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based image reconstruction. It focuses first on some theoretical results on functions which
minimize the total variation, and in a second part, describes a few standard and less standard
algorithms to minimize the total variation in a finite-differences setting, with a series of appli-
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like the minimization of minimal partition problems.
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Introduction

These lecture notes have been prepared for the summer school on sparsity organized in
Linz, Austria, by Massimo Fornasier and Ronny Romlau, during the week Aug. 31st-
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clarify the jungle of algorithms.
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2

I also thank, obviously, the organizers of the summer school for inviting me to give
these lectures. It was a wonderful scientific event, and we had a great time in Linz.

Antonin Chambolle, nov. 2009

1 The total variation

1.1 Why is the total variation useful for images?

The total variation has been introduced for image denoising and reconstruction in a
celebrated paper of 1992 by Rudin, Osher and Fatemi [68]. Let us quickly describe
the context in which it was introduced, and the reason for proposing it.

The Bayesian approach to image reconstruction

Let us first consider the discrete setting, where images g = (gi,j)1≤i,j≤N are discrete,
bounded (gi,j ∈ [0, 1] or {0, . . . , 255}) 2D-signals. The general idea for solving (lin-
ear) inverse problems is to consider
• A model: g = Au + n — u ∈ RN×N is the initial “perfect” signal, A is some

transformation (blurring, sampling, or more generally some linear operator, like
a Radon transform for tomography). n = (ni,j) is the noise: in the simplest
situations, we consider a Gaussian norm with average 0 and standard deviation
σ.

• An a priori probability density for “perfect” original signals, P (u) ∼ e−p(u)du.
It represents the idea we have of perfect data (in other words, the model for the
data).

Then, the a posteriori probability for u knowing g is computed from Bayes’ rule,
which is written as follows:

P (u|g)P (g) = P (g|u)P (u) (BR)

Since the density for the probability of g knowing u is the density for n = g − Au, it
is

e
− 1

2σ2
P
i,j |gi,j−(Au)i,j |2

and we deduce from (BR) that the density for P (u|g), the probability of u knowing
the observation g is

1
Z(g)

e−p(u)e
− 1

2σ2
P
i,j |gi,j−(Au)i,j |2

with Z(g) a renormalization factor which is simply

Z(g) =
∫
u
e
−
“
p(u)+ 1

2σ2
P
i,j |gi,j−(Au)i,j |2

”
du
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(the integral is on all possible images u, that is, RN×N , or [0, 1]N×N ...).
The idea of “maximum a posteriori” (MAP) image reconstruction is to find the

“best” image as the one which maximizes this probability, or equivalently, which
solves the minimum problem

min
u

p(u) +
1

2σ2

∑
i,j

|gi,j − (Au)i,j |2. (MAP )

Let us observe that this is not necessarily a good idea, indeed, even if our model
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Figure 1. A strange probability density

is perfectly well built, the image with highest probability given by the resolution of
(MAP ) might be very rare. Consider for instance figure 1 where we have plotted a (of
course quite strange) density on [0, 1], whose maximum is reached at x = 1/20, while,
in fact, the probability that x ∈ [0, 1/10] is 1/10, while the probability x ∈ [1/10, 1]
is 9/10. In particular the expectation of x is 1/2. This shows that it might make more
sense to try to compute the expectation of u (given g)

E(u|g) =
1

Z(g)

∫
u
u e
−
“
p(u)+ 1

2σ2
P
i,j |gi,j−(Au)i,j |2

”
du.

However, such a computation is hardly tractable in practice, and requires subtle algo-
rithms based on complex stochastic techniques (Monte Carlo methods with Markov
Chains, or MCMC). These approaches seem yet not efficient enough for complex re-
construction problems. See for instance [49, 66] for experiments in this direction.
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Variational models in the continuous setting

Now, let us forget the Bayesian, discrete model and just retain to simplify the idea
of minimizing an energy such as in (MAP ). We will now write our images in the
continuous setting: as grey-level values functions g, u : Ω 7→ R or [0, 1], where
Ω ⊂ R2 will in practice be (most of the times) the square [0, 1]2, but in general any
(bounded) open set of R2, or more generally RN , N ≥ 1.

The operator A will be a bounded, linear operator (for instance from L2(Ω) to
itself), but from now on, to simplify, we will simply consider A = Id (the identity
operator Au = u), and return to more general (and useful) cases in the Section 3 on
numerical algorithms.

In this case, the minimization problem (MAP ) can be written

min
u∈L2(Ω)

λF (u) +
1
2

∫
Ω

|u(x)− g(x)|2 dx (MAPc)

where F is a functional corresponding to the a priori probability density p(u), and
which synthetises the idea we have of the type of signal we want to recover, and λ > 0
a weight balancing the respective importance of the two terms in the problem. We
consider u in the space L2(Ω) of functions which are square-integrable, since the
energy will be infinite if u is not, this might not always be the right choice (with for
instance general operators A).

Now, what is the good choice for F ? Standard Tychonov regularization approaches
will usually consider quadratic F ’s, such as F (u) = 1

2

∫
Ω
u2 dx or 1

2

∫
Ω
|∇u|2 dx. In

this last expression,

∇u(x) =


∂u
∂x1

(x)
...

∂u
∂xN

(x)


is the gradient of u at x. The advantage of these choices is that the corresponding
problem to solve is linear, indeed, the Euler-Lagrange equation for the minimization
problem is, in the first case,

λu + u− g = 0 ,

and in the second,
−λ∆u + u− g = 0 ,

where ∆u =
∑

i ∂
2u/∂x2

i is the Laplacian of u. Now look at Fig. 2: in the first case,
no regularization has occured. This is simply because F (u) = 1

2

∫
u2 enforces no

spatial regularization of any kind. Of course, this is a wrong choice, since all “natural”
images show a lot of spatial regularity. On the other hand, in the second case, there is
too much spatial regularization. Indeed, the image u must belong to the space H1(Ω)
of functions whose derivative is square-integrable. However, it is well-known that such
functions cannot present discontinuities across hypersurfaces, that is, in 2 dimension,
across lines (such as the edges or boundaries of objects in an image).
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Figure 2. A white square on a dark background, then with noise, then restored with
F = 1

2

∫
|u|2, then with F = 1

2

∫
|∇u|2

A quick argument to justify this is as follows. Assume first u : [0, 1] → R is a
1-dimensional function which belongs to H1(0, 1). Then for each 0 < s < t < 1,

u(t)− u(s) =
∫ t

s
u′(r) dr ≤

√
t− s

√∫ t

s
|u′(r)|2 dr ≤

√
t− s‖u‖2

H1

so that u must be 1/2-Hölder continuous (and in fact a bit better). (This computation
is a bit formal, it needs to be performed on smooth functions and is then justified by
density for any function of H1(0, 1).)

Now if u ∈ H1((0, 1) × (0, 1)), one can check that for a.e. y ∈ (0, 1), x 7→
u(x, y) ∈ H1(0, 1), which essentially comes from the fact that∫ 1

0

(∫ 1

0

∣∣∣∣∂u∂x(x, y)
∣∣∣∣2 dx

)
dy ≤ ‖u‖2

H1 < +∞.

It means that for a.e. y, x 7→ u(x, y) will be 1/2-Hölder continuous in x, so that
it certainly cannot jump across the vertical boundaries of the square in Fig. 2. In
fact, a similar kind of regularity can be shown for any u ∈ W 1,p(Ω), 1 ≤ p ≤ +∞
(although for p = 1 it is a bit weaker, but still “large” discontinuities are forbidden),
so that replacing

∫
Ω
|∇u|2 dx with

∫
Ω
|∇u|p dx for some other choice of p should not

produce any better result. We will soon check that the reality is a bit more complicated.
So what is a good “F (u)” for images? There have been essentially two types of

answers, during the 80’s and early 90’s, to this question. As we have checked, a good F
should simultaneously ensure some spatial regularity, but also preserve the edges. The
first idea in this direction is due to D. Geman and S. Geman [37], where it is described
in the Bayesian context. They consider an additional variable ` = (`i+1/2,j , `i,j+1/2)i,j
which can take only values 0 and 1: `i+1/2,j = 1 means that there is an edge between
the locations (i, j) and (i + 1, j), while 0 means that there is no edge. Then, p(u) in
the a priori probability density of u needs to be replaced with p(u, `), which typically
will be of the form

p(u, `) = λ
∑
i,j

(
(1− `i+ 1

2 ,j
)(ui+1,j − ui,j)2 + (1− `i,j+ 1

2
)(ui,j+1 − ui,j)2

)
+ µ

∑
i,j

(
`i+ 1

2 ,j
+ `i,j+ 1

2

)
,
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with λ, µ positive parameters. Hence, the problem (MAP ) will now look like (taking
as before A = Id):

min
u,`

p(u, `) +
1

2σ2

∑
i,j

|gi,j − ui,j |2

In the continuous setting, it has been observed by D. Mumford and J. Shah [56] that
the set {` = 1} could be considered as a 1 − dimensional curve K ⊂ Ω, while the
way it was penalized in the energy was essentially proportional to its length. So that
they proposed to consider the minimal problem

min
u,K

λ

∫
Ω\K
|∇u|2 dx + µlength(K) +

∫
Ω

|u− g|2 dx

among all 1-dimensional closed subsets K of Ω and all u ∈ H1(Ω \ K). This is
the famous “Mumford-Shah” functional whose study has generated a lot of interesting
mathematical tools and problems in the past 20 years, see in particular [54, 7, 29, 51].

However, besides being particularly difficult to analyse mathematically, this ap-
proach is also very complicated numerically since it requires to solve a non-convex
problem, and there is (except in a few particular situations) no way, in general, to
know whether a candidate is really a minimizer. The most efficient methods rely either
on stochastic algorithms [55], or on variational approximations by “Γ-convergence”,
see [8, 9] solved by alternate minimizations. The exception is the one-dimensional
setting where a dynamical programming principle is available and an exact solution
can be computed in polynomial time.

A convex, yet edge-preserving approach

In the context of image reconstruction, it was proposed first by Rudin, Osher and
Fatemi in [68] to consider the “Total Variation” as a regularizer F (u) for (MAPc).
The precise definition will be introduced in the next section. It can be seen as an
extension of the energy

F (u) =
∫

Ω

|∇u(x)| dx

well defined for C1 functions, and more generally for functions u in the Sobolev space
W 1,1. The big advantage of considering such a F is that it is now convex in the variable
u, so that the problem (MAPc) will now be convex and many tools from convex
optimization can be used to tackle it, with a great chance of success (see Definition 3.2
and Section 3). However, as we have mentioned before, a function in W 1,1 cannot
present a discontinuity accross a line (in 2D) or a hypersurface (in general). Exactly
as for H1 functions, the idea is that if u ∈W 1,1(0, 1) and 0 < s < t < 1,

u(t)− u(s) =
∫ t

s
u′(r) dr ≤

∫ t

s
|u′(r)| dr
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and if u′ ∈ L1(0, 1), the last integral must vanish as |t − s| → 0 (and, even, in fact,
uniformly in s, t). We deduce that u is (uniformly) continuous on [0, 1], and, as before,
if now u ∈W 1,1((0, 1)×(0, 1)) is an image in 2D, we will have that for a.e. y ∈ (0, 1),
u(·, y) is a 1D W 1,1 function hence continuous in the variable x.

But what happens when one tries to resolve

min
u
λ

∫ 1

0
|u′(t)| dt +

∫ 1

0
|u(t)− g(t)|2 dt ? (1.1)

Consider the simple case where g = χ(1/2,1) (that is 0 for t < 1/2, 1 for t >
1/2). First, there is a “maximum principle”: if u is a candidate (which we assume
in W 1,1(0, 1), or to simplify continuous and piecewise C1) for the minimization, then
also v = min{u, 1} is. Moreover, v′ = u′ whenever u < 1 and v′ = 0 a.e. on {v = 1},
that is, where u ≥ 1. So that clearly,

∫ 1
0 |v

′| ≤
∫ 1

0 |u
′| (and the inequality is strict if

v 6= u). Moreover, since g ≤ 1, also
∫ 1

0 |v − g|
2 ≤

∫ 1
0 |u− g|

2. Hence,

E(v) := λ

∫ 1

0
|v′(t)| dt +

∫ 1

0
|v(t)− g(t)|2 dt ≤ E(u)

(with a strict inequality if v 6= u). This tells us that a minimizer, if it exists, must be
≤ 1 a.e. (1 here is the maximum value of g). In the same way, one checks that it must
be ≥ 0 a.e. (the minimum value of g). Hence we can restrict ourselves to functions
between 0 and 1.

Then, by symmetry, t 7→ 1− u(1− t) has the same energy as u, and by convexity,

E
(

1− u(1− ·) + u

2

)
≤ 1

2
E(1− u(1− ·)) +

1
2
E(u) = E(u)

so that v : t 7→ (1 − u(1 − t) + u(t))/2 has also lower energy (and again, one can
show that the energy is “strictly” convex so that this is strict if v 6= u): but v = u iff
u(1− t) = 1− u(t), so that any solution must have this symmetry.

Let now m = minu = u(a), and M = 1 −m = maxu = u(b): it must be that
(assuming for instance that a < b)∫ 1

0
|u′(t)| dt ≥

∫ b

a
|u′(t)| dt ≥

∫ b

a
u′(t) dt = M −m = 1− 2m

(and again all this is strict except when u is nondecreasing, or nonincreasing).
To sum up, a minimizer u of E should be between two values 0 ≤ m ≤ M =

1 − m ≤ 1 (hence m ∈ [0, 1/2]), and have the symmetry u(1 − t) = 1 − u(t). In
particular, we should have

E(u) ≥ λ(M −m) +
∫ 1

2

0
m2 +

∫ 1

1
2

(1−M)2 = λ(1− 2m) +m2
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which is minimal for m = λ > 0 provided λ ≤ 1/2, and m = 1/2 if λ ≥ 1/2
(remember m ∈ [0, 1/2]). In particular, in the latter case λ ≥ 1/2, we deduce that the
only possible minimizer is the function u(t) ≡ 1/2.

Assume then that λ < 1/2, so that for any u,

E(u) ≥ λ(1− λ)

and consider for n ≥ 2, un(t) = λ if t ∈ [0, 1/2 − 1/n], un(t) = 1/2 + n(t −
1/2)(1/2 − λ) if |t − 1/2| ≤ 1/n, and 1 − λ if t ≥ 1/2 + 1/n. Then, since un is
nondecreasing,

∫ 1
0 |u

′| =
∫ 1

0 u
′ = 1− 2λ so that

E(un) ≤ λ(1− 2λ) +
(

1− 2
n

)
λ2 +

2
n
→ λ(1− λ)

as n → ∞. Hence: infu E(u) = λ(1 − λ). Now, for a function u to be a minimizer,
we see that: it must be nondecreasing and grow from λ to 1 − λ (otherwise the term∫ 1

0 |u
′| will be too large), and it must satisfy as well∫ 1

0
|u(t)− g(t)|2 dt = λ2 ,

while from the first condition we deduce that |u − g| ≥ λ a.e.: hence we must have
|u − g| = λ, that is, u = λ on [0, 1/2) and 1 − λ on (1/2, 1]. But this u, which is
actually the limit of our un’s, is not differentiable: this shows that one must extend
in an appropriate way the notion of derivative to give a solution to problem (1.1) of
minimizing E : otherwise it cannot have a solution. In particular, we have seen that
for all the functions un,

∫ 1
0 |u

′
n| = 1 − 2λ, so that for our discontinuous limit u it is

reasonable to assume that
∫
|u′|makes sense. This is what we will soon define properly

as the “total variation” of u, and we will see that it makes sense for a whole category of
non necessarily continuous functions, namely, the “functions with bounded variation”
(or BV functions). Observe that we could define, in our case, for any u ∈ L1(0, 1),

F (u) = inf
{

lim
n→∞

∫ 1

0
|u′n(t)| dt : un → u in L1(0, 1) and lim

n

∫ 1

0
|u′n| exists.

}
.

In this case, we could check easily that our discontinuous solution is the (unique)
minimizer of

λF (u) +
∫ 1

0
|u(t)− g(t)|2 dt .

It turns out that this definition is consistent with the more classical definition of the
total variation which we will introduce hereafter, in Definition 1.1 (see inequality (1.2)
and Thm. 1.3).

What have we learned from this example? If we introduce, in Tychonov’s regular-
ization, the function F (u) =

∫
Ω
|∇u(x)| dx as a regularizer, then in general the prob-

lem (MAPc) will have no solution in W 1,1(Ω) (where F makes sense). But, there
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should be a way to appropriately extend F to more general functions which can have
(large) discontinuities and not be in W 1,1, so that (MAPc) has a solution, and this
solution can have edges! This was the motivation of Rudin, Osher and Fatemi [68]
to introduce the Total Variation as a regularizer F (u) for inverse problems of type
(MAPc). We will now introduce more precisely, from a mathematical point of view,
this functional, and give its main properties.

1.2 Some theoretical facts: definitions, properties

The material in this part is mostly extracted from the textbooks [40, 74, 34, 7], which
we invite the reader to consult for further details.

Definition

Definition 1.1. The total variation of an image is defined by duality: for u ∈ L1
loc(Ω)

it is given by

J(u) = sup
{
−
∫

Ω

udivφdx : φ ∈ C∞c (Ω; RN ), |φ(x)| ≤ 1 ∀x ∈ Ω

}
(TV )

A function is said to have Bounded Variation whenever J(u) < +∞. Typical
examples include:
• A smooth function u ∈ C1(Ω) (or in fact a function u ∈W 1,1(Ω)): in this case,

−
∫

Ω

udivφdx =
∫

Ω

φ · ∇u dx

and the sup over all φ with |φ| ≤ 1 is J(u) =
∫

Ω
|∇u| dx.

• The characteristic function of a set with smooth (or C1,1) boundary: u = χE , in
this case

−
∫

Ω

udivφdx = −
∫
∂E
φ · νE dσ

and one can reach the sup (which corresponds to φ = −νE , the outer normal to
∂E, on ∂E ∩Ω, while φ = 0 on ∂E ∩ ∂Ω) by smoothing, in a neighborhood of
the boundary, the gradient of the signed distance function to the boundary. We
obtain that J(u) = HN−1(∂E ∩Ω), the perimeter of E in Ω.

Here,HN−1(·) is the (N−1)-dimensional Hausdorff measure, see for instance [35,
54, 7] for details.

An equivalent definition (*)

It is well-known (see for instance [69]) that any u ∈ L1
loc(Ω) defines a distribution

Tu : D(Ω) → R
φ 7→

∫
Ω
φ(x)u(x) dx
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where here D(Ω) is the space of smooth functions with compact support (C∞c (Ω))
endowed with a particular topology, and Tu is a continuous linear form on D(Ω), that
is, Tu ∈ D′(Ω). The derivative of Tu is then defined as (i = 1, . . . , N )〈

∂Tu
∂xi

, φ

〉
D′,D

:= −
〈
Tu,

∂φ

∂xi

〉
D′,D

= −
∫

Ω

u(x)
∂φ

∂xi
(x) dx

(which clearly extends the integration by parts: if u is smooth, then ∂Tu/∂xi =
T∂u/∂xi). We denote by Du the (vectorial) distribution (∂Tu/∂xi)Ni=1.

Then, if J(u) < +∞, it means that for all vector field φ ∈ C∞c (Ω; RN )

〈Du, φ〉D′,D ≤ J(u) sup
x∈Ω

|φ(x)|.

This means that Du defines a linear form on the space of continuous vector fields, and
by Riesz’ representation Theorem it follows that it defines a Radon measure (precisely,
a vector-valued (or signed) Borel measure on Ω which is finite on compact sets), which
is globally bounded, and its norm (or variation |Du|(Ω) =

∫
Ω
|Du|) is precisely the

total variation J(u).
See for instance [74, 34, 7] for details.

Main properties of the total variation

Lower semi-continuity The definition 1.1 has a few advantages. It can be intro-
duced for any locally integrable function (without requiring any regularity or deriv-
ability). But also, J(u) is written as a sup of linear forms

Lφ : u 7→ −
∫

Ω

u(x)divφ(x) dx

which are continuous with respect to very weak topologies (in fact, with respect to
the “distributional convergence” related to the space D′ introduced in the previous
section).

For instance, if un ⇀ u in Lp(Ω) for any p ∈ [1,+∞) (or weakly-∗ for p =∞), or
even in Lp(Ω′) for any Ω′ ⊂⊂ Ω, then Lφun → Lφu. But it follows that

Lφu = lim
n
Lφun ≤ lim inf

n
J(un)

and taking then the sup over all smooth fields φ with |φ(x)| ≤ 1 everywhere, we
deduce that

J(u) ≤ lim inf
n→∞

J(un) , (1.2)

that is, J is (sequentially) lower semi-continuous (l.s.c.) with respect to all the above
mentioned topologies. [The idea is that a sup of continuous functions is l.s.c.]
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In particular, it becomes obvious to show that with F = J , problem (MAPc) has a
solution. Indeed, consider a minimizing sequence for

min
u
E(u) := J(u) + ‖u− g‖2

L2(Ω),

which is a sequence (un)n≥1 such that E(un)→ infu E(u).
As E(un) ≤ E(0) < +∞ for n large enough (we assume g ∈ L2(Ω)), and J ≥ 0),

we see that (un) is bounded in L2(Ω) and it follows that up to a subsequence (still
denoted (un), it converges weakly to some u, that is, for any v ∈ L2(Ω),∫

Ω

un(x)v(x) dx →
∫

Ω

u(x)v(x) dx.

But then it is known that

‖u− g‖L2 ≤ lim inf
n
‖un − g‖L2 ,

and since we also have (1.2), we deduce that

E(u) ≤ lim inf
n
E(un) = inf E

so that u is a minimizer.

Convexity Now, is u unique? The second fundamental property of J which we
deduce from Definition 1.1 is its convexity: for any u1, u2 and t ∈ [0, 1],

J(tu1 + (1− t)u2) ≤ tJ(u1) + (1− t)J(u2). (1.3)

It follows, again, because J is the supremum of the linear (hence convex) functions
Lφ: indeed, one clearly has

Lφ(tu1 + (1− t)u2) = tLφ(u1) + (1− t)Lφ(u2) ≤ tJ(u1) + (1− t)J(u2)

and taking the sup in the left-hand side yields (1.3).
Hence in particular, if u and u′ are two solutions of (MAPc), then

E
(
u+ u′

2

)
≤ λ

2
(J(u) + J(u′)) +

∫
Ω

∣∣∣∣u+ u′

2
− g
∣∣∣∣2 dx

=
1
2
(E(u) + E(u′)) − 1

4

∫
Ω

(u− u′)2 dx

which would be strictly less than the inf of E , unless u = u′: hence the minimizer
of (MAPc) exists, and is unique.
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Homogeneity It is obvious for the definition that for each u and t > 0,

J(tu) = tJ(u) , (1.4)

that is, J is positively one-homogeneous.

Functions with bounded variation

We introduce the following definition:

Definition 1.2. The space BV (Ω) of functions with bounded variation is the set of
functions u ∈ L1(Ω) such that J(u) < +∞, endowed with the norm ‖u‖BV (Ω) =
‖u‖L1(Ω) + J(u).

This space is easily shown to be a Banach space. It is a natural (weak) “closure” of
W 1,1(Ω). Let us state a few essential properties of this space.

Meyers-Serrin’s approximation Theorem We first state a theorem which shows
that BV function may be “well” approximated with smooth functions. This is a re-
finement of a classical theorem of Meyers and Serrin [53] for Sobolev spaces.

Theorem 1.3. Let Ω ⊂ RN be an open set and let u ∈ BV (Ω): then there exists a
sequence (un)n≥1 of functions in C∞(Ω) ∩W 1,1(Ω) such that

(i.) un → u in L1(Ω) ,

(ii.) J(un) =
∫

Ω
|∇un(x)| dx→ J(u) =

∫
Ω
|Du| as n→∞.

Before sketching the proof, let us recall that in Sobolev’s spaces W 1,p(Ω), p <∞,
the thesis of this classical theorem is stronger, since one proves that ‖∇un−∇u‖Lp →
0, while here one cannot expect J(un−u) =

∫
Ω
|Dun−Du| → 0 as n→∞. This is

easily illustrated by the following example: let Ω = (−1, 1), and u(t) = −1 if t < 0,
u(t) = 1 if t ≥ 0. Then, the sequence un(t) = tanh(n × t) clearly converges to u,
with ∫ 1

−1
u′n(t) dt = 2 tanh(n) → 2 = J(u)

as n → ∞, but clearly J(un − u) ≈ 4 for large n. In fact, it is clear that if v is any
smooth approximation of u such as shown on Fig. 3, then clearly the variation J(u−v)
of w = u− v is given by

|w(0−)− w(−1)| + |w(0+)− w(0−)| + |w(1)− w(0+)| =

|v(0)− v(−1)| + 2 + |v(1)− v(0)| ≈ 4

and cannot be made arbitrarily small.
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Figure 3. Smooth approximation of a step function

Proof. Let us now explain how Theorem 1.3 is proven. The idea is to smooth u
with a “mollifier” (or a “smoothing kernel”): as usual one considers a function η ∈
C∞c (B(0, 1)) with η ≥ 0 and

∫
B(0,1) η(x) dx = 1. For each ε > 0, one considers

ηε(x) := (1/ε)Nη(x/ε): then, ηε has support in the ball B(0, ε), and
∫

RN ηε dx = 1.
If u ∈ L1(RN ), it is then classical that the functions

uε(x) = u ∗ ηε(x) :=
∫

RN
u(y)ηε(x− y) dy =

∫
B(0,ε)

u(x− y)ηε(y) dy

are smooth (because the first expression of the convolution product can be derived
infinitely many times under the integral), and converge to u, in L1(RN ), as ε→ 0 (the
convergence is first easily shown for continuous function with compact support, and
follows by density for L1 functions).

Then, if u ∈ BV (RN ), one also have that for any φ ∈ C∞c (RN ; RN ) with |φ| ≤ 1
a.e., (to simplify we assume η is even)

∫
RN

φ(x) · ∇uε(x) dx

=
∫

RN
uε(x)divφ(x) dx =

∫
RN

∫
RN

ηε(x− y)u(y)divφ(x) dy dx

=
∫

RN
u(y)div (φε)(y) dy
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where we have used Fubini’s theorem, and the fact that (divφ)ε = div (φε). By Defi-
nition 1.1, this is less than J(u). Taking then the sup on all admissible φ’s, we end up
with

J(uε) =
∫

RN
|∇uε| dx ≤ J(u)

for all ε > 0. Combined with (1.2), it follows that

lim
ε→0

J(uε) = J(u).

This shows the Theorem, when Ω = RN .
When Ω 6= RN , this theorem is shown by a subtle variant of the classical proof of

Meyers-Serrin’s theorem [53], see for instance [40] or [7, Thm. 3.9] for details. Let
us insist that the result is not straightforward, and, in particular, that in general the
function un can not be supposed to be smooth up to the boundary.

Rellich’s compactness theorem The second important property of BV functions is
the following compactness theorem:

Theorem 1.4. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, and let
(un)n≥1 be a sequence of functions in BV (Ω) such that supn ‖un‖BV < +∞. Then
there exists u ∈ BV (Ω) and a subsequence (unk)k≥1 such that unk → u (strongly) in
L1(Ω) as k →∞.

Proof. If we assume that the theorem is know for functions in W 1,1(Ω), then the
extension to BV functions simply follows from Thm 1.3. Indeed, for each n, we
can find u′n ∈ C∞(Ω) ∩ W 1,1(Ω) with ‖un − u′n‖L1 ≤ 1/n and ‖u′n‖BV (Ω) ≤
‖un‖BV (Ω) + 1/n. Then, we apply Rellich’s compactness theorem in W 1,1(Ω) to the
sequence u′n: it follows that there exists u ∈ L1(Ω) and a subsequence (u′nk)k with
u′nk → u as k → ∞. Clearly, we have ‖unk − u‖L1 ≤ 1/nk + ‖u′nk − u‖L1 → 0 as
k →∞. Moreover, u ∈ BV (Ω), since its variation is bounded as follows from (1.2).

A complete proof (including the proof of Rellich’s Thm) is found in [7], proof of
Thm 3.23. The regularity of the domain Ω is crucial here, since the proof relies on
an extension argument outside of Ω: it needs the existence of a linear “extension”
operator T : BV (Ω) → BV (Ω′) for any Ω′ ⊃⊃ Ω, such that for each u ∈ BV (Ω),
Tu has compact support in Ω′, Tu(x) = u(x) for a.e. x ∈ Ω, and ‖Tu‖BV (Ω′) ≤
C‖u‖BV (Ω). Then, the proof follows by mollifying the sequence Tun, introducing
the smooth functions ηε ∗ Tun, applying Ascoli-Arzelà’s theorem to the mollified
functions, and a diagonal argument.

Sobolev’s inequalities We observe here that the classical inequalities of Sobolev:

‖u‖
L

N
N−1 (RN )

≤ C

∫
RN
|Du| (1.5)
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if u ∈ L1(RN ), and Poincaré-Sobolev:

‖u−m‖
L

N
N−1 (Ω)

≤ C

∫
RN
|Du| (1.6)

where Ω is bounded with Lipschitz boundary, andm is the average of u on Ω, valid for
W 1,1 functions, clearly also hold for BV function as can be deduced from Thm 1.3.

1.3 The perimeter. Sets with finite perimeter

Definition, and an inequality

Definition 1.5. A measurable set E ⊂ Ω is a set of finite perimeter in Ω (or Cacciop-
poli set) if and only if χE ∈ BV (Ω). The total variation J(χE) is the perimeter of E
in Ω, denoted by Per(E; Ω). If Ω = RN , we simply denote Per(E).

We observe that a “set” here is understood as a measurable set in RN , and that this
definition of the perimeter makes it depend onE only up to sets of zero Lebesgue mea-
sure. In general, in what follows, the sets we will considers will be rather equivalence
classes of sets which are equal up to Lebesgue negligible sets.

The following inequality is an essential property of the perimeter: for anyA,B ⊆ Ω

sets of finite perimeter, we have

Per(A ∪B; Ω) + Per(A ∩B; Ω) ≤ Per(A; Ω) + Per(B; Ω). (1.7)

Proof. The proof is as follows: we can consider, invoking Thm 1.3, two sequences
un, vn of smooth functions, such that un → χA, vn → χB , and∫

Ω

|∇un(x)| dx → Per(A; Ω) and
∫

Ω

|∇vn(x)| dx → Per(B; Ω) (1.8)

as n→∞. Then, it is easy to check that un∨vn = max{un, vn} → χA∪B as n→∞,
while un ∧ vn = min{un, vn} → χA∩B as n→∞. We deduce, using (1.2), that

Per(A∪B; Ω) + Per(A∩B; Ω) ≤ lim inf
n→∞

∫
Ω

|∇(un∨vn)|+ |∇(un∧vn)| dx. (1.9)

But for almost all x ∈ Ω, |∇(un∨vn)(x)|+ |∇(un∧vn)(x)| = |∇un(x)|+ |∇vn(x)|,
so that (1.7) follows from (1.9) and (1.8).

The reduced boundary, and a generalization of Green’s formula

It is shown that if E is a set of finite perimeter in Ω, then the derivative DχE can be
expressed as

DχE = νE(x)HN−1 ∂∗E (1.10)
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where νE(x) and ∂∗E can be defined as follows: ∂∗E is the set of points x where the
“blow-up” sets

Eε = {y ∈ B(0, 1) : x+ εy ∈ E}

converge as ε to 0 to a semi-space PνE(x) = {y : y · νE(x) ≥ 0} ∩ B(0, 1) in
L1(B(0, 1)), in the sense that their characteristic functions converge, or in other words

|Eε \ PνE(x)| + |PνE(x) \ Eε| → 0

as ε→ 0. This defines also the (inner) normal vector νE(x).
The set ∂∗E is called the “reduced” boundary of E (the “true” definition of the

reduced boundary is a bit more precise and the precise set slightly smaller than ours,
but still (1.10) is true with our definition, see [7, Chap. 3]).

Eq. (1.10) means that for any C1 vector field φ, one has∫
E

divφ(x) dx = −
∫
∂∗E

φ · νE(x) dHN−1(x) (1.11)

which is a sort of generalization of Green’s formula to sets of finite perimeter.
This generalization is useful as shows the following example: let xn ∈ (0, 1)2, n ≥

1, be the sequence of rational points (in Q2∩ (0, 1)2), and let E =
⋃
n≥1 B(xn, ε2−n),

for some ε > 0 fixed.
Then, one sees that E is an open, dense set in (0, 1)2. In particular its “classical”

(topological) boundary ∂E is very big, it is [0, 1]2\E and has Lebesgue measure equal
to 1− |E| ≥ 1− πε2/3. In particular its length is infinite.

However, one can show that E is a finite perimeter set, with perimeter less than∑
n 2πε2−n = πε. Its “reduced boundary” is, up to the intersections (which are

negligible), the set

∂∗E ≈
⋃
n≥1

∂B(xn, ε2−n).

One shows that this “reduced boundary” is always, as in this simple example, a
rectifiable set, that is, a set which can be almost entirely covered with a countable
union of C1 hypersurfaces, up to a set of Hausdorff HN−1 measure zero: there exist
(Γi)i≥1, hypersurfaces of regularity C1, such that

∂∗E ⊂ N ∪

(∞⋃
i=1

Γi

)
, HN−1(N ) = 0. (1.12)

In particular, HN−1-a.e., the normal νE(x) is a normal to the surface(s) Γi such that
x ∈ Γi.
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The isoperimetric inequality

For u = χE , equation (1.5) becomes the celebrated isoperimetric inequality:

|E|
N−1
N ≤ CPer(E) (1.13)

for all finite-perimeter set E of bounded volume, with the best constant C reached by
balls:

C−1 = N(ωN )1/N

where ωN = |B(0, 1)| is the volume of the unit ball in RN .

1.4 The co-area formula

We now can state a fundamental property of BV functions, which will be the key of
our analysis in the next sections dealing with applications. This is the famous “co-
area” formula of Federer and Fleming:

Theorem 1.6. Let u ∈ BV (Ω): then for a.e. s ∈ R, the set {u > s} is a finite-
perimeter set in Ω, and one has

J(u) =
∫

Ω

|Du| =
∫ +∞

−∞
Per({u > s}; Ω) ds. (CA)

It means that the total variation of a function is also the accumulated surfaces of all
its level sets. The proof of this result is quite complicated (we refer to [36, 34, 74, 7])
but let us observe that:

• It is relatively simple if u = p · x is an affine function, defined for instance on
a simplex T (or in fact any open set). Indeed, in this case, J(u) = |T | |p|, and
∂{u > s} are hypersurfaces {p · x = s}, and it is not too difficult to compute the
integral

∫
sH

N−1({p · x = s});

• For a general u ∈ BV (Ω), we can approximate u with piecewise affine func-
tions un with

∫
Ω
|∇un| dx → J(u). Indeed, one can first approximate u with

the smooth functions provided by Thm 1.3, and then these smooth functions by
piecewise affine functions using the standard finite elements theory. Then, we
will obtain using (1.2) and Fatou’s lemma that

∫
R Per({u > s}; Ω) ds ≤ J(u);

• The reverse inequality J(u) ≤
∫

R Per({u > s}; Ω) ds =
∫

R J(χ{u>s}) ds,
can easily be deduced by noticing that if φ ∈ C∞c (Ω) with ‖φ‖ ≤ 1, one has
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∫
Ω

divφdx = 0, so that (using Fubini’s theorem)

∫
Ω

udivφdx =∫
{u>0}

∫ u(x)

0
ds divφ(x) dx −

∫
{u<0}

∫ 0

u(x)
ds divφ(x) dx =∫ ∞

0

∫
Ω

χ{u>s}(x)divφ(x) dx ds −
∫ 0

−∞

∫
Ω

(1− χ{u>s}(x))divφ(x) dx ds

=
∫ ∞
−∞

∫
{u>s}

divφdx ds ≤
∫ ∞
−∞

Per({u > s}; Ω) ds

and taking then the sup over all admissible φ’s in the leftmost term.

Remark: observe that (1.7) also follows easily from (CA), indeed, let u = χA + χB ,
then J(u) ≤ J(χA)+J(χB) = Per(A; Ω)+Per(B; Ω), while from (CA) we get that

J(u) =
∫ 2

0
Per({χA + χB > s}; Ω) ds = Per(A ∪B; Ω) + Per(A ∩B; Ω) .

1.5 The derivative of a BV function (*)

To end up this theoretical section on BV functions, we mention an essential result on
the measure Du, defined for any u ∈ BV (Ω) by∫

φ(x) ·Du(x) = −
∫
u(x)divφ(x) dx

for any smooth enough vector field φ with compact support. As mentioned in Sec-
tion 1.2, it is a bounded Radon measure. A derivation theorem due to Radon and
Nikodym (and a refined version due to Besicovitch) shows that such a measure can be
decomposed with respect to any positive radon measure µ into

Du = f(x) dµ + ν (1.14)

where µ−a.e.,

f(x) = lim
ρ→0

Du(B(x, ρ))
µ(B(x, ρ)

(and in particular the theorem states that the limit exists a.e.), f ∈ L1
µ(Ω), that is,∫

Ω
|f | dµ < +∞, and ν ⊥ µ, which means that there exists a Borel set E ⊂ Ω such

that |ν|(Ω \ E) = 0, µ(E) = 0.
If the function u ∈ W 1,1(Ω), then Du = ∇u(x) dx, with ∇u the “weak gradient”

a vector-valued function in L1(Ω; RN ). Hence, the decomposition (1.14) with µ = dx
(the Lebesgue measure), holds with f = ∇u and ν = 0, and one says that Du is
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“absolutely continuous” with respect to Lebesgue’s measure. This is not true anymore
for a generic function u ∈ BV (Ω). One has

Du = ∇u(x) dx + Dsu

where the “singular part”Dsu vanishes if and only if u ∈W 1,1, and∇u ∈ L1(Ω; RN )
is the “approximate gradient” of u.

The singular part can be further decomposed. Let us call Ju the “jump set” of u,
defined as follows:

Definition 1.7. Given u ∈ BV (Ω), we say that x ∈ Ju if and only if there exist
u−(x), u+(x) ∈ R with u−(x) 6= u+(x), and νu(x) ∈ RN a unit vector such that the
functions, defined for y ∈ B(0, 1) for ε > 0 small enough

y 7→ u(x+ εy)

converge as ε→ 0, in L1(B(0, 1)), to the function

y 7→ u−(x) + (u+(x)− u−(x))χ{y·νu(x)≥0}

which takes value u+(x) in the half-space {y · νu(x) ≥ 0}, and u−(x) in the other
half-space {y · νu(x) < 0}

In particular, this is consistent with our definition of ∂∗E in Section 1.3: ∂∗E = JχE ,
with (χE)+(x) = 1, (χE)−(x) = 0, and νχE (x) = νE . The triple (u−, u+, νu) is
almost unique: it is unique up to the permutation (u+, u−,−νu). For a scalar function
u, the canonical choice is to take u+ > u−, whereas for vectorial BV functions, one
must fix some arbitrary rule.

One can show that Ju is a rectifiable set (see Section 1.3, eq. (1.12)), in fact, it is a
countable union of rectifiable sets since one can always write

Ju ⊆
⋃
n6=m

∂∗{u > sn} ∩ ∂∗{u > sm}.

for some countable, dense sequence (sn)n≥1: the jump set is where two different level
sets meet.

One then has the following fundamental result:

Theorem 1.8 (Federer-Volpert). Let u ∈ BV (Ω): then one has

Du = ∇u(x) dx + Cu + (u+(x)− u−(x))νu(x) dHN−1 Ju

where Cu is the “Cantor part” of Du, which is singular with respect to the Lebesgue
measure, and vanishes on any set E with HN−1(E) < +∞. In other words, for any
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φ ∈ C1
c (Ω; RN ),

−
∫

Ω

u(x)divφ(x) dx =
∫

Ω

∇u(x) · φ(x) dx

+
∫

Ω

φ(x) · Cu(x) +
∫
Ju

(u+(x)− u−(x))φ(x) · νu(x) dx . (1.15)

Observe that (1.15) is a generalized version of (1.11).
As we have seen, an example of a function with absolutely continuous derivative is

given by any function u ∈W 1,1(Ω) (or more obviously u ∈ C1(Ω)).

Figure 4. The “devil’s staircase” or Cantor-Vitali function

An example of a function with derivative a pure jump is given by u = χE , E a
Caccioppoli set (see Section 1.3). A famous example of a function with derivative
purely Cantorian is the Cantor-Vitali function, obtained as follows: Ω = (0, 1) and we
let u0(t) = t, and for any n ≥ 0,

un+1(t) =


1
2un(3t) 0 ≤ t ≤ 1

3
1
2

1
3 ≤ t ≤

2
3

1
2(un(3t− 2) + 1) 2

3 ≤ t ≤ 1

Then, one checks that

sup
(0,1)
|un+1 − un| =

1
2

sup
(0,1)
|un − un−1| =

1
2n
× 1

6

so that (un)n≥1 is a Cauchy sequence and converges uniformly to some function u.
This function (see Fig. 4) is constant on each interval the complement of the triadic
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Cantor set, which has zero measure in (0, 1). Hence, almost everywhere, its classical
derivative exists and is zero. One can deduce that the derivative Du is singular with
respect to Lebesgue’s measure. On the other hand, it is continuous as a uniform limit
of continuous functions, hence Du has no jump part. In fact, Du = Cu, which, in this
case, is the measureHln 2/ ln 3 C/Hln 2/ ln 3(C).

2 Some functionals where the total variation appears
2.1 Perimeter minimization

In quite a few applications it is important to be able to solve the following problem:

min
E⊂Ω

λPer(E; Ω) −
∫
E
g(x) dx (2.1)

The intuitive idea is as follows: if λ = 0, then this will simply chooseE = {g ≥ 0}:
that is, we find the set E by thresholding the values of g at 0. Now, imagine that this
is precisely what we would like to do, but that g has some noise, so that a brutal
thresholding of its value will produce a very irregular set. Then, choosing λ > 0
in (2.1) will start regularizing the set {g > 0}, and the high values of λ will produce a
very smooth, but possibly quite approximate, version of that set.

We now state a proposition which is straighforward for people familiar with linear
programming and “LP”-relaxation:

Proposition 2.1. Problem (2.1) is convex. In fact, it can be relaxed as follows:

min
u∈BV (Ω;[0,1])

λJ(u) −
∫

Ω

u(x)g(x) dx (2.2)

and given any solution u of the convex problem (2.2), and any value s ∈ [0, 1) , the set
{u > s} (or {u ≥ s} for s ∈ (0, 1]) is a solution of (2.1).

Proof. This is a consequence of the co-area formula. Denote by m∗ the minimum
value of Problem (2.1). One has

∫
Ω

u(x)g(x) dx =
∫

Ω

(∫ u(x)

0
ds

)
g(x) dx

=
∫

Ω

∫ 1

0
χ{u>s}(x)g(x) ds dx =

∫ 1

0

∫
{u>s}

g(x) dx ds (2.3)

so that, if we denote E(E) = λPer(E; Ω) −
∫
E g(x) dx, it follows from (2.3)

and (CA) that for any u ∈ BV (Ω) with 0 ≤ u ≤ 1 a.e.,

λJ(u) −
∫

Ω

u(x)g(x) dx =
∫ 1

0
E({u > s}) ds ≥ m∗ . (2.4)
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Hence the minimum value of (2.2) is larger than m∗, on the other hand, it is also less
since (2.1) is just (2.2) restricted to characteristic functions. Hence both problems have
the same values, and it follows from (2.4) that if λJ(u) −

∫
Ω
ug dx = m∗, that is, if

u is a minimizer for (2.2), then for a.e. s ∈ (0, 1), {u > s} is a solution to (2.1).
Denote by S the set of such values of s. Now let s ∈ [0, 1), and let (sn)n≥1 be a
decreasing sequence of values such that sn ∈ S and sn → s as n → ∞. Then,
{u > s} =

⋃
n≥1{u > sn}, and, in fact, limn→∞{u > sn} = {u > s} (the limit is in

the L1 sense, that is,
∫

Ω
|χ{u>sn}−χ{u>s}|dx→ 0 as n→∞. Using (1.2), it follows

m∗ ≤ E({u > s}) ≤ lim inf
n→∞

E({u > sn}) = m∗

so that s ∈ S: it follows that S = [0, 1).

The meaning of this result is that it is always possible to solve a problem such
as (2.1) despite it apparently looks non-convex, and despite the fact the solution might
be nonunique (although we will soon see that it is quite “often” unique). This has
been observed several times in the past [26], and probably the first time for numerical
purposes in [14]. In Section 3 we will address the issues of algorithms to tackle this
kind of problems.

2.2 The Rudin-Osher-Fatemi problem

We now concentrate on problem (MAPc) with F (u) = λJ(u) as a regularizer, that
is, on the celebrated “Rudin-Osher-Fatemi” problem (in the “pure denoising case”: we
will not consider any operator A as in (MAP )):

min
u
λJ(u) +

1
2

∫
Ω

|u(x)− g(x)|2 dx (ROF )

As mentioned in section 1.2, this problem has a unique solution (it is strictly convex).
Let us now show that as in the previous section, the level sets Es = {u > s} solve

a particular variational problem (of the form (2.1), but with g(x) replaced with some
s-dependent function). This will be of particular interest for our further analysis.

The Euler-Lagrange equation

Formally:

−λdiv
Du

|Du|
+ u − g = 0 (2.5)

but this is hard to interpret. In particular because one can show there is always “stair-
casing”, as soon as g ∈ L∞(Ω), so that there always are large areas where “Du = 0”.

On can interpret the equation in the viscosity sense. Or try to derive the “correct”
Euler-Lagrange equation in the sense of convex analysis. This requires to define prop-
erly the “subgradient” of J .
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Definition 2.2. For X a Hilbert space, the subgradient of a convex function F : X →
(−∞,+∞] is the operator ∂F which maps x ∈ X to the (possibly empty set)

∂F (x) = {p ∈ X : F (y) ≥ F (x) + 〈v, y − x〉 ∀y ∈ X}

We introduce the set

K =
{
−divφ : φ ∈ C∞c (Ω; RN ) : |φ(x)| ≤ 1 ∀x ∈ Ω

}
and the closure K if K in L2(Ω), which is shown to be

K =
{
−div z : z ∈ L∞(Ω; RN ) : −div (zχΩ) ∈ L2(RN )

}
where the last condition means that
(i.) −div z ∈ L2(Ω), i.e., there exists γ ∈ L2(Ω) such that

∫
Ω
γu dx =

∫
Ω
z ·∇u dx

for all smooth u with compact support;

(ii.) the above also holds for u ∈ H1(Ω) (not compactly supported), in other words
z · νΩ = 0 on ∂Ω in the weak sense.

Definition 1.1 defines J as

J(u) = sup
p∈K

∫
Ω

u(x)p(x) dx ,

so that if u ∈ L2(Ω) it is obvious that, also,

J(u) = sup
p∈K

∫
Ω

u(x)p(x) dx . (2.6)

In fact, one shows that K is the largest set in L2(Ω) such that (2.6) holds for any
u ∈ L2(Ω), in other words

K =
{
p ∈ L2(Ω) :

∫
Ω

p(x)u(x) dx ≤ J(u) ∀u ∈ L2(Ω)
}

(2.7)

Then, if we consider J as a functional over the Hilbert space X = L2(Ω), we have:

Proposition 2.3. For u ∈ L2(Ω),

∂J(u) =
{
p ∈ K :

∫
Ω

p(x)u(x) dx = J(u)
}

(2.8)

Proof. It is not hard to check that if p ∈ K and
∫

Ω
pu dx = J(u), then p ∈ ∂J(u),

indeed, for any v ∈ L2(Ω), using (2.6),

J(v) ≥
∫

Ω

p(x)v(x) dx = J(u) +
∫

Ω

(v(x)− u(x))p(x) dx .
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The converse inclusion can be proved as follows: if p ∈ ∂J(u), then for any t > 0 and
v ∈ RN , as J is one-homogeneous (1.4),

tJ(v) = J(tv) ≥ J(u) +
∫

Ω

p(x)(tv(x)− u(x)) dx ,

dividing by t and sending t → ∞, we get J(v) ≥
∫

Ω
pv dx, hence p ∈ K, by (2.7).

On the other hand, sending t to 0 shows that J(u) ≤
∫

Ω
pu dx which shows our

claim.

Remark We see that K = ∂J(0).

The Euler-Lagrange equation for (ROF ) We can now derive the equation satis-
fied by u which minimizes (ROF ): for any v in L2(Ω), we have

λJ(v) ≥ λJ(u)+
1
2

∫
Ω

(u−g)2−(v−g)2dx = λJ(u)+
∫

Ω

(u−v)
(
u+ v

2
− g
)
dx

= λJ(u) +
∫

Ω

(v − u)(g − u) dx− 1
2

∫
Ω

(u− v)2dx . (2.9)

In particular, for any t ∈ R,

λ(J(u+ t(v − u))− J(u))− t
∫

Ω

(v − u)(g − u) dx ≥ − t
2

2 ∫
Ω

(v − u)2 dx .

The left-hand side of the last expression is a convex function of t ∈ R, one can show
quite easily that a convex function which is larger than a concave parabola and touches
at the maximum point (t = 0) must be everywhere larger than the maximum of the
parabola (here zero).

We deduce that

λ(J(u+ t(v − u))− J(u))− t
∫

Ω

(v − u)(g − u) dx ≥ 0

for any t, in particular for t = 1, which shows that g−uλ ∈ ∂J(u). Conversely, if this
is true, then obviously (2.9) holds so that u is the minimizer of J . It follows that the
Euler-Lagrange equation for (ROF ) is

λ∂J(u) + u− g 3 0 (2.10)

which, in view of (2.8) and the characterization of K, is equivalent to the existence of
z ∈ L∞(Ω; RN ) with:

−λdiv z(x) + u(x) = g(x) a.e. x ∈ Ω

|z(x)| ≤ 1 a.e. x ∈ Ω

z · ν = 0 on ∂Ω (weakly)
z ·Du = |Du| ,

(2.11)
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the last equation being another way to write that
∫

(−div z)u dx = J(u).
If u were smooth and∇u 6= 0, the last condition ensures that z = ∇u/|∇u| and we

recover (2.5).
In all cases, we see that z must be orthogonal to the level sets of u (from |z| ≤ 1

and z ·Du = |Du|), so that −div z is still the curvature of the level sets.
In 1D, z is a scalar and the last condition is z · u′ = |u′|, so that z ∈ {−1,+1}

whenever u is not constant, while div z = z′: we see that the equation becomes u = g
or u = constant (and in particular staircasing is a necessity if g is not monotonous).

The problem solved by the level sets

We introduce the following problems, parameterized by s ∈ R:

min
E
λPer(E; Ω) +

∫
E
s− g(x) dx . (ROFs)

Given s ∈ R, let us denote by Es a solution of (ROFs) (whose existence follows in a
straightforward way from Rellich’s theorem 1.4 and (1.2)).

Then the following holds

Lemma 2.4. Let s′ > s: then Es′ ⊆ Es.

This lemma is found for instance in [4, Lem. 4]. Its proof is very easy.

Proof. We have (to simplify we let λ = 1):

Per(Es) +
∫
Es

s− g(x) dx ≤ Per(Es ∪ Es′) +
∫
Es∪Es′

s− g(x) dx ,

Per(Es′) +
∫
Es′

s′ − g(x) dx ≤ Per(Es ∩ Es′) +
∫
Es∩Es′

s′ − g(x) dx

and summing both inequalities we get:

Per(Es) + Per(Es′) +
∫
Es

s− g(x) dx +
∫
Es′

s′ − g(x) dx

≤ Per(Es ∪Es′) + P (Es ∩Es′) +
∫
Es∪Es′

s− g(x) dx +
∫
Es∩Es′

s′− g(x) dx .

Using (1.7), it follows that∫
Es′

s′−g(x) dx −
∫
Es∩Es′

s′−g(x) dx ≤
∫
Es∪Es′

s−g(x) dx −
∫
Es

s−g(x) dx ,

that is, ∫
Es′\Es

s′ − g(x) dx ≤
∫
Es′\Es

s− g(x) dx



26

hence
(s′ − s)|Es′ \ Es| ≤ 0 :

it shows that E′s ⊆ Es, up to a negligible set, as soon as s′ > s.

In particular, it follows that Es is unique, except for at most countably many values
of s. Indeed, we can introduce the sets E+

s =
⋂
s′<sEs′ and E−s =

⋃
s′>sEs′ ,

then one checks that E+
s and E−s are respectively the largest and smallest solutions

of (ROFs)1. There is uniqueness when the measure |E+
s \ E−s | = 0. But the sets

(E+
s \ E−s ), s ∈ R, are all disjoint, so that their measure must be zero except for at

most countably many values.
Let us introduce the function:

u(x) = sup{s ∈ R : x ∈ Es} .

We have that u(x) > s if there exists t > s with x ∈ Et, so that in particular, x ∈ E−s ;
conversely, if x ∈ E−s , x ∈ Es′ for some s′ > s, so that u(x) > s: {u > s} = E−s .
(In the same way, we check E+

s = {u ≥ s}.)

Lemma 2.5. The function u is the minimizer of (ROF ).

Proof. First of all, we check that u ∈ L2(Ω). This is because

λPer(Es; Ω) +
∫
Es

s− g(x) dx ≤ 0

(the energy of the emptyset), hence

s|Es| ≤
∫
Es

g(x) dx.

It follows that ∫ M

0
s|Es| ds ≤

∫ M

0

∫
Es

g(x) dx ds ,

but
∫M

0 s|Es| ds =
∫
E0

∫ u(x)∧M
0 s ds dx =

∫
E0

(u(x) ∧ M)2/2 dx (using Fubini’s

theorem), while in the same way
∫M

0

∫
Es
g(x) dx ds =

∫
E0

(u(x) ∧M)g(x) dx.
Hence

1
2

∫
E0

(u ∧M)2 dx ≤
∫
E0

(u ∧M)g dx ≤
(∫

E0

(u ∧M)2 dx

∫
E0

g2 dx

) 1
2

1 Observe that since the set Es are normally defined up to negligible sets, the intersections E+
s =T

s′<sEs′ might not be well-defined (as well as the unions E−s ). A rigorous definition requires,
actually, either to consider only countable intersections/unions, or to first choose a precise represen-
tative of each Es, for instance the set {x ∈ Es : limρ→0 |Es ∩ B(x, ρ)|/|B(x, ρ)| = 1} of points
of Lebesgue density 1, which can be shown, for Es minimizing (ROFs), to be an open set.
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so that ∫
E0

(u(x) ∧M)2 dx ≤ 4
∫
E0

g(x)2 dx

and sending M →∞ it follows that∫
{u>0}

u(x)2 dx ≤ 4
∫
{u>0}

g(x)2 dx . (2.12)

In the same way, we can show that∫
{u<0}

u(x)2 dx ≤ 4
∫
{u<0}

g(x)2 dx . (2.13)

This requires the observation that the set {−u > −s} = {u < s} = Ω \ E+
s is a

minimizer of the problem

min
E

Per(E; Ω) +
∫
E
g(x)− s dx

which easily follows from the fact that Per(E; Ω) = Per(Ω\E; Ω) for any set of finite
perimeterE ⊂ Ω: it follows that if we replace g with−g in (ROFs), then the function
u is replaced with −u.

We deduce from (2.12) and (2.13) that u ∈ L2(Ω).
Let now v ∈ BV (Ω) ∩ L2(Ω): we have for any M > 0,∫ M

−M
λPer(E−s ; Ω)+

∫
E−s

s−g(x) dx ≤
∫ M

−M
λPer({v > s}; Ω)+

∫
{v>s}

s−g(x) dx

(2.14)
since E−s is a minimizer for (ROFs). Notice that (using Fubini’s Theorem again)∫ M

−M

∫
{v>s}

s− g(x) dx =
∫

Ω

∫ M

−M
χ{v>s}(x)(s− g(x)) dx

=
1
2

∫
Ω

((v(x) ∧M)− g(x))2 − ((v(x) ∧ (−M))− g(x))2 dx ,

hence∫ M

−M

∫
{v>s}

s− g(x) dx+
∫

Ω

(M + g(x))2 dx =
1
2

∫
Ω

(v(x)− g(x))2 dx+R(v,M)

(2.15)
where

R(v,M) =
1
2

(∫
Ω

((v(x) ∧M)− g(x))2 − (v(x)− g(x))2 dx

+
∫

Ω

(−M − g(x))2 − ((v(x) ∧ (−M))− g(x))2 dx
)
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It suffices now to check that for any v ∈ L2(Ω),

lim
M→∞

R(v,M) = 0.

We leave it to the reader. From (2.14) and (2.15), we get that

λ

∫ M

−M
Per({u > s}; Ω) +

1
2

∫
Ω

(u− g)2 dx + R(u,M)

≤ λ

∫ M

−M
Per({v > s}; Ω) +

1
2

∫
Ω

(v − g)2 dx + R(v,M) ,

sending M →∞ (and using the fact that both u and v are in L2, so thatR(·,M) goes
to 0) we deduce

λJ(u) +
1
2

∫
Ω

(u− g)2 dx ≤ λJ(v) +
1
2

∫
Ω

(v − g)2 dx ,

that is, the minimality of u for (ROF ).

We have proved the following result:

Proposition 2.6. A function u solves (ROF ) if and only if for any s ∈ R, the set
{u > s} solves (ROFs).

Normally, we should write “for almost any s”, but as before by approximation it is
easy to show that if it is true for almost all s, then it is true for all s.

This is interesting for several applications. It provides another way to solve prob-
lems such as (2.1) (through an unconstrained relaxation — but in fact both problems
are relatively easy to solve). But most of all, it gives a lot of information on the level
sets of u, as problems such as (2.1) have been studied thoroughly in the past 50 years.

The link between minimal surfaces and functions minimizing the total variation was
first identified by De Giorgi and Bombieri, as a tool for the study of minimal surfaces.

Theorem 2.6 can be generalized easily to the following case: we should have that u
is a minimizer of

min
u
J(u) +

∫
Ω

G(x, u(x)) dx

for someGmeasurable in x, and convex,C1 in u, if and only if for any s ∈ R, {u > s}
minimizes

min
E

Per(E; Ω) +
∫
E
g(x, s) dx

where g(x, s) = ∂sG(x, s). The case of nonsmooth G is also interesting and has been
studied by Chan and Esedoglu [25].
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A few explicit solutions

The results in this section are simplifications of results which are found in [5, 4] (see
also [3] for more results of the same kind).

Let us show how Theorem 2.6 can help build explicit solutions of (ROF ), in a few
very simple cases. We consider the two following cases: Ω = R2, and

i. g = χB(0,R) the characteristic of a ball;

ii. g = χ[0,1]2 the characteristic of the unit square.

In both case, g = χC for some convex set C. First observe that obviously, 0 ≤ u ≤
1. As in the introduction, indeed, one easily checks that u ∧ 1 = min{u, 1} has less
energy than u. Another way is to observe that Es = {u > s} solves

min
E
λPer(E) +

∫
E
s− χC(x) dx ,

but if s > 1, s−χC is always positive so that E = ∅ is clearly optimal, while if s < 0,
s − χC is always negative so that E = R2 is optimal (and in this case the value is
−∞).

Now, if s ∈ (0, 1), Es solves

min
E
λPer(E) − (1− s)|E ∩ C| + s|E \ C| . (2.16)

Let P be a half-plane containing C: observe that Per(E ∩ P ) ≤ Per(E), since we
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E ∩ P

Figure 5. E ∩ P has less energy than E

replace the part of a boundary outside of P with a straight line on ∂P , while |(E ∩
P ) \ C| ≤ |E \ C|: hence, the set E ∩ P has less energy than E, see Fig. 5. Hence
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Es ⊂ P . As C, which is convex, is the intersection of all half-planes containing it, we
deduce that Es ⊂ C. (In fact, this is true in any dimension for any convex set C.)

We see that the problem for the level sets Es (2.16) becomes:

min
E⊂C

λPer(E) − (1− s)|E| . (2.17)

The characteristic of a ball If g = χB(0,R), the ball of radius R (in R2), we see that
thanks to the isoperimetric inequality (1.13),

λPer(E) − (1− s)|E| ≥ λ2
√
π
√
|E| − (1− s)|E| ,

and for |E| ∈ [0, |B(0, R)|], the right-hand side is minimal only if |E| = 0 or |E| =
|B(0, R)|, with value 0 in the first case, 2λπR − (1 − s)πR2 in the second. Since
for these two choices, the isoperimetric inequality is an equality, we deduce that the
min in (2.17) is actually attained by E = ∅ if s ≥ 1 − 2λ/R, and E = B(0, R) if
s ≤ 1− 2λ/R. Hence the solution is

u =
(

1− 2λ
R

)+

χB(0,R)

for any λ > 0 (here x+ = max{x, 0} is the positive part of the real number x). In
fact, this result holds in all dimension (with 2 replaced with N in the expression). See
also [52].

Figure 6. Solution u for g = χ[0,1]2

The characteristic of a square The case of the characteristic of a square is a bit
different. The level sets Es need to solve (2.17). From the Euler-Lagrange equation
(see also (2.11)) it follows that the curvature of ∂Es ∩ C is (1 − s)/λ. An accurate
study (see also [5, 4, 42]) shows that, if we define (for C = [0, 1]2)

CR =
⋃

x:B(x,R)⊂C

B(x,R)
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and let R∗ be the value of R for which P (CR)/|CR| = 1/R, then for any s ∈ [0, 1],

Es =

{
∅ if s ≥ 1− λ

R∗

Cλ/(1−s) if s ≤ 1− λ
R∗

while letting v(x) = 1/R∗ if x ∈ CR∗ , and 1/R if x ∈ ∂CR, we find

u = (1− λv(x))+ ,

see Fig. 6.

The discontinuity set

We now show that the jump set of uλ is always contained in the jump set of g. More
precisely, we will describe shortly the proof of the following result, which was first
proved in [20]:

Theorem 2.7 (Caselles-C-Novaga). Let g ∈ BV (Ω) ∩ L∞(Ω) and u solve (ROF ).
Then Ju ⊆ Jg (up to a set of zeroHN−1-measure).

Hence, if g is already a BV function, the Rudin-Osher-Fatemi denoising will never
produce new discontinuities.

First, we use the following important regularity result, from the theory of minimal
surfaces [40, 6]:

Proposition 2.8. Let g ∈ L∞(Ω), s ∈ R, and Es be a minimzer of (ROFs). Then
Σ = ∂Es \∂∗Es is a closed set of Hausdorff dimension at mostN−8, while near each
x ∈ ∂∗Es, ∂∗Es is locally the graph of a function of class W 2,q for all q < +∞ (and,
in dimension N = 2, W 2,∞ = C1,1).

It means that outside of a very small set (which is empty if N ≤ 7), then the
boundary of Es is C1, and the normal is still differentiable but in a weaker sense. We
now can show Theorem 2.7.

Proof. The jump set Ju is where several level sets intersect: if we choose (sn)n≥1 a
dense sequence in RN of levels such that En = Esn = {u > sn} are finite perimeter
sets each solving (ROFsn), we have

Ju =
⋃
n6=m

(∂∗En ∩ ∂∗Em) .

Hence it is enough to show that for any n,m with n 6= m,

HN−1((∂∗En ∩ ∂∗Em) \ Jg) = 0

which precisely means that ∂∗En ∩ ∂∗Em ⊆ Jg up to a negligible set. Consider thus a
point x0 ∈ ∂∗En ∩ ∂∗Em such that (without loss of generality we let x0 = 0):
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i. up to a change of coordinates, in a small neighborhood {x = (x1, . . . , xN ) =
(x′, xN ) : |x′| < R , |xN | < R} of x0 = 0, the sets En and Em coincide
respectively to {xN < vn(x′)} and {xN < vm(x′)}, with vn and vm inW 2,q(B′)
for all q < +∞, where B′ = {|x′| < R}.

ii. the measure of the contact set {x′ ∈ B′ : vn(x′) = vm(x′)} is positive.
We assume without loss of generality that sn < sm, so that Em ⊆ En, hence

vn ≥ vm in B′.
From (ROFs), we see that the function vl, l ∈ {n,m}, must satisfy

∫
B′

[√
1 + |∇vl(x′)|2 +

∫ vl(x′)

0
(sl − g(x′, xN )) dxN

]
dx′

≤
∫
B′

[√
1 + |∇vl(x′) + tφ(x′)|2 +

∫ vl(x′)+tφ(x′)

0
(sl − g(x′, xN )) dxN

]
dx′

for any smooth φ ∈ C∞c (B′) and any t ∈ R small enough, so that the perturbation
remains in the neighborhood of x0 where Esn and Esm are subgraphs. Here, the first
integral corresponds to the perimeter of the set {xN < vl(x′)+tφ(x′)} and the second
to the volume integral in (ROFs).

We consider φ ≥ 0, and compute

lim
t→0,
t>0

1
t

(∫
B′

[√
1 + |∇vl(x′) + tφ(x′)|2 +

∫ vl(x′)+tφ(x′)

0
(sl − g(x′, xN )) dxN

]
dx′

−
∫
B′

[√
1 + |∇vl(x′)|2 +

∫ vl(x′)

0
(sl − g(x′, xN )) dxN

]
dx′

)
≥ 0 ,

we find that vl must satisfy∫
B′

∇vl(x′) · ∇φ(x′)√
1 + |∇vl(x′)|2

+ (sl − g(x′, vl(x′) + 0))φ(x′) dx′ ≥ 0 .

Integrating by parts, we find

−div
∇vl√

1 + |∇vl|2
+ sl − g(x′, vl(x′) + 0)) ≥ 0 , (2.18)

and in the same way, taking this time the limit for t < 0, we find that

−div
∇vl√

1 + |∇vl|2
+ sl − g(x′, vl(x′)− 0)) ≤ 0 . (2.19)

Both (2.18) and (2.19) must hold almost everywhere in B′. At the contact points
x′ where vn(x′) = vm(x′), since vn ≥ vm, we have ∇vn(x′) = ∇vm(x′), while
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D2vn(x′) ≥ D2vm(x′) at least at a.e. contact point x′. In particular, it follows

−div
∇vn√

1 + |∇vn|2
(x′) ≤ −div

∇vm√
1 + |∇vm|2

(x′) (2.20)

If the contact set {vn = vm} has positive ((N − 1)-dimensional) measure, we can
find a contact point x′ such that (2.20) holds, as well as both (2.18) and (2.19), for both
l = n and l = m. It follows

g(x′, vn(x′) + 0)− sn ≤ g(x′, vm(x′)− 0)− sm

and denoting xN the common value vn(x′) = vm(x′), we get

0 < sm − sn ≤ g(x′, xN − 0)− g(x′, xN + 0) .

It follows that x = (x′, xN ) must be a jump point of g (with the values below xN
larger than the values above xN , so that the jump occurs in the same direction for g
and u). This concludes the proof: the possible jump points outside of Jg are negligible
for the (N − 1)-dimensional measure. The precise meaning of g(x′, xN ± 0) and the
relationship to the jump of g is rigorous for a.e. x′, see the “slicing properties of BV
functions” in [7].

Remark We have also proved that for almost all points in Ju, we have νu = νg, that
is, the orientation of the jumps of u and g are the same, which is intuitively obvious.

Regularity

The same idea, based on the control on the curvature of the level sets which is pro-
vided by (ROFs), yields further continuity results for the solutions of (ROF ). The
following theorems are proved in [21]:

Theorem 2.9 (Caselles-C-Novaga). Assume N ≤ 7 and let u be a minimizer. Let
A ⊂ Ω be an open set and assume that g ∈ C0,β(A) for some β ∈ [0, 1]. Then, also
u ∈ C0,β(A′) for any A′ ⊂⊂ A.

Here, A′ ⊂⊂ A means that A′ ⊂ A. The proof of this result is quite complicated
and we refer to [21]. The reason for restriction on the dimension is clear from Propo-
sition 2.8, since we need here in the proof that ∂Es is globally regular for all s. The
next result is proved more easily:

Theorem 2.10 (Caselles-C-Novaga). Assume N ≤ 7 and Ω is convex. Let u solve
(ROF ), and suppose g is uniformly continuous with modulus of continuity ω (that
is, |g(x) − g(y)| ≤ ω(|x − y|) for all x, y, with ω continuous, nondecreasing, and
ω(0) = 0). Then u has the same modulus of continuity.

For instance, if g is globally Lipschitz, then also u is with same constant.
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Proof. We only sketch the proof: by approximation we can assume that Ω is smooth
and uniformly convex, and, as well, that g is smooth up to the boundary.

We consider two levels s and t > s and the corresponding level sets Es and Et. Let
δ = dist(Ω ∩ ∂Es,Ω ∩ ∂Et) be the distance between the level sets s and t of u. The
strict convexity of Ω and the fact that ∂Es are smooth, and orthogonal to the boundary
(because z ·ν = 0 on ∂Ω in (2.11)), imply that this minimal distance cannot be reached
by points on the boundary ∂Ω, but that there exists xs ∈ ∂Es ∩Ω and xt ∈ ∂Et ∩Ω,
with |xs − xt| = δ. We can also exclude the case δ = 0, by arguments similar to the
previous proof.

Let e = (xs − xt)/δ. This must be the outer normal to both ∂Et and ∂Es, respec-
tively at xt and xs.

The idea is to “slide” one of the sets until it touches the other, in the direction e.
We consider, for ε > 0 small, (Et + (δ + ε)e) \ Es, and a connected component
Wε which contains xs on its boundary. We then use (ROFt), comparing Et with
Et \ (Wε − (δ + ε)e) and Es with Es ∪Wε:

Per(Et; Ω) +
∫
Et

(t− g(x)) dx

≤ Per(Et \ (Wε − (δ + ε)e); Ω) +
∫
Et\(Wε−(δ+ε)e)

(t− g(x)) dx

Per(Es; Ω) +
∫
Es

(s− g(x)) dx

≤ Per(Es ∪Wε; Ω) +
∫
Es∪Wε

(s− g(x)) dx.

(2.21)
Now, if we let Lt = HN−1(∂Wε \ ∂Es) and Ls = HN−1(∂Wε ∩ ∂Es), we have that

Per(Et \ (Wε − (δ + ε)e),Ω) = Per(Et,Ω)− Lt + Ls

and
Per(Es ∪Wε,Ω) = Per(Es,Ω) + Lt − Ls ,

so that, summing both equations in (2.21), we deduce∫
Wε−(δ+ε)e

(t− g(x)) dx ≤
∫
Wε

(s− g(x)) dx.

Hence,

(t− s)|Wε| ≤
∫
Wε

(g(x+ (δ + ε)e)− g(x)) dx ≤ |Wε|ω(δ + ε) .

Dividing both sides by |Wε| > 0 and sending then ε to zero, we deduce

t− s ≤ ω(δ) .

The regularity of u follows. Indeed, if x, y ∈ Ω, with u(x) = t > u(y) = s, we find
|u(x) − u(y)| ≤ ω(δ) ≤ ω(|x − y|) since δ ≤ |x − y|, δ being the minimal distance
between the level surface of u through x and the level surface of u through y.
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3 Algorithmic issues
3.1 Discrete problem

To simplify, we let now Ω = (0, 1)2 and we will consider here a quite straightforward
discretization of the total variation in 2D, as

TVh(u) = h2
∑
i,j

√
|ui+1,j − ui,j |2 − |ui,j+1 − ui,j |2

h
. (3.1)

Here in the sum, the differences are replaced by 0 when one of the points is not on the
grid. The matrix (ui,j) is our discrete image, defined for instance for i, j = 1, . . . , N ,
and h = 1/N is the discretization step: TVh is therefore an approximation of the 2D
total variation of a function u ∈ L1((0, 1)2) at scale h > 0.

It can be shown in many ways that (3.1) is a “correct” approximation of the Total
Variation J introduced previously and we will skip this point. The most simple result
is as follows:

Proposition 3.1. Let Ω = (0, 1)2, p ∈ [1,+∞), and G : Lp(Ω) → R a continuous
functional such that limc→∞G(c + u) = +∞ for any u ∈ Lp(Ω) (this coerciveness
assumption is just to ensure the existence of a solution to the problem, and other situa-
tions could be considered). Let h = 1/N > 0 and uh = (ui,j)1≤i,j≤N , identified with
uh(x) =

∑
i,j χ((i−1)h,ih)×((j−1)h,jh)(x), be the solution of

min
uh

TVh(uh) + G(uh) .

Then, there exists u ∈ Lp(Ω) such that some subsequence uhk → u as k → ∞ in
L1(Ω), and u is a minimizer in Lp(Ω) of

J(u) + G(u) .

But more precise results can be shown, including with error bounds, see for instance
recent works [50, 45].

In what follows, we will choose h = 1 (introducing h yields in general to straight-
forward changes in the other parameters). Given u = (ui,j) a discrete image (1 ≥
i, j,≥ N ), we introduce the discrete gradient

(∇u)i,j =

(
(D+

x u)i,j
(D+

y u)i,j

)
=

(
ui+1,j − ui,j
ui,j+1 − ui,j

)
except at the boundaries: if i = N , (D+

x u)N,j = 0, and if j = N , (D+
y u)i,N = 0.

Let X = RN×N be the vector space where u lives, then ∇ is a linear map from X
to Y = X × X , and (if we endow both spaces with the standard Euclidean scalar
product), its adjoint∇∗, denoted by −div , and defined by

〈∇u, p〉Y = 〈u,∇∗p〉X = −〈u, div p〉X
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for any u ∈ X and p = (pxi,j , p
y
i,j) ∈ Y , is given by the following formulas

(div p)i,j = pxi,j − pxi−1,j + pyi,j − p
y
i,j−1

for 2 ≤ i, j ≤ N − 1, and the difference pxi,j − pxi−1,j is replaced with pxi,j if i = 1,
and with −pxi−1,j if i = N , while pyi,j − p

y
i,j−1 is replaced with pyi,j if j = 1 and with

−pyi,j−1 if j = N .
We will focus on algorithms for solving the discrete problem

min
u∈X

λ‖∇u‖2,1 +
1
2
‖u− g‖2 (3.2)

where ‖p‖2,1 =
∑

i,j

√
(pxi,j)2 + (pyi,j)2. In this section and all what follows, J(·)

will now denote the discrete total variation J(u) = ‖∇u‖2,1 (and we will not speak
anymore of the continuous variation introduced in the previous section). The prob-
lem (3.2) can also be written in the more general form

min
u∈X

F (Au) + G(u) (3.3)

where F : Y → R+ and G : X → R are convex functions and A : X → Y is a linear
operator (in the discretization of (ROF ),A = ∇, F (p) = ‖p‖2,1,G(u) = ‖u−g‖2

2λ).
It is essential here that F,G are convex, since we will focus on techniques of con-

vex optimization which can produce quite efficient algorithms for problems of the
form (3.3), provided F and G have a simple structure.

3.2 Basic convex analysis - Duality

Before detailing a few numerical methods to solve (3.2) let us recall the basics of
convex analysis in finite-dimensional spaces (all the results we state now are true in a
more general setting, and the proofs in the Hilbertian framework are the same). We
refer of course to [67, 31] for more complete information.

Convex functions - Legendre-Fenchel conjugate

Let X be a finite-dimensional, Euclidean space (or a Hilbert space). Recall that a
subset C ⊂ X of X is said to be convex if and only if for any x, x′ ∈ C, the segment
[x, x′] ⊂ C, that is, for any t ∈ [0, 1],

tx + (1− t)x′ ∈ C .

Let us now introduce a similar definition for functions:

Definition 3.2. We say that the function F : X → [−∞,+∞] is
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• convex if and only if for any x, x′ ∈ X , t ∈ [0, 1],

F (tx+ (1− t)x′) ≤ tF (x) + (1− t)F (x′) , (3.4)

• proper if and only if F is not identically −∞ or +∞2

• lower-semicontinuous (l.s.c.) if and only for any x ∈ X and (xn)n a sequence
converging to x,

F (x) ≤ lim inf
n→∞

F (xn) . (3.5)

We let Γ0(X) be the set of all convex, proper, l.s.c. functions on X .

It is well known, and easy to show, that if F is twice differentiable at any x ∈ X ,
then it is convex if and only if D2F (x) ≥ 0 at any x ∈ X , in the sense that for any
x, y,

∑
i,j ∂

2
i,jF (x)yiyj ≥ 0. If F is of class C1, one has that F is convex if and only

if
〈∇F (x)−∇F (y), x− y〉 ≥ 0 (3.6)

for any x, y ∈ X .
For any function F : X → [−∞,+∞], we define the domain

domF = {x ∈ X : F (x) < +∞}

(which is always a convex set if F is) and the epigraph

epiF = {(x, t) ∈ X × R : t ≥ F (x)} ,

which is convex if and only if F is.
Then, it is well-known that F is l.s.c. if and only if for any λ ∈ R, {F ≤ λ} is

closed, if and only if epiF is closed in X ×R. [Indeed, if F is l.s.c. and (xn) ∈ {F ≤
λ} converges to x, then F (x) ≤ lim infn F (xn) ≤ λ, so that {F ≤ λ} is closed; if
this set is closed and (xn, tn)n is a sequence if epiF converging to (x, t), then for any
λ > t, (x, t) ∈ {F ≤ λ}, that is F (x) ≤ λ, so that F (x) ≤ t and (x, t) ∈ epiF ; and if
epiF is closed and (xn)n → x, for any t > lim infn F (xn) there exists a subsequence
(xnk) such that (xnk , t) ∈ epiF for each k, so that (x, t) ∈ epiF hence F (x) ≤ t.
We deduce (3.5).]

Hence, we have F ∈ Γ0 if and only if epiF is closed, convex, nonempty and differs
from X × R.

Another standard fact is that in finite dimension, any convex F is locally Lipschitz
in the interior of its domain.

2 notice that if F is convex, F ≡ −∞ if and only if there exists x ∈ X s.t. F (x) = −∞, so that a
proper convex function has values in R ∪ {+∞}.
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Definition 3.3 (Legendre-Fenchel conjugate). We define the Legendre-Fenchel conju-
gate F ∗ of F for any p ∈ X by

F ∗(p) = sup
x∈X
〈p, x〉 − F (x) .

It is obvious that F ∗ is convex, l.s.c. (as a supremum of linear, continuous func-
tions). It is also proper if F is convex and proper, as we will soon see: hence it maps
Γ0 into itself (and in fact, onto).

The following is the most classical and fundamental result of convex duality:

Theorem 3.4. Let F ∈ Γ0: then F ∗∗ = F .

Before proving the theorem, let us state an important separation result on which it
relies:

Theorem 3.5. Let X be an Euclidean space, C ⊂ X be a closed convex set, and
x 6∈ C. Then there exists a closed hyperplane separating strictly x and C, that is:
there exists p ∈ X and α ∈ R such that

〈p, x〉 > α ≥ 〈p, z〉

for any z ∈ C.

This result is in its most general form a consequence of the Hahn-Banach theorem,
however, in the finite dimensional, or Hilbert setting, its proof is much easier than in
the general setting:

Proof. Let x̄ ∈ C be the projection of x onto C:

x̄ = arg min
{
‖x− x′‖2 : x′ ∈ C

}
.

The proof that it exists is standard and relies on the “parallelogram identity” ‖a+b‖2+
‖a− b‖2 = 2(‖a‖2 + ‖b‖2), and the fact that X is complete.

Let p = x− x̄. We know that for any z ∈ C,

〈x− x̄, z − x̄〉 ≤ 0

as is deduced from a straightforward first variation argument. Hence

〈p, z〉 ≤ α = 〈p, x̄〉 .

On the other hand,
〈p, x〉 = 〈p, x̄〉 + ‖p‖2 > α .

Now we can prove Theorem (3.4):
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Proof. First, for any x and p, F ∗(p) ≥ 〈p, x〉−F (x), so that 〈p, x〉 − F ∗(p) ≤ F (x),
and taking the sup over p we get that F ∗∗(x) ≤ F (x). Hence we need to show the
opposite inequality.

To simplify, we prove it only in case domF = X . If domF 6= X , then it is easy to
approximate F as a sup of functions (Fδ)δ>0 in Γ0 (for instance, the Moreau-Yosida
regularizations Fδ(x) = miny F (y) + ‖x− y‖2/(2δ) ≤ F (x)) and recover the result.

Let now (x, t) 6∈ epiF , which is closed and convex. By the separation theorem,
there exists p, s, α such that

〈p, x〉 + st > α ≥ 〈p, z〉 + su

for any (z, u) ∈ epiF . Sending u→ +∞ we see that s ≤ 0. On the other hand, since
we have assumed domF = X , x ∈ domF and t < F (x), so that

〈p, x〉 + st > α ≥ 〈p, x〉 + sF (x) ,

and it follows s > 0.
Now for any z, 〈p

s
, x
〉

+ t <
α

s
≤
〈p
s
, z
〉

+ F (z)

we deduce that
〈p
s , x
〉

+ t < −F ∗(−p/s), so that t < F ∗∗(x). It follows that F (x) ≤
F ∗∗(x).

Subgradient

The definition is already given in Definition 2.2. Now F is a convex function defined
on a finite dimensional space X .

Definition 3.6. For x ∈ X ,

∂F (x) = {p ∈ X : F (y) ≥ F (x) + 〈p, y − x〉 ∀y ∈ domF}

and dom ∂F = {x : ∂F (x) 6= ∅} ⊂ domF .

If F is differentiable at x, then ∂F (x) = {∇F (x)}.
Now, for any p, x, 〈p, x〉 ≤ F (x) + F ∗(p). But p ∈ ∂F (x) implies that

〈p, x〉 − F (x) ≥ 〈p, y〉 − F (y)

for all y, hence
〈p, x〉 − F (x) ≥ F ∗(p) .

Hence, one deduces the Legendre-Fenchel identity:
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Proposition 3.7. For any F convex, p ∈ ∂F (x) if and only if

〈p, x〉 − F (x) = F ∗(p) .

Moreover if F ∈ Γ0, so that F ∗∗ = F , then this is equivalent to x ∈ ∂F ∗(p).

We have the following obvious proposition:

Proposition 3.8. Let F be convex, then x ∈ arg minX F if and only if 0 ∈ ∂F (x).

Proof. indeed, this is equivalent to F (y) ≥ F (x) + 〈0, y − x〉 for all y.

The following trickier to show, but we skip the proof:

Proposition 3.9. Let F,G be convex and assume int(domG) ∩ domF 6= ∅: then
∂(F +G) = ∂F + ∂G.

The inclusion ∂(F + G) ⊃ ∂F + ∂G always holds. For a proof, see [31]. The
condition that int(domG)∩domF 6= ∅ (which is always true, for instance, if domG =
X), is way too strong in finite dimension, where one may just assume that the relative
interior of the domains of G and F is not empty [67]. If not, the result might not
be true, as shows the example where F (x) = +∞ if x < 0, −

√
x if x ≥ 0, and

G(x) = F (−x).

Monotonicity The subgradient of a convex function F is an example of “monotone”
operator (in the sense of Minty): clearly from the definition we have for any x, y and
any p ∈ ∂F (x), q ∈ ∂F (y),

〈p− q, x− y〉 ≥ 0. (3.7)

(Just sum the two inequalities F (y) ≥ F (x) + 〈p, y − x〉 and F (x) ≥ F (y) +
〈q, x− y〉.) Compare with (3.6). This is an essential property, as numerous algorithms
have been designed (mostly in the 70’s) to find the zeroes of monotone operators and
their numerous variants. Also, a quite complete theory is available for defining and
describing the flow of such operators [70, 19].

The dual of (ROF )

We now can easily derive the “dual” problem of (3.2) (and, in fact, also of (ROF )
since everything we will write here also holds in the Hilbertian setting).

Recall that J denotes now the discrete total variation introduced in (3.2). Let u be a
minimizer: from Propositions 3.8 and 3.9, we have

0 ∈ ∂
(
λJ +

1
2
‖ · −g‖2

)
(u) = λ∂J(u) + u− g .
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(We recover in the discrete setting the same Euler-Lagrange equation as in the contin-
uous setting, see (2.10).)

Hence: (g − u)/λ ∈ ∂J(u), hence from Proposition 3.7, u ∈ ∂J∗((g − u)/λ),
hence v = (g − u)/λ solves

0 ∈ v − g

λ
+

1
λ
∂J∗(v)

which is exactly the equation which characterizes the minimality for

min
v

1
2

∥∥∥v − g

λ

∥∥∥2
+

1
λ
J∗(v) . (3.8)

Now, what is J∗? This is quite simple: J can (as in the continuous setting) be
defined by duality, indeed,

J(u) = ‖∇u‖2,1 = sup {〈ξ,∇u〉Y : |ξi,j | ≤ 1 ∀i, j}
= sup {− 〈div ξ, u〉X : |ξi,j | ≤ 1 ∀i, j}

= sup
p
〈p, x〉X − H(p)

where, letting
K = {p = −div ξ ∈ X : ‖ξi,j‖ ≤ 1 ∀i, j} , (3.9)

we have H(p) = 0 for p ∈ K and H(p) = +∞ if p 6∈ K (H is called the “character-
istic function of K”). Hence J is the Legendre-Fenchel conjugate H∗ of this function
H .

Since K is closed and convex, H ∈ Γ0, so that J∗ = H∗∗ = H . Hence the dual
problem (3.8) is also

min
v∈K

1
2

∥∥∥v − g

λ

∥∥∥2
= min
|ξ|i,j≤1

1
2

∥∥∥div ξ +
g

λ

∥∥∥2
(3.10)

and we recover u by letting u = g − λv = g + λdiv ξ.
We will see that this problem has a structure which makes it nicer (easier) to solve

than the primal problem (3.2).

“Proximal” operator

We end this section by introducing more generally the “proximal” operator associated
to a function F ∈ Γ0. For any F ∈ Γ0 it is not hard to show that for any δ > 0,
problem

min
y
δF (y) +

1
2
‖y − x‖2

always have a solution, which is unique. The equation for this solution y is

δ∂F (y) + y − x 3 0



42

hence

y = (I + δ∂F )−1(x) (3.11)

is well-defined and uniquely defined. The mapping (I + δ∂F )−1 is called the “prox-
imal map” of δF and sometimes denoted proxδF . The following identity, which is
exactly our derivation of the dual problem in the previous section, is due to Moreau:

x = (I + δ∂F )−1(x) + δ

(
I +

1
δ
∂F ∗

)−1 (x
δ

)
, (3.12)

and for δ = 1 it reduces to:

x = (I + ∂F )−1(x) + (I + ∂F ∗)−1(x) .

Examples If F (x) = αx2/2 for some α > 0, we check that

(I + δ∂F )−1(x) =
x

1 + δα
.

The reader may check that this is coherent with (3.12) and the fact that F ∗(p) =
p2/(2α).

If F (x) is the characteristic function of a closed, convex set C ⊂ X , that is F (x) =
0 if x ∈ C and +∞ else, then

(I + δ∂F )−1(x) = ΠC(x) ,

the Euclidean projection on C of x, which actually minimizes ‖x−y‖2 over all y ∈ C.
On the other hand, it follows from (3.12) that

ȳ =
(
I +

1
δ
∂F ∗

)−1

(y) = y − 1
δ

ΠC(δy)

which is some kind of “shrinkage” or “soft-thresholding” of y from which one removes
the projection on (1/δ)C. The point ȳ is the minimizer of

min
z

‖z − y‖
2

2

+
1
δ
hC(z)

where F ∗ = hC is the support function of C, defined by hC(z) = supx∈C 〈z, x〉.

In the sequel we introduce a few possible algorithms to solve (3.2) or (3.10).
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3.3 Gradient descent

Consider first an elementary problem which is to minimize over X a function F ∈ Γ0,
which is differentiable and such that ∇F is Lipschitz with some constant L (one says
that F is C1,1).

It is not the case for (3.2), but it is the case for the approximation

Fε(u) =
∑
i,j

√
ε2 + |(∇u)i,j |2 +

1
2
‖u− g‖2

for any ε > 0 (and it is clear that as ε → 0, this problem will approximate the other
one). In this case,∇Fε is Lipschitz with a constant of order 1/ε.

Then, the most straigthforward approach is the “gradient descent”: choose h > 0 a
step, any x0 ∈ X and let for any n ≥ 0

un+1 = un − h∇F (un).

(of course the step h needs not, and should not, be constant, but for simplicity we stick
to this case).

This method is not very efficient (and should not be used!). A complexity bound
can be derived:

Theorem 3.10 (Nesterov [59]). Assume h ∈ (0, 2/L): then F (uk)→ minF = F (x∗)
as k →∞. The best rate of convergence is obtained for h = 1/L, and is

F (uk)− F ∗ ≤ 2L‖u0 − u∗‖2

k + 4

Observe that the estimate depends on the quality of the initial guess. For a proof,
see [59], Thm 2.1.14 and Cor. 2.1.2.

For solving the approximation Fε, one sees that the step h should be taken of order
ε. This approach cannot be used to solve the dual problem (3.10): indeed, although
the objective function is quite smooth in this case (and the gradient,∇(div p+g/λ), is
Lipschitz with constant L ≤ 8), it has to be minimized on a convex set (hence with a
constraint). For this reason, we need to introduce constrained variants of the Gradient
Descent algorithm.

Splitting, and Projected gradient descent

We follow in this presentation the paper of Beck and Teboulle [13]. Assume we want
to solve

min
x∈X

F (x) +G(x)
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where: F is C1,1 (∇F is L−Lipschitz), and G is “simple”, meaning that the “prox”
(I + h∂G)−1 is easy to compute. This is for instance the case for the dual prob-
lem (3.10): in this case

F (p) =
1
2
‖div p+ g‖2 and G(p) =

{
0 if ‖pi,j‖ ≤ 1 ∀i, j
+∞ else.

We see that (see section 3.2)

(I + h∂G)−1(p) = arg min
q

1
2
‖q − p‖2 + hG(q) = ΠC(p)

where ΠC denotes the orthogonal projection onto {p : ‖pi,j‖ ≤ 1 ∀i, j} and is
straightforward to compute.

This is an example of “splitting” (introduced first by Douglas and Rachford, see
for instance [48] for a general form): one solves successively one step of the gradient
descent of F (in an explicit way), and one step of the gradient descent of G (in an
implicit way), in order to obtain a “full” gradient descent of F + G. Hence the term
“forward-backwards” splitting, see [27].

In case G is, like here, a characteristic function and (I + h∂G)−1 is a projection),
then it reduces to a “projected gradient algorithm”: one does one explicit step of de-
scent in F , and then reproject the point on our constraint.

The resulting algorithm is hence as follows: we choose x0 ∈ X , and let

xn+1 = (I + h∂G)−1(xn − h∇F (xn)) (3.13)

for a given, fixed step h > 0. One can also write the iteration xn+1 ∈ xn−h(∇F (xn)+
∂G(xn+1)) which makes apparent the forward-backwards splitting.

Again, this algorithm is quite slow, but it is interesting to understand the intuitive
idea behind it. In fact, if∇F is L−Lipschitz, we can write for any x, y ∈ X

F (y) = F (x) +
〈∫ 1

0
∇F (x+ t(y − x)) dt, y − x

〉
≤ F (x) + 〈∇F (x), y − x〉 +

L

2
‖y − x‖2 (3.14)

so that the parabola y 7→ QL(y, x) = F (x) + 〈∇F (x), y − x〉 + L
2 ‖y − x‖2 ap-

proximates from above the function F . Now, assume x = xn and we replace the
minimization of F , at step n, with the minimization of QL(y, xn) w.r. y. Then, we
find y = xn − (1/L)∇F (xn), that is, a step of the gradient descent algorithms with
step 1/L. This is a way to interpret that algorithm, and provides a natural way to
extend it to the minimization of F +G: indeed, we can now let

QL(y, x) = F (x) + 〈∇F (x), y − x〉 +
L

2
‖y − x‖2 + G(y)
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and we see, as before, that F (y) +G(y) ≤ QL(y, x) for any x, y.
Now, consider the problem miny QL(y, xn). The equation is

∇F (xn) + L(y − xn) + ∂G(y) 3 0

and we find that the solution is nothing else than the iterate xn+1 given by (3.13),
provided h = 1/L.

The following is Lemma 2.3 in [13]

Lemma 3.11. Let x ∈ X , and h > 0, and let y = arg minQ1/h(·, x) be such that
F (y) + G(y) ≤ Q1/h(y, x) (which is true as soon as h < 1/L, by (3.14)). Then for
any z ∈ X

(F (z) +G(z))− (F (y) +G(y))

≥ 1
2h
‖x− y‖2 +

1
h
〈x− z, y − x〉 =

1
2h

(‖y − z‖2 − ‖x− z‖2) . (3.15)

Proof. By assumption,

(F (z) +G(z)) − (F (y) +G(y)) ≥ F (z) +G(z) − Q1/h(y, x) . (3.16)

Also, F (z) ≥ F (x) + 〈∇F (x), z − x〉, while G(z) ≥ G(y) + 〈p, z − y〉 where p =
(x− h∇F (x)− y)/h ∈ ∂G(y). Hence

F (z) +G(z) ≥ F (x) +G(y) + 〈∇F (x), z − x〉+ 〈p, z − y〉 .

We deduce from (3.16) that

(F (z) +G(z))− (F (y) +G(y))

≥ F (x) +G(y) + 〈∇F (x), z − x〉+ 〈p, z − y〉

− F (x) − 〈∇F (x), y − x〉 − 1
2h
‖y − x‖2 − G(y)

= 〈∇F (x) + p, z − y〉 − 1
2h
‖y − x‖2

=
1
h
〈x− y, z − y〉 − 1

2h
‖y − x‖2 =

1
2h
‖y − x‖2 +

1
h
〈x− y, z − x〉 .

This allows to prove the following result (see Beck and Teboulle [13], Thm 3.1):

Theorem 3.12. Let (xn)n satisfy (3.13), and h = 1/L. Then

(F (xk) +G(xk))− (F (x∗) +G(x∗)) ≤ L‖x0 − x∗‖2

2k
(3.17)

for any k ≥ 1, and for any solution x∗ of the problem.
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Hence the rate of convergence is essentially the same as the gradient descent’s.

Proof. We follow the very elegant proof of Beck and Teboulle [13]. First use (3.15)
with z = x∗, x = xn, h = 1/L:

2
L

((F (x∗) +G(x∗))− (F (xn+1) +G(xn+1))) ≥ ‖xn+1 − x∗‖2 − ‖xn − x∗‖2 ,

which we sum from n = 0 to k − 1:

2
L

(
k(F (x∗) +G(x∗))−

k∑
n=1

(F (xn) +G(xn))

)
≥ ‖xk − x∗‖2 − ‖x0 − x∗‖2 .

(3.18)
We use (3.15) again with z = x = xn, h = 1/L:

2
L

((F (xn) +G(xn))− (F (xn+1) +G(xn+1))) ≥ ‖xn+1 − xn‖2 ,

which we multiply by n before summing from 0 to k − 1:

2
L

(
k−1∑
n=0

n(F (xn) +G(xn))−
k∑
n=1

(n− 1)(F (xn) +G(xn))

)
=

2
L

(
k−1∑
n=1

(F (xn) +G(xn))− (k − 1)(F (xk) +G(xk))

)
≥

k−1∑
n=0

n‖xn+1 − xn‖2 .

We add this last equation to (3.18) and find:

2
L

(
k(F (x∗) +G(x∗))− k(F (xk) +G(xk))

)
≥ ‖xk − x∗‖2 − ‖x0 − x∗‖2 +

k−1∑
n=0

n‖xn+1 − xn‖2 ≥ −‖x0 − x∗‖2

from which (3.17) follows.

Hence: this provides a convergent (but slow) way to minimize the dual problem
(and many variants).

Improvements: optimal first-order methods

The rate of convergence of theses methods are slow. It is shown by Nesterov [59]
that first order method can theoretically not achieve a better rate of convergence than
C/k2 (after k iterations). A few variants of the previous methods achieve such a rate
of convergence and are recommended in the implementations.
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Nesterov/Beck and Teboulle’s acceleration In [13] the following iteration is pro-
posed, as an variant of an acceleration for the gradient descent proposed by Nesterov
in [58]: let x0 ∈ X = RN , y1 = x0, t1 = 1, and:

xk =
(
I +

1
L
∂G

)−1(
yk − 1

L
∇F (yk)

)
,

tk+1 =
1 +

√
1 + 4t2k
2

, yk+1 = xk +
tk − 1
tk+1

(xk − xk−1) .

Then:

Theorem 3.13 (Beck and Teboulle [13, Thm. 4.1]). For any minimizer x∗,

F (xk) +G(xk)− (F (x∗) +G(x∗)) ≤ 2L‖x0 − x∗‖2

(k + 1)2 .

Yu. Nesterov himself also proposed in improvement of his earlier algorithm for non-
smooth problems in [60], which is similar in spirit but a bit more complex to describe.
See also [15] for similar accelerations for a smaller class of problems.

3.4 Augmented Lagrangian approaches

Another class of methods for solving (3.2) are the “augmented Lagrangian” methods,
also known as “split Bregman” iterations, or “Alternating directions method of multi-
pliers”

The basic idea is as follows: instead of solving (3.2), we solve the constrained
problem

min
p=∇u

λ‖p‖2,1 +
1
2
‖u− g‖2 .

Then, to enforce the constraint, we use an augmented Lagrangian approach, which
consists in introducing

Lα(p, u, µ) = ‖p‖2,1 +
1
2
‖u− g‖2 + 〈µ, p−∇u〉 +

α

2
‖p−∇u‖2

where here, µ ∈ Y is a Lagrange multiplier for the constraint p = ∇u. The method
consists then in minimizing alternatively L w.r. p, u, and maximizing w.r. µ:

uk+1 = arg minu L(pk, u, µk)
pk+1 = arg minp L(p, uk+1, µk)
µk+1 = µk + α(pk+1 −∇uk+1)

and this method is shown to converge. It seems it was first studied by Gabay and
Mercier, 1976, Glowinski and Marrocco, 1975. Then, it was analyzed in a more gen-
eral framework in [30]. See also [32] and the references therein for a recent study on
these approaches.
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3.5 Primal-dual approaches

The last interesting family of algorithms to solve (3.2) are maybe the primal-dual ap-
proaches, or “Arrow-Hurwicz” type methods. The idea goes back to [11], but seems
to be first found in this framework in a paper of Appleton and Talbot [10]. Consider
the formulation (3.3), using Legendre-Fenchel’s duality, it can also be written as:

min
x∈X

max
y∈Y
〈y,Ax〉 − F ∗(y) +G(x) (3.19)

and the idea is to alternate gradient descent in x and ascent in y. Take care that in
some cases, it provides iterations which are almost identical to the iterations provided
by the previous splitting approaches. An important observation is that standard convex
analysis shows that under very weak assumptions, the min and max may be swapped
in (3.19). This is another approach to the dual problem of (3.3), which can be found
by writing

min
x∈X

F (Ax) +G(x) = min
x∈X

max
y∈Y
〈y,Ax〉 − F ∗(y) +G(x)

= max
y∈Y

min
x∈X
〈A∗y, x〉+G(x)− F ∗(y) = max

y∈Y
− (G∗(−A∗y)− F ∗(y)) .

Moreover, one deduces immediately that the quantity

G(x, y) = F (Ax) + G(x) + G∗(−A∗y) − F ∗(y) ,

known as the primal-dual gap, is always nonnegative, and vanishes only if (x̂, ŷ) is a
saddle-point of (3.19), hence satisfying

〈y,Ax̂〉 − F ∗(y) +G(x̂) ≤ 〈ŷ, Ax̂〉 − F ∗(ŷ) +G(x̂) ≤ 〈ŷ, Ax〉 − F ∗(ŷ) +G(x)
(3.20)

for all (x, y) ∈ X × Y .
This suggests the following approach, which consists in performing simultaneously

an approximate gradient descent in x and gradient ascent in y: choose x0, y0, τ, σ > 0
two time-steps, and let

yn+1 = (I + σ∂F ∗)−1(yn + σAxn)
xn+1 = (I + τ∂G)−1(xn − τA∗yn+1)

The scheme, as is, is proposed in a paper of Zhu and Chan [73], with an interesting
(and very efficient) acceleration which is obtained by varying the time-steps, but un-
fortunately no proof of convergence exists. A global study of such schemes is found
in a recent preprint [33].

We have provided recently in [63] the following variant, inspired by a paper of
L. Popov [65]. The algorithm is as follows: we choose x0 = x̄0, y0, and let for each
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n ≥ 0:
yn+1 = (I + σ∂F ∗)−1(yn + σAx̄n)
xn+1 = (I + τ∂G)−1(xn − τA∗yn+1)
x̄n+1 = 2xn+1 − xn

(3.21)

(Observe that the algorithm could also be written with a variable ȳ instead of x̄, and
iterating first in x, then in y.) This is a slight variant of “extragradient” algorithms
(first proposed by G. Korpelevich [44]) and which is know to converge.

This algorithm has been recently presented as a particular case of a more general
algorithm in [33], and a proof of convergence is also given there. It also reduces
trivially to the standard Douglas-Rachford splitting in case A = Id (and probably
if A is invertible), just perform the change of variable vn = yn − xn/τ and check
against the formula proposed in [48, eq. (10)]. We give here an alternate proof of
convergence, which is inspired from [65] and [57]. Actually, we can show convergence
of the iterates to a solution in finite dimension, while in the general case, mimicking
the proof of [57] where A. Nemirovski computes rates of convergence for a general
version of the extragradient algorithm, we find a convergence of a primal-dual gap to
zero, in O(1/n). For practical use, we introduce the partial primal-dual gap

GB1×B2(x, y) = max
y′∈B2

〈
y′, Ax

〉
−F ∗(y′)+G(x) − min

x′∈B1

〈
y,Ax′

〉
−F ∗(y)+G(x′) ,

(G = GX×Y ). Then, as soon as B1 × B2 contains a saddle-point (x̂, ŷ), defined
by (3.20), we have

GB1×B2(x, y) ≥ 〈ŷ, Ax〉 − F
∗(ŷ) +G(x) − 〈y,Ax̂〉 − F ∗(y) +G(x̂) ≥ 0

and it vanishes only if (x, y) is itself a saddle-point.

Theorem 3.14. Let L = ‖A‖ and assume problem (3.19) has a saddlepoint (x̂, ŷ).
Then, if τσL2 < 1 and (xn, x̄n, yn) are defined by (3.21):

(a) For any n,

‖yn − ŷ‖
2σ

2

+
‖xn − x̂‖

2τ

2

≤ C

(
‖y0 − ŷ‖

2σ

2

+
‖x0 − x̂‖

2τ

2
)

(3.22)

where the constant C ≤ (1− τσL2)−1;

(b) If we let xN = (
∑N

=1 x
n)/N and yN = (

∑N
n=1 y

n)/N , for any bounded B1 ×
B2 ⊂ X × Y the restricted gap has the following bound:

GB1×B2(xN , yN ) ≤ C(B1, B2)
n

. (3.23)

Moreover, the weak cluster points of (xN , yN ) are saddle-points of (3.19);
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(c) If the dimension of the spaces X and Y is finite, then there exists a saddle-point
(x∗, y∗) such that xn → x∗ and yn → y∗ (of course, then, also (xn, yn) →
(x∗, y∗)).

The proof of Theorem 3.14 is found in Appendix A.
The estimate (3.23) is relatively weak but seems to show that the method is in some

sense optimal (but slow). However, we’ll see in the next section 3.7 that the conver-
gence can be apparently improved by varying the time-steps and relaxation parame-
ters, as suggested in [73], although we do not have a clear explanation for this (and
it is possible that this acceleration is problem-dependent, as opposed to the result of
Theorem 3.13).

Observe that if F ∗(y)/|y| → ∞ as |y| → ∞, then for any R > 0, F ∗(y) ≥ R|y|
for y large enough which yields that domF ⊂ B(0, R). Hence F has full domain. It
is classical that in this case, F is locally Lipschitz in Y .

One checks, then, that

max
y∈Y
〈y,Axn〉 − F ∗(y) +G(xn) = F (Axn) +G(xn)

is reached at some y ∈ ∂F (Axn), which is globally bounded thanks to (3.22). It
follows from (3.23) that F (Axn) + G(xn) − (F (Ax̄) + G(x̄)) ≤ C/n for some
constant depending on the starting point (x0, y0), F and L. In the same way, if
lim|x|→∞G(x)/|x| → ∞, we have F ∗(yn)+G∗(−A∗yn)− (F ∗(ŷ)+G∗(−A∗ŷ)) ≤
C/n. If both F ∗(y)/|y| and G(x)/|x| diverge as |y| and |x| go to infinity, then the
global gap G(xn, yn) ≤ C/n.

It is easy to check that this approach is useful for many variants of (3.2) or similar
discretizations of (2.1). We leave this as an exercise to the reader, see also the examples
in section 3.7.

3.6 Graph-cut techniques

A last approach to solve (3.2) (or, in fact, a slight variant) is to use “graph-cuts”
or “maximal flow” algorithms [1]. It has been noticed long ago [62] that maxi-
mal flow/minimum cut techniques could be used to solve discrete problems of the
form (2.1), that is, to compute finite sets minimizing a discrete variant of the perimeter
and an additional external field term.

This approach has gained in popularity in the past ten years, mostly because of
incredibly fast algorithms, specially coined for image processing applications, see in
particular [16].

Combined with the discrete counterpart of Proposition 2.6, it leads to efficient tech-
niques for solving (only) the denoising problem (ROF ) in the discrete setting. In fact,
although this approach is strictly limited to problems of the form

min
u∈RN×N

J(u) +
∑
i,j

Ψi,j(ui,j)
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with each function Ψi,j convex, and J involving pairwise interactions,3 such as

J(u) =
∑
i,j

|ui+1,j − ui,j |+ |ui,j+1 − ui,j | ,

an algorithm described in a paper by D. Hochbaum [41] provides a way to solve exactly
(up to machine precision) this minimization for simple terms Ψi,j(ui,j) such as (ui,j−
gi,j)2.

We will not describe this approach in these notes, and refer to [23], and the refer-
ences therein, for details.

3.7 Comparisons of the numerical algorithms

It is of course naive to believe that one single algorithm will fulfill the needs of
all inverse problems which can be regularized by the total variation. However, the
method (3.21) has the advantage of being easy to adapt to many different situations,
and provide good results in most cases. Clearly, research should then focus on im-
proving the numerical methods specifically for each particular applications, once it
has been checked that the approach was efficient. In the following, we will present
a comparison of the algorithms discussed in the previous sections for computing the
minimizer of the discrete (ROF ) problem (3.2). Besides this, we will also compare
different discrete approximations of the total variation including anisotropic approxi-
mations and upwind schemes.

In order to evaluate the performance of each algorithm, we used the following pro-
cedure. First, we ran the proposed modified extragradient method (3.21) for a large
number of iterations (10000) to generate the ground truth solution (the primal dual gap
was always less then 10−6). Then, we ran the different algorithms until the root mean
squared error (RMSE) of the current iterate to the ground truth solution was less than
tol = 10−3.

P-GD Primal, gradient descend, ε = 0.001

D-PGD Dual, projected gradient descend

D-BT Dual, fast iterative shrinkage thresholding algorithm [13]

PD-AL Primal-dual, augmented Lagrangian approach [32], α = 20

PD-ME Primal-dual, modified extragradient, τ = 0.01

PD-MEG Primal-dual, modified extragradient, GPU version, τ = 0.01

PD-ZC Primal-dual, Arrow-Hurwitz method, varying steps [73]

GC-8(16) Graph-cut, 8(16)-connected graph, 8-bit accuracy [23]

Table 1. Explanation of the algorithms of the performance evaluation.

3 In fact, slightly more complex situations can be considered, see for instance [43].
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Table 1 gives an overview of the algorithms and parameter settings we used in our
performance evaluation. All algorithms were implemented in pure Matlab, except for
the graph-cut algorithm, whose main routine was implemented in optimized C/C++
(see [23] for more details). In addition, we implemented an parallel version of the mod-
ified extragradient algorithm on the (graphics processing unit) GPU using the CUDA
framework. Executed on a Nvidia Tesla C1060 GPU, this results in a dramatic speedup
of approximately 200 compared to the pure Matlab implementation. Note that on the
other hand, an efficient parallel implementation of graph-cut algorithms is still an open
problem. It can therefore be expected that algorithms that can be executed in parallel
will play an important role in future. Finally, we note that since graph-cut algorithms
compute the exact solution with respect to a discretized (8 Bit) solution space, their re-
sults are not directly compareable to those of the continuous optimization algorithms.

Figure 7 shows the input image and results of our evaluation. The first row shows
the clean and noisy input images and the second row shows results for different values
of the regularization parameter λ. In the last row we provide a comparison between
the graph-cut algorithms and the continuous minimization algorithms for λ = 1. The
graph cut algorithm was executed using a 8- and a 16-connected graph. The modified
extragradient method was executed using the simple forward differences approxima-
tion (see (3.1)) and a more sophisticated upwind scheme proposed in [24]. One can see
that for a 8-connected graph, the so-called metrication errors of graph-cut algorithms
are clearly visible. For a 16-connected graph, the results are very close to those of
the continuous algorithms. Comparing the results of the continuous algorithms, one
can observe that the upwind scheme delivers sharp edges almost independend of the
edge orientation, whereas the simple forward differences approximation exhibits some
blurring at certain edge orientations.

λ 1/16 1/8 1/4 1/2 1

P-GD 800/20.6 -/- -/- -/- -/-

D-PGD 110/2.57 350/8.93 1120/27.93 3340/86.78 -/-

D-BT 40/1.28 80/2.54 140/4.72 270/8.31 460/15.41

PD-AL 50/1.40 90/2.65 150/4.55 250/7.55 420/12.5

PD-ME 40/1.09 70/2.06 120/3.64 220/6.04 410/10.99

PD-MEG 40/0.005 70/0.009 120/0.016 220/0.029 410/0.053

PD-ZC 20/0.56 50/1.30 90/2.43 150/3.84 300/8.02

GC-8 -/0.59 -/0.67 -/0.79 -/0.95 -/1.31

GC-16 -/1.10 -/1.27 -/1.58 -/2.06 -/2.96

Table 2. Performance evaluation of various minimization algorithms. The entries in the
table refer to [iterations/time (sec)].

Table 2 shows the results of our performance evaluation. The table entries refer
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(a) Clean image (b) Noisy image (σ = 0.05)

(c) λ = 1/16 (d) λ = 1/4 (e) λ = 1

(f) GC-8 (g) GC-16 (h) PD-ME, simple (i) PD-ME, upwind

Figure 7. Results and comparisons of the proposed minimization algorithms. (a) and
(b) show the clean input image of size (256× 256) and a degraded version generated by
adding white Gaussian noise of standard deviation σ = 0.05. (c)-(e) show some results
of the minimization algorithms for different values of the regularization parameter λ.
(f)-(i) show a comparison of different discrete approximations of the total variation. (f)
and (g) are anisotropic polygonial approximations of different order used by the graph
cut techniques. (h) and (i) are more isotropic approximations used by the primal-dual
minimization algorithm.

to the number of iterations the algorithm needed until the RMSE was less than tol.
The second numbers refer to the respective execution time in seconds. If no entry
is present, the algorithm did not meet the convergence criterion within 10000 itera-
tions. At first, one can observe that for larger values of λ the problem gets harder for
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all algorithms. Actually, simple gradient based methods even fail to converge within
10000 iterations for larger values of λ. The PD-ZC algorithm is the fastest iterative
method. It is slightly better than the proposed PD-ME algorithm. However, while the
PD-ME method is proven to converge with a certain rate, a proof of convergence for
the PD-ZC method (if there is one) is still an open problem. Furthermore, while the
PD-ZC method is tailored for minimizing the (ROF ) model, we will see in the next
sections that the PD-ME method is applicable for a much larger class of problems. In-
terestingly, the PD-AL algorithm, which is often considered to be the most competing
algorithm for minimizing the (ROF ) model, is clearly outperformed by PD-ZC and
PD-ME. The graph-cut algorithms are fast and deliver exact discrete solutions but an
efficient parallelization is still an open problem. In contrast, the continuous PD-ME
algorithm is easy to parallelize and its GPU-based variant yields the overall fastest
method.

4 Applications

4.1 Total variation based image deblurring and zooming

(a) Original image (b) Degraded image (c) Wiener filter (d) TV-deblurring

Figure 8. Motion deblurring using total variation regularization. (a) and (b) show the
clean image and a degraded version containing motion blur of approximately 30 pixels
and Gaussian noise of standard deviation σ = 0.02. (c) is the result of standard Wiener
filtering. (d) is the result of the total variation based deblurring method. Note that the
TV-based method yields visually much more appealing results.

The standard (ROF ) model can be easily extended for image deblurring and digital
zooming.

min
u

{∫
Ω

|Du|+ λ

2

∫
Ω

(Au− f)2 dx

}
(4.1)

where Ω ⊂ R2 is the domain of the image and A is a linear operator. In the case of
image deblurring, A is the blurring kernel. In the case of image zooming, A describes
the downsampling procedure, which is often assumed to be a blurring kernel followed
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by subsampling operator. This problem can be easily rewritten in terms of a saddle-
point problem (3.19).

min
u

max
p,q
〈p,Du〉+ 〈q, Au− f〉 − I‖p‖∞≤1 −

1
2λ
‖q‖2 , (4.2)

which can then be solved by the iterates (3.21).
Figure 8 shows the application of the energy (4.1) to motion deblurring. While the

classical Wiener filter is not able to restore the image the total variation based approach
yields a far better result. Figure 9 shows the application of (4.1) to zooming. On can
observe that total variation based zooming leads to a superresolved image with sharp
boundaries whereas standard bicubic interpolation does not preserve sharp boundaries.

(a) Original images (b) Bicubic interpolation (c) TV-zooming

Figure 9. Image zooming using total variation regularization. (a) shows the original
image and a by a factor of 4 downsampled version. (b) is the result of zooming by
a factor of 4 using bicubic interpolation. (c) is the result of the total variation based
zooming model. One can see that total variation based zooming yields much sharper
image edges.

4.2 Total variation with L1 data fidelity term

Similar to the (ROF ) model, the TV − L1 model [61, 25, 12] is defined as the varia-
tional problem

min
u

{∫
Ω

|Du|+ λ

∫
Ω

|u− f |dx
}

(4.3)

The difference compared to the (ROF ) model is that the squared L2 data fidelity
term has been replaced by the L1 norm. Although the change is small, the TV − L1

model offers some desirable properties. First, it turns out that the TV − L1 model is
more effective than the (ROF ) model in removing impulse noise (e.g. salt and pepper
noise) [61]. Second, the TV − L1 model is contrast invariant. This means that, if u
is a solution of (4.3) for a certain input image f , then cu is also a solution for cf for
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c ∈ R+. Therefore the TV −L1 model has a strong geometrical meaning which makes
it useful for scale-driven feature selection and denoising of shapes.

Being not strictly convex, computing a minimizer of the TV − L1 model is a hard
task. Several methods have been proposed to compute an approximate minimizer using
fixed point iterations based on smoothing [71] or quadratic splitting techniques [12].
Recently, an augmented Lagrangian method has been proposed to compute the exact
minimizer of the TV − L1 model [32]. In order to apply the proposed modified ex-
tragradient method to solve the TV − L1 model, we again rewrite it in terms of a
saddle-point problem (3.19)

min
u

max
p,q
〈p,Du〉+ 〈q, u− f〉 − I{‖p‖∞≤1} − I{|q|∞≤λ} , (4.4)

which can then be solved using the iterates (3.21).
Figure 4.2 shows the resoration of an image containing impulse noise (e.g. salt

and pepper noise). As expected the (ROF ) model can not restore the image without
loosing fine scale details. On the other hand, the TV − L1 model does not give too
much weight to the outliers and hence leads to much better results. This shows that it
is important to use a data term which matches the expected noise model.

4.3 Variational models with possibly nonconvex data terms

The approach in this section is described with more details in the paper [64]. Let us
consider the problem of finding the minimizer of an energy functional F : L1(Ω) →
[0,∞] of the form

min
u

{
F (u) =

∫
Ω

f(x, u(x),∇u(x)) dx
}
, (4.5)

where Ω is a d-dimensional bounded open subset of RN and u : Ω→ R is an unknown
scalar function. For d = 2, Ω is usually assumed to be a rectangular image domain.
The Lagrangian f(x, t, p) is the “core” of the energy functional and is used to model
the characteristics of the energy functional. We will assume here that f(x, t, p) is
continuous in (x, t), and convex in p, but not necessarily in t.

Convex representation

We can introduce a general theoretical framework which is quite classical in the cal-
culus of variations, although not so well-known. The basic concept is the idea of
cartesian currents [38, 39], which consists in taking the whole graph (x, u(x)) of a
function as the “object” to optimize upon, rather than the function u itself. It is related
to the so-called theory of calibration, which was recently brought back to light by Al-
berti et al. in [2], as an approach to characterize the minimizers of the Mumford-Shah
functional [56] by an implicit (and new) convex representation: it allows to actually
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(a) Original image (b) Noisy image

(c) (ROF ) (d) TV − L1

Figure 10. Image denoising in the case of impulse noise. (a) shows the clean image and
(b) is a noisy version which has been corrupted by 25% salt and pepper noise. (c) is
the result of the (ROF ) model. (d) is the result of the TV − L1 model. Note that the
TV − L1 model is able to remove the noise while still preserving some small details.

Figure 11. A one-dimensional function u(x), its two-dimensional subgraph 1u and the
vector field φ(x, t). The function 1u is supposed to be equal to 1 in the gray area and 0
outside.
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characterize (some) minimizers of the Mumford-Shah functional by means of diver-
gence free vector in higher dimensions.

Let us start by considering the subgraph of the function u(x), which is the collection
of all points lying below the function value u(x). Fig. 11 shows an example for a one-
dimensional function u(x) where the subgraph is represented as the gray area. We also
introduce the function 1u(x, t) : Ω× R→ {0, 1} which is the characteristic function
of the subgraph of u(x):

1u(x, t) =

{
1 if u(x) > t

0 otherwise
. (4.6)

Furthermore let us denote by Γu the boundary of 1u(x, t). For the sake of simplicity,
we assume first that u is smooth.

The key idea is now to consider the flux of a vector field φ = (φx, φt) : Ω × R →
RN × R through the boundary Γu.

Φ =
∫

Γu

φ · νΓudHN , (4.7)

where HN denotes the N -dimensional Hausdorff measure. νΓu denotes the inner unit
normal to Γu which is given by

νΓu =
1√

1 + |∇u(x)|2

(
∇u(x)
−1

)
(4.8)

Alternatively, since we have D1u = νΓu · HN on Γu, the flux can be written as

Φ =
∫

Γu

φ · νΓudHN =
∫

Ω×R
φ ·D1u , (4.9)

where the expression D1u denotes the distributional derivative of 1u, which is, in an
integral sense, also well defined for characteristic functions. In the following, it will
turn out that by choosing an appropriate vector field φ, F (u) can be expressed as the
maximal flux of φ through Γu.

Theorem 4.1. For any function u ∈W 1,1(Ω; R) the functional

F (u) =
∫

Ω

f(x, u(x),∇u(x)) dx , (4.10)

with f(x, t, p) being continuous and positive in t and convex in p, can be written as
the higher dimensional convex functional

F(1u) := sup
φ∈K

∫
Ω×R

φ ·D1u , (4.11)
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where the convex set K is given by

K =
{
φ = (φx, φt) ∈ C0

(
Ω× R; RN × R

)
:

φt(x, t) ≥ f∗(x, t, φx(x, t)) , ∀x, t ∈ Ω× R
}
. (4.12)

Here, f∗(x, t, p∗) denotes the Legendre-Fenchel conjugate (or convex conjugate) of
f(x, t, p) with respect to the last variable p, see Definition 3.3. Now, f(x, t, p) being
convex and lower semi continuous in p, Theorem 3.4 yields the equality f∗∗ = f .

Theorem 4.1 essentially states, that the potentially (but not necessarily) non convex
functional (4.5) of a scalar function in dimension N can be rewritten as a convex
functional in dimensionN+1. Moreover, it is seen from the definition that this convex
functional is “a sort of” total variation, and essentially has the same structure. To
sum up, we have recast problem (4.5) as the minimization of a modified (nonuniform,
anisotropic) perimeter, and the new problem is similar to (2.1). It is remarkable that
this works for functions f(x, u(x),∇u(x)) with a quite arbitrary behavior in u(x)
(although continuous, in that variable). On the other hand, this comes along with an
increased computational complexity, since we added a dimension to the problem.4

Proof. Let us sketch the proof of Theorem 4.1. We first check that for any φ ∈ K, we
have

F (u) ≥
∫

Ω×R
φ ·D1u . (4.13)

Indeed, using (4.9) and the definition of the inner unit normal (4.8), the flux can be
rewritten as∫

Ω×R
φ ·D1u =

∫
Γu

φ(x, t) ·

(
∇u(x)
−1

)
dHN (x, t)√
1 + |∇u(x)|2

=
∫

Ω

φx(x, u(x)) · ∇u(x)− φt(x, u(x)) dx , (4.14)

as
√

1 + |∇u(x)|2 is nothing else as the Jacobian of the change of variable Γu 3
(x, t) 7→ x ∈ Ω. Since φ ∈ K, it follows∫

Ω×R
φ ·D1u ≤

∫
Ω

φx(x, u(x)) · ∇u(x)− f∗(x, t, φx(x, u(x))) dx ,

which is less than F (u) by definition of the convex conjugate f∗. This shows (4.13).
The proof that the supremum is actually F (u), that is, of (4.11), is more techni-

cal. Essentially, one would need to choose φx(x, u(x)) = ∇pf(x, u(x),∇u(x)) at
the point (x, u(x)) (since p∗ = ∇pf(x, t, p) reaches the maximum in maxp 〈q, p〉 −

4 And, in fact, it is not completely surprising if one thinks first of the case N = 0...
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f(x, t, p), at least when f is differentiable at p, see Prop. 3.7), and φt(x, u(x)) =
f∗(x, t, φx(x, u(x))). If f, u are smooth enough (essentially, C1), then such a choice
can be performed. In other cases, it is shown that one can build a continuous field
φ ∈ K such that the flux (4.9) is arbitrarily close to F (u).

Remark 4.2. In fact, the theorem still holds for u ∈ BV (Ω) a bounded variation
function, and a Lagrangian f(x, t, p) with linear growth (in p) at ∞, with a similar
proof. It can also be extended to Lagrangians which take the value +∞, such as
illustrated in Fig. 12(c), with some additional regularity assumptions in x, t.

We have now transformed the problem of computing the minimizer of (4.5) into
computing the minimizer of

min
1u

{
F(1u) = sup

φ∈K

∫
Ω×R

φ ·D1u

}
. (4.15)

Minimization in (4.15) is carried out over binary functions, which comprise a non
convex set. Therefore we replace the function 1u in (4.15) by a more general function
v ∈ C, where the convex set C is given by

C =
{
v ∈ BV (Ω× R; [0, 1]) : lim

t→−∞
v(x, t) = 1 , lim

t→+∞
v(x, t) = 0

}
. (4.16)

Hence we consider the relaxed problem

min
v∈C

{
F(v) := sup

φ∈K

∫
Ω×R

φ ·Dv

}
. (4.17)

Using this relaxation we essentially minimize the convex envelope F(v) of F(1u).

Convex relaxation

Our intention is still to solve the binary problem. Hence, the question remains in
which sense the minimizers of (4.17) and (4.15) are related? Indeed, one can show
that a simple thresholding produces a solution of (4.15) from one of (4.17). This is
summarized by the following result, which generalizes Proposition 2.1.

Proposition 4.3. Let v∗ by a global minimizer of (4.17). Then for any s ∈ [0, 1) the
characteristic function 1{v∗>s} is also a global minimizer of (4.15).
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Proof. The proof is the same as the proof of Prop. 2.1, as soon as one has observed
that F satisfies the generalized co-area formula:

F(v) =
∫ +∞

−∞
F(1{v>s})ds . (4.18)

This follows from the fact that F can be represented as

F(v) =
∫

Ω×R
h(x, t,Dv) =

∫
Ω×R

h

(
x, t,

Dv

|Dv|

)
|Dv| (4.19)

where h is the convex, l.s.c. and one-homogeneous function of Dv = (Dxv,Dtv)
defined as the support function of the convex set {φ = (φx, φt) : φt ≥ f∗(x, t, φx)},
for any (x, t):

h(x, t,Dv) := sup
φt≥f∗(x,t,φx)

φ ·Dv (4.20)

This function is shown to be nothing else as:

h(x, t,Dv) =


|Dtv|f(x, t,Dxv)/|Dtv| if Dtv < 0
f∞(x, t,Dxv) if Dtv = 0 ,
+∞ if Dtv > 0 ,

(4.21)

where f∞(x, t, px) := limλ→+∞ f(x, t, λpx)/λ is the recession function of f , see for
instance [28, 39].

Hence, for any v, if we let νv = Dv/|Dv| (the Besicovitch derivative of the measure
Dv with respect to its variation |Dv|), we have, using the standard co-area formula for
BV functions (in a form which is more general than (CA) [36, 34, 74, 7]):

F(v) =
∫

Ω×R
h(x, t, νv(x, t))|Dv| =

∫ +∞

−∞

∫
Ω×R

h(x, t, νv(x, t))|D1{v>s}| ds

=
∫ +∞

−∞

∫
Ω×R

h(x, t,D1{v>s}/|D1{v>s}|)|D1{v>s}| ds =
∫ +∞

−∞
F(1{v>s}) ds ,

where we have used the fact that HN−1-a.e. on the boundary of {v > s}, νv =
ν{v>s} = D1{v>s}/|D1{v>s}|, that is, the gradient of v is normal to its level lines.

Numerical resolution

After a suitable discretization (as described in Section 3.1), problem (4.17), which is
of the form (3.19), can be solved for instance by algorithm (3.21).

The most complicated step requires to project onto the (discretized version of the)
set K defined in (4.12). Let us describe now a few examples. We will assume that
f(x, t, p) has the form g(x, t) + h(p). Then, K is reduced to{

φ : φt(x, t) ≥ h∗(φx(x, t))− g(x, t)
}

and we essentially need to know how to project onto the convex set {q = (qx, qt) :
qt ≥ h∗(qx)}.
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g

φt

φx

(a) h(p) = |p|2/2

g

φt

φx

(b) h(p) = |p|

g

φt

φx

1

β

(c) h(p) = 0 if |p| ≤ β and +∞ else

Figure 12. The sets {qt ≥ h∗(qx)} for various h: (a) Quadratic, (b) Total Variation, (c)
Lipschitz regularization.

Quadratic regularization If h(p) = |p|2/2, then h∗(q) = |q|2/2 as well, and we
need to know how to project some q0 = (qx0 , q

t
0) onto K = {q = (qx, qt) : qt ≥

|qx|2/2}, see Fig. 12(a).
If q0 does not satisfy the constraint, that is, qt0 < |qx0 |2/2, we need to project q0

onto the paraboloid qt = |qx|2/2 . Hence we must solve the following unconstrained
optimization problem

min
q

{
|q − q0|2

2
− λ

(
qt − |q

x|2

2

)}
, (4.22)

where λ is a Lagrange multiplier for the equality constraint qt − |qx|2/2 = 0. The
optimaliy conditions of (4.22) are given by

qx − qx0 + λqx = 0

qt − qt0 − λ = 0

qt − |q
x|2

2
= 0 , (4.23)
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After eliminating qt and qx, we arrive at the following cubic equation for λ:

λ3 + λ2(qt0 + 2) + λ(2qt0 + 1) + qt0 −
|qx0 |2

2
= 0 . (4.24)

Instead of using a direct cubic solver for (4.24) we utilize Newton’s method. We
choose a starting point λ0 = max{0,−(2qt0 + 1)/3)}+ 1 and let for each n ≥ 0

λn+1 = λn −
λ3 + λ2(qt0 + 2) + λ(2qt0 + 1) + qt0 −

|qx0 |
2

2
3λ2 + 2λ(qt0 + 2) + 2qt0 + 1

. (4.25)

We found this scheme to have a quite fast convergence. We never experienced more
than 10 − 20 iterations to achieve a reasonable accuracy. Then, after computing the
solution of (4.24), the solution of the projection is given by

q =
(

qx0
1 + λ

, qt0 + λ

)
. (4.26)

(a) Left input image (b) Right input image (c) “True” disparity

Figure 13. Rectified stereo image pair and the ground truth disparity, where black pixels
correspod to unknown disparity values.

Total variation regularization In case h(p) = |p|, then h∗(q) = 0 for |q| ≤ 1, and
+∞ else, and the projection of q0 onto the convex {q = (qx, qt) : qt ≥ 0, |qx| ≤ 1},
see Fig. 12(b), is simply given by:

q =
(

qx0
max{1, |qx0 |}

,max{0, qt0}
)
. (4.27)

Lipschitz constraint One advantage of this approach is that a Lipschitz constraint
is quite easy to enforce. We consider h(p) = 0 if |p| ≤ L, +∞ else. Then, the convex
conjugate of h is simply h∗(q) = L|q|, and we just need to know how to project
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q0 onto the convex cone {qt ≥ L|qx|}, see Fig. 12(c). This projection is of course
straightforward: is given by

q =
(
µ
qx0
|qx0 |

, µL

)
, (4.28)

where µ is given by

µ =
max{0, |qx0 |+ Lqt0}

1 + L2 . (4.29)

Example Figure 14 shows three examples of stereo reconstruction using the three
different regularizers described above. Of course, only the total variation performs
well in this context. As expected, the Lipschitz constraint limits the slope of the solu-
tion, while the quadratic contstraint also oversmooths. The best compromise would be
to take h a Huber function, quadratic near zero and linear for large values, see [64] for
this example.

(a) (b) (c)

(d) (e) (f)

Figure 14. Application of different convex regularity terms to disparity estimation. First
column: Quadratic regularization, second column: Total Variation regularization, third
column: Lipschitz regularization.

4.4 The minimal partition problem

Consider now the problem of finding a segmentation into k sets of a domain Ω ⊂ RN ,
which minimizes the total interface between the sets, as in the piecewise constant
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Mumford-Shah problem:

min
(Ri)ki=1,(ci)

k
i=1

λ

2

k∑
i=1

Per(Ri; Ω) +
1
2

k∑
i=1

∫
Ri

|g(x)− ci|2 dx (4.30)

where ci ∈ R and where the regions (Ri)ki=1 form a partition of Ω, that is,Ri∩Rj = ∅
if i 6= j and

⋃k
i=1 Ri = Ω. It corresponds to the best least square approximation of

g with a piecewise constant function u =
∑

i ciχRi , whith the total perimeter of the
partition as the cost of a particular approximation (the total number of set k should in
theory be free, however it is always possible to bound it from above if g is bounded,
so that there is no loss of generality in keeping it fixed). Of course, given the partition
(Ri)ki=1, the optimal constant ci = (1/|Ri|)

∫
Ri
g ds is the average value of g on Ri

for each i = 1, . . . , k. On the other hand, finding the minimum of (4.30) with respect
to the partition (Ri)ki=1 is a hard task, even for fixed values (ci)ki=1. It is known that
its discrete counterpart (the Pott’s model) is NP-hard, so that it is unlikely that (4.30)
has a simple convex representation, at least without increasing drastically the number
of variables.

We will show that one can consider simple convex approximations the interface
term in (4.30) which can be actually minimized, and in many cases provide a solution
of the original problem (although nothing of this kind is know in general).

Let us introduce vi = χRi ∈ BV (Ω): the functions vi satisfy vi(x) ∈ {0, 1} and∑k
i=1 vi(x) = 1 a.e. in Ω. Moreover, letting v = (v1, . . . , vk) ∈ BV (Ω; Rk), we see

that

Jv =
l⋃
i=1

Jvi =
l⋃
i=1

Ω ∩ ∂∗Ri

and the total surface of the interface is

HN−1(Jv) =
1
2

k∑
i=1

Per(Ri; Ω) (4.31)

since in the right-hand side, the common boundary of Ri and Rj is counted twice for
all i 6= j.

We can therefore define the partition functional as

J (v) =

{
HN−1(Jv) if v ∈ BV (Ω; {0, 1}k) with

∑k
i=1 vi = 1 a.e.,

+∞ else.

Then, the best convex approximation of J should be its convex l.s.c. envelope J ∗∗ (in
L2(Ω; Rk)), as defined in Definition 3.3:

J ∗∗(v) = sup
w∈L2(Ω;Rk)

〈w,v〉 − J ∗(w)



66

where
J ∗(w) = sup

v∈L2(Ω;Rk)
〈w,v〉 − J (v) .

However, this provides an abstract definition ofJ ∗∗ but does not say how to actually
compute it or minimize it. It is possible, though, to show that the domain of J ∗∗ is

domJ ∗∗ =

{
v ∈ BV (Ω; [0, 1]k) ,

k∑
i=1

vi = 1 a.e. in Ω

}
,

see [22] where a different representation is used but this can be deduced by a simple
change of variable.

To be able to numerically solve the problem, one should find a convex, l.s.c. func-
tional J ≤ J 5 with a particular form, which can be handled and provide a problem
that can be actually solved. A typical form is J(v) =

∫
Ω
F (x,Dv) for F (x, p) some

function, convex in p and measurable in x. Moreover, one should at least require that
J = J on its domain (that is, on binary functions v ∈ {0, 1}k with

∑
i vi = 1).

Eventually, one should try to find the largest possible J in this class, so that it becomes
more likely that a solution of

min
v
λJ(v) +

1
2

∫
Ω

k∑
i=1

vi(x)|g(x)− ci|2 dx (4.32)

is itself binary (in the domain of J ), and therefore provides a minimizer of (4.30) for
fixed (ci)ki=1.

Several choices have been proposed in the literature. In [72], it is proposed to use
simple LP-relaxation exactly as for the multiway cut problem in the discrete litera-
ture [1]. Hence one just lets

J(v) =
1
2

k∑
i=1

∫
Ω

|Dvi| if v ∈ BV (Ω; [0, 1]k) , (4.33)

and +∞ else, which naturally extends (4.31) to the domain of J ∗∗. However, it can
be shown that this relaxation is too small, see [22, Prop. A.1.] and Figure 15(b).

On the other hand, [47] propose to use the vectorial total variation (appropriately
rescaled), which is defined exactly like in (TV ), that is,

J(v) =
1√
2

∫
Ω

|Dv|

=
1√
2

sup

−
∫

v · divφ : φ ∈ C∞c (Ω; RN×k) ,
∑
i,j

φ2
i,j ≤ 1

 . (4.34)

5 hence J ≤ J ∗∗, since it is the largest convex, l.s.c. functional below J .
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(a) Input image (b) Relaxation (4.33) (c) Relaxation (4.34) (d) Relaxation (4.35)

Figure 15. Triple junction experiment with k = 3. (a) shows the input image with given
boundary datum. (b) shows the result using the relaxation of [72], and (c) the relaxation
of [47]. (d) shows the result of the proposed relaxation.

Examples show that this does not perform much better than the previous choice for
recovering triple junctions, see Figure 15(c).

The “best” possible choice, if of the form
∫

Ω
F (x,Dv) for a convex, even function

F (x, p) (w.r. p), can be shown to be

J(v) =
∫

Ω

Ψ(Dv) (4.35)

for Ψ : RN×k → [0,+∞] the convex, 1-homogeneous function given by

Ψ(p) = sup

{
k∑
i=1

〈pi, qi, 〉 : |pi − pj | ≤ 1 ∀1 ≤ i < j ≤ k

}
.

(Note in particular that Ψ(p) = +∞ if
∑k

i=1 pi 6= 0, which is not an issue since if
v ∈ domJ ∗∗,

∑
vi = 1 hence

∑
iDvi = 0.) In our notation, for p a vector in RN×k,

pj = (pi,j)Ni=1 is a N -dimensional vector for each j = 1, . . . , k. Letting

K =
{
−divφ : φ ∈ C∞c (Ω; RN×k) , |φi(x)− φj(x)| ≤ 1 ∀x ∈ Ω , 1 ≤ i < j ≤ k

}
,

we can also define J as the support function of K:

J(v) = sup
w∈K
〈w,v〉 ,

which is a variant of (TV ): it is again a sort of total variation and we can hope to
minimize it with the techniques described in Section 3. This construction is related
to the theory of “paired calibration” introduced in the 1990’s by Lawlor-Morgan and
Brakke [46, 18].

In order to minimize (4.32) using the techniques described in these notes, one first
chooses to minimize alternatively with respect to the partition (Ri)ki=1, described by
the function v, and with respect to the constants (ci)ki=1 (which, in general, should lead
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(a) Input image (b) Segmentation, k = 8

Figure 16. Piecewise constant Mumford-Shah segmentation of a natural image. (a) shows
the input image and (b) is the minimizer of energy (4.30). The mean color values ci of
the partitions have been initialized using k-means clustering.

to a local minimizer, or even a mere critical point of the problem). Minimizing with
respect to the ci’s is straightforward (the solution is simply the average of the data in
the region Ri). The minimization with respect to v is performed, for instance, using
Algorithm (3.21). A crucial step is the projection onto K = {p ∈ RN×k : |pi−pj | ≤
1 ∀i, j}, whose Ψ is the support function. This is performed by alternate projections,
following Dykstra’s algorithm for projecting onto intersection of convex sets [17].

Figure 15 shows the minimization of J with a boundary datum which enforces the
completion of three regions: we find a triple point with 120◦ angles, as the theory
expects. Observe that lower relaxations provide wrong results (with a relaxed energy
strictly below the interfacial energy of the original problem). The next Figure 16 shows
an example of a minimization of (4.32) done following this approach. (The numerical
computations have been performed on a GPU.)

A A proof of convergence

We prove in this section Theorem 3.14, that is, a convergence estimate for the modified
Douglas-Rachford (or extragradient) algorithm (3.21). The assumption that x0 = x̄0

can also be written x−1 = x0 and x̄0 = 2x0 − x−1, which is consistent with the
definition of x̄n+1 for n ≥ 0. The proof which follows is heavily inspired by [57] (for
the estimate) and [65] (for the convergence proof).

Proof. We have

∂F ∗(yn+1) 3 y
n − yn+1

σ
+Ax̄n

∂G(xn+1) 3 x
n − xn+1

τ
−A∗yn+1
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so that for any (x, y) ∈ X × Y ,

F ∗(y) ≥ F ∗(yn+1) +
〈
yn − yn+1

σ
, y − yn+1

〉
+
〈
Ax̄n, y − yn+1〉

G(x) ≥ G(xn+1) +
〈
xn − xn+1

τ
, x− xn+1

〉
−
〈
yn+1, A(x− xn+1)

〉
.

Summing both inequalities, it follows:

F ∗(y) +G(x) +
‖y − yn‖

2σ

2

+
‖x− xn‖

2τ

2

≥

F ∗(yn+1) +G(xn+1) +
〈
Axn+1 − x̄n, yn+1 − y

〉
+
〈
Axn+1, y

〉
−
〈
yn+1, Ax

〉
+
‖y − yn+1‖

2σ

2

+
‖x− xn+1‖

2τ

2

+
‖yn − yn+1‖

2σ

2

+
‖xn − xn+1‖

2τ

2

(A.1)

Now:〈
A(xn+1 − x̄n), yn+1 − y

〉
=
〈
A((xn+1 − xn)− (xn − xn−1)), yn+1 − y

〉
=
〈
A(xn+1 − xn, yn+1 − y

〉
−
〈
A(xn − xn−1), yn − y

〉
−
〈
A(xn − xn−1), yn+1 − yn

〉
≥
〈
A(xn+1 − xn), yn+1 − y

〉
−
〈
A(xn − xn−1), yn − y

〉
− L‖xn − xn−1‖‖yn+1 − yn‖ . (A.2)

For any δ > 0, we have that (using 2ab ≤ δa2 + b2/δ for any a, b)

L‖xn − xn−1‖‖yn+1 − yn‖ ≤ Lδτ

2τ
‖xn − xn−1‖2 +

Lσ

2δσ
‖yn+1 − yn‖2

and we choose δ =
√
σ/τ , so that Lδτ = Lσ/δ =

√
στL < 1.

Summing the last inequality together with (A.1) and (A.2), we get that for any x ∈
X and y ∈ Y ,

‖y − yn‖
2σ

2

+
‖x− xn‖

2τ

2

≥[〈
Axn+1, y

〉
− F ∗(y) +G(xn+1)

]
−
[〈
Ax, yn+1〉− F ∗(yn+1) +G(x)

]
+
‖y − yn+1‖

2σ

2

+
‖x− xn+1‖

2τ

2

+ (1−
√
στL)

‖yn − yn+1‖
2σ

2

+
‖xn − xn+1‖

2τ

2

−
√
στL
‖xn−1 − xn‖

2τ

2

+
〈
A(xn+1 − xn), yn+1 − y

〉
−
〈
A(xn − xn−1), yn − y

〉
(A.3)
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Let us now sum (A.3) from n = 0 to N − 1: it follows that for any x and y,

N∑
n=1

[〈Axn, y〉 − F ∗(y) +G(xn)]− [〈Ax, yn〉 − F ∗(yn) +G(x)]

+
‖y − yN‖

2σ

2

+
‖x− xN‖

2τ

2

+ (1−
√
στL)

N∑
n=1

‖yn − yn−1‖
2σ

2

+ (1−
√
στL)

N−1∑
n=1

‖xn − xn−1‖
2τ

2

+
‖xN − xN−1‖

2τ

2

≤ ‖y − y
0‖

2σ

2

+
‖x− x0‖

2τ

2

+
〈
A(xN − xN−1), yN − y

〉
where we have used x−1 = x0. Now, as before,〈

A(xN − xN−1), yN − y
〉
≤ ‖xN − xN−1‖2/(2τ) + (τσL2)‖y − yN‖2/(2σ),

and it follows

N∑
n=1

[〈Axn, y〉 − F ∗(y) +G(xn)]− [〈Ax, yn〉 − F ∗(yn) +G(x)]

+ (1− στL2)
‖y − yN‖

2σ

2

+
‖x− xN‖

2τ

2

+ (1−
√
στL)

N∑
n=1

‖yn − yn−1‖
2σ

2

+ (1−
√
στL)

N−1∑
n=1

‖xn − xn−1‖
2τ

2

≤ ‖y − y
0‖

2σ

2

+
‖x− x0‖

2τ

2

(A.4)

First we choose (x, y) = (x̂, ŷ) a saddle-point in (A.4). Then, it follows from (3.20)
that the first summation in (A.4) is non-negative, and point (a) in Theorem 3.14 fol-
lows. We then deduce from (A.4) and the convexity of G and F ∗ that, letting xN =
(
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N ,

[〈AxN , y〉 − F ∗(y) +G(xN )]− [〈Ax, yN 〉 − F ∗(yN ) +G(x)]

≤ 1
N

(
‖y − y0‖

2σ

2

+
‖x− x0‖

2τ

2
)

(A.5)

for any (x, y) ∈ X × Y , which yields (3.23). Consider now a weak cluster point
(x∗, y∗) of (xN , yN ) (which is a bounded sequence, hence weakly compact). Since G
and F ∗ are convex and l.s.c. they also are weakly l.s.c., and it follows from (A.5) that

[〈Ax∗, y〉 − F ∗(y) +G(x∗)]− [〈Ax, y∗〉 − F ∗(y∗) +G(x)] ≤ 0
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for any (x, y) ∈ X × Y : this shows that (x∗, y∗) satisfies (3.20) and therefore is a
saddle-point. We have shown point (b) in Theorem 3.14.

It remains to prove the convergence to a saddle point if the spaces X and Y are
finite-dimensional. Point (a) establishes that (xn, yn) is a bounded sequence, so that
some subsequence (xnk , ynk) converges to some limit (x∗, y∗), strongly since we are
in finite dimension. Observe that (A.4) implies that limn(xn − xn−1) = limn(yn −
yn−1) = 0, in particular also xnk−1 and ynk−1 converge respectively to x∗ and y∗. It
follows that the limit (x∗, y∗) is a fixed point of the algorithm (3.21), hence a saddle
point of our problem.

We can then take (x, y) = (x∗, y∗) in (A.3), which we sum from n = nk to N − 1,
N > nk. We obtain

‖y∗ − yN‖
2σ

2

+
‖x∗ − xN‖

2τ

2

+ (1−
√
στL)

N∑
n=nk+1

‖yn − yn−1‖
2σ

2

− ‖x
nk − xnk−1‖

2τ

2

+ (1−
√
στL)

N−1∑
n=nk

‖xn − xn−1‖
2τ

2

+
‖xN − xN−1‖

2τ

2

+
〈
A(xN − xN−1), yN − y∗

〉
−
〈
A(xnk − xnk−1), ynk − y∗

〉
≤ ‖y

∗ − ynk‖
2σ

2

+
‖x∗ − xnk‖

2τ

2

from which we easily deduce that xN → x∗ and yN → y∗ as N →∞.
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