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Abstract

We discuss some examples of nonuniqueness for the crystalline curva-
ture flow, when the Wulff shape is a square not centered at the origin.

1 Introduction

In this short note we present some examples of anisotropic curvature flow
of planar curves. Such evolutions can be considered as the L?-gradient flow
of the energy

/ o(v)dH, 1)
oF

where E is a subset of R?, v is the exterior unit normal to OF, and ¢ :
R? — R is a convex, positive and positively one-homogeneous function,
called anisotropy in the sequel. The anisotropic curvature flow is defined as

v = —div,ng ny, (2)

n, € 0p(v),
where v denotes the velocity, n, represents a sort of anisotropic normal to
OF, and div, denotes the tangential divergence on OF. Due to the fact that
¢ is not necessarily differentiable, we denote by 0y its (possibly multivalued)

subdifferential. The quantity s, := div,n, is also called the anisotropic
curvature of OF. Letting ¢* be the dual function of ¢:

@*(§) == sup -z,
p(x)<1

we define the Wulff shape W, as the unit ball of ¢*, i.e.
W, :={z e R : ¢*(z) <1}.

We notice that the anisotropic curvature of OW,, is constantly equal to 1,
hence the family of sets

Elt):=v1—2tW, tel0,1/2),

defines a self-similar shrinking solution of (2). The anisotropy is called
crystalline if the Wulff shape is a polygon. In the crystalline case the notion



of regular solution of (2) has to be suitably adapted (see [25, 3, 15] for
precise definitions).

It is well-known that the fattening phenomenon does not happen for
isotropic curvature flow. In this case disjoint curves cannot intersect for
positive times, and each compact connected component becomes convex and
then shrinks to a point in finite time, with its shape approaching a circle
(see for instance [13, 17]). The behavior is similar in the anisotropic setting
provided the anisotropy is symmetric, i.e.

p(v) =p(-v) Vresh. (3)

Indeed, from the maximum principle (which also holds in the crystalline
case [16, 3]) two disjoint curves remain disjoint if (3) holds. Moreover,
at least when the anisotropy is smooth or purely crystalline, it has been
proved in [9, 15] that each compact connected component becomes convex
and eventually shrinks to a point, while its shape converges to the boundary
of W, (see [14, 11, 23, 2, 24]), unless the Wulff shape is a quadrilateral [23].
On the other hand, if (3) is violated, the behavior is quite different and, for
example, disjoint connected components of JF may intersect during the flow,
since the evolution law is no more orientation-free. It has been proved in [26]
(see also the Introduction of [1]) that, for some smooth anisotropies, there
exist convex self-similar shrinking solutions which are different from W, (in
the crystalline case, there are also nonconvex self-similar solutions [19]). In
Section 2 we show that the same holds for the nonsymmetric crystalline flow,
when the Wulff shape is a square not centered at the origin.

The picture changes significantly by adding a forcing term or by con-
sidering the evolution law (2) in dimension greater than 2. Indeed, it has
been shown in [6] that even with a constant forcing term the fattening phe-
nomenon may occur when the initial set is the union of two disjoint circles
in R? (the case of two liked circles in R?, evolving by curvature, has been
considered in [5]). In both cases, the fattening phenomenon is a consequence
of the fact that disjoint components of the boundary of the inital set may
collide during the evolution.

This is precisely what can happen also for the anisotropic curvature
flow, when the anisotropy is not symmetric. Therefore, one could expect
that similar nonuniqueness results hold also for such evolution. Indeed, the
numerical simulations presented in [21] show that a fattening phenomenon,
similar to the one discussed in [6], occurrs when the Wulff shape is a unit
circle, not centered at the origin, and the initial set is a ring. In Section 4 we
show that the same holds for the nonsymmetric crystalline flow, providing
an example of fattening when the Wulff shape is a square (not centered at
the origin).

The main advantage of the crystalline case is the fact that the evolution
(2) reduces to a simple ODE, the solutions of which can be often explicitly
computed.
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Figure 1: the self-similar solution.

2 The examples of self-similar evolutions

Example 1.

Let us consider the crystalline anisotropy having the Wulff shape equal to
a square of sidelength 2, centered at (4, ), for € (0,1). Let the initial set E
be as in Figure 1. The edges L1, Ly and L3 of E move with (inward) velocity
respectively given by v1 = 2(1—0)/|L1|, v2 = 2(1+6)/|L2| and v3 = 0. Notice

that |L1| = V1 — V2, ‘L2| = —(’01 +'U2). Letting r = |L1|/|L2| S (0,1), we
have
L 2020 45+ 2(1+ 8z f() "
| Lo|? |Lo|?
Thus, if we have
£ = d+v262 -1
1+

we get that the ratio |L1|/|Lo| is invariant under the evolution, which implies
that the evolution is self-similar (this is possible only if § > V2/2).
Observe that the volume V() := |E(t)| satisfies V (t) = —4, hence we get

1— 22

V(t) = (m + ) |Lo|? =V (0) -4t  tel0,T), (5)

where T := V' (0)/4 is the extinction time of the evolution. Substituting (5)
into (4), we obtain

x —.772
i:%(x+l2 ) te€[0,T). (6)

Notice that this equation become autonomous with the change of variable
7=InV(0) — In(V(0) — 4¢) € [0, +00).



Notice also that f(z) < 0 if and only if z € (z7,z™"), therefore z(t) = z~
(resp. z(t) = z™) is a stable (resp. unstable) solution of (4). In particular,
if we start with z(0) € (0,z™) at time 0, the solution z(¢) will converge
to = as t — T. On the other hand, if we start with z(0) € (z*,1) the
solution will hit 1 before T, and the evolving set E(t) will converge to the
Wulff shape, up to rescaling.

Example 2.

Let now the Wulff shape be equal to the Wulff shape of the previous
example, intersected with the half-plane {z +y > k}, with k£ € (26 — 2,0),
so that the Wulff shape is an irregular pentagon. Letting E be as in Figure
1, in this case we have v; = (20 — k)(1 — 8)/|L1|, v2 = 2(1 + 6)/|L2| and
v3 = k(26 —k—2)/|L3|. Notice that |Li| = vy —v2 —V2v3, |La| = —(v1 +v2).
Letting = := |L1|/|Lo| € (0,1), we have

_ 2=RAZ0) _ 9(1 4 8)(1 — z) — BZE2) 4 (95 — k) (1 - 0)
i = — ")

f(z) 1-2%\ g(z) 1+2z-—2?
V(0) — ct (““L 2 >_V(0)—ct 22(1 — )

te0,7),

where ¢ = 4 — (2 — v/2)(2 — 20 + k) is the perimeter of the Wulff shape,
T = V(0)/c is the extinction time of the evolution, and

glz) = (26—k)(1-0)(1—-2)—-201+8z(1 —x)?
—k(26 —k—2)z+ (26 — k)(1 = 6)(z — ?)
= (20 —k—22)((1+0)z® — 2+ k)z + (1 - 9)).

We recall that, from [2, Prop. 7.1] it follows that the evolving set E(t)
has bounded isoperimetric ratio and converges (up to rescaling) to a self-
similar solution, possibly different from the Wulff shape.

We now look for the zeros of the function f (or equivalently g), which
correspond to self-similar solutions of (2). Notice that the solution Zj =
(20 — k) /2 corresponds to the Wulff shape. The solutions different from the
Wulff shape are are given by

ot 24k + VEZ + 4k + 462
ko 2(1+6) ’

with the necessary condition k > —2+42+/1 — §2. Notice that, since k > —2+
26, this condition is automatically satisfied whenever § > v/2/2. Moreover,
we always have 0 <z, < 3‘: < 1.

We now analyze the stability of the solutions z™,Z, by considering
the sign of f, as in the previous example. Notice that lim, ,o+ f(z) =
+o0, lim,_,;- f(z) = —oo, and that f(z) reduces to the expression in
(4) for & — 26 — 2, which implies that z; goes to 1, and ac,f converge

+
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to (5 +/262% — 1) /(1+6), provided § > 4/2/2. Similarly, Z) goes to §, and

i converge to (1% 4)/(1 + d), as k — 0.

As a consequence, for all § € (v/2/2,1) there exist two self-similar solu-
tions different from the Wulff shape, moreover we have z, < :Ek+ < zy, for
k close enough to 2§ — 2, and z,, < T} < :1:2' for k£ close enough to 0. In
the first case, as in Example 1, z;; and zj, are stable solutions of (7), and
x;“ is unstable, whereas in the latter case z, and Tj are unstable, and x,j
is stable. In particular, this implies that the Wulff shape corresponds to an
unstable solution, if & is close enough to 0.

This is in sharp contrast with the (two-dimensional) symmetric case,
where the Wulff shape is always stable, and it is also the unique self-similar
solution unless is equal to a quadrilateral [23, 2]. A similar phenomenon
has been shown for the crystalline mean curvature flow in R?, even in the
symmetric case [22, 20].

3 Weak solutions

Since the fattening phenomenon is related to formation of singularities, to
give it a precise meaning it is necessary to define a weak solution of the
evolution (2). The notion which is more adapted to this situation is the so-
called geometric viscosity solution, defined as zero level-set of the viscosity
solution of an appropriate (level-set) formulation of (2) (see [12, 8, 15] for
precise difinitions).

We shall use here a more geometric presentation of this solution, defined
through the minimal barrier theory of De Giorgi [10]. The equivalence
between this two notions has been proved in [18, 7, 4].

We recall the definition of minimal barrier in the sense of De Giorgi. We
denote by F the family of all the regular solution of (2), so that an element
of F will be a set-valued function X : [a,b] — P(R"), [a,b] C [0, +00).

Definition 3.1. We say that a function ® : [0,+00) — P(R"™) is a barrier
with respect to F if for any X(t) € F, t € [a,b] C [0,+00), the inclusion
¥(a) C ®(a) implies X(b) C ®(b).

In the following we denote by B the class of all barriers with respect to
F, defined on [0, +00).

Definition 3.2. Let E C R". The minimal barrier M(E) : [0,4+00) —
P(R™) starting from E at time 0 is defined as

ME)(@) = {(I)(t) . ®eB, B(0)D E}

We also define the upper and lower regqularized barriers as

M(B)t) = | UME)®) M(B)®) =) M(E))®),

p>0 p>0



Figure 2: the initial set.

where ch = {dg < £p} and dg(z) := dist(z, E) — dist(z, R"* \ E).

The set-valued map t — M*(E)(t) \ M.(F)(t) will be called the (weak)
anisotropic curvature flow, starting from OF at time 0. We say that the
evolution develops fattening at time ¢ > 0 if

M (E)(tn) \ M. (E)(tn)] > 0,

for some sequence t,, | t.

4 The example of fattening

Let us consider the crystalline anisotropy having the Wulff shape equal to
a square of sidelength 2, centered at (—1/2,0). We let the initial set E
be as in Figure 2. The edges L; and Lo of E move with velocity (in the
right direction) respectively given by v; = 3/|L1| and v = 1/|L2|, whereas
L3 and L4 do not move, even if |L3| decreases and eventually reduces to
0. Let E(t) be the evolution of the set E at time ¢ > 0, and let L;(¢),
i € {1,2,3}, be the edge of E(t) corresponding to L;. The evolution of E(t)
is given by an ODE (see [25, 16]), before the possible collision of the edges
Li(t) and Lo(t) (the disappearence of L3(t) does not create any additional
difficulty). However, we may choose the initial set F in such a way that
vy > vy at time zero, and Li(t) collides with Lo(t) precisely at the time ¢
when L3(t) disappears. In this case, the length of L;(¢) suddenly increases,
and its velocity jumps down to a value stricly less than ve, provided |Ly| is
big enough. As depicted in Figure 3 (in dashed lines), starting from 9F(t)
there are two different regular solutions of (2), which are both contained
in M*(E)(t) \ M.(E)(t), for t > t. Moreover, the weak evolution also



Figure 3: the evolving set for ¢t > t.

contains the “singular” solutions obtained by keeping the edges Li(¢) and
Ly(t) glued together and evolving with velocity v € [v1,v2]. Starting from
these singular evolutions at each time ¢ > ¢, we can construct as above
two regular solutions, which are still contained in the weak evolution. This
implies that the weak evolution M*(E)(t) \ M. (E)(t) coincides with the set
delimited by the two regular evolutions starting from 0F(t), and shows in
particular the occurrence of fattening at time 2.
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