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Abstract. We show the consistency of a threshold dynamics type algorithm for the

anisotropic motion by fractional mean curvature, in the presence of a time dependent

forcing term. Beside the consistency result, we show that convex sets remain convex

during the evolution, and the evolution of a bounded convex set is uniquely defined.
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1. Introduction

In this paper we study the evolution of a hypersurface by anisotropic fractional mean

curvature with the addition of a time-dependent forcing term. Such nonlocal evolutions

have been first considered in [4, 19], where existence and comparison of weak solutions

is proved, by suitably adapting the viscosity theory to (geometric) nonlocal equations.

These results have been later extended in [12] to more general (yet translation–invariant)

equations. We point out that an existence and uniqueness result for smooth solutions is

still not available, even if some results in this direction can be found in [26].
1
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In [10], the authors prove the convergence to the (isotropic) motion by fractional mean

curvature of a threshold dynamics scheme, analogous to the one introduced in [25] in

the local case.

In this paper we extend their result to the anisotropic case and to the presence of an

external driving force. More precisely, we consider a slightly modified scheme defined

by an anisotropic convolution followed by a thresholding, in the spirit of what was

proposed in [21] in the local case, and we show the convergence of the scheme to a

viscosity solution of a geometric equation, at least when this solution is unique (which is

generally the case [19]). The limit equation is a flow by anisotropic fractional curvature

with a forcing term. Such curvature corresponds to the first variation of an anisotropic

fractional perimeter of the form introduced in [24].

We then prove that our scheme is convexity preserving, so that as a consequence also

the limit geometric evolution preserves convexity. This is a well-known property of the

(anisotropic) mean curvature flow (see [18, 17, 1, 6]), but was not previously known in

the fractional case, both isotropic and anisotropic. Eventually, we deduce that convex

evolutions are necessarily unique.

The plan of the paper is as follows: in Section 2 we introduce the geometric flow,

the discrete approximation scheme and we recall some definitions, in particular that of

viscosity solution (previously introduced in [4, 19, 12]). In Section 3 we establish the

convergence of the scheme to a viscosity solution. This is done in Theorem 3.1 and

Proposition 3.5. In Section 4, building upon known results on convex bodies [16], we

show that the discrete scheme preserves the convexity of a set, and, as a consequence,

also the level set equation results convexity preserving. In Section 5, and in particular in

Proposition 5.1, we show that the limit motion can be obtained by alternating curvature

motions without forcing term, and evolutions with the forcing term only. This technical

result allows to estimate easily the relative evolution of two sets with different forcing

terms. Thanks to this estimate, we can deduce in Section 6 the geometric uniqueness

of convex evolutions. Eventually, in Section 7, we state some final considerations and

open problems.

2. Preliminaries and the time-discrete scheme

2.1. The scheme and the limit equation. Let N : RN → R be a norm (that is a

convex, even, one-homogeneous function), with in particular

(1) c|x| ≤ N (x) ≤ c|x|

for every x ∈ RN , where c and c are suitable positive constants. Given s ∈ (0, 1) and

h > 0, we let throughout the paper σh = h
s

1+s and define the kernels

(2) P (x) :=
1

1 +N (x)N+s
and Ph(x) :=

1

σ
N/s
h

P

(
x

σ
1/s
h

)
for h > 0 ,

so that σ−1
h Ph converges to N−(N+s) in L1

loc(RN \ {0}), as h→ 0.
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For a measurable set E ⊂ RN and g ∈ C0(R+), where R+ := [0,+∞), we consider

the scheme

(3) Tg(nh),h(E) :=
{
Ph ∗ (χE − χEc) > g(nh)h

s
1+s

}
.

Given a closed set E0, we wish to study the limit, as h→ 0, of the iterates

(4) Tg(nh),hTg((n−1)h),h . . . Tg(h),h(E0).

This scheme is a nonlocal variant of the celebrated Merriman-Bence-Osher scheme [25],

in a form which has been studied in [10] in the context of fractional curvature flows, and

in [21] (see also [11, 23]) in the context of convolution-generated motions with a forcing

term. The limit, as we will see, satisfies a nonlocal anisotropic mean curvature flow with

forcing term, which we will introduce below.

Adopting the notation of [10], as we will do in the whole paper, we define inductively

a function uh : RN × {nh}n∈N → R as follows:

uh(·, 0) = χ̃E0 := χE0 − χRN\E0
,

uh(·, (n+ 1)h) = χ̃{
Ph∗uh(·,nh)≥g(nh)h

s
1+s
}.

The function uh is then extended to RN × R+ by letting uh(x, t) = uh(x, [t/h]h) for

t ≥ 0, where [·] denotes the integer part.

When N = | · | and g = 0, it is proved in [10] that as h → 0, uh converges to the

geometric solution of the fractional curvature flow defined in [19], at least when no

“fattening” occurs. We shall extend this result to a more general setting, that is, with

arbitrary norm N and a time varying (continuous) forcing term g. The equation which

is solved in the limit is a “level-set” equation (an equation which describes the geometric

motion of the level sets of a function) which must be understood in the viscosity sense,

the precise definition will be given in Section 2.2 below. In our setting the limit solves

the following level-set equation:

(5) ∂tu = A(Du)|Du| (−κs(x, {u ≥ u(x, t)}) + g(t)) ,

where for p 6= 0,

(6) A(p) =

(
2

∫
p⊥
P (y) dHN−1(y)

)−1

and for a smooth set E, the anisotropic fractional mean curvature at x ∈ ∂E is given by

(7) − κs(x,E) :=

∫
RN

χE(y)− χEc(y)

N (y − x)N+s
dy

(where here the “−” sign is so that convex sets have a nonnegative curvature). Here, as

in the rest of the paper, we denote with D· the spatial derivative. This singular integral

can be given a meaning, and shown to be finite for C1,1 sets, see [19].

Following [4, 19], in order to define the right notion of solution we need to introduce

the following integral functionals, which extend the definition of the curvature of the
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level set of a function v : RN × [0,∞)→ R:

IA[v](x, t) =

∫
A

(
χ+(v(y + x, t)− v(x, t))− χ−(v(y + x, t)− v(x, t))

)
P (y) dy,

IA[v](x, t) =

∫
A

(χ+(v(y + x, t)− v(x, t))− χ−(v(y + x, t)− v(x, t)))P (y) dy,

with the notation χ+ = χ[0,∞), χ
− = χ(−∞,0), χ+ = χ(0,∞), χ− = χ(−∞,0].

Remark 2.1. If ϕ ∈ L∞(RN × [0,∞))∩C2(Bδ(x, t)) for some (x, t) ∈ RN × [0,∞), then

the functions IBδ(x)[ϕ] and IBδ(x)[ϕ] are pointwise continuous outside the set {Dϕ = 0},
in the sense that if Dϕ(x, t) 6= 0, then

lim
(y,s)→(x,t)

IBδ(y)[ϕ](y, s) = IBδ(x)[ϕ](x, t), lim
(y,s)→(x,t)

IBδ(y)[ϕ](y, s) = IBδ(x)[ϕ](x, t).

If ϕ is just upper semicontinuous (respectively lower semicontinuous), then IBδ(·)[ϕ] is

upper semicontinuous (respectively IBδ(·)[ϕ] is lower semicontinous). Moreover, if ϕk is

a sequence of functions pointwisely converging to ϕ, then

lim sup
k→∞

IA[ϕk] ≤ IA[ϕ], lim inf
k→∞

IA[ϕk] ≥ IA[ϕ]

for every set A ⊆ RN .

Remark 2.2. Observe that if ϕ ∈ C2(RN × [0,∞)) and the level set {ϕ(·, t) = ϕ(x, t)}
is not critical, then for any A, IA[ϕ](x, t) = IA[ϕ](x, t) and we can denote

I[ϕ](x, t) = IRN [ϕ](x, t) = −κs(x, {ϕ(·, t) ≥ ϕ(x, t)}).

2.2. Viscosity solutions. The precise meaning of a solution of Equation (5) is given

by one the following equivalent definitions (see [4, 19] and [12]) of viscosity solutions:

Definition 2.3. A locally bounded upper semicontinuous function u is a viscosity sub-

solution of (5) if for all ϕ ∈ C2(RN × (0,∞)), at any maximum point (x, t) of u − ϕ,

then

(8)


∂tϕ(x, t) ≤ A(Dϕ(x, t))|Dϕ(x, t)| (−κs(x, {ϕ ≥ ϕ(x, t)}) + g(t))

if Dϕ(x, t) 6= 0 and ϕ(x, t) is not a critical value of ϕ,

∂tϕ(x, t) ≤ 0 if Dϕ(x, t) = 0.

A locally bounded lower semicontinuous function u is a viscosity supersolution if −u
is a viscosity subsolution with forcing term −g. A solution is a function whose upper

semicontinuous envelope is a subsolution, while its lower semicontinuous envelope is a

supersolution.

Definition 2.4. A locally bounded upper semicontinuous function u is a viscosity sub-

solution of (5) if for all ϕ ∈ C2(RN × (0,∞)), at any maximum point (x, t) of u− ϕ in

a ball Bδ(x, t), it holds

(9)


∂tϕ(x, t) ≤ A(Dϕ(x, t))|Dϕ(x, t)|

(
IBδ(x)[ϕ](x, t) + IRN\Bδ(x)[u](x, t) + g(t)

)
if Dϕ(x, t) 6= 0

∂tϕ(x, t) ≤ 0 otherwise.
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A locally bounded lower semicontinuous function u is a viscosity supersolution of (5)

if for all ϕ ∈ C2(RN × (0,∞)) at any minimum point (x, t) of u − ϕ and for any ball

Bδ(x, t) it holds

(10)
∂tϕ(x, t) ≥ A(Dϕ(x, t))|Dϕ(x, t)|

(
IBδ(x)[ϕ](x, t) + IRN\Bδ(x)[u](x, t) + g(t)

)
if Dϕ(x, t) 6= 0

∂tϕ(x, t) ≥ 0 otherwise.

A solution is a function whose upper semicontinuous envelope is a subsolution, while

its lower semicontinuous envelope is a supersolution.

Observe that in the definition above, one can take δ arbitrarily small; moreover as

usual, we may equivalently assume that the maximum (resp. minimum) points are strict.

Definition 2.5. Let C ⊂ RN and g a continuous function and define for η > 0 dηC = −η∨
(η∧ (dist(x,C)−dist(x,Cc))), that is dη is the signed distance function to ∂C truncated

at the levels ±η. We say that a family of sets {C(t)}t>0 is a flow for the geometric

equation A−1v = −κs+g starting from C if for all t ≥ 0, C(t) = {x ∈ RN : u(x, t) > 0},
or if for all t ≥ 0, C(t) = {x ∈ RN : u(x, t) ≥ 0}, where u solves (5) in the sense of

Definition 2.4.

Remark 2.6. It turns out that in this case, χ{u>0} is a subsolution, while χ{u≥0} is a

supersolution, in the sense of Definition 2.4. Moreover, it is well known [19] that the

equation in Definitions 2.3 and 2.4 is geometric, meaning that if we replace the initial

condition with any function u0 with the same level sets {u > 0} and {u ≥ 0}, the

evolution C(t) remains the same.

Existence and comparison (uniqueness) results for evolutions defined by the equivalent

Definitions 2.3 and 2.4 are provided in [19]. It follows, as usual, that given a bounded

uniformly continuous initial data u0, and denoting u(x, t) the solution with u(·, 0) = u0,

then, starting from almost all (but a countable number, at most) of the level sets C =

{u0 > s} there exists a unique flow C(t) = {u(·, t) > s}, in the sense of Definition 2.5.

3. Convergence of the discrete flows

3.1. Main result. The scope of this section is to prove the following result, which is a

variant of the main result in [10]. The only differences are that:

(1) we introduce an anisotropy and a forcing term in the spirit of [21];

(2) we simplify part of the argument, in particular when estimating the “mobility”

A(p);

(3) we estimate in a separate subsection (Sec. 3.2) the evolution of balls, yielding

a then simpler argument to show consistency in flat regions, or that the initial

condition is not lost in the limit;

(4) we give a proof (Sec. 3.4) of the convexity of the mobility.
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Theorem 3.1. Let u0 be a bounded, uniformly continuous function, Ω = {u0 > 0},
Ω−t = {x ∈ RN : u(x, t) > 0} and Ω+

t = {x ∈ RN : u(x, t) ≥ 0}, where u is a viscosity

solution of (5) with initial data u0. Then{
lim inf∗ uh(x, t) := lim infy→x,nh→t uh(y, nh) = 1 in Ω−t ,

lim sup∗ uh(x, t) := lim supy→x,nh→t uh(y, nh) = −1 in RN \ Ω+
t

Remark 3.2. Under the assumptions of Theorem 3.1, suppose that u is such that

∂{(x, t) : u(x, t) > 0} = ∂{(x, t) : u(x, t) ≥ 0} =: Γt. Then we have

Fh := ∪n∂{uh(·, nh) = h
s

1+s g(nh)} × {nh} → ∪t≥0Γt × {t} as n→∞,

in the Kuratowski sense.

3.2. The speed of balls. A useful intermediate result (which illustrates why the scale

in (2) is the right one) is a control on the (bounded) speed at which balls decrease with

the discrete flow. Let

(11) k = max
x∈∂B1

κs(x,B1)

be the maximal curvature of the unit ball. Then for any R > 0 and x ∈ ∂BR, by a

change of variable of the form y′ = y/R we get that

κs(x,BR) = −
∫
χBR(y)− χBcR(y)

N (y)N+s
dy = − 1

Rs

∫
χB1(y′)− χBc1(y′)

N (y′)N+s
dy′ ≤ k

Rs
.

This suggests that the motion of a ball should be at most governed by Ṙ ∼ −k/Rs −
‖g‖∞, yielding an extinction time of order ∼ R1+s for R small. We check now this is

indeed the case for the discrete scheme.

We start with the following lemma which estimates the speed of the scheme applied

to the unit ball:

Lemma 3.3. There exists m, depending only N , and h0 > 0 (depending on N and

‖g‖∞) such that if h < h0, Ph ∗ (χB(0,1) − χB(0,1)c) ≥ ‖g‖∞h
s

1+s in B(0, 1 − ch) where

c = (k + ‖g‖∞)/m.

Proof. We let e = (1, 0, . . . , 0) a unit vector and denote B = B(e, 1). We recall

Ph(x) =
1

hN/(1+s)

1

1 +N
(

x
h1/(1+s)

)N+s
= h

s
1+s

1

h
N+s
1+s +N (x)N+s

,

so that

lim
h→0

h
−s
1+sPh ∗ (χB − χBc)(0) = −κs(0, ∂B)

More precisely, it stems from the convexity of B that this limit is, in fact, an infimum.

Indeed, using the symmetry of N , one sees that the convolution h−
s

1+sPh∗(χB−χBc)(0)

is given by

−
∫
RN\(B∪(−B))

dx

h
N+s
1+s +N (x)N+s



SOME RESULTS ON ANISOTROPIC FRACTIONAL MEAN CURVATURE FLOWS 7

which is monotone in h, and it follows

(12) h−
s

1+sPh ∗ (χB − χBc)(0) ≥ −k

for any h > 0.

Then, we need to estimate DPh ∗ (χB −χBc) near ∂B. In fact it is enough to have an

estimate for x = t̄e with |t̄| . c(h) for some c(h)� h. A simple analysis shows that the

scaling of t̄ should be between h and h1/(1+s) � h, in what follows we therefore consider

t̄ = τh
1+s/2
1+s for −1 ≤ τ ≤ 1. One has

G := h
−s
1+s e ·DPh ∗ (χB − χBc)(t̄e) = 2

∫
∂B

−νB · e

h
N+s
1+s +N (t̄e− x)N+s

dHN−1(x).

With the change of variable x = yh1/(1+s), we have, denoting h−1/(1+s)B the ball

B(h−1/(1+s)e, h−1/(1+s)),

G = −2

∫
∂(h

−1
1+sB)

h
N−1
1+s νB · e

h
N+s
1+s (1 +N (τh

s/2
1+s e− y)N+s)

dHN−1(y)

= −2

h

∫
∂(h

−1
1+sB)

νB · e

1 +N (τh
s/2
1+s e− y)N+s

dHN−1(y)

Given R > 0 let Bh := B(0, Rh−(N−1)/((N+s)(1+s))): first observe that if y 6∈ Bh,

|τh
s/2
1+s e− y| ≥ Rh−

N−1
(N+s)(1+s) − h

s/2
1+s ≥ R

2
h
− N−1

(N+s)(1+s)

if h is small enough, so that∣∣∣∣∣2
∫
∂(h

−1
1+sB)\Bh

νB · e

1 +N (τh
s/2
1+s e− y)N+s

dHN−1(y)

∣∣∣∣∣
≤ h−

N−1
1+s

1

1 + c
(
R
2 h
− N−1

(N+s)(1+s)
)N+s

≤ 1

h
N−1
1+s + c

(
R
2

)N+s

which can be made arbitrarily small by choosing R large enough. On the other hand, if

y ∈ Bh ∩ ∂(h−1/(1+s)B), as h−1/(1+s) � Rh−(N−1)/((N+s)(1+s)) (indeed 1/(1 + s)− (N −
1)/((N + s)(1 + s)) = (N + s−N + 1)/((N + s)(1 + s)) = 1/(N + s) > 0), if h is small

enough one has νB · e ≤ −1/2, which yields

− 2

∫
∂(h

−1
1+sB)∩Bh

νB · e

1 +N (τh
s/2
1+s e− y)N+s

dHN−1(y)

≥
∫
∂(h

−1
1+sB)∩Bh

dHN−1(y)

1 + c
∣∣τh s/2

1+s e− y
∣∣N+s

→
∫
{y·e=0}

dHN−1(y)

1 + c|y|N+s
=: 2m > 0

as h → 0. All in all, with an appropriate choice of R, we see that there exists h0

(depending on N and ‖g‖∞ but not, in fact, on the particular point we have chosen on
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∂B) such that if h < h0, one has, recalling (12)

h
−s
1+sPh ∗ (χB − χBc)(0) ≥ −k

h
−s
1+s e ·DPh ∗ (χB − χBc)(t̄e) ≥

m

h

for |t̄| ≤ h
1+s/2
1+s . Hence if −k + t̄m/h ≥ ‖g‖∞ and |t̄| ≤ h

1+s/2
1+s = h · h−(s/2)/b(1+s), we

have Ph(χB − χBc)(t̄e) ≥ h−s/(1+s)‖g‖∞. Choosing t̄ = h(‖g‖∞ + k)/m, and possibly

reducing h0, we check that indeed |t̄| ≤ h
1+s/2
1+s and the inequality holds. We will show

in Corollary 4.3 that the level sets of Ph(χB − χBc) are all convex, so that the thesis of

the Lemma holds. �

Thanks to a simple scaling argument, we find that given R > 0, if h is small enough,

Ph ∗ (χB(0,R) − χB(0,R)c) ≥ ‖g‖∞h
s

1+s in B(0, R− ch) with now c = (k/Rs + ‖g‖∞)/m.

As a result, we have the following corollary:

Corollary 3.4. If E0 = B(x0, R), then for h small enough, uh(·, nh) ≥ χ̃B(x0,R/2) as

long as

(13) nh ≤ mR1+s

2(Rs‖g‖∞ + 2sk)
.

In particular, if R is small, one has uh(x0, nh) = 1 for nh . R1+s.

3.3. The consistency result. The main difficulty to prove convergence is a consistency

result. The strategy of the proof follows [3, 10], with some slight simplification. The

important point is to show that u := lim sup∗ uh and u := lim inf∗ uh are respectively

viscosity supersolution and subsolution of (5).

Proposition 3.5. The functions lim inf∗ uh(x, t) and lim sup∗ uh(x, t) defined in Theo-

rem 3.1 are, respectively, a supersolution and a subsolution for (5).

Once this consistency result is settled down, the proof of Theorem 3.1 easily fol-

lows: we first notice that lim inf∗ uh(x, t) and lim sup∗ uh(x, t) take only values in {±1}.
Thus to conclude we only have to recall (see [5]) that the maximal upper semicontin-

uous subsolution and minimal upper semicontinuous supersolution of (5) are given by

χ(−∞,0](u)−χ(0,∞)(u) and χ(−∞,0)(u)−χ[0,∞)(u), where u is a solution of (5). The fact

that the initial data is taken easily follows by comparison, using the results of Section 3.2.

This immediately entails the statement of Theorem 3.1.

We pass now to the proof of Proposition 3.5.

Proof of Proposition 3.5. A first observation is that, as an easy consequence of Corol-

lary 3.4, the functions u(x, 0) = χ̃Ω(x) and u(x, 0) = χ̃Ω(x), in other words, they satisfy

the required initial data.

Let us fix (x0, t0) ∈ RN × (0,+∞) and ϕ and assume that (x0, t0) is a point of

maximum of u−ϕ. Since u takes values ±1 and it is upper semicontinuous , if u(x0, t0) =

−1 then it is constant in a neighborhood of (x0, t0) and thus |Du| = |Dϕ| = |∂tϕ| = 0

and so (9) trivially holds. The same assertion holds if (x0, t0) is an interior point of
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{u = 1}. So we can suppose that u(x0, t0) = 1 and (x0, t0) is a boundary point of

{u = 1}. In this case, replacing first ϕ with ϕη(x, t) + η(|x− x0|2 + |t− t0|2), we define

for each h > 0 small enough the point

(14) (xh, nhh) = argmaxRN×N u∗h − ϕη.

The main inequality will be proved for the function ϕη, however one can easily show

(thanks to Remark 2.1) that it then follows for ϕ when one sends η → 0, hence in the

sequel we will drop the index η and write simply ϕ.

Up to passing to a (not relabeled) subsequence, we can suppose that (xh, nhh) con-

verge to a point (x1, t1). In this case, by the regularity of ϕ and since u is upper

semicontinuous we have that

u(x1, t1)− ϕ(x1, t1) ≥ lim sup
h→0

u∗(xh, nhh)− ϕ(xh, nhh) ≥ u(x0, t0)− ϕ(x0, t0)

and thus (x1, t1) = (x0, t0) since the latter is a strict global maximum of u−ϕ. Here we

denoted by j∗ the upper semicontinuous envelope of a function j.

By the definition of the points (xh, nhh) and since u∗h ∈ {±1} it is easy to show that

u∗h(x, nh) ≤ sign∗(ϕ(x, nhh)− ϕ(xh, nhh)).

We recall now that

uh(·, nhh) = χ̃
{Ph∗uh(·,(nh−1)h)>g((nh−1)h)h

s
1+s }

≤ χ̃
{Ph∗u∗h(·,(nh−1)h)>g((nh−1)h)h

s
1+s }

so that (since the right-hand side of the previous inequality is upper semicontinuous)

u∗h(·, nhh) ≤ χ̃
{Ph∗u∗h(·,(nh−1)h)>g((nh−1)h)h

s
1+s }

.

By computing the previous inequality in x = xh, where u∗h(·, nhh) takes the value 1, we

obtain

1 = u∗h(xh, nhh) ≤ χ̃
{Ph∗u∗h(xh,(nh−1)h)>g((nh−1)h)h

s
1+s }

≤ 1,

that is,

0 ≤ Ph ∗ u∗h(·, (nh − 1)h)(xh)− g((nh − 1)h)h
s

1+s .

Since u∗h = ±1 and u∗h(xh, nhh) = 1, the previous inequality can be written as

(15)

0 ≤
∫
RN

(
χ+(u∗h(y + xh, (nh − 1)h)− u∗h(xh, nhh))

− χ−((u∗h(y + xh, (nh − 1)h))− u∗h(xh, nhh))
)
Ph(y)dy − g((nh − 1)h)h

s
1+s .

The idea is now to estimate the right-hand side of (15) by means of several terms,

converging to the difference between the right-hand side of (10) and its left-hand side.

We define th = nhh, ϕh(y, s) = ϕ(xh + y, s) − ϕ(xh, th). By (14) we get that for every

A ⊆ RN it holds

(16) {y : u∗h(y + xh, th − h) ≥ u∗h(xh, th)} ∩A ⊆ {y : ϕh(y, th − h) ≥ 0} ∩A,

and

(17) {y : ϕh(y, th − h) < 0} ∩A ⊆ {y : u∗h(y + xh, th − h) < u∗h(xh, th)} ∩A.
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Given a small number γ > 0, if δ is small enough, then

(18)
ϕh(·, th − h) ≤ ϕh(·, th)− (∂tϕ(x0, t0)− γ)h

|Dϕ(x0, t0)| − γ ≤ |Dϕ(·, th)| ≤ |Dϕ(x0, t0)|+ γ

inside Bδ(0).

The analysis is now split into two main parts, depending whether |Dϕ(x0, t0)| = 0 or

not.

Step 1. Case |Dϕ(x0, t0)| 6= 0. We begin by writing (15) as

(19) 0 ≤ I + h
s

1+s g((nh − 1)h)

and then

(20) 0 ≤ I + h
s

1+s g(th − h) ≤ II + III + h
s

1+s g(th − h)

where II and III, implicitly depending on h and on δ, are given by

(21)
II =

∫
Bδ(0)c

(
χ+(u∗h(y + xh, th − h)− u∗h(xh, th))

− χ−(u∗h(y + xh, th − h)− u∗h(xh, th))
)
Ph(y) dy

(22) III =

∫
Bδ(0)

(
χ+(ϕh(y, th − h))− χ−(ϕh(y, th − h))

)
Ph(y) dy.

The inequality (20) follows from the fact that χ+−χ− is a non-decreasing function and

by (16)-(17) (with A = Bδ(0)).

We claim that

(23) lim sup
h→0

h−
s

1+s II ≤ IBδ(x0)c [u](x0, t0).

Indeed by the definition of Ph, we have that Ph/σh converges (in L1((Bδ(0))c) as well

as L∞((Bδ(0))c)) to the anisotropic fractional kernel N−(N+s). This, together with the

fact that χ+ − χ− is u.s.c., and the fact that lim sup∗ u
∗
h − u∗h(xh, th) = ū − ū(x0, t0),

implies (23).

Let us divide again III as

(24) III ≤ IV + 2V

with

(25) IV =

∫
Bδ(0)

(
χ+(ϕh(y, th))− χ−(ϕh(y, th))

)
Ph(y) dy

and

(26)

V =

∫
Bδ(0)

(
χ+(ϕh(y, th)− (∂tϕ(x0, t0)− γ)h)− χ+(ϕh(y, th))

)
Ph(y) dy

= −
∫
Bδ(0)

(
χ−(ϕh(y, th)− (∂tϕ(x0, t0)− γ)h)− χ−(ϕh(y, th))

)
Ph(y) dy

(using χ+ +χ− = 1). It is immediate to see that (24) follows by adding and subtracting

the integral defined in (26) and using (18).
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We aim to prove now that

(27) lim sup
h→0

h−
s

1+s IV ≤ IBδ(x0,t0)[ϕ](x0, t0),

and

(28) lim sup
h→0

h−
s

1+sV ≤ |Dϕ(x0, t0)|−1A−1(Dϕ(x0, t0))(γ − ∂tϕ(x0, t0)).

The proof of those two latter statements is slightly more involved. To prove the first,

we begin as in [10] with the following simple lemma.

Lemma 3.6. If |Dϕ(x0, t0)| 6= 0, there exists a constant C such that for any r > 0, it

holds

(29)

∫
∂Br

(
χ+(ϕh(y, th))− χ−(ϕh(y, th))

)
dHN−1(y) ≤ CrN .

Proof of Lemma 3.6. By the trivial estimate∫
∂Br

(
χ+(ϕh(y, th))− χ−(ϕh(y, th)

)
dHN−1(y) ≤ 2rN−1,

is clear that we have to show the statement of the lemma only for r small. Up to a

rotation of the coordinates, we can suppose that Dϕ(xh, th)/|Dϕ(xh, th)| = e1. Since ϕ

is a regular function we have that in a sufficiently small neighborhood of 0

|ϕh(y, th)| ≤ |Dϕ(xy, th)|y1 + |D2ϕ(xh, th)| |y|2.

This implies that the set of integration in the left-hand side of (29) is contained in the

set {y = (y1, y
′) ∈ ∂Br : |y1| ≤ c|y′|2} whose measure can be estimated by crN−2r2 ∼ rN

(indeed, on the complement, the part where ϕh > 0 compensates exactly the part where

ϕh < 0). Hence (29) holds. Notice that if r and h are small enough, the constant in (29)

depends only on (the dimension and) Dϕ(x0, t0), D2ϕ(x0, t0). �

As a consequence we get that inequality (27) holds true. Indeed by using polar coordi-

nates we get that

(30) |σ−1
h IV| ≤ CN

∫ δ

0
(σ2
h + r2)−

N+s
2 Uh(r) dr

with

Uh(r) =

∫
∂Br

(
χ+(ϕh(y))− χ−(ϕh(y))

)
dHN−1(y).

By means the previous lemma, we get that Uh(r) ≤ CrN and we can apply Lebesgue’s

Convergence Theorem and conclude that the (superior) limit of σ−1
h III is exactly the

right-hand side of (27).

We pass to the proof of (28). We only follow partially [10] for this estimate. Let us

first observe that

χ+(ϕh(y, th)− (∂tϕ(x0, t0)− γ)h)− χ+(ϕ(y, th))

=

{
−χ{0≤ϕ(·,th)<(∂tϕ−γ)h}(y) if ∂tϕ− γ ≥ 0

χ{(∂tϕ−γ)h≤ϕ(·,th)<0}(y) if ∂tϕ− γ ≤ 0.
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Assuming for instance that ∂tϕ − γ > 0, we obtain (denoting simply by Br the ball

Br(0))

V = −
∫
{0≤ϕ(·,th)<(∂tϕ−γ)h}∩Bδ

Ph(y) dy =

∫
{0≤ϕ(σ

1/s
h ·,th)<(∂tϕ−γ)h}∩B

δ/σ
1/s
h

P (y) dy

hence (using the co-area formula)

V = −
∫ (∂tϕ−γ)h

0
dτ

∫
∂{ϕ(σ

1/s
h ·,th)≥τ}∩B

δ/σ
1/s
h

P (y)

σ
1/s
h |Dϕ(σ

1/s
h y, th)|

dHN−1(y)

≤ − h

σ
1/s
h

∂tϕ(x0, t0)− γ
|Dϕ(x0, t0)|+ γ

∫ 1

0
dτ

∫
∂{ϕ(σ

1/s
h ·,th)≥hατ}∩B

δ/σ
1/s
h

P (y)dHN−1(y)

where we have denoted, for short, α = ∂tϕ− γ, and used again (18). To sum up,

(31) σ−1
h V ≤ − ∂tϕ(x0, t0)− γ

|Dϕ(x0, t0)|+ γ

∫ 1

0
dτ

∫
∂{ϕ(σ

1/s
h ·,th)≥hατ}∩B

δ/σ
1/s
h

P (y)dHN−1(y)

Possibly reducing δ, and assuming that the Nth coordinate is along the vector

eN = Dϕ(x0, t0)/|Dϕ(x0, t0)|, for h small enough we can represent the level surface

∂{ϕh(·, th) ≥ h`} by a graph {(y′, f`,h(y′)) : y′ ∈ B′δ} ∩ Bδ (where B′r denotes the

(N − 1)-dimensional ball in e⊥N with center 0 and radius r), with f`,h which goes uni-

formly (in both y′ and `), in C2 norm as h → 0, to the function f0 representing in the

same way the surface ∂{y ∈ Bδ : ϕ(x0 + y, t0) ≥ ϕ(x0, t0)}, and which is such that

D′f0(0) = 0. We observe moreover that f`,h(0) = h`/|Dϕ(x0, t0)| + o(h). We denote

D`,h ⊆ B′δ the set of points y′ such that (y′, f`,h(y′)) ∈ Bδ.
Now, we have that∫
∂{ϕ(σ

1/s
h ·,th)≥hατ}∩B

σ
−1/s
h

δ

P (y)dHN−1(y)

=

∫
σ
−1/s
h Dατ,h

P (y′, σ
−1/s
h fατ,h(σ

1/s
h y′))

√
1 + |D′fατ,h(σ

1/s
h y′)|2dy′.

Given R > 0, we split the last integral into an integral in B′R and an integral in

σ
−1/s
h Dατ,h \ B′R: clearly the latter is controlled uniformly by cR−1−s as the gradi-

ents of the functions fατ,h are uniformly bounded. We now try to express the limit, as

h→ 0, of ∫
B′R

P (y′, σ
−1/s
h fατ,h(σ

1/s
h y′))

√
1 + |D′fατ,h(σ

1/s
h y′)|2dy′.

Observe that if |y′| ≤ R and h is small enough,

σ
−1/s
h fατ,h(σ

1/s
h y′) ≈ ατh

σ
1/s
h |Dϕ(x0, t0)|

+ |D′fατ,h(θhy
′)||y′|

for some θh ∈ [0, σ
1/s
h ]. Using h/σ

1/s
h = σh, we find that σ

−1/s
h fατ,h(σ

1/s
h y′) → 0 uni-

formly (in τ and y′ ∈ B(0, R′)) as h→ 0. We deduce (using again that D′fατ,h(σ
1/s
h y′)→
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0) ∫
B′R

P (y′, σ
−1/s
h fατ,h(σ

1/s
h y′))

√
1 + |D′fατ,h(σ

1/s
h y′)|2dy′ →

∫
B′R

P (y′, 0)dy′

uniformly in τ as h→ 0. Hence returning to (31), we find, for any R,

lim sup
h→0

σ−1
h V ≤ − ∂tϕ(x0, t0)− γ

|Dϕ(x0, t0)|+ γ

∫ 1

0
dτ

(∫
B′R

P (y′, 0)dy′ +
c

R1+s

)
and sending R→∞ we deduce

lim sup
h→0

σ−1
h V ≤ − ∂tϕ(x0, t0)− γ

|Dϕ(x0, t0)|+ γ

∫
Dϕ(x0,t0)⊥

P (y)dHN−1(y).

On the other hand, if ∂tϕ(x0, t0)− γ < 0, the same proof will show

lim sup
h→0

σ−1
h V ≤ − ∂tϕ(x0, t0)− γ

|Dϕ(x0, t0)| − γ

∫
Dϕ(x0,t0)⊥

P (y)dHN−1(y).

Together with (27) we deduce

lim sup
h→0

σ−1
h III ≤ IBδ(x0,t0)[ϕ](x0, t0)− 2

∂tϕ(x0, t0)− γ
|Dϕ(x0, t0)| ± γ

∫
Dϕ(x0,t0)⊥

P (y)dHN−1(y)

and using (23), we get

lim sup
h→0

σ−1
h I

≤ IBδ(x0,t0)c [u](x0, t0) + IBδ(x0,t0)[ϕ](x0, t0)− ∂tϕ(x0, t0)− γ
|Dϕ(x0, t0)| ± γ

A(Dϕ(x0, t0))−1,

where A is defined in (6). Since g is continuous, g(th − h) → g(t0) as h → 0 and we

obtain (9) by taking the limsup in (19) and sending then γ → 0.

Step 2. Case |Dϕ(x0, t0)| = 0. A first classical observation (see, for instance, [3]) is that

in this case one can “decouple” the test function ϕ as the sum of a function of x and a

function of t. Indeed, since (x0, t0) is a critical point of t 7→ ϕ(x, t)− ∂tϕ(x0, t0)(t− t0),

there exists µ > 0 such that, near (x0, t0), ϕ(x, t) ≤ ψ(x, t) := ϕ(x0, t0) + ∂tϕ(x0, t0)(t−
t0)+µ(|x−x0|2 +|t−t0|2)/2. Then as before, (x0, t0) is a strict local maximum of u∗−ψ.

For n ≥ 1, let (xn, tn), tn < t0, be a local maximum of u∗(x, t)− ψ(x, t)− 1/(n(t0 − t)).
Such a maximum exists since for any x, u∗(x, t)−ψ(x, t)− 1/(n(t0− t)) diverges to −∞
as t → t+0 and t → −∞. Moreover is easy to see that (xn, tn) → (x0, t0) as n → ∞.

Assume first that

Dψ(xn, tn) = µ(xn − x0) 6= 0

for infinitely many n. Then we have, thanks to the Step 1,

(32)

∂tϕ(xn, tn)+µ(tn− t0)+
1

n(t0 − tn)2
≤ µ|xn−x0|A(xn−x0)(I[|x−x0|2/2](xn)+g(t))

∼ Cµ|xn − x0|(C|xn − x0|−s + ‖g‖∞)→ 0

as n→∞, since the s-curvature of a ball of radius r is of order r−s. We deduce (9).
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Hence we are reduced to the case where Dψ(xn, tn) = 0 for all n large enough, which

implies xn = x0. We argue by contradiction supposing that ∂ϕt(x0, t0) > 0. For any x

and t < tn, by maximality of (xn, tn) for the function u∗(x, t)− ψ(x, t) + 1/n(t− tn) we

have

u∗(x, t)− ϕ(x0, t0)− ∂tϕ(x0, t0)(t− t0)− µ

2
(|t− t0|2 + |x− x0|2)− 1

n(t0 − t)

≤ u∗(x0, tn)− ϕ(x0, t0)− ∂tϕ(x0, t0)(tn − t0)− µ

2
|tn − t0|2 −

1

n(t0 − tn)

so that

u∗(x,t)− u∗(x0, tn)

≤ −∂tϕ(x0, t0)(tn − t)− µ(tn − t)(t− t0)− 1

n(t0 − tn)
+

1

n(t0 − t)
+
µ

2
|x− x0|2

≤ (−∂tϕ(x0, t0) + µ(t0 − t)) (tn − t) +
µ

2
|x− x0|2.

It follows that u∗(x, t) = −1 if |x − x0| < r(t) :=
√
∂tϕ(x0, t0)(tn − t)/µ, provided n is

large enough and t is close enough to tn so that −∂tφ(x0, t0)+µ(t0−t) ≤ −∂tϕ(x0, t0)/2.

It also follows that u∗(x0, tn) = 1.

Now Corollary 3.4 yields that u∗(x0, t+ τ) = −1 for τ ≤ γ/(4k̄)r(t)1+s ∼ (tn − t)
1+s
2 ,

so that if t is close enough to tn this is true up to τ = tn − t, a contradiction.

�

3.4. Convexity of the mobility. The equation which is solved in the limit can be

written as

∂tu = Φ(Du) (−κs(x, {u ≥ u(x)}) + g(t)) ,

with Φ(p), the (inverse of the) mobility, is the one-homogeneous function |p|A(p) (which

from now on we will often denote by Φ). If Φ is convex, this law precisely states that

the boundary of the level sets of u evolve with the speed −κs + g, where −κs is the

fractional curvature and g the forcing term, in the direction of the “Φ-normal” ∂Φ◦(ν),

where ν is the normal to the level set, and Φ◦ the polar of Φ (or dual norm).

We will show that Φ is indeed a convex (and obviously even, one-homogeneous) func-

tion, hence a norm.

Lemma 3.7. The 1-homogeneous function

Φ(p) := |p|
(

2

∫
p⊥

dx

1 +N (x)N+s

)−1

is a convex function in RN .

Proof. Consider p0, p1 ∈ RN : without loss of generality, we assume that vect{p0, p1} =

vect{e1, e2} (where (ei)
N
i=1 is the canonical basis). We denote x = (x1, x2, x

′) ∈ RN , and

for p = (p1, p2, 0) ∈ vect{p0, p1}, Rp = (−p2, p1, 0). One can check that for such a p,

Φ(p) =

(∫
RN−2

dx′
∫ +∞

−∞
dz

1

a+N (x′ + zRp)N+s

)−1

.
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Then one computes, performing successively the changes of variables ξ′ = x′/z and

t = N (ξ′ +Rp)z,

Φ(p) =

(∫
RN−2

dx′
∫ +∞

−∞
dz

1

1 + zN+sN (x
′

z +Rp)N+s

)−1

=

(∫
RN−2

dξ′
∫ +∞

−∞
dz

zN−2

1 + zN+sN (ξ′ +Rp)N+s

)−1

=

(∫
RN−2

dξ′

N (ξ′ +Rp)N−1

∫ +∞

−∞
dt

tN−2

1 + tN+s

)−1

,

so that

(33) Φ(p) = C(N, s)

(∫
RN−2

dξ′

N (ξ′ +Rp)N−1

)−1

for some constant C(N, s). Now, consider λ ∈ [0, 1] and the functions (assuming

p1, p0, λp1 + (1− λ)p0 6= 0)

h(x′) =
1

N (x′ +R(λp1 + (1− λ)p0))N−1
,

f(x′) =
1

N (x′ +Rp1)N−1
, g(x′) =

1

N (x′ +Rp0)N−1
.

Then, using the convexity of N , we have for all x′, y′,

h(λx′ + (1− λy′)) ≥M−1/(N−1)(f(x′), g(y′), λ)

where Mp is defined in [16, p. 368] by

(34) Mp(a, b, λ) = (λap + (1− λ)bp)1/p.

Thanks to Borell-Braskamp-Lieb’s inequality [16, Thm. 10.1, (38)] we have∫
RN−1

h(x′)dx′ ≥Mq

(∫
RN−1

f(x′)dx′,

∫
RN−1

g(x′)dx′, λ

)
for

q =
−1/(N − 1)

−N−2
N−1 + 1

= −1.

But using (33), this precisely boils down to

Φ(λp1 + (1− λ)p0) ≤ λΦ(p1) + (1− λ)Φ(p0).

�

4. Evolution of convex sets

In this section we show that the during the flow the convexity of a set is preserved.

The main result in this direction is contained in Lemma 4.3, where it is shown that in

each step of the discrete approximation, the convexity is preserved. Such a Lemma is

actually a consequence of a series of non-trivial results in convex geometry. We begin

by recalling such results. All the above definitions and results can be found, together

with a comprehensive list of references, in the survey [16].
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Definition 4.1. We say that a function f ∈ L1(RN )∩C0(RN ) is a p−concave function

if it is log−concave when p = 0 and, if p 6= 0, for every x, y ∈ RN it holds

f((1− λ)x+ λy) ≥Mp(λ, f(y), f(x))

where Mp is defined in (34). Equivalently, f is p−concave if fp is convex, for p negative,

and fp is concave, for p positive.

For our scopes we will need the following result which is a consequence of [13, Theorem

3.16], [16, Corollary 11.2] (see the discussion at page 379 of [16]).

Lemma 4.2. Let f be a p-concave function with p > −1/N and K a convex body (that

is a convex set with non-empty interior). Then the function

h(x) = f ∗ χK(x)

is (1/Np+ 1)-concave, and as a consequence, h is level set convex.

Corollary 4.3. If E is convex then for any h > 0, c ∈ R, the set Tc,h(E) (defined in

(3)) is convex.

Proof. We only have to notice that the function Ph is continuous, integrable over RN ,

and that it is −1/(N+s)-concave. The latter property follows by a direct inspection. �

Corollary 4.4. Let g : R+ → R be a continuous function. Let u0 be a regular function

such that all level sets {u0 > s} are convex. If u is the solution of (5) with initial data

u0, then the level sets {u(·, t) > s} are convex.

Proof. This follows from the fact that, thanks to Theorem 3.1 and Remark 2.6, (almost)

all the level sets of u(t) can be obtained as limits of the scheme 3, which preserves

convexity. �

5. A splitting result

The goal of this section is to show that the motion with forcing term can be obtained

by alternating free curvature motions and evolutions with the forcing term only. A

consequence will be an elementary proof of how the distance between two sets evolve by

the forced curvature flow (as this distance increases by unforced mean curvature flow,

and its evolution is trivial for sets evolving with constant speeds), see Prop. 6.2 below.

Let g : R+ → R be a continuous function. For a fixed ε > 0 consider the sets

Aε = ∪n≥0(2nε, (2n+ 1)ε] and Bε = (0,∞) \Aε. Let, for t > 0, p ∈ RN and I ∈ R,

(35) Fε(t, p, I) := 2χAε(t)Φ(p)cε(t) + 2χBε(t)Φ(p)I,

where cε is the piecewise constant function defined by

cε(t) =
1

2ε

∫ (2n+2)ε

2nε
g(τ) dτ,

if t ∈ [2nε, (2n + 2)ε], and where Φ(p) = A(p)|p| is the mobility (see Section 3.4). We

let also

(36) F (t, p, I) := Φ(p)(I + g(t)),
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and we observe that the function t 7→
∫ t

0 (Fε(τ, p, I)−F (τ, p, I))dτ goes locally uniformly

to 0 as ε→ 0 (for fixed p, I).

Let u0 : RN → R a bounded uniformly continuous function and uε : RN × [0,∞) be

the function constructed as follows. We let uε(·, 0) = u0 and for each n, define u(·, t) on

(nε, (n+ 1)ε] as the (unique) viscosity solution, starting from uε(nε), of

(37) ∂tuε = Fε(t,Duε,−κs(x, {uε ≥ uε(x, t)})).

It is easy to see that uε remains bounded and spatially uniformly continuous, moreover

it is classical that it is also uniformly continuous in time (see for instance [19]). Hence up

to a subsequence, we may assume that it converges uniformly, as ε→ 0, to a continuous

limit u(x, t). We will show that u is the solution of (5). Since this limit is independent

of the chosen subsequence, it will yield the following lemma.

Proposition 5.1. Let uε, u be respectively the solutions of (37), (5), with initial datum

u0. Then uε → u, as ε→ 0, locally uniformly in RN × [0,∞).

Proof. We just need to show that u, limit of a subsequence of (uε), satisfies (8). The

proof is based on a convergence result of Barles [2], based the theory of L1-viscosity

solution [20, 8]. We adapt it to our nonlocal setting, and simplify significantly the

argument, as we do not wish to show a very general convergence result for nonlocal

geometric motions (even if this could be of independent interest).

Consider ϕ and (x̄, t̄) a strict global maximum of u−ϕ, and assume first Dϕ(x̄, t̄) 6= 0

and ϕ(x̄, t̄) is not a critical value of ϕ. As in [2], we introduce

ψε(t) := Fε(t,Dϕ(x̄, t̄),−κs(x̄, {ϕ ≥ ϕ(x̄, t̄)}))− F (t,Dϕ(x̄, t̄),−κs(x̄, {ϕ ≥ ϕ(x̄, t̄)}))

which is such that
∫ t

0 ψε(τ)dτ → 0 uniformly. Hence, uε(x, t) −
∫ t

0 ψε(τ)dτ → u(x, t)

locally uniformly, and one can find points (xε, tε) of global maximum of

uε(x, t)−
∫ t

0
ψε(τ)dτ − ϕ(x, t),

such that (xε, tε)→ (x̄, t̄) as ε→ 0. If t/ε 6∈ N, one deduces that

(38) ∂tϕ(xε, tε) + ψε(tε) ≤ Fε(tε, Dϕ(xε, tε),−κs(xε, {ϕ ≥ ϕ(xε, tε)})),

observing in particular that since (xε, tε)→ (x̄, t̄), the value ϕ(xε, tε) can be assumed to

be noncritical1 If tε/ε ∈ N, classical arguments for parabolic semigroups show that (38)

still holds, if one takes for ψε and Fε their left limit, see for instance [22]. It follows

(39) ∂tϕ(xε, tε) ≤ F (tε, Dϕ(x̄, t̄),−κs(x̄, {ϕ ≥ ϕ(x̄, t̄)})) +[
Fε(tε, Dϕ(xε, tε),−κs(xε, {ϕ ≥ ϕ(xε, tε)}))−Fε(tε, Dϕ(x̄, t̄),−κs(x̄, {ϕ ≥ ϕ(x̄, t̄)}))

]
.

As

lim
ε→0

Dϕ(xε, tε) = Dϕ(x̄, t̄) and lim
ε→0

κs(xε, {ϕ ≥ ϕ(xε, tε)}) = κs(x̄, {ϕ ≥ ϕ(x̄, t̄)}),

1Strictly speaking, there could be critical points of the corresponding level sets, however these points

tend to infinity as ε→ 0, and do not alter significantly the value of the integrals defining κs.
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the error term in square brackets in (39) vanishes in the limit and it follows

∂tϕ(x̄, t̄) ≤ F (t,Dϕ(x̄, t̄),−κs(x̄, {ϕ ≥ ϕ(x̄, t̄)})),

which is (8).

If on the other hand Dϕ(x̄, t̄) = 0, then the proof that ∂tϕ(x̄, t̄) ≤ 0 is identical to

Step 2 in the proof of Proposition 3.5, provided one can first estimate the speed at which

balls evolve under the equation (37), which is of the same order as in Corollary 3.4. �

6. Geometric uniqueness in the convex case

In this section we show that if the initial set is bounded and convex, then the fatten-

ing phenomenon can not occur and the evolution is unique. The proof is based on [7,

Theorem 4.9], and follows from a (simple) estimate of the distance between two evolu-

tions with different forcing terms. In the rest of the paper, we will always consider in

RN the distance distΦ◦ induced by the norm Φ◦(x) := sup{ξ · x : Φ(ξ) ≤ 1}, polar of

Φ. Hence we will drop the subscript and write dist instead of distΦ◦ . Similarly, we will

write dηC = −η ∨ (η ∧ (distΦ◦(x,C)− distΦ◦(x,C
c))).

Lemma 6.1. Let C1 ⊆ C2 two sets and let C1(t) and C2(t) be the evolutions of the

flow vi = Φ(ν)ci, with ci two constants, starting from C1 and C2 respectively. That is,

Ci(t) = {ui ≥ t} where ui is the solution of{
∂tui = ciΦ(Dui)

ui(x, 0) = dηCi(x).

Then the function

δ(t) := distΦ◦(∂C1(t), ∂C2(t))

satisfies

δ(t) ≥ δ(0)− t(c2 − c1),

for every 0 ≤ t ≤ TS := sup{τ ≥ 0 : δ(τ) > 0} (i.e., until the first contact time).

Proof. We consider first the case where c1 and c2 are not positive. We recall that, by

the Hopf-Lax formula for the Hamiltonian Hi(p) = |ci|Φ(p), the solution of the system{
∂tui(x, t) + |ci|Φ(Du(x, t)) = 0

ui(x, 0) = dηCi(x),

with i = 1, 2, is given by (see for instance [15])

ui(x, t) = inf
y∈RN

{
dηCi(x) + tH∗i

(
x− y
t

)}
,

where H∗i denotes the Legendre-Fenchel transform of the function Hi, given by

H∗i (q) =

{
0 if Φ◦(q) ≤ |ci|,
+∞ else.

Thus

ui(x, t) = inf
y:Φ◦(y−x)≤|ci|t

dηCi(x).
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Since δ(0) > 0 we can suppose that t is such that C1(t) ⊂ C2(0). We have that

(40) {x : ui(x, t) > 0} = {Ci +BΦ◦(0, |ci|t)}c .

Indeed if ξ ∈ {x : ui(x, t) > 0} then ξ can not belong to Ci(t) + BΦ◦(0, |ci|t), otherwise

there would exist z ∈ ∂Ci with Φ◦(z − ξ) ≤ |ci|t and thus

0 = dist(z, ∂Ci) ≥ ui(ξ, t) > 0.

On the other hand it is immediate to verify that if dist(ξ, Ci) ≤ |ci|t then u(ξ, t) ≤ 0.

Let xi ∈ ∂(Ci+BΦ◦(0, |ci|t)) be such that δ(t) = Φ◦(x1−x2) and denote ξ the unique

intersection between ∂C2 and the segment with extrema x1 and x2. Let moreover z be

the projection of x1 onto ∂C1, so that Φ◦(x1 − z) = |c1|t. We have

δ(t) = Φ◦(x1 − x2)

= Φ◦(x1 − ξ) + Φ◦(ξ − x2)

≥ |c2|t+ Φ◦(ξ − x1)

≥ |c2|t+ Φ◦(ξ − z)− Φ◦(z − x1)

= |c2|t+ δ(0)− |c1|t
= δ(0)− (c2 − c1)t,

which is exactly the statement of the lemma. The proof in the case where c1 and c2

are positive follows the same lines of the above proof, once we notice that if u solves

∂tu − |c|Φ(Du) = 0 then v = −u solves ∂tv + |c|Φ(Dv) = 0. If c1 < 0 and c2 > 0 by

similar arguments we get that

C1(t) = {C1 +BΦ◦(0, |c1|t)}c C2(t) = {x : dist(x, ∂C2 > c2t)}.

Let x1 and x2 be points such that δ(t) = Φ◦(x1 − x2) and let xi be the projection of xi
to ∂Ci, i = 1, 2. Then we have

δ(t) = Φ◦(x1 − x2)

≥ Φ◦(x1 − x2)− Φ◦(x1 − x1)− Φ◦(x2 − x2)

≥ δ(0)− |c1|t− |c2|t
= δ(0)− (c2 − c1)t.

The proof of the case c1 > 0 and c2 < 0 follows by an analogous argument. �

Proposition 6.2. Let C1 ⊆ C2 be two sets and let, g1 and g2 : R+ → R two continuous

functions and, for i = 1, 2, let ui be the solution of{
∂tui = Φ(Dui) (−κs(x, {ui ≥ ui(x, t)}) + gi(t)) ,

ui(x, 0) = dηCi(x)
.

Let for t ≥ 0, i = 1, 2, Ci(t) = {ui ≥ 0}. Then the function δ(t) = dist(∂C1, ∂C2)

satisfies

δ(t) ≥ δ(0)−
∫ t

0
(c2(s)− c1(s)) ds

for every 0 ≤ t ≤ TS := sup{τ ≥ 0 : δ(τ) > 0}.
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Proof. Without loss of generality we can assume that the 0-level sets of ui do not fatten,

that is, Ci(t) = {ui > 0} (otherwise we should consider the τ -level set and then let

τ → 0).

For i = 1, 2, let uε,i be the functions constructed in Section 5 with g = gi, let cε,i
be the corresponding piecewise forcing terms, and let Ciε(t) = {x : uε,i(x, t) ≥ 0} and

δε(t) = dist(∂C1
ε (t), C2

ε (t)). By Lemma 5.1 we have that δε(t)→ δ(t) for every t ≤ TS .

Let t ≤ TS and let n be the largest integer such that nε < t. Let us write δε(t) as

δε(t) = δε(ε) + [δε(2ε)− δε(ε)] + [δε(3ε)− δε(2ε)] + · · ·+ [δε(t)− δε(nε)] .

Since the functions uε,i solve in [0, ε] the geometric and translation-invariant equation

∂tuε,i = 2Φ(Duε,i)(−κs(x, {uε,i ≥ ui(x, t)})), the distance between their 0-level sets

is nondecreasing, so that δε(ε) ≥ δε(0). Moreover, since the uε,i’s solve in (ε, 2ε] the

equation ∂tuε,i = 2Φ(Duε,i)cε,i, by Lemma 6.1 we get that

δε(2ε) ≥ δε(ε)− 2ε (cε,2(2ε)− cε,1(2ε)) .

By iterating this argument we obtain that{
δε(kε)− δε((k − 1)ε) ≥ 0 if k is odd,

δε(kε)− δε((k − 1)ε) ≥ −2ε (cε,2(kε)− cε,1(kε)) otherwise.

By summing in k we then get

δε(nε) ≥ δε(0) + 2ε
n∑
k=1

(cε,2(kε)− cε,1(kε)) = δε(0) +

∫ nε

0
(g2(τ)− g1(τ)) dτ .

By passing to the limit as ε→ 0, the thesis follows. �

Thanks to the previous proposition, by reasoning exactly as in the proofs of [7, The-

orem 4.9] (which is based in turn on [6, Theorem 8.4]), we get the following corollary:

Corollary 6.3. Let g : R → R be a continuous function. Let C1 ⊆ C2 be two compact

convex sets and let C1(t) and C2(t) be the flows for the equation A−1v = −κs + g,

starting from C1 and C2 respectively. Then C1(t) ⊆ C2(t) for all t ≥ 0.

Proof. Notice first that, if C1 has empty interior, then C1(t) = ∅ for all t > 0, and there

is nothing to prove. Therefore, we can assume that C1 has nonempty interior and that

0 lies in the interior of C1.

For θ > 1, we let g1(t) := g(t), g2(t) := g(t/θ1+s)/θs. Notice that the set θC2(t/θ1+s)

solves the equation A−1v = −κs + g(t/θ1+s)/θs, with initial datum θC2. Therefore,

letting δθ(t) := dist(∂C1(t), θ∂C2(r/θ1+s)), so that δθ(0) > 0, by Proposition 6.2 we get

δθ(t) ≥ δθ(0)−
∫ t

0

(
1

θs
g
( τ

θ1+s

)
− g(τ)

)
dτ

until the first contact time. Now, the integral can be estimated by

(θ − 1)

∫ t/θ1+s

0
g(τ)dτ +

∫ t

t/θ1+s
g(τ)dτ ≤ 3t(θ − 1)‖g‖∞,
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while δθ(0) ≥ c(θ − 1) where c depends only on the C1 and Φ. Hence, δθ(t) ≥ 0 as long

as t ≤ c/(3‖g‖∞), which does not depend on θ. It follows that C1(t) ⊆ C2(t), this as

long as C1 has nonempty interior, which concludes the proof. �

Remark 6.4. The same proof shows that, in general, a star-shaped domain with respect

to a center point x will have a unique evolution for a positive time, as long as no line

issued from x becomes tangent to its boundary.

7. Concluding remarks

A natural question is whether one can characterize the sets which evolve homothet-

ically by the anisotropic flow (5), with g = 0. A way to build such sets could be by

first showing existence of evolutions with constant volume (by tuning appropriately the

forcing term as in [7, 23]) and then studying their asymptotic limit. Anyway, the char-

acterization of the limiting equilibrium shape seems to be a difficult question, related to

the anisotropic fractional isoperimetric problem.

More precisely, it is known (see [24]) that the N−fractional perimeter converges, as

s→ 1, to an anisotropic perimeter with a specific anisotropy different from N , yielding

an indication on the behavior of the isoperimetric sets in this limit.

Another natural question is whether the N−fractional perimeter is decreasing under

the limit flow, in absence of the forcing term. This is true in the isotropic case, and

can be easily seen by writing the flow in [10] as a minimizing movement scheme as

in [23, 14], and is probably true also in our case. However a complete proof would

require a thorough study of the properties of the kernel Ph.

In this respect, it would be interesting to extend the analysis in [23, 14] to the frac-

tional case.
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