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Reaction-diffusion models with nonlocal constraints naturally arise as limiting
cases of coupled bulk-surface models of intracellular signalling. In this paper, a
minimal, mass-conserving model of cell-polarization on a curved membrane is
analyzed in the limit of slow surface diffusion. Using the tools of formal asymptotics
and calculus of variations, we study the characteristic wave-pinning behavior of
this system on three dynamical timescales. On the short timescale, generation of
an interface separating high- and low-concentration domains is established under
suitable conditions. Intermediate timescale dynamics is shown to lead to a uniform
growth or shrinking of these domains to sizes which are fixed by global parameters.
Finally, the long time dynamics reduces to area-preserving geodesic curvature flow
that may lead to multi-interface steady state solutions. These results provide a
foundation for studying cell polarization and related phenomena in biologically
relevant geometries.
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1. Introduction. Reaction-diffusion models are essential tools for understanding the spatial self-
organization of chemical patterns inside the cell. Over the past decade, research interest has coalesced
around two key features which set intracellular dynamics apart from other classes of models. First, in
contrast to traditional models which exist on a single domain, these models are often bulk-surface models,
in that they feature distinct diffusion processes within the 3D cytosolic volume of the cell and on the
2D cell membrane coupled by a nonlinear boundary condition [46]. Second, many recent studies have
emphasized systems subject to mass-conservation [24, 42]. These properties are particularly prevalent in
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models of cell polarization, a crucial process by which the spatial distribution of proteins within a cell
becomes highly localized to a region of the membrane as a result of spontaneous symmetry breaking or an
external guiding cue [16]. Polarization is essential for a great variety of biological phenomena, including
guiding developmental outcomes, establishing axes for cell division and guiding locomotion in motile
cells, and so has motivated significant interest from the mathematical biology community [16].

The attention of applied mathematicians is increasingly turning to understanding how various forms
of spatial heterogeneity influence dynamics and steady state behavior. Research that has emphasized
the effect of spatially varying kinetic parameters are the most obvious examples of this trend [21, 41].
Over the last few years, the question of what role cell geometry plays in guiding polarization has drawn
considerable interest. While initial polarization models were reduced to 1D systems, computational
advances have enabled numerical studies on 2D and fully 3D domains [6, 15]. Early steps in addressing
this problem have produced simulations that are highly suggestive that localization is closely tied to
surface curvature via minimization of interfacial length, but this principle has yet to be demonstrated
by formal analysis [14, 20]. Very recently, a novel numerical framework was introduced allowing for
efficient simulation of cell polarization models on surfaces of revolution, which in particular motivates
this particular study [37].

In this paper, we perform a formal asymptotic analysis of the surface-bound version of the wave-
pinning model first proposed in Ref. [39], which features both mass-conservation and bulk-surface
coupling. This model has attracted considerable interest as a minimal theory for polarization, and has
been successfully applied to model systems such as the Rho-GTP pathway [56] or Ezrin polarization in
embryonic mouse cells [58]. The emergence of spontaneous symmetry breaking in this system has been
intensely studied, and the dependence of the initial instability of the spatially uniform solution on various
parameters is well-characterized [33, 43, 48, 56]. While previous studies considered the asymptotics of
wave-pinning as surface diffusion becomes small, they have generally been concerned with 1D domains
or lower orders of perturbation than we discover are needed to capture the full effect of 3D-embedded
domain geometry [14, 40]. Other works which have considered fully 3D domains have limited analysis to
linear stability studies [20, 47]. Our research here uses the timescale separation techniques to probe the
generation and propagation of interfaces in two-species reaction-diffusion systems to the specific case of
the wave-pinning model (for related rigorous studies, see [12, 27, 51]). We note that for single bistable
reaction-diffusion equations in the Euclidean setting the generation and propagation of interfaces is by
now well understood mathematically [1, 5, 11]. In the context closely related to our problem, results on
propagation of interfaces for bistable reaction-diffusion equations on Riemannian manifolds were recently
obtained in Refs. [44, 45].

In this work, we demonstrate that understanding the patterning outcome of polar domains on a
surface of arbitrary shape requires a thorough analysis of the long-timescale behavior of the associated
mass-conserving reaction-diffusion equation. Working in the limit of slow surface diffusion, we establish a
separation of the dynamics into three distinct time scales: first, the initial generation of the interface, then,
uniform growth or shrinking of the domains until their areas converge to the steady state values dependent
only on the global parameters, and finally, evolution of the interface by area-preserving geodesic curvature
flow that results in a finite union of geodesic disks as time goes to infinity. In doing so, we demonstrate
that stable steady states with multiple disjoint interfaces exist on biologically plausible domain shapes,
something impossible without geometric effects.

This paper is organized as follows. In Sec. 2, we formulate our model of polarization on a closed
surface and define three sub-problems whose limiting behavior should describe the effective dynamics on
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different asymptotic timescales. In Sec. 3, we carry out a preliminary analysis of existence and stability
of the uniform states and, in particular, identify the parameter regimes in which only nonuniform steady
states can be stable. In Secs. 4 through 6, we asymptotically derive the limiting sub-problems as the
surface diffusion coefficient tends to zero and examine their dynamical behavior. Finally, in Sec. 7 we
perform a number of numerical tests to corroborate the predictions of the asymptotic theory, and in Sec. 8
we make our concluding remarks.

2. Model Summary. Let Ω ⊂ R3 be an open, bounded, connected set with a sufficiently regular
boundary ∂Ω. A basic model of cell polarization can be written as (see [15] for more details):

∂tB = DB∇
2
∂Ω

B+ kb

(
β +

Bν

Gν +Bν

)
C− kdB in ∂Ω× (0,T ),(2.1)

∂tC = DC∇
2
ΩC, in Ω× (0,T ),(2.2)

DC(∇C · n̂)|∂Ω =−kb

(
β +

Bν

Gν +Bν

)
C+ kdB. in ∂Ω× (0,T ),(2.3)

B(·,0) = B0 in ∂Ω,(2.4)

C(·,0) =C0 in Ω.(2.5)

Here, (2.1) describes a reaction-diffusion process on the surface ∂Ω of the surface-bound protein concen-
tration B, while (2.2) gives bulk diffusion of the concentration C of the same protein in the bounded volume
Ω, and (2.3) is the boundary condition coupling the two. The operator ∇2

∂Ω
is the Laplace–Beltrami

operator on the surface, while ∇2
Ω

refers to the standard 3D Laplacian. While we start with a model where
membrane-bound dynamics is already purely two-dimensional, the validity of this class of model as a
limiting case of a membrane of finite thickness was demonstrated in Ref. [31].

We are principally interested in the regime where DC ≫ DB, and in this regime it is reasonable to treat
the bulk concentration as spatially uniform [15]. As mass is conserved globally, we define the quantity Ctot
as the total number of protein molecules divided by the bulk volume V of Ω, so that the bulk concentration
can be expressed as

(2.6) C =Ctot −
1
V

∫
∂Ω

BdS.

Substituting this back into (2.1) yields a non-local equation for surface-bound species

∂tB = DB∇
2
∂Ω

B− kdB+ kb

(
β +

Bν

Gν +Bν

)(
Ctot −

1
V

∫
∂Ω

BdS
)

on ∂Ω× (0,T ).(2.7)

This equation is rendered dimensionless by a rescaling B(x, t)→ u(x̃, t̃), with u = kdB/(kbCtot), t̃ = kdt
and x̃ = x/

√
A ∈ ∂ Ω̃, where A = |∂Ω| is the surface area of ∂Ω, and Ω̃ = Ω/

√
A is a rescaling of Ω that

ensures that the rescaled domain Ω̃ has boundary of unit area. Dropping the tildes and the subscript ∂Ω

for simplicity of notation from now on, we arrive at the dimensionless form

∂tu = δ
2
∇

2u−u+ f (u)(1−αU) on ∂Ω× (0,T ),(2.8)

U(t) =
∫

∂Ω

u(x, t)dS for t ∈ (0,T ),(2.9)

u(x,0) = g(x) for x ∈ ∂Ω,(2.10)
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with the dimensionless parameters1

δ =

√
DB

kdA
, α =

kbA
kdV

, γ =
kdG

kbCtot
,(2.11)

and where we defined f (u) = β + uν

γν+uν for further notational convenience. Together with the already
dimensionless parameters β and ν , the parameters α , γ and δ define the parameter space for our problem.
As was already noted, we have |∂Ω|= 1 now.

The long timescale dynamics of this problem for a purely 1D model was previously studied via
asymptotic expansions in [40], and later on a disc in [14]. In Ref. [15], exact solutions were constructed
for the special case of a spherical domain and ν = ∞. Here we confine ourselves to the specific case
of ν = 2 for the sake of analytical tractability, but treat general spatial domains. A few useful remarks
on this system can be made based upon existing results. First, (2.1)–(2.5) represents a special case of
a more general class described in Ref. [52], and per the results therein, there exists a unique classical
solution (B,C) such that the functions B and C are smooth and uniformly bounded. Further, Theorem
2.6 of Ref. [26] demonstrates that our shadow system (2.8)–(2.10) likewise has a unique weak solution,
and that solution is the limit of the solutions to (2.1)–(2.5) as DB → ∞, justifying the use of this reduced
approach.

In the asymptotic analysis described in the following sections, we find it convenient to frame our
problem as three equivalent problems parametrized by δ ≪ 1:

(Pδ
0 ) ∂tuδ

0 = δ
2
∇

2uδ
0 −uδ

0 + f (uδ
0 )

(
1−α

∫
∂Ω

uδ
0 dS
)
, uδ

0 (x,0) = gδ
0 (x),

(Pδ
1 ) ∂tuδ

1 = δ∇
2uδ

1 +δ
−1
[
−uδ

1 + f (uδ
1 )

(
1−α

∫
∂Ω

uδ
1 dS
)]

, uδ
1 (x,0) = gδ

1 (x),

(Pδ
2 ) ∂tuδ

2 = ∇
2uδ

2 +δ
−2
[
−uδ

2 + f (uδ
2 )

(
1−α

∫
∂Ω

uδ
2 dS
)]

, uδ
2 (x,0) = gδ

2 (x).

Each problem describes the dynamics at the timescale of a different order in δ : (Pδ
0 ) is the problem on the

original O(1) timescale, (Pδ
1 ) is the problem on the O(δ−1) long timescale and (Pδ

2 ) is the problem on the
O(δ−2) longer timescale. Crucially, we will show that as δ → 0 the initial condition of the second and
third problem may be taken to be the infinite time limit of the solution at the previous stage, thus allowing
to connect the solutions at different timescales. In our analysis below, we will formally obtain the limit
behavior of each of these problems when δ → 0.

3. Preliminaries. In this section we introduce some basic facts about our system, and establish
some notation. We begin by examining the behavior of the spatially uniform steady states of (2.8). These
states satisfy

(3.1) −u+ f (u)(1−αu) = 0,

and with our choice of the nonlinearity (recall that ν = 2) this reduces to a cubic equation

−u(u2 + γ
2)+(1−αu)(u2(1+β )+βγ

2) = 0.(3.2)

1We use a slightly different convention from [15], in which the definitions of α and δ differ from the present ones by constant
factors.



GENERATION AND MOTION OF INTERFACES 5

Figure 3.1. Boundaries between the bistable and monostable regimes plotted for different values of β . Within the
triangular-shaped regions, three positive roots of (3.2) exist, while outside there is only one.

For α,β ,γ > 0, (3.2) will have at least one real positive root u0, with two additional positive roots u±
emerging when its discriminant

∆(α,β ,γ) = γ
4(1−4β (αβ +α +1)(2β (αβ +α +1)−5))

−4γ
6(αβ +1)3(αβ +α +1)−4β (β +1)3

γ
2 > 0.

(3.3)

We adopt the convention u− < u0 < u+, with u±,0 denoting any one of these roots for shorthand. Setting
∆ = 0 allows one to derive the conditions for the existence of three roots. We find the requirements for
three real roots to be

0 < β <
1
8
,(3.4)

0 < α <
1−8β

8β (1+β )
,(3.5)

γ−(α,β )< γ < γ+(α,β ),(3.6)

where

γ±(α,β ) =

√
1−4β (αβ +α +1)(2β (αβ +α +1)−5)±

√
(1−8β (αβ +α +1))3

8(αβ +1)3(αβ +α +1)
.(3.7)

Slices of the boundary between parameter space regions are plotted in the γ −α plane in Fig. 3.1 for
various values of β .

We next examine the linear stability of the uniformly stable states in the usual manner, examining the
behavior of perturbations of the form u±,0(x, t) = u±,0 + εη±,0(x, t) for ε ≪ 1. Denoting the orthonormal
eigenfunctions of the Laplace-Beltrami operator as vk(x) such that −∇2vk(x) = λkvk(x) for k = 0,1, ...,
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where λk are the corresponding eigenvalues, we write η±,0(x, t) = ∑
∞
k=0 a±,0

k eσ
±,0
k tvk(x). Note that for a

compact surface, the eigenvalues λk are real with 0 = λ0 < λ1 ≤ λ2 ≤ ....
The linearized equation about the root u0,± takes the form

L η±,0(x, t) =
[
∂t −δ

2
∇

2 +1− f ′(u±,0)(1−αu±,0)
]

η±,0(x, t)+α f (u±,0)
∫

∂Ω

η±,0(x, t)dS

=
∞

∑
k=0

(
σ
±,0
k +δ

2
λk +1− f ′(u±,0)(1−αu±,0)+α f (u±,0)δk,0

)
a±,0

k eσ
±,0
k tvk(x) = 0,(3.8)

where δk,0 is the Kronecker delta symbol, and we took into account that v0 = 1 and
∫

∂Ω
vkdS = 0 for all

k > 0. Then the following dispersion relation holds:

(3.9) σ
±,0
k =−δ

2
λk −1+ f ′(u±,0)(1−αu±,0)−α f (u±,0)δk,0.

In the three-root parameter region, σ
±
0 < 0 and σ0

0 > 0, while outside this region, σ0
0 < 0, as can be

verified numerically. Furthermore, one can see that if δ is sufficiently large then σ
±,0
k < 0 for all k > 0.

So, as expected, for sufficiently large diffusion the stability of each fixed point can be determined entirely
by its stability with respect to uniform perturbation corresponding to k = 0.

Conversely, for sufficiently small values of δ the steady states u±,0 may lose stability with respect to
non-uniform perturbations corresponding to k > 0. In this case the fastest growing mode corresponds to
k = 1, and for f ′(u±,0)(1−αu±,0)−1 > 0 one can define

(3.10) δ0,± =

√
f ′(u±,0)(1−αu±,0)−1

λ1
.

Then for δ < δ0,± it follows that σ
0,±
1 > 0.

As our subsequent analysis emphasizes the limit where δ → 0, it is useful to examine the boundaries
of the region where f ′(u±,0)(1−αu±,0) = 1 for each fixed point. Let b1(α,γ)< b2(α,γ) be the two real
roots of the depressed quartic

(3.11) b4 +2γ
2(1+α)b2 −2γ

2b+ γ
4 = 0,

which arises from rearranging f ′(b)(1−αb) = 1. A uniform fixed point at u±,0 is stable in the limit δ → 0
provided b1(α,β ,γ)< u±,0(α,β ,γ)< b2(α,β ,γ). We plot a slice of the parameter space at β = 0.025
in Fig. 3.2 in order to illustrate how the parameter space is partitioned. One can see that σ0

1 > 0 for all
points within the three root region, whereas σ

±
1 > 0 in distinct but overlapping regions. Importantly, there

is a large parameter region in which no uniform state is linearly stable and, therefore, pattern formation
must occur from a generic initial condition. Note that for finite δ the diffusion exerts a stabilizing effect
and shrinks the regions with positive growth rates, but even for a relatively large value of δ (e.g. δ ≈ 0.1)
the stability regions look nearly indistinguishable from those in Fig. 3.2. As a final remark, previous
examinations of wave-pinning models have observed that even in the absence of linear instability, such
systems tend to be easily destabilized by small finite perturbations - it is hypothesized that many real
systems exist entirely within the stable regime but nonetheless polarize due to large scale fluctuations [40].
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Figure 3.2. Regions of the parameter space at β = 0.025 colored according to the stability of the uniform steady state in
the limit δ → 0. Regions i and ii denote where there is a unique uniform steady state u0. In the former, σ0

k < 0 for all k, while
in the latter σ0

k > 0 for some k > 0. In iii, iv and v, three uniform steady states u− < u0 < u+ exist, with σ
±
0 < 0 and σ0

0 > 0.
In iv, σ

+
k > 0 for some k > 0 while σ

−
k < 0 for all k, and in iii, σ

±
k > 0 for some k > 0. Finally, in v, σ

±
k < 0 for all k. A final

region exists on the boundary of v and i where u− becomes destabilized but u+ remains stable, but this region is too narrow to
reasonably visualize on this plot.

4. Generation of Interface. At the zeroth order in δ , the diffusion term in (Pδ
0 ) may be dropped

to the leading order to obtain a closed system of equations for u0 = limδ→0 uδ
0 :

(4.1) (P0
0 )

∂tu0 =−u0 + f (u0)(1−αU0),

u0(x,0) = g(x),

U0(t) =
∫

∂Ω

u0(x, t)dS,

provided g = limδ→0 gδ
0 is smooth and the limit is uniform. All spatial coupling now occurs via the

parameter U0. In essence, this problem reduces to an infinite system of ODEs connected via a mean-field
term. Our goal in this section is to demonstrate that at almost every point x ∈ ∂Ω, the value of u(x, t) is
expected to converge to one of two specific steady state values as t → ∞ for generic choices of g. This
problem has been considered before in previous studies of wave-pinning, and conventionally the local
bistability of (4.1) for fixed U0 was used to justify the assumption that u0 indeed converges [14, 40].
Nevertheless, for variable U0, an additional non-trivial argument is necessary to make such a conclusion.
Here, we demonstrate that problem (P0

0 ) is in fact a gradient flow generated by the following energy
functional:

(4.2) H[u] =
∫

∂Ω

Φ(u)dS+
α

2

[∫
∂Ω

udS
]2

,
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where

(4.3) Φ(u) =
u(1+β )(u−2(1+β ))+ γ2 log

(
u2(1+β )+βγ2)

)
2(1+β )2 .

This function is bounded from below for all β > 0, and the second term in (4.2) is nonnegative, so we
have that H[u] is bounded from below. Taking the variational derivative of H yields

(4.4) ∂tu0 =− f (u0)
δH
δu

,
δH
δu

=−1+
u(u2 + γ2)

u2(1+β )+βγ2 +α

∫
∂Ω

udS,

which is a gradient flow generated by the energy functional H[u] with the mobility f (u). As f (u0)> 0
uniformly, we have

(4.5)
dH(u0(·, t))

dt
=−

∫
∂Ω

( f (u0))
−1|∂tu0|2dS ≤ 0.

Here equality only occurs when u0 is one of the steady state solutions to (4.1), which due to the dissipative
nature of the dynamics are the only elements of the attractor of the long-time dynamics of the solutions of
(P0

0 ) [25]. Away from the steady states, H[u0(·, t)] is both decreasing in time and bounded below, so as
t → ∞, H(u0(·, t))→ H∞. We note that existence of solutions for problem (P0

0 ) with positive bounded
initial data follows from the standard theory of ODEs in Banach spaces, yielding a unique solution
u0 ∈ C∞([0,∞);L2(∂Ω)) [10]. In particular, this gives U0 ∈ C∞([0,∞)). Therefore, by the standard
existence theory for ODEs we have that u(x, ·) ∈C∞([0,∞)) for each x ∈ ∂Ω. In fact, it is not difficult to
see that the solutions of (P0

0 ) remain positive and bounded independently of t, as they should. Thus, the
arguments leading to (4.5) are justified. Furthermore, the boundedness of u0 yields boundedness of ∂ 2

t u0
as well, which together with (4.5) implies that ∂tu0(·, t)→ 0 in L2(∂Ω) as t → ∞.

Consider a sequence of tn > 0 such that tn → ∞ as n → ∞. Up to an extraction of a subsequence (not
relabeled), we then have ∂tu0(·, tn)→ 0 a.e. in ∂Ω. Since U0(tn) is bounded, upon a further extraction of a
subsequence we have U0(tn)→U∞

0 as n → ∞. Therefore, for a.e. x ∈ ∂Ω we have that u(x, tn) converges
to one of the roots of the equation

(4.6) −Φ
′(h) = 1− h(h2 + γ2)

h2(1+β )+βγ2 = αU

for U =U∞
0 . This equation has at most three real roots, which we label h−(U)< h0(U)< h+(U), and

plot their dependence on U in Fig. 4.1. The conditions for all three roots to be real are 0 < β < 1/8 and
U−(α,β ,γ)<U <U+(α,β ,γ), where U±(α,β ,γ) correspond to saddle node bifurcations. We calculate
the explicit dependence of these on the kinetic parameters as

U±(α,β ,γ) = α
−1

1−

(
3±
√

1−8β

)√
1±
√

1−8β −2β )
√

2(1±
√

1−8β )(1+β )3/2
γ

 .(4.7)

Notably, the form of Φ′(h) implies that dh±(U)
dU < 0. Therefore, the roots u0 = h±(U∞

0 ) represent the two
linearly stable equilibria of (4.1), while u0 = h0(U∞

0 ) represents an unstable equilibrium for U0 = U∞
0
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Figure 4.1. Three solutions h+, h0, and h− of (4.6) as functions of U. Here U+ denotes the location of the saddle-node
bifurcation of h+ and h0. Parameters chosen for this plot are α = 1, β = 0.01 and γ = 0.25.

fixed. Thus, generically we would expect that for almost every x ∈ ∂Ω we have

(4.8) lim
n→∞

u0(x, tn) =

{
h+(U∞

0 ) if x ∈ ∂Ω
+
0 (U

∞
0 ),

h−(U∞
0 ) if x ∈ ∂Ω

−
0 (U

∞
0 ),

for some ∂Ω
±
0 ⊂ ∂Ω (possibly depending on the choice of the sequence) such that |∂Ω\(∂Ω

+
0 ∪∂Ω

−
0 )|=

0.
From the definitions of ∂Ω

+
0 , U∞

0 = limn→∞

∫
∂Ω

u0(x, tn)dS, and H∞ = limn→∞ H[u0(·, tn)], the follow-
ing system of equations arises in the limit as n → ∞:

|∂Ω
+
0 |+ |∂Ω

−
0 |= 1,(4.9)

h+(U∞
0 )|∂Ω

+
0 |+h−(U∞

0 )|∂Ω
−
0 |=U∞

0 ,(4.10)

Φ(h+(U∞
0 ))|∂Ω

+
0 |+Φ(h−(U∞

0 ))|∂Ω
−
0 |+

α

2
|U∞

0 |2 = H∞.(4.11)

We now consider the above equations as an algebraic system with U∞
0 fixed and |∂Ω

±
0 | and H∞ as

variables. The conservation of area (4.9) ensures that d
dU∞

0
|∂Ω

+
0 |=− d

dU∞
0
|∂Ω

−
0 |, and differentiating (4.10)

yields

(4.12)
dh+(U∞

0 )

dU∞
0

|∂Ω
+
0 |+

dh−(U∞
0 )

dU∞
0

|∂Ω
−
0 |+h+(U∞

0 )
d

dU∞
0
|∂Ω

+
0 |+h−(U∞

0 )
d

dU∞
0
|∂Ω

−
0 |= 1.

Rearranging the terms then establishes that |∂Ω
+
0 | is an increasing function of U∞

0 , since

(4.13)
d

dU∞
0
|∂Ω

+
0 |=

1−|∂Ω
+
0 |

dh+(U∞
0 )

dU∞
0

−|∂Ω
−
0 |

dh−(U∞
0 )

dU∞
0

h+(U∞
0 )−h−(U∞

0 )
> 0.
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As the final step, taking the derivative of (4.11) and using the identity Φ′(h±(U∞
0 )) =−αU∞

0 yields the
relationship

(4.14)
dH∞

dU∞
0

=

(
Φ(h+(U∞

0 ))−Φ(h−(U∞
0 ))

h+(U∞
0 )−h−(U∞

0 )
−Φ

′(h+(U∞
0 ))

)
(h+(U∞

0 )−h−(U∞
0 ))

d
dU∞

0
|∂Ω

+
0 |.

The term inside the brackets only equals zero at a single value of U∞
0 , corresponding to the double tangent

construction (a straight line that touches the graph of Φ(u) at two points). For all other values of U∞
0 , we

thus have dH∞/dU∞
0 ̸= 0, as shown in Fig. 4.2 for several choices of α . It follows that there are at most

two isolated solutions U∞
0 to (4.9)–(4.11) for a given value of H∞, i.e., the set of possible values of U∞

0
for different choices of the sequence (tn) is discrete. Thus, since the ω-limit set of u0 is connected [25],
convergence of H(u0(·, tn))→ H∞ as n → ∞ fixes U∞

0 independently of the subsequence. So we have
limt→∞U0(t) =U∞

0 , and by the ODE stability argument we then have limt→∞ u(x, t) = h±(U∞
0 ) as well for

each x ∈ ∂Ω
±
0 , respectively. This arguments also shows that up to sets of measure zero the sets ∂Ω

±
0 are

independent of the sequence, and so we finally obtain a full limit:

(4.15) lim
t→∞

U0(t) =U∞
0 , lim

t→∞
u0(x, t) =

{
h+(U∞

0 ) x ∈ ∂Ω
+
0 ,

h−(U∞
0 ) x ∈ ∂Ω

−
0 ,

for some ∂Ω
±
0 ⊂ ∂Ω depending only on the parameters and the initial condition and satisfying |∂Ω

−
0 |+

|∂Ω
+
0 |= 1. In other words, the solution of problem (P0

0 ) is expected to generically converge to a piecewise-
constant function corresponding to the two stable equilibrium branches of the bistable nonlinearity for a
certain long time limit value of U0. This result can be interpreted as follows: for small but finite value
of δ the solution of problem (Pδ

0 ) will become nearly piecewise constant on the timescale 1 ≪ t ≪ δ−1

almost everywhere in ∂Ω, except in a small transition region of width of order δ . Thus, an interface is
expected to form on this timescale, which will serve as an approximate initial condition for problem (Pδ

1 )
at the corresponding rescaled timescale δ ≪ t ≪ 1 for the latter.

We note that while one should expect u = h±(U∞
0 ) to be generically selected as the limiting values of

the solution away from the interfaces, for arbitrary initial conditions the possibility of h0(U∞
0 ) on a set of

positive measure may not be a priori excluded. This prevents us to make (4.15) into a rigorous conclusion
about the long-time limit behavior for problem (P0

0 ). This sort of issue is well known in the studies of
gradient flows and its further treatment would require a more delicate analysis that goes beyond the scope
of the present paper (for a treatment of a closely related problem, see [3]).

Lastly, we point out that the arguments above do not a priori exclude the possibility of |∂Ω
+
0 |= 0

or |∂Ω
−
0 |= 0, depending on the initial conditions. In these cases the system ends up in a uniform state

and no further non-trivial dynamics governed by (2.8) – (2.10) is expected to occur. This outcome of
the dynamics may be interpreted as a failure of cell polarization. However, such an outcome would be
non-generic for the kinetic parameters corresponding to the regions ii and iii in Fig. 3.2, in which all
uniform states are linearly unstable, consistently with the conclusion at the end of Sec. 3. In contrast, the
case 0 < |∂Ω

+
0 |< 1 corresponds to a patterned state as the outcome of the dynamics of (P0

0 ), in which
the boundary between ∂Ω

+
0 and ∂Ω

−
0 represents an interface between the high- and low-concentration

domains, respectively.

5. Convergence of surface concentration. Having established the conditions for generation
of the interface bounding uniform domains via non-local coupling, the next step is an examination of the
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Figure 4.2. The function H∞(U∞
0 ) solving (4.9)–(4.11), plotted at different values of α , with β = 0.01 and γ = 0.25.

evolution of these interfaces. At O(δ−1) timescale (in the original variables), the dynamics of our system
is described by problem (Pδ

1 ). We claim that in the limit δ → 0 the solution uδ
1 of this problem converges

to that of

(5.1) (P0
1 )

u1(x, t) =

{
h+(U1(t)) x ∈ ∂Ω

+
1 (t),

h−(U1(t)) x ∈ ∂Ω
−
1 (t),

∂Ω
+
1 (t)∪Γ(t)∪∂Ω

−
1 (t) = ∂Ω,

U1(t) = h+(U1(t))|∂Ω
+
1 (t)|+h−(U1(t))|∂Ω

−
1 (t)|,

∂Γ(x, t)
∂ t

= c(U1(t)), x ∈ Γ(t).

Here ∂Ω
±
1 (t) are the time-dependent subsets of ∂Ω corresponding to the quasi-steady states h±(U1(t))

and Γ(t) ⊂ ∂Ω is a smooth closed curve or a collection of curves representing the boundary between
∂Ω

+
1 (t) and ∂Ω

−
1 (t), i.e., Γ(t) is the interface. With some abuse of notation, we denote by ∂Γ(x, t)/∂ t

the normal velocity of Γ(t) at each point x ∈ Γ(t) in the direction of ∂Ω
−
1 (t), with the function c(U1) to

be specified. As was already discussed at the end of Sec. 4, the sets ∂Ω
±
1 (t) at t = 0 coincide with the

sets ∂Ω
±
0 obtained in the long time limit of the solution of problem (P0

0 ).
To aid in the derivation of (P0

1 ), it is convenient to define Ψ = Ψ(x, t) which is the signed distance
function from Γ(t), with Ψ > 0 corresponding to u1 = h+(U1(t)). Defining the stretched distance
z = Ψ(x, t)/δ to Γ(t), we seek the solution of (Pδ

1 ) in the neighborhood of Γ(t) in the form uδ
1 (x, t) ≃

v(z, t), where v is an unknown function [18]. Then to the leading order in δ we obtain in some tubular
neighborhood of Γ(t):

(5.2) ∂tΨ(x, t) = c(U1(t)), |∇Ψ(x, t)|= 1,

where the function c(U) is obtained by solving the traveling wave equation

(5.3) ∂
2
z v− c(U)∂zv− v+ f (v)(1−αU) = 0, lim

z→±∞
v = h±(U).
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The interface Γ(t) is then reconstructed from the condition Ψ(x, t) = 0 for x ∈ Γ(t). It is well known
that for all values of U for which the nonlinearity in (5.3) is of bistable type, this equation has a unique
solution (up to translations) for a unique value of c(U) [19]. In particular, there is a unique value U =U∞

1
such that c(U∞

1 ) = 0, which is obtained by solving the equation

(5.4)
∫ h+(U)

h−(U)
[(1−αU) f (u)−u]du = 0,

and the sign of c(U) coincides with the sign of the integral in (5.4) for U ̸= U∞
1 . It is also possible to

show that dc(U)/dU < 0. Note that (5.2) is equivalent to the last equation in (5.1), with the function c(U)
given implicitly by the solution of (5.3). The rest of the equations in (5.1) are obtained by passing to the
limit δ → 0 in the ansatz for uδ

1 .
The dependence c(U) obtained from the numerical solution of (5.3) for a particular choice of the

parameters is illustrated in Fig. 5.1. This calculation entailed time integration of

∂tu(x, t) = ∂
2
x u(x, t)−u(x, t)+ f (u(x, t))(1−αU)(5.5)

for fixed values of U , the initial condition

(5.6) u(x,0) =

{
h+(U) x > 0,
h−(U) x ≤ 0,

and the boundary conditions ∂xu(±L,0) = 0. Integration was performed using the Dedalus spectral
package on a domain [−L,L] with L = 100, discretized into 1024 modes [8]. Each simulation was allowed
to relax until t = 100 with dt = 0.1, at which point the front velocity was calculated as

c(U) =

∫ L
−L ∂tu(x, t)dx

h+(U)−h−(U)
.(5.7)

To study the long time behavior of the solutions of problem (P0
1 ), we argue as in [27] and note that

the growth rate of |∂Ω
±
1 (t)| is related to c(U1) as

(5.8)
d
dt
|∂Ω+(t)|= c(U1(t))|Γ(t)|.

From this, we have

(5.9)
dU1

dt
= k(t)(U∞

1 −U1),

where

(5.10) k(t) =

(
h+(U1(t))−h−(U1(t)))

1− dh+(U1(t)
dt |∂Ω

+
1 (t)|−

dh−(U1(t))
dt |∂Ω

−
1 (t)|

)
c(U1(t))|Γ(t)|
U∞

1 −U1(t)
.

As 0 < k(t) < ∞ uniformly so long as the interface persists (recall that dc(U)/dU < 0), as t → ∞ we
find that U1(t)→U∞

1 exponentially fast and, therefore, Γ(t)→ Γ∞
1 , with Γ∞

1 separating the two limiting
domains ∂Ω

±
1,∞ in ∂Ω such that limt→∞ u1(x, t) = h±(U∞

1 ) for all x ∈ ∂Ω
±
1,∞. Again, this behavior can be
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Figure 5.1. The dependence c(U) obtained numerically for β = 0.01 and γ = 0.25.

interpreted as follows: for times 1 ≪ t ≪ δ−1 the solution of problem (Pδ
1 ) will approach the long time

limit of the solution of problem (P0
1 ), except in a transition layer of width δ . This solution corresponds to

the times δ ≪ t ≪ 1 for problem (Pδ
2 ) and will, therefore, serve as the approximate initial condition for

the latter.
An interesting feature of the long time behavior of problem (P0

1 ) is that as t → ∞, the total amount U
of material on the surface converges to a value that depends only on α , β , and γ , and is independent of the
initial condition. Furthermore, the long time value of

(5.11) |∂Ω
+
1,∞|=

U∞
1 −h−(U∞

1 )

h+(U∞
1 )−h−(U∞

1 )

carries no explicit dependence of diffusion or domain geometry, other than through the dependence of the
dimensionless parameter α on the surface to volume ratio A/V . The dependence of U∞

1 on α and γ can be
expressed as U∞

1 = 1−b(β )γ
α

for some function b(β ). We illustrate this fact in Fig. 7.2, which demonstrates
the convergence of U(t)→U∞ from three distinct initial conditions.

Some consideration is merited on the possible elimination of fronts: arbitrary initial conditions imply
an arbitrary number of closed interfaces might be created during the initial dynamics, and some of these
interfaces may vanish under the dynamics described above. However, provided we restrict ourselves to a
parameter choice where h−(U∞

1 (α,β ,γ))<U∞
1 (α,β ,γ)< h+(U∞

1 (α,β ,γ)), as well as U− <U∞
1 <U+

as per the previous section, both h+ and h− will exist as real roots and conservation of mass will require
|∂Ω

+
1 (t)|, |∂Ω

−
1 (t)|> 0 for all t. Thus, in this regime, at least one interface exists as t → ∞.

6. Area-preserving geodesic curvature flow. In the previous section, we demonstrated that
on the O(δ−1) timescale (in the original variables) the dynamics results in a stationary interface with a
prescribed quantity of matter on the surface and a fixed area of the domains bounded by the interface. We
now show that on longer timescales there is no longer a net transport of mass between the boundary ∂Ω
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and the enclosed volume Ω, and the dynamics may be reduced to a gradient flow driven by an interface
length subject to domain area conservation [34].

The dynamics on the O(δ−2) timescale (again, in the original variables) is described by problem (Pδ
2 ).

We now claim that in the limit δ → 0 the solution uδ
2 of this problem converges to that of

(6.1) (P0
2 )

u2(x, t) =

{
h+(U∞

1 ) x ∈ ∂Ω
+
2 (t),

h−(U∞
1 ) x ∈ ∂Ω

−
2 (t),

∂Ω
+
2 (t)∪Γ(t)∪∂Ω

−
2 (t) = ∂Ω,

U∞
1 = h+(U∞

1 )|∂Ω
+
2 (t)|+h−(U∞

1 )|∂Ω
−
2 (t)|,

∂Γ(x, t)
∂ t

= kg(x, t)+ξ (t), x ∈ Γ(t).

Here, as before, ∂Ω
±
2 (t) are the time-dependent subsets of ∂Ω corresponding to the quasi-steady states

h±(U∞
1 ) and Γ(t) ⊂ ∂Ω is a smooth closed curve or a collection of curves representing the boundary

between ∂Ω
+
2 (t) and ∂Ω

−
2 (t). The function kg(x, t) refers to the geodesic curvature of Γ(t) at x ∈ Γ(t),

with the sign convention that kg < 0 if ∂Ω
+
2 is a small geodesic disk, and ξ (t) is a Lagrange multiplier

ensuring conservation of |∂Ω
±
2 (t)|. The sets ∂Ω

±
2 (t) at t = 0 now coincide with the sets ∂Ω

±
1,∞ obtained

in the long time limit of the solution of problem (P0
1 ).

To derive this problem, we again denote by z = Ψ(x, t)/δ the stretched distance to the interface and
seek the solution in the form [18]

(6.2) uδ
2 (x, t)≃ v(z−ζ (t))+δw(z,x, t),

where v, w and ζ are to be found. Substituting this ansatz into (Pδ
2 ) yields

(6.3)
(∂tΨ−∇

2
Ψ−∂tζ )∂zv = δ

−1
[

∂
2
zzv− v+ f (v)

(
1−α

∫
∂Ω

vdS
)]

+∂
2
zzw

δ +

[
−1+ f ′(v)

(
1−α

∫
∂Ω

vdS
)]

w−α f (v)
∫

∂Ω

wdS+O(δ ).

To eliminate the O(δ−1) term from the equation, we choose v to be a solution of (5.3) with c(U) = 0,
which exists if and only if

∫
∂Ω

vdS =U∞
1 . By continuity, the latter can always be fixed by a suitable choice

of ζ (t) = O(1) for a given Γ(t) for which the condition U∞
1 = h+(U∞

1 )|∂Ω
+
2 (t)|+h−(U∞

1 )|∂Ω
−
2 (t)| holds.

Having now eliminated the O(δ−1) term from (6.3), we can write the solvability condition for w,
which is obtained by multiplying the equation by ∂zv and integrating over z [18]:

(6.4)
(
∂tζ (t)−∂tΨ(x, t)+∇

2
Ψ(y, t)

)∫ ∞

−∞

|∂zv|2dz−α

∫ h+(U∞
1 )

h−(U∞
1 )

f (u)du
∫

∂Ω

wdS = O(δ ).

We note that if y ∈ Γ(t) is the projection of x ∈ ∂Ω from a small tubular neighborhood of Γ(t) onto Γ(t),
then ∇2Ψ(x, t) = ∇2Ψ(y, t)+o(1) for |x− y| ≪ 1. Thus, after dropping the o(1) terms and rearranging
the formula, we can rewrite (6.4) as

(6.5) ∂tΨ(x, t) = ∇
2
Ψ(y, t)+ξ (t), |∇Ψ(x, t)|= 1,

where

(6.6) ξ (t) = ∂tζ (t)−
α
∫ h+(U∞

1 )

h−(U∞
1 ) f (u)du∫

∞

−∞
|∂zv|2dz

∫
∂Ω

w(x, t)dS.
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The obtained equation (6.5) is nothing but the last equation in (6.1) written in terms of the distance
function [2], recalling the definition (with our sign convention) of geodesic curvature kg(x, t) = ∇ ·n(x, t),
where n(x, t) = ∇Ψ(x, t) is the unit normal to the curve Γ(t) at x ∈ Γ(t) that lies in the tangent plane to
∂Ω at x and points towards ∂Ω

+
2 (t). Finally, conservation of |∂Ω

±
2 (t)| follows by passing to the limit

δ → 0 in our ansatz, and the initial condition is given by the long time limit of the solution of problem
(P0

1 ), i.e., we have Γ(t) = Γ∞
1 for t = 0. Note that the value of |∂Ω

+
2 | is given explicitly by the right-hand

side of (5.11).
Since the area of |∂Ω

±
2 (t)| is constant for the solutions of problem (P0

2 ), we have ∂t |∂Ω
±
2 (t)| = 0.

Furthermore, since the growth rate of a region’s area is equal to the integral of its normal velocity, we can
eliminate ξ (t) to obtain a purely geometric expression for the normal velocity:

(6.7)
∂Γ(x, t)

∂ t
= kg(x, t)−⟨kg(·, t)⟩Γ(t), x ∈ Γ(t),

where ⟨kg(·, t)⟩Γ(t) =
1

|Γ(t)|
∫

Γ(t) kg(x, t)ds and |Γ(t)| is the length of Γ(t). This equation describes an area-
preserving geodesic curvature flow on a surface. A geometric identity relates the evolution of interface
length to curvature as d

dt |Γ(t)|=−
∫

Γ(t) kg(x, t)
∂Γ(x,t)

∂ t ds [30]. From this, we obtain an inequality

(6.8)
1

|Γ(t)|
d
dt
|Γ(t)|= ⟨kg(·, t)⟩2

Γ(t)−⟨k2
g(·, t)⟩Γ(t) ≤ 0,

which demonstrates that the interface length |Γ(t)| is strictly decreasing except for when kg is constant
along Γ(t). The interpretation of this result is that for small δ the long time limits of the solutions of
problem (Pδ

2 ) will be close to domains of prescribed area and locally minimal interfaces of constant
curvature (geodesic disks).

The problem of identifying locally minimal interfaces on a given surface has been studied at length
over the years, and while no comprehensive solution exists, there is a considerable literature of results
which can inform our understanding [28, 38, 50]. In particular, it is known that for every 0 < a < 1
there exists a set ∂Ω+ ⊂ ∂Ω whose boundary Γ globally minimizes the perimeter among all sets with
|∂Ω+| = a [50]. In this case Γ is a smooth curve of constant geodesic curvature. Framed in terms of
our reaction-diffusion problem, this means that for appropriate choices of α , β , and γ , a non-uniform
steady state for (P0

2 ) should always exist regardless of the particular shape of Ω. Whether the solution of
problem (P0

2 ) converges as t → ∞ to a global minimizer, or, indeed, converges, however, is not known
a priori. We note that due to the area conservation the interface Γ(t) associated with the solutions of
problem (P0

2 ) cannot vanish. Furthermore, due to the gradient flow nature of the dynamics the ω-limit set
of these solutions consists only of steady states, and convergence to one of the steady states is guaranteed
if the set of the steady states is discrete. In particular, this would be the case if the global minimizer of the
perimeter were the unique constant curvature solution with the prescribed area. We note that the latter
would represent the most robust and reproducible scenario for cell polarization.

We can also use existing variational results to construct surfaces which yield some surprising solutions.
It has been widely suggested that strictly mass-conserving reaction-diffusion equations will exhibit
uninterrupted coarsening and admit steady states with only a single domain, but this phenomenon has
only been studied in the Euclidean setting [7, 55]. Multi-domain polarization has in fact been observed
in real cells, and failure to account for this is seen as a failure point of minimal models such as the one
in this paper [13]. However, we find that when geometric effects are properly considered, multi-cap
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Figure 7.1. Numerical steady state solutions of (2.8) – (2.10) on a surface of revolution (see the main text for details). The
region of L ≤ 0, bounded by black dashed lines here, can support solutions with multiple stable interfaces. Parameter choices
are β = 0.05, γ = 0.2 and δ = 0.01, and from left to right the values of α used were 10, 3, 13, 10 and 3.2.

solutions are possible on some surfaces, which we now demonstrate by constructing examples. Per the
theorems in Ref. [49], if ∂Ω is a surface of revolution about the z-axis that is symmetric with respect to
reflections around the xy-plane, and if ∂Ω has Gaussian curvature K(z) that is strictly increasing in |z|,
then the locally minimal interfaces bounding a fixed area can be fully classified [49], and are of the types
depicted in Fig. 7.1. All stable interfaces lie in the planes z = const, which means kg can be written as a
function of z, and it is convenient to define a function on ∂Ω of the form L(z) = k2

g(z)+K(z). In addition
to single-interface solutions, there are two possible solutions with disjoint interfaces. Case 1 features two
interfaces at ±z0 for some z0 > 0, respectively, which are stable provided they lie within the region where
L(z0)< 0. Case 2 has one interface at z1 (s.t. L(z1)< 0) and the other at some z2 such that z1z2 < 0 and
L(z2)> 0. As the positions of ∂Ω+ and ∂Ω− are interchangeable under geodesic curvature flow, each
case can either represent a two cap solution, or a single high-concentration band containing z = 0. In
essence, these example solutions show the existence of a geometry-induced interruption to coarsening. As
an aside, results such as those in Refs. [38, 49, 50] do rule out multi-cap solutions on symmetric convex
surfaces such as spheroids.

7. Numerical Study. We now verify numerically the existence of nontrivial steady state solutions
predicted by the asymptotic analysis of (Pδ

2 ). We simulated (2.8) – (2.10) on the surface shown in Fig. 7.1
for each of the possible configurations, using a recently developed numerical scheme [36]. The values of α

used were (from left to right): 1, 0.33, 1.3, 1 and 0.35. For all cases, β = 0.05, γ = 0.2 and δ = 0.01. The

surface geometry was constructed by revolution of polar curve r(θ) = 2a2
(

cos2θ +
√

(b/a)4 − sin2 2θ

)
(for a = 0.2728 and b = 0.3896) about the vertical axis. The simulations were performed on a spatial
discretization of 128×128 modes and integrated with dt = 0.1 until t = 500, at which point a numerical
steady state was achieved. In each case, the initial conditions were step functions approximating the
desired steady state. The steady states were verified using a GMRES-based Newton-Krylov method [29].
This method further allowed us to compute approximate values of the dominant eigenvalues, and in each
case these were negative, consistent with the proposed stability of these states. While the constraint on
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Figure 7.2. Numerical trajectories of U(t) from three distinct initial conditions. The three simulations have different
initial conditions, but the same model parameters, and converge to the value U∞

1 (α,β ,γ) from the asymptotic analysis of Sec. 5
as t → ∞. Simulations performed at α = 2.25, β = 0.0001, γ = 0.25 and δ = 10−3 on a sphere.

U∞ for the single interface case is as described in the previous section, both case 1 and 2 of the double
interface solutions have a narrower range of acceptable U∞, owing to the constraints on the locations of
the interfaces. As such, we chose a different α for each simulation to ensure a viable solution.

To corroborate the multiple stages of the dynamics predicted by our asymptotic analysis, we performed
two additional numerical studies of (2.8) – (2.10), again using the integration methods introduced in
Ref. [36]. Recall that the results of Sec. 4 indicate convergence of U(t) to a constant value U1 depending
on the initial condition on a large O(1) time scale. Furthermore, by the results of Sec. 5 the function U(t)
converges to the final value U∞

1 (α,β ,γ) independent of initial conditions on a large O(δ−1) time scale.
As the first test of this, we examine the convergence of U(t) in three simulations. These were initialized at
u0 + γσ(x)/2, where u0 is as defined in Sec. 3, and σ(x) is a random function taking on values between
−1 and 1, with the spatial correlation length 0.6. Further details on how this distribution was generated
can be found in the supplementary materials of Ref. [36]. Simulations are performed on a sphere of
unit area, discretized to 256×256 modes, and integrated with a timestep of dt = 0.1. The results of the
simulations for δ = 10−3 are plotted in Fig. 7.2 (see the figure caption for the values of other parameters).
The trajectories of all three examples can be split into two types of behavior. Dynamics from t0 = 0 to
t1 ≈ 101 exhibit a rapid change in U(t) towards an approximately constant value: this is the timescale of
the interface generation. On the other hand, on the interval from t1 ≈ 101 through t2 ≈ 104, the different
instances of U(t) converge to the predicted steady state at U∞

1 from Sec. 5.
A second numerical experiment is to study the behavior of the interface length over time. For δ ≪ 1,

an effective proxy for the total interface length is the quantity

(7.1) ⟨|∇u|⟩(t) =
∫

∂Ω

|∇u(·, t)|dS,
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Figure 7.3. Tracking the quantity ⟨|∇u|⟩ =
∫

∂Ω
|∇u|dS shows us the growth and shrinkage of the interface over time.

Evolution was simulated at α = 0.58,β = 0.001,γ = 0.4, and δ = 0.01. We observe differing dynamical regimes each roughly
two decades in timescales: initial growth as the interface forms, followed by evolution under an eikonal-type flow, and
further monotonic interface length decrease under geodesic curvature flow. The three inset plots show the simulation near the
approximate end time of each regime.

as in the last stage of the evolution the profile u(x, t) will be close to two fixed values everywhere outside
the thin transition layers approximating the interfaces. We initialize a simulation at a small perturbation
about the steady state as u0 +0.01σ(x) and plot the evolution of the interface in Fig. 7.3. The simulation
domain was a unit-area prolate spheroid with an aspect ratio of 2, discretized into 128×128 modes. As
before, our timestep was dt = 0.1.

For our choice of δ = 10−2 here, the distinct regimes corresponding to the limit behaviors of (Pδ
0 ),

(Pδ
1 ) and (Pδ

2 ) as δ → 0 are very clearly expressed. Much as in the previous example, the timescale of
interface formation is on the order of t ≈ 101: the order of magnitude increase in δ between the two
figures has a minimal effect on the zeroth order behavior of the system. At the end of this interval, surface
concentration is fully partitioned into approximately uniform domains ∂Ω±. Once the quantity ⟨|∇u|⟩
peaks, it begins a period of slower evolution consistent with the predicted front motion of (P0

1 ), which
then plateaus once U∞

1 is reached. A slower evolution of ⟨|∇u|⟩, which is now monotonically decreasing,
subsequently occurs under the approximate (P0

2 ) dynamics. A brief note should be made of the step-like
shape of the plot in this final interval. Contraction under (P0

1 ) front motion reduces this simulation to two
spots, and the rapid drop in interface length which occurs around t = 2000 represents the annihilation of
one of these. After this, the remaining spot persists for a long period near midway between the two poles
before finally migrating to one end of the spheroid. The final steady state is at the point of maximum
Gaussian curvature, consistent with the geometric results noted in the previous section. Taken together,
these numerical tests represent strong evidence that the formal asymptotics developed here accurately
reproduces the behavior of (2.8) – (2.10) for small but finite choices of δ .

8. Discussion. In summary, we performed an extensive analysis of the asymptotic behavior of a
minimal model of cell polarization on a 2D manifold. Our results establish a hierarchy of three timescales
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of the dynamics in the case of small surface diffusivity. On the short timescale, we derived an evolution
equation in the form of a globally coupled system of ODEs. While our initial problem itself appears to
lack a variational structure, the reduced dynamics is shown to be a gradient flow generated by a nonlocal
energy functional. From this, we were able to demonstrate generation of interfaces between high- and
low-concentration regions for generic initial data. Our argument relied on the assumption that the solution
for almost all points of the surface approached one of the two stable branches of the bistable nonlinearity,
which is expected to be generically true but cannot be established for all initial data to make the result
fully rigorous. Let us mention that in Ref. [3], in a closely related nonlocal Allen-Cahn problem, the
authors were able to avoid this kind of assumption by constructing a second Lyapunov functional (in
fact, an infinite family of Lyapunov functionals) to prove full convergence in time at the expense of
allowing unstable solutions in the limit as well. However, the direct coupling between the nonlocal and
nonlinear terms in problem (P0

0 ) greatly complicates this sort of argument, so it remains unclear whether
this approach could be adapted to our problem.

On the intermediate timescale, we demonstrated in the sharp-interface limit that the interfacial velocity
is uniform and depends only on the enclosed area, and that this enclosed area approaches a final value
determined only by the kinetic rates. This area is determined strictly by the dimensionless parameters of
our model, and thus is independent of the surface geometry. This fact raises a question as to how robust
cell polarization can be to perturbations of the cell shape. This question could be particularly interesting in
light of recent interest in coupled chemo-mechanical models of deforming cell membranes [17, 22, 35, 37].

Finally, on the long timescale, we demonstrated that the dynamics reduce to area-preserving interface
motion by geodesic curvature. This result formally establishes the intuitive notion that on curved surfaces
wave-pinning phenomena is driven by a gradient flow generated by the interface length. The steady state
of such a flow has a highly nontrivial dependence on surface shape - the ability of some surface geometries
to support several distinct solutions suggests important implications for cellular decision-making and
addresses a perceived failure of minimal mass-conserving reaction-diffusion models. One particularly
interesting question for future work characterizing mechanisms to select between different steady states.
Very recently theoretical work has shown that chemical gradients can enforce state transitions in simple
geometries [9]. Examining similar effects on geometries such as those in Fig. 7.1 could provide useful
insight into biological control mechanisms.

There is merit in some further comparison between our results and some deceptively similar results
from flat surfaces. In the 1D version of this system, multi-domain solutions can also form, but these are
strictly metastable and vanish on exponentially slow timescales [40, 53]. By contrast, the multi-domain
solutions discussed here can be truly stable. Previous works such as Ref. [57] have also showed that
domain geometry can establish multi-domain solutions in wave-pinning models. One key difference is
that these studies examined flat 2D domains bounded by no-flux boundaries of various shapes, rather
than curved surfaces. Both versions can produce multi-domain solutions, but a key difference lies in the
time needed to reach steady states. Specifically, a circular domain in the flat scenario will be metastable
if it is sufficiently far from the boundary, and like in the 1D case discussed above it will only approach
the steady state location exponentially slowly. This slowness stems from the approximate translational
invariance of the interfaces away from the boundaries. Non-uniform local curvature breaks this invariance,
making the convergence to steady state domain locations considerably faster, on the algebraic rather than
exponentially long timescale in terms of the inverse diffusivity.

The wave-pinning model studied here represents one of the simplest possible characterizations of
coupled bulk-surface dynamics in a single cell. A great number of more complex models have been
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proposed over the past decade, including ones featuring multiple chemical species [43] and advection
[4, 23]. Additionally, recent experiments have demonstrated that bulk-surface systems are capable of
much more complex pattern formation than discussed here, such as the spiral wave dynamics observed in
starfish embryo [32, 54], establishing a long-term need for further analysis of this class of system.
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