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CONVERGENCE OF AN ALGORITHM FOR THE ANISOTROPIC
AND CRYSTALLINE MEAN CURVATURE FLOW*

ANTONIN CHAMBOLLE! AND MATTEO NOVAGA?

Abstract. We give a simple proof of convergence of the anisotropic variant of a well-known
algorithm for mean curvature motion, introduced in 1992 by Merriman, Bence, and Osher. The
algorithm consists in alternating the resolution of the (anisotropic) heat equation, with initial datum
the characteristic function of the evolving set, and a thresholding at level 1/2.
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1. Introduction: The algorithm. More than ten years ago, Merriman, Bence,
and Osher [26] proposed the following algorithm for the computation of the motion by
mean curvature of a surface. Given a closed set £ C R, they let T, E = {u(-,h) >
1/2}, where u solves the following heat equation:

(1) { %(m,t) = Au(z,t), t>0, xRV,

u(-0) = x& (t=0).

Then, they let Ej,(t) = T,[Lt/h]E (with [t/h] the integer part of t/h), and conjectured
that OF}(t) converges to OE(t), as h — 0, where OE(t) is the (generalized) evolution
by mean curvature starting from OF.

The proof of convergence of this scheme was established by Evans [17] and Barles
and Georgelin [2]. Other proofs were given by Ishii [22] and Cao [12], where the evo-
lution in (1) was replaced by the convolution of x g with a more general symmetric
kernel. This was generalized by Ishii, Pires, and Souganidis [23] to the case of the
convolution with an arbitrary kernel (with some growth assumptions). This approach
was also studied by Ruuth and Merriman [29] (see also [28]). Vivier [34] and Leoni [25]
have considered other generalizations with (1) replaced with a time and space depen-
dent anisotropic heat equation with a lower order term. The space dependence is an
additional difficulty and it is not clear how what we will present could be adapted
to such situations; on the other hand, in the two latter papers, “only” the case of
Riemannian anisotropies is considered, in contrast to what we will study here.

We propose here to study the generalization of this algorithm to the so-called
anisotropic and crystalline curvature motion, as defined in [21, 33, 32, 31]. We fol-
low the definition in [10]: we consider (¢, $°) a pair of mutually polar convex 1-

homogeneous functions in RN (i.e., ¢°(¢) = SUP (<1 § 7 o(n) = SUDgo (6)<1 & * 5
see [27]). These are assumed to be locally finite, and, to simplify, even. The pair
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(¢, 9°) will be referred as the anisotropy. The local finiteness implies that there is a
constant ¢ > 1 such that

¢l < ¢(n) < clnl and 7HE] < 6°(€) < cl¢]

for any 1 and ¢ in RY. We refer to [9, 10] for the main properties of ¢ and ¢°.

Being convex and 1-homogeneous, ¢° (and ¢) is also subadditive, so that the
function (z,y) — ¢(z — y) defines a distance—the “¢-distance.” For E C RY and
x € RY, we denote by dist(ﬁ(gc7 E) :=inf,cp ¢(x —y) the ¢-distance of x to the set E,
and by

d%(x) = dist?(z, E) — dist?(z, RN \ E)

the signed ¢-distance to JF, negative in the interior of E and positive outside its
closure. One easily checks that

|dy(z) —dp(y)| < é(z—y) < clo—yl

for any x,y € RY, so that d% is differentiable a.e. in RY. The former inequality
shows moreover that Vd‘g(x) -h < ¢(h) for any h € RY if x is a point of differ-
entiability; hence ¢° (Vd}g(a:)) < 1. If ¢ and ¢° are smooth, one shows quite easily
that d% is differentiable at each point x which has a unique ¢-projection y € OF
(solving minyepr ¢(z — y)). In this case, Vd%(a:) is given by Vo((x — y)/d%(x)), S0
that ¢°(Vd%(m)) = 1. If ¢, ¢° are just Lipschitz-continuous, one still shows that
¢°(Vd%(x)) =1 a.e. in RY; see [9, 10] for details.

A Cahn-Hoffman vector field ny is a vector field on OF such that ny(z) €
0¢°(vp(z)) = 8¢°(Vd%(z)) a.e. on OF, where 0¢° is the (0-homogeneous) subgradi-
ent of ¢° (see [27, 16]) and vg is the (Euclidean) exterior normal to JE. If such a
field is given in a neighborhood of OF, then it is characterized by

¢°(ne(z)) = 1 and ny(z) - Vd%(sc) =1 ae.

This follows from Euler’s identity, since ¢° is 1-homogeneous. In this case, ko = divng
is a ¢-curvature of OFE. The ¢-curvature flow is then an evolution E(¢) such that at
each time, the velocity of 0F(t) is given by

(2) V = —he g,

where n4 is a Cahn-Hoffman vector field and &4 is the associated curvature. If ¢, ¢°
are smooth (e.g., in C?(2\{0})), then ng, k, are uniquely defined, whereas if ¢, ¢° are
merely Lipschitz (when, for instance, the Wulff shape {¢ < 1} is a convex polytope),
then ng can be nonunique and the anisotropy is called crystalline [33, 9].

As easily shown by formal asymptotic expansion, the natural anisotropic gener-
alization of the Merriman—Bence—Osher algorithm is as follows. Given E a closed set
with compact boundary in RY, we let Ty (E) = {z : u(x,h) > 1/2}, where u(z,t) is
the solution of

(3) %(I,t) e div (¢°(VU)8¢O(Vu))(;L',t), t>0, zeRV,

u(-0) = xg (t=0).
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The function u(z,t) is well defined and unique by classical results on contraction
semigroups [11]: if E is compact, it corresponds to the flow in L?(RY) of the subdif-
ferential of the functional u — [,y ¢°(Vu)?/2dx if u € H'(RY), and 400 otherwise.
On the other hand, if RY \ E is compact, one defines u by simply letting u = 1 + v,
where v solves the same equation with initial data xg — 1.

We are interested in the limit of the discrete evolutions ¢t — E}j(t) = T,[lt/ h]E,
as h — 0. Our main result is a result of consistency with suitable “regular” evolu-
tions: it states that if there exists a regular evolution starting from E in the sense
of our Definition 2.1 (which is a variant of a definition first introduced in [9] and
includes smooth evolutions when the anisotropy is smooth), then E}(t) converges to
this evolution. This consistency result, together with the monotonicity of the scheme
(E C F = ThoE C TyF, as follows from the comparison principle for (3)), yields
convergence also to all generalized solutions defined (in the smooth case) using bar-
riers [7, 8] or, equivalently, viscosity solutions [14, 15, 4, 5, 3], as long as these are
unique. Also, it yields the convergence of the scheme to crystalline evolutions, when
the initial set is convex. Existence and uniqueness of such (regular and generalized)
evolutions are established, in the convex case, in [6].

Another important consequence of our consistency result is a comparision princi-
ple for the regular evolutions of Definition 2.1, which follows from the monotonicity
of the scheme. It gives an alternative proof of uniqueness for the convex crystalline
evolutions studied in [6] (the original proof is based on [9]).

We observe that evolutions similar to (2) might also be obtained by convolution
with appropriate kernels as studied by Ishii, Pires, and Souganidis [23]. However,
a complete characterization of these motions in dimension higher than 2 is still not
known (see [29, 30] in two dimensions).

Our evolution is also different from the evolutions considered by Leoni [25] (or
Vivier [34]); in her paper, the heat equation (1) is replaced with an equation of the
form u; = A(x,t) : D?>u+ H(x,t, Du). The resulting surface motion is a variant of
the mean curvature motion, with an (x,t) dependent velocity which is a function of
a Riemannian curvature (depending on A) plus a lower order forcing term.

It would be interesting to prove a similar consistency result for the variational
variant of (3), which is somehow simpler to solve numerically (in the truly nonlinear
anisotropic cases): for E C RY bounded, one would define T}, E = {u;, > 1/2}, where
uy, is the solution of (with Q 3 E bounded or = RY)

(4) min /Q 6 (Vu(@))? + 3 (u(e) ~ (@) d.

wEH(Q)

Although it is likely that this variant produces the same evolution as the original
scheme (it is true in the isotropic case, since uy is given by the convolution of x g
with a radially symmetric kernel), we could not extend our proof in all cases to this
new scheme.

Our proof follows the same idea as our recent proof of consistency [13] for (a gen-
eralization of) the variational algorithm of Almgren, Taylor, and Wang [1]. However,
we have just learned that Goto, Ishii, and Ogawa [20, 24] have recently given a new
proof of the convergence of the Merriman—Bence—Osher algorithm, in the isotropic
case, which is very similar to the proof we give here.

2. The consistency result and some consequences. If £ C RY we say that
E satisfies the interior 7Wy-condition if and only if for any € OF there exist y € E
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with ¢(z —y) =7 and ¢(z' —y) > r for any 2’ € RV \ E. We say that E satisfies the
exterior rWy-condition if RV \ E satisfies the interior rW-condition.

We will show a consistency result with regular evolutions of (2), in the sense of
the following definition.

DEFINITION 2.1. We say that t — E(t) is an rWy-regular ¢-curvature flow on
[to, t1], to < t1, if and only if

(i) for anyt € [to,t1], E(t) satisfies the interior and exterior rWy-conditions;

(ii) there exists a bounded and relatively open neighborhood A of Utogtg1 OE(t) x

{t} in RN x [to,t1] such that d(x,t) := d%(t)(z) is Lipschitz in A;

(iii) there ewists a vector field n : A — RN with n € 0¢°(Vd) a.e. in A, and

divn € L*®(A); and

(iv) there exists € > 0 such that |0d/0t — divn| < €|d| a.e. in A.

This definition, up to the additional requirement that E(t) satisfies an interior
and exterior rWy-condition, is due to Bellettini and Novaga [9, Def. 2.2].

Such evolutions are known to exist if ¢, ¢°, and OE are smooth enough (for
instance, in C3*(RYN \ {0}) [1]), or for any ¢, ¢°, when the initial set E is convex
and satisfies an interior 7Wy-condition (exterior is always true in the case of convex
sets) [6]. They also exist in the purely crystalline case, i.e., when both ¢ and ¢° are
piecewise linear in dimension N = 2 [18, 19, 31] (see section 4 for an example).

Our main theorem states that the anisotropic Merriman—Bence—Osher scheme is
consistent with such evolutions.

THEOREM 2.2. Let E be a reqular flow in the sense of Definition 2.1, on a time
interval [to,t1]. Then, for any t and 7 withto <t <t+7 < ty, GT}[LT/h]E(t) converges
to OE(t + 7) in the Hausdorff sense, as h — 0.

The following corollary, also shown in [9], is obvious.

COROLLARY 2.3. Let E, F be two flows in the sense of Definition 2.1, on [to, t1],
and assume E(tg) C F(tg). Then E(t) C F(t) for all t € [to,t1]. In particular, if
E(to) = F(to), then E(t) = F(t) for all t € [to,t1].

The next corollary follows, with a standard proof (see [4, 5]), from the monotonic-
ity and consistency of the scheme.

COROLLARY 2.4. Assume E C RY is a closed set with compact boundary such
that the generalized ¢-curvature flow E(t), starting from E, is uniquely defined on a
time interval [0,T) (e.g., ¢, ¢° € C2(RN \ {0}), and no fattening occurs [14]). Then
GT,[f/h]E(t) — OE(t) in the Hausdorff sense for any t < T, as h — 0. The same
conclusion holds for any ¢, ¢° if E is convex, by the uniqueness result in [6].

Let us observe that this result follows easily from Theorem 2.2 when evolutions
according to Definition 2.1 are known to exist. If not (e.g., if ¢, ¢° are merely C?),
this is still true; however, the proof relies on a comparison with appropriate strict
super- and subsolutions, defined according to obvious modifications of Definition 2.1
(as in [13]).

Remark 1. In case ¢, ¢° are not even, Theorem 2.2 still holds, but (i) the signed
distance to the interface d%( 0 (z) must be defined, in Definition 2.1, in a nonsymmetric
way, and (ii) the term 9¢°(Vu) in (3) must be replaced with —9¢°(—Vu) (since Vu
has a reverse orientation with respect to the outer normal to the set E).

3. Proof of Theorem 2.2. The proof of Theorem 2.2 is divided into several
steps. The idea is to build appropriate sub- and supersolutions to (3), by means of
the function d(z,t), and to compare T, E(t) with E(¢t + h).
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These barriers will be built by means of the function v : R x [0,4+00) — [0, 1],
which solves the heat equation

oy 0%y
— = — R 0
7(570):}/(5)7 fER(T:O>7
where Y = X[9,40) is the Heaviside function. It is well known that ~ is given by
1of e J
S ar
1ET) = 5 ?T/iooe 5

In particular, one readily sees that it is self-similar: indeed, the change of variables
s’ = s/y/T yields

We first show the following (obvious) result.

LEMMA 3.1. For any € > 0, there exists 79 > 0 such that if 0 < 7 < 79, then
v, ) >1—7T.

Proof. We just need to observe that 7 — (g, 7) is C! with derivative 0 at 0. This
derivative is indeed given by (—/7%/2)vi(¢/v/T) = (—¢/7%/?) exp(—£?/(47)). There
exists 7o such that it is in [—1,0] for 7 < 79; hence v(g,7) > v(£,0) — 7 if 7 € [0, 70],
which shows the lemma. a

Let us now consider E, r > 0, tg < t1, A, and the functions d(z,t), n(z,t), as
in Definition 2.1. Possibly reducing r, we can assume that {|d| < r} C A. Let us fix
t € [to,t1), 6 € [0,r/2] and let F' = {d(-,t) < 6}. Let u be the solution of

(6) %(!Eﬂ') e div (¢0(Vu)8¢0(vu)> (:E77')’ 7>0, x€ RN,
u(-,0) = xp = Y(=d(-,t) +9) (t1=0).

We first show the following result.

LEMMA 3.2. For any ¢ € (0,7/2), there exists 19 > 0 (independent of §) such
that 7 < 79 yields u(xz,7) < 7 for any x such that d(xz,t) — 6 = €.

Proof. Let us fix zg € RN \ F with d(z¢,t) — & = e. Since FE(t) satisfies the
exterior rWy-condition, the function (d(-,t) — ) is, outside F, equal to dist?(-, F).
Hence, letting W = {x : ¢(x — x¢) < €}, one sees that W N F = (). We deduce that
xr < 1—xw in RY, so that u(-,7) <1 —w(:,7), where w is the solution of

271:(96,7) e div (¢°(Vw)3¢°(Vw))(x,T) , T>0, zeRY,
w(-,0) = xw (r=0).

This solution is explicitly given by w(z,7) = U(¢(x — x¢) /e, 7/€?), where U(|z|,7) =
U(z,7) and U is the (radial) solution of the heat equation OU /0t = AU with initial
datum xp,, the characteristic function of the unit ball in RY. It is well known that

- 1 —yl?
Uz, 7) = ~ / exp (_|x4y|) dy
ArrT {lyl<1} T
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so that

1 — )2 N 2
Ulelr) = = [ e -0t
Varr Jw<uy ar

Using arguments similar to the proof of the previous lemma (based on the fact that
U is smooth near (¢,7) = 0,0 and 0U/0t(0,0) = 0), one sees that there exists 7o > 0
such that if 7 < 79, U(0,7) > 1 — &27; hence w(0,7) > 1 — 7 if 7 < 7§ = e%r9. We
deduce that u(zg,7) < 7 if 7 < 7, depending only on e. This shows the lemma. 0

Let us fix ¢ < r/4 and let us look for a supersolution of (6) on a time interval
[0, h], h small, of the form

v(x,7) = 'y(—d(x,t—i—T)—i—(S—i—E?T,T)—i—h,

in B=Uy<,<p{r : dlx,t) —6 <e,d(x,t+7) —6 > —e} x {7}, where the constant
£ will be made precise later on. We observe that since the speed of the motion is
bounded at any time for 7 small enough, if h is small enough (depending only on
r,€), B remains inside {(z,7) € RN x [0,h] : 6§ — & < d(z,t +7) < § + 2¢}, and
(0,t)+ B C A.

At 7 =0, v(z,0) = Y(—d(x,t) + ) + h is strictly larger than xp(z) = u(z,0).
If 0 <7 < hand d(z,t) — 6 = &, by Lemma 3.2 we have u(z,7) <7 < h < v(x,7),
provided h is small enough. If, on the other hand, d(z,t + 7) — § = —&, then by
Lemma 3.1, still for A small enough, v(z,7) = v(—d(x,t +7) + 6 + ¢er,7) + h >
v(e,7) +h > 1 — 7 + h; hence v(z,7) > 1 > wu(z,7). We find that v > u on
{(z,7) € 0B : 7 < h}, which is the parabolic boundary of B (and, in fact, our proof
even shows that v > u in a neighborhood of this boundary).

Hence, to get that v is a supersolution of (6) in B, one has to show that dv/0t >
div Z for some field Z € ¢°(Vv)9¢°(Vv) inside B.

One has, a.e. in B,

ov _ od e 8’7 o
0 @ = ( at(x’t“)ﬂf) ¢ ("d@,t+7) 6 +2Em )
0y o
+ oo (=d@,t+7) + 6+ 2EmT),

whereas

Vou(z,7) = fg—z(fd(x, t+71)+6+cer, T)Vd(x, t+ 7).

Using the assumption that ¢° is even, we see that ¢°(Vv) = 9v/9¢ (since ¢°(Vd) =
1 ae. in RY) and that 9¢°(Vv) = —9¢°(Vd) (since 9y/0¢ > 0 and 9¢° is 0-
homogeneous and odd). Let now

Oy

Z(x,T) = ~o

(—d(z,t+71)+6+cer,T)n(x, t+71) = ¢°(Vo(z, 7)) (—n(z,t + 7)).
Since (by assumption) n(x,t + 7) € 9¢°(Vd(x,t + 7)) = —0¢°(Vv(x, 7)) for a.e. x
in RY and any 7 € (0,h), one has Z(z,7) € ¢°(Vv)d¢°(Vv)(x, 7). Since ¢° is 1-

homogeneous, Euler’s identity yields Vd - n = ¢°(Vd) = 1 as soon as n € 9¢°(Vd).
We deduce
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(8) divZ(z,7) = —div O ( dz,t+71)+6+cer,m)n(z,t +7)

23
82
= Tg(—d(x,t—kﬂ +6+cEr,T)
oy .
85( dz,t+71)+6+cer,7)(divn(z,t +7)).
Since we have dd/0t < divn +¢|d| in B, we deduce using (7) and (8) that
2
%(m) > divZ(x,7) — ZTZ( d(z,t +7) + 6 + ceT, 7)
+ ¢(g—|d(z, t+7)|)6§( d(x,t+71)+6+cer,T) + %(—d(x,t+¢)+5+6€7,7).
Now, ~ satisfies the heat equation, so that if |d(x,t + 7)| < Z a.e. in B, we get
(9) %(m,r) > divZ(x, 7).

We choose € = § + 2 so that |d(x,t 4+ 7)] < € a.e. in B and (9) holds. By standard
comparison results on parabolic equations (see [11]), we deduce that v(x, h) > u(z, h).
In particular, we have shown that there exists hg > 0 (depending only on r, &) such
that if b < ho,

T,F = {u(.,h)z ;} C {v(.,h)z ;}
1

— {xeRN cd(x,t+h) <8 +Eeh —[y(-,h)] " (2—h>} .

Since 71 (0) = 1/2, v (0) = 1/(2y/7), we have ;' (1/2 — h) = —2/7h + o(h). Now,
V(€ h) = 71(§/Vh), so that [y(-,h)] " = Vhy . We find that [y(-,h)] " (1/2 —h) =
(=2y/7h + o(h))Vh. Hence, possibly reducing hg, one gets that if h < hg, then
[v(-,h)]~*(1/2 — h) > —4h>®/?2. Recalling that & = § + 2¢, we find that if h < hy,
T, F C {x eRY : d(x,t+h) <[5+ (@6 +2) + 4Vh)h]} .

Now, we deduce that (¢ € (0,7/4) being fixed) if ¢ € [to,t1), b < ho, and k > 1

with t 4+ kh < t1, one has
THE(t) C {zxeRN @ d(z,t+kh) <6}

with 69 = 0 and 8 = 6p—1 + (€¢(6p—1 + 2¢) + 4\/ﬁ)h, as long as 6p—1 < r/2. By
induction, we find

6 = ((1+eh)k —1) (25 + 4\%) .
¢

In particular, if 7 > 0 is fixed, with t+7 < 1, and k = [7/h], we see that limy,_,¢ 6 =
2e(e“” —1). If € < r/4 is chosen small enough (less than (r/4)/(e“” — 1)), we see that
for h > 0 small enough, 6} /5 < /2.

We now recall that any sequence of sets in RY with equibounded boundaries has
a subsequence that converges in the Hausdorff sense to a closed set. If E’ is the
Hausdorff limit of a converging subsequence of T, }[LT/ h]E(t), as h — 0, we deduce that
E' C{d(-,t+7) < 2e(e” —1)}. Since this must be true for all ¢ > 0 small enough,
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one sees that £ C E(t + 7). On the other hand, a symmetric argument (based
on subsolutions of the equation) will yield that if R™Y \ E” is the Hausdorff limit of
a converging subsequence of (RY \ T,[,/T/h]E(t));DO7 then RV \ E” C RN\ E(t + 7);
that is, int(E(t + 7)) € E”. Without loss of generality, one can choose the same
subsequence in both limits above: in this case, one can show that E” C E’, and
E'\ E" is the Hausdorff limit of 8T."/" E(t) (which might differ from OE’ or dE").
Since int(E(t + 7)) € E” C E' C E(t + 1), we see that E” = int(E(¢t + 7)), E' =
E(t+71), E'\ E' = 0FE(t + 1), and by uniqueness of this Hausdorff limit we deduce
Theorem 2.2. 0

4. A numerical example. The algorithm is quite easy to implement numeri-
cally. Of course, there is some difficulty in computing precisely the solution of (3) in
strongly anisotropic or crystalline cases, especially when the subgradient d¢° is mul-
tivalued. We experimented with an implicit method, based on iterative resolutions
of the variational problem (4). More precisely, we approximate u(-,h) with w, (),

where h = nh/, n is a fixed (small) integer, wg = xg, and for i = 0,...,n — 1, w;11
solves (in a domain 2 “large” with respect to E)
1
werrﬁl{ilr%m/Q(bo(Vw(az:))2 + ﬁ(w(a:) —w;(z))*dx.

To solve this minimization problem in the crystalline case, we discretize (here, on a bi-
dimensional finite differences grid) and solve the dual problem (see, for instance, [16])

. 2 ' R I : VN2 e
i /Q B(E@))? + W ((wi(w) /1) — dive(@))? da,
using a conjugate-gradient method. Then, w;11 = w; — h'divE. The thresholding at
level 1/2 is replaced by a “soft thresholding” w,,(x) — min{l, max{1/2 4+ o(w,(z) —
1/2),0}}, where o is adapted to the spatial discretization step, in order to keep a
precision slightly higher than the grid’s. In the example shown in Figure 1, the Wulff
shape {¢ < 1} is a hexagon.

Fi1G. 1. Evolutions at times t = 0,5, 25, 60,400, 800.
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