψ̃0(y)e−λ−(c†,ν̃0)z +
O(e−λz), with some ã0 < 0 and λ < λ−(c†, ν̃0), uniformly in C1(Ω ×
(−∞, R]), as R→ −∞.

(v) The obtained minimizer ū of Φc† is unique, up to translations.

Proof of Part (i)

The existence of a speed c† ≥ c, a function ū ∈ H1
c†(Σ) minimizing Φc† , and the

regularity of ū can be proved exactly as in [25, Theorem 1.1]. We will outline the
proof of this statement here, modifying it in a few parts (so as to not to rely on
regularity of ū), in order to be able to apply it in the sequel to this work [31]. The
idea is to consider constrained minimizers of Φc, i.e., find uc ∈ Bc, where

Bc =
{
u ∈ H1

c (Σ) :
∫

Σ

ecz+ϕ(y)u2
z dx = 2

}
, (3.13)
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which satisfies Φc[uc] = infu∈Bc Φc[u]. Note that by definition uc 6= 0. Then, by
hypothesis (H3), we would necessarily have Φc[uc] ≤ 0. Note that ū(x) ∈ [0, 1]
for all x ∈ Σ, since for any u ∈ H1

c (Σ) we have Φc[ũ] ≤ Φc[u], where ũ is the
truncation of u:

ũ(x) =


0, u(x) < 0,
u(x), 0 ≤ u(x) ≤ 1,
1, u(x) > 1,

(3.14)

and, in fact, this inequality is strict, unless ũ = u a.e.
Now, suppose the constrained minimizer uc exists, and let

c† = c
√

1− Φc[uc]. (3.15)

Note that since Φc[uc] ≤ 0 we have c† ≥ c. For any u ∈ H1
c†(Σ), u 6= 0, define

ua(y, z) = u
(
y, c(z−a)

c†

)
for all (y, z) ∈ Σ. Then clearly ua ∈ H1

c (Σ), and it is
always possible to choose a ∈ R such that ua ∈ Bc. Assuming that a is chosen this
way, we have

ec
†aΦc† [u] =

∫
Σ

ec
†z+ϕ(y)

(
1
2
|∇u(y, z − a)|2 + V (u(y, z − a), y)

)
dx

=
( c
c†

)∫
Σ

ecz+ϕ(y)

{
1
2

(
c†

c

)2(
∂ua
∂z

)2

+
1
2
|∇yua|2 + V (ua, y)

}
dx

=
c†

2 − c2

2c†c

∫
Σ

ecz+ϕ(y)

(
∂ua
∂z

)2

dx+
( c
c†

)
Φc[ua]

=
( c
c†

)
(Φc[ua]− Φc[uc]), (3.16)

where in the computation of the last line in (3.16) we used (3.13) and (3.15). Now,
since Φc[uc] ≤ Φc[u] for any u ∈ Bc, we have Φc† [u] ≥ 0 for all u ∈ H1

c†(Σ) and,

furthermore, the minimum is attained on ū(y, z) = uc

(
y, c

†z
c

)
. In other words, ū

is a non-trivial minimizer of Φc† .
To prove existence of a constrained minimizer uc, one picks a minimizing se-

quence on Bc. Since ϕ ∈ L∞(Ω), all the arguments in the proofs of Propositions
5.5 and 5.6 of [25] remain valid. The only difference is that in Lemma 5.4 of [25]
one needs to estimate Φc[u, (R,+∞)] with the help of (3.5). The fact that ū is a
classical solution of (3.1), together with gradient estimates, follows by standard
regularity theory [20] (see [25, Prop. 3.3]). Indeed, as a minimizer of Φc† the
function ū solves ∫

Σ

ec
†z+ϕ(y) (∇ū · ∇φ− f(ū, y)φ) dx = 0, (3.17)

where φ ∈ H1
c (Σ) is an arbitrary test function. This is the weak form of (3.1).

Finally, to prove uniqueness of c†, suppose there exist c†1 > c†2 > 0, and the
corresponding non-trivial minimizers are ū1,2, with ū1 ∈ H1

c†2
(Σ) by Lemma 2.3.
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Let ũ(y, z) = ū1

(
y,

c†2z

c†1

)
∈ H1

c†2
, then

Φc†2 [ũ] =

(
c†1

c†2

)∫
Σ

ec
†
1z+ϕ(y)

1
2

(
c†2

c†1

)2(
∂ū1

∂z

)2

+
1
2
|∇yū1|2 + V (ū1, y)

 dx

=

(
c†1

c†2

)(
Φc†1 [ū1]−

c†1
2
− c†2

2

2c†1
2

∫
Σ

ec
†
1z+ϕ(y)

(
∂ū1

∂z

)2

dx

)
< 0. (3.18)

But this contradicts existence of a minimizer for Φc†2 , which implies that Φc†2 [u] ≥
Φc†2 [ū2] = 0 for all u ∈ H1

c†2
(Σ).

Proof of Part (ii)

Let us first prove monotonicity of ū. The idea of the proof is related to the
one used to prove uniqueness later on in Part (v). We note that an alternative
way of proving monotonicity of the minimizers is via a one-dimensional monotone
rearrangement (see, e.g., [33]).

First of all, by repeating the arguments of [25, Proposition 3.3(iii)] we may
conclude that ū(z, ·) → 0 in C0(Ω) as z → +∞ (in fact, ū(y, z) ≤ Ce−λz for
some C > 0 and λ > 0). Standard regularity estimates [20] then imply that the
convergence of ū(y, z+R) is in fact in W 2,p(Ω× (0, 1)), for all p > 1, as R→ +∞.
Hence, in particular, ū(z, ·) → 0 in C1(Ω).

Now, for any a > 0, let us introduce

ū1(y, z) = min(ū(y, z), ū(y, z − a)), (3.19)
ū2(y, z) = max(ū(y, z), ū(y, z − a)). (3.20)

According to (3.11), we have

0 = Φc† [ū(y, z)] + Φc† [ū(y, z − a)] = Φc† [ū1] + Φc† [ū2], (3.21)

and since also Φc† [u] ≥ 0 for all u ∈ H1
c†(Σ), it follows that

Φc† [ū1] = 0, Φc† [ū2] = 0. (3.22)

Hence, ū1 and ū2 are also non-trivial minimizers. Now, consider w = ū2− ū1 ≥ 0.
In view of hypothesis (H2), w satisfies an elliptic equation

∆w + c†wz +∇yϕ · ∇yw + k(y, z)w = 0, (3.23)

for some k ∈ L∞(Σ). Then, according to the argument following (6.8) in [25,
Proposition 6.4], which is based on the Strong Maximum Principle, we conclude
that either w = 0 or w > 0 in Σ. The first possibility would imply that ū is
independent of z and, hence, is zero, which is impossible. So, w > 0, implying
that ū(y, z − a) > ū(y, z) for all x = (y, z) ∈ Σ. In view of the arbitrariness of
a > 0, this implies that ū is strictly monotone decreasing.
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Now, as was shown in Part (i), the minimizer ū takes values from the unit
interval. Therefore, by monotonicity of ū, there exists a function v : Ω → R, with
values v(y) ∈ [0, 1] such that ū(y, z) → v(y) for all y ∈ Ω, hence, again by elliptic
regularity, v ∈ C1(Ω) and u(·, z) converges to v in C1(Ω). For any R ∈ R, fix
a test function φ(y, z) = ψ(y)ηR(z) with arbitrary ψ ∈ H1(Ω), ψ|∂Ω± = 0 and
ηR(z) = η0(z − R) ≥ 0, with η0 ∈ C∞0 (R), then (3.17) reads (here and below the
prime denotes differentiation with respect to z)∫

supp(η)

∫
Ω

ec
†z+ϕ(y)(ψūzη′R + ηR∇yū · ∇yψ − f(ū, y)ηRψ)dydz = 0. (3.24)

Multiplying this equation by e−c
†R, passing to the limit R→ −∞ in the integral

and using Fubini Theorem, we obtain

0 =
∫

Ω

eϕ(y)(∇yv · ∇yψ − f(v, y)ψ)dy, (3.25)

which is precisely the Frechet derivative of E[v]. Therefore, v is a critical point of
E and, furthermore, by standard elliptic regularity, we have v ∈ C2(Ω) ∩ C1(Ω),
and v satisfies (2.11).

Let us now show the inequality E[v] < 0. First, note that E[v] = lim
z→−∞

E[ū(·, z)],
and E[ū(·, z)] is a continuous function of z. Let us show that E[v] ≤ E[ū(·, z)] for
all z ∈ R. Indeed, observe that by (3.11) and Fubini Theorem we have

0 = Φc† [ū] =
∫ +∞

−∞
ec
†zE[ū(·, z)]dz +

1
2

∫
Σ

ec
†z+ϕ(y)ū2

zdx, (3.26)

hence there exists some z0 ∈ R such that E[ū(y, z0)] < 0. Now, if E[v] > E[ū(·, z)]
for some z ∈ R, we can choose z0 to be a minimum of E[ū(·, z)], in view of the
fact that E[ū(·, z)] → 0 as z → +∞. Then, taking ũ(y, z) = ū(y, z0) for all z < z0,
and ũ(y, z) = ū(y, z) for all z ≥ z0, for any y ∈ Ω, we find that Φc† [ũ] < 0,
contradicting the fact that ū is a minimizer. Therefore, E[v] ≤ E[ū(·, z0)] < 0.

Proof of Part (iii)

To obtain the decay of ū as z → +∞, we explicitly construct the solution for
z > R, with R large enough, by expanding it into a Fourier series in terms of
the eigenfunctions in (3.4) on the cross sections. The arguments below basically
formalize the earlier discussion of the decay of the solution at the beginning of this
section (see also [7, 41]).

For any z ∈ R, introduce

ak(z) =
∫

Ω

eϕ(y)ψk(y)ū(y, z) dy. (3.27)

By standard W 2,p estimates for ū on slices of Σ [20,25], we have ak ∈ C1,α(R) for
any α ∈ (0, 1) and, furthermore, since by Proposition 3.1 the functions ψk form a
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complete orthonormal basis, we obtain [10, Theorem VI.11]

ū(y, z) =
∞∑
k=0

ak(z)ψk(y),
∞∑
k=0

a2
k(z) =

∫
Ω

eϕ(y)ū2(y, z)dy, (3.28)

where the first series converges in L2(Ω; eϕ(y)dy) for each z. Testing (3.17) with
φ(y, z) = ψk(y)η(z), where η ∈ C∞0 (R) is arbitrary, applying the Fubini Theorem
and performing integration by parts, we obtain∫ +∞

−∞
ec
†z(a′kη

′ + (νkak + gk)η)dz = 0, (3.29)

where we introduced

gk(z) =
∫

Ω

eϕ(y)(fu(0, y)ū(y, z)− f(ū(y, z), y))ψk(y) dy. (3.30)

Note that gk ∈ C0,γ(R). Again, by standard regularity theory [20], the functions
ak belong to C2,γ(R) and satisfy a second-order ordinary differential equation

a′′k + c†a′k − νkak = gk. (3.31)

Now, think of gk(z) as the components of a linear operator G in the basis of
ψk’s:

gk(z) =
∫

Ω

eϕ(y)(Gū)(y, z)ψk(y)dy, Gū = (fu(0, ·)− fu(ũ, ·))ū, (3.32)

for some 0 < ũ < ū by hypothesis (H2), with ū given by (3.28). Since fu(·, y) ∈
C0,γ(R), the operator G is a bounded operator from L2(Ω; eϕdy) to itself for any
fixed z ∈ R. In the following we freeze ũ in (3.32) and treat (3.31) as a system of
linear ordinary differential equations with ak(z) ∈ l2 for all z ∈ R or, equivalently,
a dynamical system for ū(·, z) ∈ L2(Ω; eϕ(y)dy).

Using variation of parameters and keeping in mind that c2 + 4νk > 0 by hy-
pothesis (H3) and Proposition 3.1, one can write the solution for (3.31) in the
form

ak(z) = a+
k (R)e−λ+(c†,νk)(z−R) + a−k (R)e−λ−(c†,νk)(z−R)

− 1√
c†

2 + 4νk

∫ z

R

eλ+(c†,νk)(ξ−z)gk(ξ)dξ

+
1√

c†
2 + 4νk

∫ z

R

eλ−(c†,νk)(ξ−z)gk(ξ)dξ, (3.33)

where a±k (R) are constants of integration satisfying a+
k (R) + a−k (R) = ak(R). In

particular, if λ−(c†, νk) < 0, we have

a−k (R) = − 1√
c†

2 + 4νk

∫ +∞

R

eλ−(c†,νk)(ξ−R)gk(ξ)dξ, (3.34)

13



which is obtained by multiplying (3.33) by eλ−(c†,νk)z and passing to the limit
z → +∞, taking into account boundedness of ak’s and gk’s.

Now, by hypothesis (H2) we have ||G(z)||L2(Ω;eϕ(y)dy) ≤ C||ū(·, z)||γL∞(Ω), hence,
in particular, ||G(z)||L2(Ω;eϕ(y)dy) = O(e−µz) for some µ > 0 (see the discussion at
the beginning of the proof of Part (ii); this condition is only needed if λ−(c†, νk) = 0
for some k). Then, it is easy to see that with a+

k (R) fixed for all k and with a−k (R)
fixed whenever λ−(c†, νk) ≥ 0, the mapping defined by (3.33) is a contraction for
sufficiently large R in the Banach space with the norm

||ū|| = sup
z∈[R,+∞)

||ū(·, z)||L2(Ω;eϕ(y)dy). (3.35)

Indeed, denoting the operator generated by the right-hand side of (3.33) as T and
introducing u1, u2 as described above, after some straightforward calculations we
obtain

||T (u1 − u2)|| ≤ Ce−µR/2||u1 − u2||. (3.36)

In arriving at the last estimate we used the fact that the sequences (νk), (λ+(c†, νk)),
and (−λ−(c†, νk)) are monotone increasing.

So, T is a contraction, and so for any fixed a+
k (R), and for any fixed a−k (R)

corresponding to λ−(c†, νk) ≥ 0 there is a unique solution whose L2(Ω; eϕ(y)dy)
norm is uniformly bounded on [R,+∞). Moreover, by the estimate (2.7) of Lemma
2.2, we have |ak(z)| ≤ Ce−c

†z/2 for all k, which implies that (3.34) in fact holds
whenever λ−(c†, νk) ≥ 0 as well, since λ−(c†, νk) < c†

2 by hypothesis (H3).
Let us now show that the value of λ+(c†, ν0) determines the exponential rate

of decay of the solution at z = +∞. For that, it is necessary that (3.34) does
not hold with λ−(c†, ν0) replaced with λ+(c†, ν0) and a−k (R) replaced by a+

k (R).
Otherwise, there exists k = k0 such that this equation does not hold (the opposite

implies that ū = 0 in Ω× (R,+∞)). Then ak = a+
k (R)e−λ(z−R) +O(e−(1+

1
2γ)λz)

for all k0 ≤ k ≤ k1 for which λ = λ+(c†, νk) (with at least one a+
k (R) 6= 0),

and ak = O(e−(1+
1
2γ)λz) for all other k’s. That k1 is finite follows from the fact

that λ+(c†, ν) is a strictly monotonically increasing function of ν, and that by
Proposition 3.1 the eigenvalues of νk have finite multiplicities and νk → +∞. In
view of these estimates we have

ū(y, z) =
k1∑
k=k0

a+
k (R)e−λ+(c†,νk0 )(z−R)ψk(y) + o(e−λ+(c†,νk0 )z), (3.37)

Therefore, by orthogonality of all ψk’s to ψ0 > 0 for k ≥ k0 and the fact that these
ψk’s change sign, we see that ū(·, z) will become negative somewhere on a set of
non-zero measure in Ω. This is clearly impossible, and so we finally obtain the
estimate

ū(y, z) = a+
0 (R)e−λ+(c†,ν0)(z−R)ψ0(y) +O(e−λz), (3.38)

with λ = min{λ+(c†, ν1), (1 + 1
2γ)λ+(c†, ν0)} > λ+(c†, ν0), in L2(Ω, eϕ(y)dy) for

each z. By construction a0(z) > 0, and so a+
k (R) > 0 for large enough R.
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Finally, consider the function w(y, z) = ū(y, z) − a+
0 (R)e−λ+(c†,ν0)(z−R)ψ0(y)

which satisfies a linear equation in Ω× (R,+∞)

∆w + c†wz +∇yϕ · ∇yw + fu(0, y)w −Gw

= a+
0 (R)Gψ0(y)e−λ+(c†,ν0)(z−R) (3.39)

Since for each z both w and the right-hand side of this equation are O(e−λR)
in L2(Ω × (R,R + 1), eϕ(y)dy) with λ > λ+(c†, ν0), standard elliptic regularity
theory [20, Theorem 9.13] implies that w is O(e−λR) in W 2,2(Ω× (R+ 1

4 , R+ 3
4 ))

and hence, by Sobolev imbedding, in Lp(Ω×(R+ 1
4 , R+ 3

4 ), eϕ(y)dy) for some p > 2.
So, the above estimate in fact holds in Lp(Ω× (R,R+ 1), eϕ(y)dy). Iterating this
argument using W 2,p estimates until the space imbeds into C1(Ω×(R+ 1

4 , R+ 3
4 )),

we obtain the result.

Proof of Part (iv)

When ν̃0 > 0, the proof follows exactly as in Part (iii), where we do not need an
a priori estimate on the exponential decay of ū(·, z) to v as z → −∞ any more,
since all ν̃k > 0, and hence λ−(c†, ν̃k) < 0 and λ+(c†, ν̃k) > 0 for all k.

To prove that ν̃0 < 0 is impossible, consider the analog of (3.31) with k = 0:

ã′′0 + c†ã′0 − ν̃0ã0 = g̃0. (3.40)

Observe that since ū(·, z) → v uniformly as z → −∞, by hypothesis (H2) and the
fact that ψ̃0 > 0 and ū− v < 0 we have

|g̃0(z)| ≤ C

∫
Ω

eϕ(y)(v(y)− ū(y, z))1+γψ̃0(y)dy ≤ ε|a0(z)|, (3.41)

for any ε > 0, as long as z is sufficiently large negative. It is then easy to see
(using e.g. variation of parameters) that (3.40) does not have bounded solutions
for z < R when ε is small enough.

Proof of Part (v)

Our proof of uniqueness is based on the argument due to Heinze [21]. Suppose that
ū1 and ū2 are two non-trivial minimizers of Φc. Then, there exists a translation
a such that ū1(y∗, z∗) = ū2(y∗, z∗ − a) at some point x∗ = (y∗, z∗) ∈ Σ. Indeed, if
not, then without loss of generality we can assume that ū1(y, z) < ū2(y, z− a) for
all x = (y, z) ∈ Σ and all a ∈ R. Also, by the result of Part (iii), ū2(y, z − a) → 0
as a → −∞, hence, ū1 = 0, contradicting the assumption that ū1 is a non-trivial
minimizer. So, ū1(y∗, z∗) = ū2(y∗, z∗ − a), and let us introduce

ū3(y, z) = min(ū1(y, z), ū2(y, z − a)), (3.42)
ū4(y, z) = max(ū1(y, z), ū2(y, z − a)). (3.43)

Arguing as in Part (ii), we have

0 = Φc[ū1] + Φc[ū2] = Φc[ū3] + Φc[ū4] ⇒ Φc[ū3] = Φc[ū4] = 0. (3.44)
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Therefore, ū3 and ū4 are also minimizers of Φc, and w = ū4− ū3 ≥ 0. Once again,
using the arguments following (3.23) and taking into account that w(x∗) = 0,
from Strong Maximum Principle we conclude that w(x) = 0 in all of Σ. So,
ū1(y, z) = ū2(y, z − a) for all x = (y, z) ∈ Σ.

This completes the proof of Theorem 3.3.
Let us note that if the nonlinearity f is independent of y and the boundary

conditions are Neumann, then the solution is essentially one-dimensional.

Proposition 3.4. Let ū be a solution obtained in Theorem 3.3, and assume that
∇yf = 0 and ∂Σ± = ∅. Then ū depends only on the variable z.

Proof. The proof follows directly from the argument of Proposition 6.3 of [25].

In view of Proposition 3.4, the planar front solutions of Proposition 3.4 are also
the fastest variational traveling waves among all waves with fixed y-independent
nonlinearity and different choices of the boundary conditions.

The proof of Parts (iii), (iv) of Theorem 3.3 relied only on the fact that the
minimizer is sandwiched between the two equilibria it connects. Using the same
arguments as in Part (iii) of Theorem 3.3, it is also easy to show that for a varia-
tional traveling wave one should have c2 + 4ν0 > 0 in order for the wave to have
the right decay. So we have

Proposition 3.5. Let uc ∈ H1
c (Σ) be a solution of (3.1) which also satisfies

0 < uc < v, where v = limz→−∞ uc(·, z) uniformly in Ω. Then, c2 + 4ν0 > 0, and
statement (iii) of Theorem 3.3 holds for uc. If, in addition, ν̃0 6= 0, statement (iv)
of Theorem 3.3 holds for uc as well.

More generally, since, according to Proposition 3.5 and (3.11), any constant
sign variational traveling wave is a trial function satisfying hypothesis (H3), the
minimizer obtained in Theorem 3.3 is the fastest variational traveling wave. In
other words, we have

Proposition 3.6. If uc ∈ H1
c (Σ) is a solution of (3.1), as in Proposition 3.5,

then c ≤ c†.

In fact, the following stronger statement concerning all variational traveling
waves that connect the same equilibria as the minimizer holds.

Proposition 3.7. Let uc ∈ H1
c (Σ) be a solution of (3.1), and let 0 < uc < v,

where v = limz→−∞ uc(y, z) is the same as in Theorem 3.3, and ν̃0 6= 0. Then
(c, uc) = (c†, ū), where the pair (c†, ū) is the solution obtained in Theorem 3.3, up
to translation.

Proof. First of all, in view of Proposition 3.5 the fact that uc ∈ H1
c (Σ) implies

that uc has the decay specified in Part (iii) of Theorem 3.3. By direct inspection,
λ+(c, ν0) > 0 and λ−(c, ν̃0) < 0 are both increasing functions of c. Therefore, when
c < c†, the solution uc decays to zero slower exponentially than ū as z → +∞,
and faster to v as z → −∞. So, it is possible to translate ū sufficiently far towards
z = −∞ to achieve ū < uc in Σ. Then, using Comparison Principle for parabolic
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equations [34] applied to the corresponding traveling wave solutions of (1.1), we
see that uc must move no slower than c†, which is impossible. Repeating this
argument for c > c†, except now one has to translate ū towards z = +∞ to get an
appropriate supersolution, we obtain a contradiction once more.

In other words, there are no other variational traveling waves which are sand-
wiched between the same equilibria as the minimizer of Φc† obtained in Theorem
3.3. We also point out that under an assumption of non-degeneracy and uniqueness
of the local minimizer v0 > 0 with E[v0] < 0 (which is then the global minimizer,
see the discussion at the end of Section 2), the pair (c†, ū) from Theorem 3.3 is in
fact the only variational traveling wave solution. In general, however, there may
exist other variational traveling waves with speeds c < c† which connect u = 0 to
a local minimum of E other than v in Part (ii) of Theorem 3.3.

Remark 3.8. In view of Proposition 3.5 and equation (3.11), existence of a min-
imizer necessarily implies that hypothesis (H3) is true. Thus, hypothesis (H3) is
both necessary and sufficient for existence of variational traveling waves (this fact
was already pointed out in [24] in the case Σ = R).

Now we would like to get back to considering an important special case ν0 ≥ 0,
i.e. the case when u = 0 is a locally stable (or marginally stable) solution of (1.1).
Here, to satisfy hypothesis (H3) we just need to find a non-trivial trial function
u ∈ H1

c (Σ) for which Φc[u] ≤ 0 for some small enough c > 0. In fact, the following
stronger version of Theorem 3.3 holds.

Theorem 3.9. Assume that hypotheses (H1) and (H2) hold, and that ν0 ≥ 0 in
(2.9). Then the statements of Theorem 3.3 remain true, if and only if

inf
v∈H1(Ω)
v|∂Ω±=0

E[v] < 0. (3.45)

Proof. The proof follows from a straightforward extension of the arguments of
Proposition 6.2 of [25].

In other words, the statement of Theorem 3.9 holds if and only if there exists
a non-trivial minimizer of E in the admissible class. In particular, if v0 is the
unique critical point with negative energy (necessarily the minimizer) and ν0 > 0,
then there is a unique pair (c†, ū) solving (3.1). Indeed, by Proposition 3.7 the
minimizer in Theorem 3.9 is the only variational traveling wave, and there are no
other traveling wave solutions for ν0 > 0. Note that the same statement is true
for the ignition-type nonlinearity from combustion theory under the assumption
of uniqueness of v0.

4 Minimal waves

What if hypothesis (H3) is not satisfied? In this case, there are obviously no
variational traveling wave solutions. However, if ν0 < 0, then it is possible to have
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traveling wave solutions which do not lie in H1
c (Σ). The following proposition

gives a general sufficient condition for non-existence of minimizers for Φc and is a
generalization of the earlier results of [24,25].

Proposition 4.1. Under hypotheses (H1) and (H2), assume that ν0 < 0 and

2
u2

∫ u

0

f(s, y)ds ≤ fu(0, y), ∀y ∈ Ω. (4.1)

Then the functional Φc has no non-trivial minimizers.

Proof. Let us first show that under this assumption Φc[u] = 0 implies u = 0 for
all c ≥ c0, where c0 is given by (4.6). After an integration by parts, we can write

Φc[u] =
∫

Σ

ecz+ϕ(y)

{
1
2

(
uz +

c

2
u
)2

+
1
2
|∇yu|2 +

c2

8
u2 + V (u, y)

}
dx. (4.2)

By the assumption of the proposition we have V (u, y) ≥ −1
2fu(0, y)u

2, and so

Φc[u] ≥ 1
2

∫
Σ

ecz+ϕ(y)

{(
uz +

c

2
u
)2

+ |∇yu|2 +
(
c2

4
− fu(0, y)

)
u2

}
dx

≥ 1
2

∫
Σ

ecz+ϕ(y)

{(
uz +

c

2
u
)2

+
(
c2

4
+ ν0

)
u2

}
dx. (4.3)

The second term in the integrand above is non-negative for c ≥ c0, so Φc[u] = 0
would imply that u is a minimizer and that the first term in the integrand is equal
to zero. That, in turn, means that u = v(y)e−cz/2 for some v : Ω → R, and, in
view of boundedness of the minimizers of Φc, we have v ≡ 0.

Let us now show that when c < c0, the functional Φc is not bounded from
below. For that, consider a trial function

uλ(y, z) =

{
aψ0(y)e−λz, z > 0,
aψ0(y), z ≤ 0,

(4.4)

where ψ0 > 0 is the zeroth eigenfunction of the operator in (3.4) and λ > c
2 .

Choosing a > 0 small enough, we can always make V (uλ(y, z), y) ≤ − 1
2 (fu(0, y)−

ε)u2
λ for any ε > 0. Plugging uλ into the functional, we obtain

Φc[uλ] ≤ 1
2

∫ 0

−∞

∫
Ω

ecz+ϕ(y){|∇yuλ|2 − (fu(0, y)− ε)u2
λ} dydz

+
1
2

∫ +∞

0

∫
Ω

ecz+ϕ(y){|∇yuλ|2 + (λ2 + ε− fu(0, y))u2
λ} dydz

=
a2

2c

∫
Ω

eϕ(y)(|∇ψ0|2 − (fu(0, y)− ε)ψ2
0) dy

+
a2

2(2λ− c)

∫
Ω

eϕ(y)(|∇yψ0|2 + (λ2 + ε− fu(0, y))ψ2
0) dy

=
a2

2

(
ν0 + ε

c
+
λ2 + ε+ ν0

2λ− c

)∫
Ω

eϕ(y)ψ2
0 dy. (4.5)
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It is then easy to see that the last line in the expression above can be made arbi-
trarily large negative for sufficiently small ε and c < c0 by choosing λ sufficiently
close to c

2 . Therefore, in this case the functional Φc has no minimizers.

A typical example of the situation in which Φc has no non-trivial minimizers is
the KPP-type nonlinearity of (1.4). Non-existence of variational traveling waves in
this case follows from the above Proposition. However, our variational procedure
allows us to establish existence of an important class of traveling wave solutions,
having the speed which is equal to the minimal speed c = c0, where c0 is defined
in (4.6), allowed for a positive traveling wave solution. As in the case of the mini-
mizers, this solution turns out to determine the asymptotic propagation speed for
sufficiently rapidly decaying front-like initial data (see Sec. 5). Thus, to summa-
rize the results of Theorem 3.3 and Theorem 4.2 below, under the condition in
(3.45) there always exists a positive monotone traveling wave solution with speed
satisfying c2 + 4ν0 ≥ 0 which decays exponentially at z = +∞.

Theorem 4.2. Assume that hypotheses (H1) and (H2) hold, whereas hypothesis
(H3) is not satisfied. Assume in addition that ν0 < 0. Then, there exists ū0 ∈
C2(Σ) ∩W 1,∞(Σ) which solves (3.1) with c = c0, where

c0 = 2
√
−ν0. (4.6)

Furthermore, ū0 has the limiting behavior

ū0(y, z) = (a0 + b0z) e−
1
2 c0zψ0(y) +O(e−λz), (4.7)

for some λ > c0
2 and either b0 > 0 or b0 = 0, a0 > 0, as z → +∞, and assertions

(ii) and (iv) of Theorem 3.3 still hold for u0.

Proof. We prove this theorem by approximating the solution (c0, ū0) of (3.1) with
pairs (cε, ūε) solving

∆ūε + cε
∂ūε
∂z

+∇yϕ · ∇yūε + fε(ūε, y) = 0, (4.8)

ūε
∣∣
∂Σ±

= 0, ν · ∇ūε
∣∣
∂Σ0

= 0, (4.9)

where

fε(u, y) = f(u, y)− εγKu

εγ + uγ
, K = max

y∈Ω
fu(0, y) > 0. (4.10)

Associated with fε are the function Vε and the functionals Φεc, Eε, and Rε, defined
with fε in place of f . Note that by the definition of fε we have

0 ≤ f(u, y)− fε(u, y) ≤ εγK, ∀u ∈ [0, 1], ∀y ∈ Ω, (4.11)

and fε(u, y) is a monotonically decreasing function of ε.
Observe that the assumption ν0 < 0 implies (3.45), since for a > 0 sufficiently

small we have

inf E ≤ E[aψ0] = 1
2ν0a

2 + o(a2) < 0. (4.12)
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So, by continuity inf Eε < 0 for sufficiently small ε. We also have ∂fε(u,y)
∂u

∣∣∣
u=0

≤ 0
for all y ∈ Ω. Hence νε0 ≥ 0, where νε0 is defined as the minimum of Rε. Then, by
Theorem 3.9 there exists a pair (cε, ūε), with ūε ∈ H1

cε
(Σ), which is the minimizer

of Φεcε
, with all the properties given by Theorem 3.3. In particular, we have

lim
z→−∞

ūε(y, z) = vε(y) in C1(Ω), (4.13)

∆yvε +∇yϕ · ∇vε + fε(vε, y) = 0, Eε[vε] < 0. (4.14)

We are now going to demonstrate that vε are uniformly bounded away from zero
as ε→ 0.

The proof comes in two steps. First, we show that any critical point vε of
Eε such that Eε[vε] < 0 has ||vε||L∞(Ω) ≥ Cε1/2, with some C > 0, for small
enough ε. Indeed, multiplying (4.14) by eϕ(y)vε and integrating over Ω, and then
substituting the result into the definition of Eε, we get

Eε[vε] =
∫

Ω

eϕ(y)
{
Vε(vε, y) + 1

2vεfε(vε, y)
}
dy =

1
2

∫
Ω

eϕ(y)

∫ vε

0

(
s
∂fε(s, y)

∂s
− f(s, y)

)
ds dy = (4.15)

1
2

∫
Ω

eϕ(y)

∫ vε

0

s2
∂

∂s

(
fε(s, y)

s

)
ds ≥ 0,

whenever vε ≤ Cε1/2 for some C > 0 and ε small enough. The last inequality
follows by direct computation and taking into account that f(·, y) ∈ C1,γ([0, 1]),
uniformly for all y ∈ Ω.

In the second step, we demonstrate that ||vε||L∞(Ω) ≥ Cε1/2 implies ||vε||L∞(Ω) ≥
δ for some δ > 0 independent of ε, for small enough ε. Indeed, assume that
||vε||L∞(Ω) → 0 and define ṽε = vε/||vε||L∞(Ω). Then, from (4.14) ṽε satisfies

∆y ṽε +∇yϕ · ∇ṽε + fu(0, y)ṽε = gε, (4.16)

where the right-hand side may be estimated as

||gε||L∞(Ω) ≤ C||vε||γL∞(Ω) + εγK||vε||−γL∞(Ω). (4.17)

By previous result, we have ε||vε||−1
L∞(Ω) → 0 as ε → 0, hence by assumption

||gε||L∞(Ω) → 0 as well. So, since by standard elliptic regularity theory the func-
tions vε are uniformly bounded in W 2,p(Ω) for all p > n, on a suitable sequence
of ε → 0 we have ṽε → ṽ0, where ṽ0 solves (4.16) with gε = 0, and, furthermore,
||ṽ0||L∞(Ω) = 1 and ṽ0 ≥ 0 (in fact, by Strong Maximum Principle ṽ0 > 0) [20].
This gives a contradiction, since, recalling the fact that ν0 < 0, the kernel of the
linear operator in the left-hand side of (4.16) does not contain functions which are
positive throughout Ω.

Now, observe that in view of monotonicity of Vε as a function of ε the sequence
of cε is monotone increasing. Furthermore, it is bounded from above by c0. Indeed,
Φcε

[ūε] ≤ Φεcε
[ūε] = 0, and if cε > c0, then the pair (cε, ūε) satisfies hypothesis
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(H3) for the original problem, which is false. So, cε ≤ c0. Let us show that in fact
c0 = limε→0 cε. Indeed, for a > 0 fixed consider a trial function

ũε(y, z) =


aψ0(y), z < 0,
ae−cz/2ψ0(y), 0 ≤ z ≤ R,

ae−cR/2
(
1− c(z−R)

2

)
ψ0(y), R ≤ z ≤ R+ 2

c ,

0, z > R+ 2
c .

(4.18)

for some R > 0. By construction, ũε ∈ H1
c (Σ). Then

Φεc[ũε] =
∫ 0

−∞

∫
Ω

ecz+ϕ(y)

(
1
2
|∇ũε|2 + Vε(ũε, y)

)
dy dz

+
∫ +∞

0

∫
Ω

ecz+ϕ(y)

(
1
2
|∇ũε|2 + Vε(ũε, y)

)
dy dz

=
1
c

∫
Ω

eϕ(y)

(
a2

2
|∇yψ0|2 + Vε(aψ0(y), y)

)
dy

+
∫ R

0

∫
Ω

ecz+ϕ(y)

(
1
2
|∇ũε|2 + V (ũε, y)

)
dy dz

+
∫ R

0

∫
Ω

ecz+ϕ(y) (Vε(ũε, y)− V (ũε, y)) dy dz

+
∫ R+ 2

c

R

∫
Ω

ecz+ϕ(y)

(
1
2
|∇ũε|2 + Vε(ũε, y)

)
dy dz. (4.19)

By hypothesis (H2), it is possible to choose the constant a such that

V (ũε, y) ≤ − 1
2 (fu(0, y)− δ) ũ2

ε, ∀δ > 0. (4.20)

Also, we have uniform estimates |Vε(u, y)| ≤ Cu2/2, where C is independent of ε
or y, and Vε(u, y)− V (u, y) ≤ εγKu, in view of (4.11). Therefore, continuing the
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argument above, we can write

Φεc[ũε] ≤ a2

2c

∫
Ω

eϕ(y)
(
|∇yψ0|2 + Cψ2

0

)
dy

+
a2

2

∫ R

0

∫
Ω

eϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2 − fu(0, y)ψ2
0 + δψ2

0

)
dy dz

+KεγaecR/2
∫ R

0

∫
Ω

eϕ(y)ψ0dy dz

+
a2

2

∫ R+ 2
c

R

∫
Ω

ec(z−R)+ϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2 + Cψ2
0

)
dy dz.

≤ a2

2c

∫
Ω

eϕ(y)
(
|∇yψ0|2 + Cψ2

0

)
dy

+
a2R

8
(c2 + 4ν0 − δ)

∫
Ω

eϕ(y)ψ2
0 dy +KεγaRecR/2

∫
Ω

eϕ(y)ψ0dy

+
9a2

c

∫
Ω

eϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2 + Cψ2
0

)
dy

= a2M1R(c2 + 4ν0 + δ) + εγaM2Re
cR/2 + a2M3, (4.21)

where M ’s are positive constants independent of ε, δ, a,R.
Now, for any positive c < c0 it is possible to choose δ > 0 small enough such

that c2 + 4ν0 + δ < 0. This fixes the value of a. Then, choose R large enough, so
that M1R(c2 + 4ν0 + δ) +M3 < 0. Finally, there exists ε > 0 small enough such
that the term multiplying M2 is sufficiently small, so that the expression in the
last line of (4.21) remains negative. This implies that Φεc[ũε] ≤ 0, so that cε ≥ c
for ε small enough. In view of the arbitrariness of c, this implies cε → c0.

Now we construct the limit function ū0 and show that it satisfies (3.1) with
c = c0. Recalling Remark 3.2, the assumption ν0 < 0 implies that there exists
δ > 0 such that 0 is the only critical point of E taking values in [0, δ]. In particular,
we can choose δ small enough, so that maxΩ vε > δ for ε small enough. Recalling
the monotonicity and the limit behavior of ūε, as z → ±∞, after an appropriate
translation we can assume that ūε satisfies

max
y∈Ω

ūε(y, 0) = δ (4.22)

for small enough ε. As the functions ūε are uniformly bounded in W 1,∞(Σ) and
in W 2,p

loc (Σ), we can pass to the limit as ε→ 0, and obtain a function ū0 ∈ C2(Σ)∩
W 1,∞(Σ) which solves (3.1) with speed c = c0. Moreover, we have 0 ≤ ū0 ≤ 1,
and ū0 satisfies (4.22) and, hence, is not identically zero. Furthermore, ū0 is
non-increasing in the z-variable, and so by Strong Maximum Principle we have
0 < ū0 < 1 and ∂ū0/∂z < 0 in Σ.

Reasoning as in the proof of [25, Proposition 6.6], we can show that ū0 connects
two critical points v± of E, for z → ±∞ respectively, with 0 ≤ v+ ≤ δ and
E[v−] < E[v+]. By (4.22) and Remark 3.2 it follows that v+ = 0 and v− = v,
where 0 < v ≤ 1, and hence E[v] < 0.
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The asymptotic expansion in (4.7) follows from exactly the same arguments as
in the proof of Part (iii) of Theorem 3.3. The only ingredient that is missing here
is an a priori estimate of exponential decay of the solution (since it may no longer
lie in any of the exponentially weighted Sobolev spaces H1

c (Σ)). To overcome this
difficulty, consider (3.31) with k = 0:

a′′0 + c0a
′
0 + 1

4c
2
0a0 = g0. (4.23)

By the same argument as the one leading to (3.41), we have |g0(z)| ≤ εa0(z)
with arbitrary ε > 0 when z is large enough. Therefore, it is easy to see that
ā0(z) = a0(R)e−λ(z−R) with λ = 1

2c0 −
√
ε is a supersolution for large enough R,

implying that a0(z) decays exponentially to zero as z → +∞.
This, in turn, implies exponential decay of u0. Indeed, let um(z) = maxy∈Ω ū0(y, z)

and ym(z) the location of this maximum in Ω. By previous results we have um → 0
as z → +∞. Now, by regularity of ∂Ω, there exists a closed cone CΩ (with finite
height) such that each point y ∈ Ω is a vertex of a cone Cy ⊂ Ω congruent to
CΩ. Therefore, by the uniform estimate on |∇u0| for each z sufficiently large
there exists a cone C̃ym

⊆ Cym
similar to Cym

such that u0(y, z) ≥ 1
2um(z) for

all y ∈ C̃ym
and |C̃ym

| = C1u
n−1
m (z), with some C1 > 0 independent of z. Also,

since dist(C̃ym , ∂Ω±) ≥ C2um and by Hopf Lemma the normal derivative of ψ0 on
∂Ω± is bounded from below [20, Lemma 3.4], we also have ψ0(y) ≥ C3um for all
y ∈ Cym

. Using these estimates in the definition of a0, we get

a0(z) =
∫

Ω

eϕ(y)ū0(y, z)ψ0(y)dy ≥
∫
C̃ym

eϕ(y)ū0(y, z)ψ0(y)dy ≥ Cun+1
m , (4.24)

and so um ≤ Ca
1

n+1
0 (z) ≤ Ce−µz, with some µ > 0, for large enough z.

Note that in general there is no uniqueness in Theorem 4.2. This can be easily
seen from the phase plane analysis already in the case Σ = R in the presence
of multiple equilibria. On the other hand, under an extra assumption of non-
degeneracy of v = limz→−∞ ū0(·, z), uniqueness follows from the sliding domain
method of Berestycki and Nirenberg [6] in the class of solutions with the same
limit at z = −∞.

Remark 4.3. As follows from the argument of Kawohl [22], if ν0 < 0 and s 7→
V (
√
s, y) is a strictly convex function of s for any fixed y ∈ Ω, there exists a unique

positive critical point of E (necessarily the minimizer with negative energy). Since
the assumption of convexity above implies the condition in Proposition 4.1, we are
automatically dealing with the case covered by Theorem 4.2.

We illustrate this situation with an example of the Allen-Cahn equation, for
which f(u) = u(1− u2). Letting w = v2, we can rewrite the functional E as

E[v] = Ẽ[w] =
∫

Ω

eϕ(y)

(
|∇w|2

8w
− w

2
+
w2

4

)
dy. (4.25)

By inspection, Ẽ is strictly convex on w > 0 (which corresponds to v > 0), and so
it admits at most one critical point with negative energy. If it does, there exists a
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unique (up to translations) traveling wave solution of (3.1) with speed c0. Let us
also point out that the classical Fisher nonlinearity f(u) = u(1 − u) satisfies the
assumption of Remark 4.3.

5 Propagation

We are now going to study the role the traveling waves constructed in the preceding
sections play for the initial value problem governed by (1.1). Following [24, 30],
we introduce the concept of the solution’s leading edge to study the notion of
propagation:

Rδ(t) = sup{z ∈ R : u(y, z, t) > δ, ∀y ∈ Ω}, (5.1)

where u solves (1.1), δ > 0 is small enough, setting Rδ = −∞ if the set in (5.1) is
empty. Our main result in this section is that, under certain generic assumptions
on the front-like initial data, the solutions of the initial value problem propagate
asymptotically with the speed c† of the minimizers or, if these do not exist, with
speed c0 of the minimal waves.

In order to proceed, we first need to set up a suitable existence theory for the
initial value problem associated with (1.1). This is relatively standard, except for
the fact that we want also to have control on the behavior of solutions at z = +∞
to ensure that the solutions stay in the spaces H1

c (Σ) with appropriate values of
c. This is needed in order to be able to apply the energy methods associated with
the functional Φc evaluated on the solutions of (1.1).

We start with the following basic result that guarantees existence of solutions
for the initial value problem in (1.1) for initial data with sufficiently rapid expo-
nential decay.

Proposition 5.1. Let c > 0 and let u0 ∈ UC(Σ), where UC(Σ) denotes the
space of uniformly continuous functions on Σ. Let also u0 satisfy the boundary
conditions in (1.3) and assume u0(x) ∈ [0, 1] for all x ∈ Σ. Then there exists
a unique solution u ∈ C2

1 (Σ × (0,∞)) ∩ C0(Σ × [0,+∞)) of (1.1) with boundary
conditions from (1.3), which satisfies u(·, 0) = u0, u(x, t) ∈ [0, 1], for all x ∈ Σ
and t > 0, and ‖∇u‖L∞(Σ×(t0,+∞)) <∞, for all t0 > 0. Moreover, if u0 ∈ L2

c(Σ),
we also have u ∈ Cα((0,+∞);H2

c (Σ)) ∩ C1,α((0,+∞);L2
c(Σ)), for all α ∈ (0, 1),

where H2
c (Σ) denotes the space of functions with up to second derivatives in L2

c(Σ).

Proof. The result follows by standard theory of analytic semigroups (see e.g. [26]).
The existence of a unique solution u ∈ C2

1 (Σ× (0,+∞))∩C0(Σ× [0,+∞)) follows
as in [26, Proposition 7.3.1], which can be extended to a cylindrical domain with
boundary of class C2. The estimate u(·, t) ∈ [0, 1] follows from the Comparison
Principle for parabolic equations [34, Chapter 3], since u ≡ 0 and u ≡ 1 are
sub- and supersolution of (1.1), respectively. As a consequence we obtain that
‖∇u‖L∞(Σ×(t0,+∞)) <∞, for all t0 > 0.

Let now u0 ∈ L2
c(Σ), and denote by A : D(A) → L2

c(Σ) the linear operator
Au = ∆u + cuz + ∇yϕ · ∇yu, with u ∈ D(A) = H2

c (Σ) ⊂ L2
c(Σ). Since A is a

sectorial operator in L2
c(Σ), and u 7→ f(u, y) is (after an appropriate extension
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outside [0, 1]) a Lipschitz map from L2
c(Σ) into itself, it follows from [26, Propo-

sition 7.1.10] extended to a cylindrical domain that u ∈ Cα((0,+∞);H2
c (Σ)) ∩

C1,α((0,+∞);L2
c(Σ)), for all α ∈ (0, 1).

Note that ũ(y, z, t) = u(y, z + ct, t) satisfies the equation

ũt = ∆ũ+ cũz +∇yϕ · ∇yũ+ f(ũ, y), (5.2)

and as was already noted in the Introduction, (5.2) is a gradient flow generated
by Φc on L2

c(Σ). Therefore,

dΦc[ũ(·, t)]
dt

= −
∫

Σ

ecz+ϕ(y)ũ2
t (·, t) dx ≤ 0, (5.3)

which helps to establish c† as the upper bound for the speed of the leading edge
for the initial data with sufficiently fast decay (see also [25,30]):

Proposition 5.2. Under the assumptions of Theorem 3.3, let u0 satisfy the as-
sumptions of Proposition 5.1 with some c > c†. Then, for any δ > 0 we have
Rδ(t) < c′t for any c′ > c† and for all t ≥ T , where T = T (c′) ≥ 0.

Proof. First fix any c′ ∈ (c†, c) and c′′ ∈ (c†, c′), then, according to Lemma
2.3, u(·, t) ∈ H1

c′′(Σ) as well. According to (5.3) with c = c′′, the function
t 7→ Φc′′ [u(y, z+c′′t, t)] is non-increasing, and so 0 ≤ Φc′′ [u(y, z+c′′t, t)] ≤ C for all
t ≥ t0 > 0. This, in turn, implies that Φc′′ [u(y, z+c′t, t)] = e−c

′′(c′−c′′)tΦc′′ [u(y, z+
c′′t, t)] → 0. Arguing as in [25, Proposition 6.10], we conclude that u(y, z+c′t, t) →
0 in L2

c′′(Σ), and in view of the uniform gradient estimate of Proposition 5.1 this
means that u(·, t) converges to zero uniformly on the set Ω× [c′t,+∞) as t→∞.
Therefore, there exists T ≥ 0 such that Rδ(t) < c′t for all t > T . Since this
statement remains true also for all c′ > c, this completes the proof.

We point out that the proof of Proposition 5.2 relied only on the property
Φc[u] ≥ 0 for all u ∈ H1

c (Σ) for all c > c†. So, as a simple extension of the
argument above, we have the following propagation failure result, consistent with
the conclusion of [30]:

Corollary 5.3. Assume ν0 ≥ 0 and hypothesis (H3) is false, and let u0 satisfy
the assumptions of Proposition 5.1 with some c > 0. Then, for any δ > 0 we have
Rδ(t) < c′t for any c′ > 0 and all t ≥ T , where T = T (c′) ≥ 0.

On the other hand, if hypothesis (H3) is false, but ν0 < 0, then the same is true
for all c > c0, with c0 given by (4.6):

Corollary 5.4. Under the assumptions of Theorem 4.2, let u0 satisfy the assump-
tions of Proposition 5.1 with c > c0. Then, for any δ > 0 we have Rδ(t) < c′t for
any c′ > c0 and all t ≥ T , where T = T (c′) ≥ 0.

Now we are going to study sufficient conditions for propagation. We point out
right away that in general it is not clear whether a particular initial condition
will result in a solution which propagates with non-zero velocity at long times.
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For example, if f is of bistable type, then propagation is clearly impossible for
sufficiently small initial data, since they will rather decay to zero. In their classical
work, Aronson and Weinberger presented a comprehensive study of propagation
phenomena for scalar reaction-diffusion equations under various assumptions on
the nonlinearity f [1, 2]. Their results depend quite delicately on the properties
of the traveling wave solutions admitted by these equations and involve extensive
applications of Maximum and Comparison Principles. Recently, a general notion
of wave-like solutions of (1.1) was introduced in [30] that identifies a large class of
solutions of gradient reaction-diffusion systems which are propagating in a certain
generalized sense (see Theorem 4.7 of [30]). Under some extra assumptions on
the nonlinearity, propagation in this generalized sense implies propagation in the
sense similar to the one used by Aronson and Weinberger [24,30].

Generally, different modes of propagation can occur in the presence of multiple
traveling wave solutions. Therefore, it is reasonable to ask what part of the initial
condition determines the final propagation speed when propagation does occur.
What we will show below is that for sufficiently rapidly decaying initial data the
propagation speed can be controlled by the behavior of the initial data at z = −∞
for front-like initial data.

We first give the result under the assumption of existence of minimizers of Φc.

Proposition 5.5. Under the assumptions of Theorem 3.3, let u0 satisfy the as-
sumptions of Proposition 5.1 with c = c†, and also assume that lim infz→−∞ u0(·, z) ≥
v of Theorem 3.3 uniformly in Ω. Then, there exists δ0 > 0 such that for
all δ ∈ (0, δ0) we have Rδ(t) > ct for any c ∈ (0, c†) and all t ≥ T , where
T = T (c) ≥ 0.

Proof. Let us first show that for any c < c† there exists a function uc ∈ C1(Σ) with
compact support such that Φc[uc] < 0. Indeed, multiplying (3.1) by ecz+ϕ(y)ūz
and integrating over Σ, after a number of integrations by parts we obtain (see
also [25,30])

Φc[ū] =
c− c†

c

∫
Σ

ecz+ϕ(y)ū2
z dx < 0. (5.4)

Therefore, approximating ū by a function from C1(Σ) with compact support and
taking into account continuity of Φc in H1

c (Σ), we obtain the desired function uc.
Observe also that since ū(·, z) < v for all z ∈ R, we can choose uc such that

0 ≤ uc(·, z) ≤ v. Define ΣR = Ω × (−R,R), where R > 0 is big enough, so that
supp (uc) ⊆ ΣR. We now consider a minimizer 0 ≤ ūc ≤ v of Φc over all functions
in H1(Σ) vanishing outside ΣR and on ∂Σ±. By elliptic regularity theory [20], the
minimizer ūc is a classical solution of (3.1) in ΣR, and by the standard reflection
argument ūc ∈ W 1,∞(ΣR). Furthermore, since Φc[ūc] ≤ Φc[uc] < 0 = Φc[0] and
ūc has compact support, we have 0 < ūc ≤ v − ε, for some ε > 0, by Strong
Maximum Principle.

Therefore, in view of the uniformity of lim infz→−∞ u0(·, z) in Ω, there exists
a ∈ R such that u0(y, z) ≥ ūc(y, z − a) for all (y, z) ∈ Σ. Choosing ũ(y, z, 0) =
ūc(y, z−a), we obtain a subsolution of (5.2) that propagates as R̃δ(t) ≥ ct+a−R.
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Therefore, Rδ(t) ≥ R̃δ(t) > c′t for any c′ < c and t ≥ T (c′), and the statement
follows by the fact that c can be chosen arbitrarily close to c†.

Remark 5.6. Note that in general the dependence of Rδ(t) on δ cannot be re-
moved because of the possibility of stacked waves moving with different speeds in
the presence of multiple equilibria of E [36,44].

Now, if the minimizers do not exist for Φc, then, as expected, a similar result
holds for u as in Proposition 5.5.

Proposition 5.7. Under the assumptions of Theorem 4.2, let u0 satisfy the as-
sumptions of Proposition 5.1 with c = c0 and let lim infz→∞ u0(·, z) ≥ v of The-
orem 4.2 uniformly in Ω. Then, there exists δ0 > 0 such that for any c < c0 we
have Rδ(t) > ct, for all δ ∈ (0, δ0) and for all t ≥ T , where T = T (c) ≥ 0.

Proof. The proof is a slight modification of the proof of Proposition 5.5. We first
use the same approximation as in Theorem 4.2 to show that for any c ∈ (0, c0)
there exists a function uc ∈ C1(Σ) with compact support such that Φc[uc] < 0.
Indeed, if uε is a minimizer of the approximating functional Φε

c†ε
from the proof

of Theorem 4.2, then by (5.4) we have Φεc[uε] < 0 for all c < c†ε. In view of the
fact that c†ε → c0 from below, and in view of the continuity of Φεc in H1

c (Σ), for
any c ∈ (0, c0) there exists ε > 0 and uc ∈ C1(Σ) with compact support such that
Φεc[uc] < 0 also. Then, we prove the claim above by observing that V ≤ Vε, and
so Φc[uc] ≤ Φεc[uc]. Now the conclusion follows exactly as in Proposition 5.5.

Summarizing all the results obtained above, we have the following

Theorem 5.8. Assume hypotheses (H1) and (H2) are satisfied. Let u0 satisfy the
assumptions of Proposition 5.1 with some c > c∗, where c∗ = c† if hypothesis (H3)
is true, or c∗ = c0 if hypothesis (H3) is false and ν0 < 0. In addition, assume
that lim infz→−∞ u0(·, z) ≥ v uniformly in Ω, where v is defined in Theorem 3.3
or Theorem 4.2. Then there exists δ0 > 0 such that for all δ ∈ (0, δ0] and any
ε > 0 it holds

(c∗ − ε)t < Rδ(t) < (c∗ + ε)t, (5.5)

for all t ≥ T , where T = T (ε) ≥ 0.

Thus, the speed c∗ in Theorem 5.8 has a meaning of the propagation speed for
the solutions of (3.1) with the initial data whose decay is governed by the L2

c-norm
with c sufficiently large. These are the data that we call “decaying sufficiently
rapidly”; in particular, initial data that equal zero identically for large enough
z automatically fall in this class. Let us mention here that this assumption on
the decay of the initial data is in fact crucial: as is well-known, one can construct
solutions which propagate faster than c∗ when ν0 < 0, if the initial data are allowed
to decay slower [9, 27,28,30,37,38].

Let us conclude by briefly discussing the situation in which u0 is not a front-
like function, contrary to the lim inf assumption of Theorem 5.8, but instead is
sufficiently localized in both positive and negative z-directions, e.g. compactly
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supported. For this type of initial data it is a generic property of (1.1) that u(x, t)
approaches a z-independent limit on compact sets as t → ∞ (see e.g. [2]). Then,
if this limit is in fact v of Proposition 5.5, we can once again use the function uc
constructed in its proof as a subsolution for large enough times for the solutions of
(1.1). Therefore, we get the following more general version of Theorem 5.8 which,
in particular, applies to localized initial data:

Corollary 5.9. The statement of Theorem 5.8 remains true, if the the condition
lim infz→−∞ u0(y, z) ≥ v(y) is replaced with lim inft→∞ u(y, z, t) ≥ v(y) uniformly
on compact subsets of Σ. If, in addition, u0(y,−z) ∈ L2

c(Σ) the same statement
holds for u(y,−z, t).

The last statement in Corollary 5.9 implies that when the initial data are
sufficiently localized, a pair of counter-propagating fronts will develop, moving
with the same speed c∗ in both positive and negative z-directions.

6 Discussion

Let us finally comment on the relationship of our results with those available in
the literature and discuss some open problems. Equation (1.1) has been studied
in an enormous number of works (for references, see Introduction). Let us point
out, however, that the main thrust of research on the reaction-diffusion-advection
equation in (1.1) has been towards problems with shear flows (e.g. when v has a
z-component which depends on y [7,45,46]). Such problems are motivated by, e.g.,
considering a Poisueille flow of premixed fuel-oxidizer mixture inside an insulated
pipe which can sustain wrinkled deflagration fronts in combustion. We, on the
other hand, considered a different setup, in which the flow is perpendicular to the
cylinder axis. Also, we are constrained to considering only potential flows because
of the limitations of our variational approach. So, we cannot readily treat problems
of front propagation in shear flows considered in the majority of the literature.

Nevertheless, our results can be compared to previous results on existence
of traveling wave solutions in the absence of the flow, v ≡ 0, i.e. for purely
reaction-diffusion problems. For Neumann boundary conditions our results nat-
urally extend a number of results of Berestycki and Nirenberg [7] to arbitrary
types of nonlinearities and, in particular, to nonlinearities which change type in
different portions of the cylinder cross-section. Moreover, under the assumption
of uniqueness of the local (hence global) non-degenerate minimizer v of E[v] with
negative energy we obtain a unique, monotone, exponentially decaying traveling
wave solution which determines the asymptotic propagation speed for a large class
of sufficiently rapidly decaying front-like initial data. This is even true when
ν0 = 0, the case that was left open in the study of [7] and consequent studies
(apart from the case of ignition nonlinearities). Also, as was already mentioned
earlier, in the case ν0 < 0 existence of minimizers gives a sharp criterion for linear
vs. nonlinear selection, i.e. whether c∗ = c0 or c∗ > c0 in [7]. In fact, we have
proposed a new sufficient condition for linear selection (Proposition 4.1), which
is more general than a commonly used assumption f(u, y) ≤ ufu(0, y), which is
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usually referred to as the KPP-type nonlinearity [5]. Moreover, a more restrictive
condition from Remark 4.3 would guarantee both the KPP-type behavior of the
traveling waves and the uniqueness of the minimizer of E[v], also for combinations
of Neumann and Dirichlet boundary conditions. We also note that the existence
of a critical speed c∗ in the case ν0 < 0 which is established by our analysis does
not rely on positivity of f any more and, together with Remark 4.3, applies e.g.
to nonlinearities like f(u, y) = u(µ(y)− u) considered in [5].

Our method also easily treats various boundary conditions, in particular, Dirich-
let boundary conditions. The papers that are most relevant to our results here are
those of Vega [41–43] (see also [19,21]). Vega constructed the unique solution con-
necting two stable (in a certain sense) critical points of the functional E, provided
there are no other critical points of E with negative energy that are sandwiched
between them. He also constructed a family of solutions connecting an unstable
equilibrium of E at z = +∞ with the stable one at z = −∞ under a similar
assumption on other critical points of E. Our analysis generalizes these results
by weakening the assumptions on the nonlinearity, if we redefine the potential in
(2.4) to be the negative antiderivative of f only for 0 ≤ u(y, z) ≤ v(y), where v is
a stable equilibrium of E with negative energy such that there are no other such
equilibria sandwiched between 0 and v. We also only need to verify that ν0 ≥ 0 to
ensure existence of a unique, monotone traveling wave solution connecting 0 and
v. In the case ν0 < 0, we obtain existence of the minimal speed front character-
ized by the fast exponential decay (see also [35]). Let us point out that with our
variational approach we are able to obtain various estimates on the traveling wave
speed, as well as distinguish between linear and nonlinear selection mechanism.
We also similarly can obtain various monotonicity properties of the speed with
respect to changes in the nonlinearity or the shape of Ω.

Let us also point out an important limitation of the approach of Vega. Con-
sider a situation in which the domain Ω consists of two sufficiently large mirror-
symmetric regions connected by a thin neck, with Dirichlet boundary conditions.
Clearly, with a bistable y-independent nonlinearity f (i. e. satisfying (3.45) and
ν0 > 0) one could have three positive local minimizers for the functional E: two
that are localized in each of the halves of Ω and one which is localized in both
halves. With no other local minima of E one can use the method of Vega to con-
struct the traveling wave solutions which are localized in one of the corresponding
halves of the cylinder Σ. Our method, on the other hand, will always pick the
(faster) traveling wave solution that is localized in both halves of the cylinder.
Indeed, by mirror symmetry the minimizer of Φc must also be symmetric, hence
the traveling wave will necessarily connect zero with the symmetric local (also
global) minimizer of E. In view of the discussion in the previous paragraph, in
this situation our method will yield all the traveling wave solutions in the problem
after a suitable redefinition of V in each case. We emphasize that in general our
method does not rely on the knowledge of the global picture for the critical points
of the functional E, in contrast to the approach of Vega.

In short, we have obtained a characterization of propagation in the spirit of
Aronson and Weinberger [2] for the considered problem (see also [18]). It would
be interesting to see how the notion of propagation related to the motion of the
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leading edge used here relates to the generalized notion of propagation which was
recently introduced for a class of the so-called wave-like solutions in [30, Theorem
4.7]. Let us point out that both definitions of propagation velocity have c† (or c0
in the absence of minimizers of Φc) as the upper bound. Similarly, the asymptotic
propagation speed from [30, Theorem 4.11] gives a lower bound for the propagation
speed of the leading edge. One may naturally ask when these two asymptotic
propagation speeds are actually the same. We have not yet been able to answer
this question. One way to proceed here would be to apply Theorem 4.8 of [30]
under the assumption that there are no variational traveling waves other than the
minimizer. This, however, seems to be difficult to do, since one needs some a priori
information on the exponential decay of the solution of the initial value problem
in the reference frame associated with the leading edge. We note that this would
also, in turn, imply a much stronger result of convergence of the solution to the
initial value problem to a minimizer as t → ∞, in view of the linear stability of
the minimizer (by monotonicity, zero is the smallest eigenvalue of the linearization
around ū, all other eigenvalues and the essential spectrum are strictly above zero
in the weighted space [37]). Alternatively, one could use positivity of Φc evaluated
on the solution of the initial value problem for c = limt→∞ c̄(t), see [30, Definition
4.5], to interpret Φc as a Lyapunov functional for the problem in the reference
frame moving with speed c. Here, however, one faces a difficulty associated with
the lack of compactness in the problem. In sum, a more precise characterization
of propagation in the considered problem is still open.

Acknowledgements

CBM was partially supported by the grant R01 GM076690 from NIH. CBM would
also like to acknowledge support by INDAM during his stay at the University of
Pisa where part of this work was done.

References

[1] D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population ge-
netics, combustion, and nerve pulse propagation. In Proceedings of the Tulane
Program in Partial Differential Equations and Related Topics, volume 446 of
Lecture Notes in Mathematics, pages 5–49. Springer-Verlag, Berlin, 1975.

[2] D. G. Aronson and H. F. Weinberger. Multidimensional diffusion arising in
population genetics. Adv. Math., 30:33–58, 1978.

[3] H. Berestycki. The influence of advection on the propagation of fronts in
reaction-diffusion equations. In H. Berestycki and Y. Pomeau, editors, Non-
linear PDEs in Condensed Matter and Reactive Flows, volume 569 of NATO
Science Series. Kluwer, 2003.

[4] H. Berestycki and F. Hamel. Front propagation in periodic excitable media.
Comm. Pure Appl. Math., 55:949–1032, 2002.

30



[5] H. Berestycki, F. Hamel, and L. Roques. Analysis of the periodically frag-
mented environment model. II. Biological invasions and pulsating travelling
fronts. J. Math. Pures Appl., 84:1101–1146, 2005.

[6] H. Berestycki and L. Nirenberg. On the method of moving planes and the
sliding method. Bol. Soc. Brasil. Mat. (N.S.), 22(1):1–37, 1991.

[7] H. Berestycki and L. Nirenberg. Traveling fronts in cylinders. Ann. Inst. H.
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