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Abstract. An existence and uniqueness result, up to fattening, for crystalline mean cur-

vature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved

by introducing a new notion of solution to the corresponding level set formulation. Such

solutions satisfy a comparison principle and stability properties with respect to the ap-

proximation by suitably regularized problems. The results are valid in any dimension

and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for

the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz

continuity. As a result of our analysis, we deduce the convergence of a minimizing

movement scheme proposed by Almgren, Taylor and Wang (1993), to a unique (up to

fattening) “flat flow” in the case of general, including crystalline anisotropies, solving a

long-standing open question.
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1. Introduction

In this paper we deal with anisotropic and crystalline mean curvature flows; that is, flows of

sets t 7→ E(t) (formally) governed by the law

(1.1) V (x, t) = −ψ(νE(t))(κ
E(t)
φ (x) + g(x, t)),

where V (x, t) stands for the (outer) normal velocity of the boundary ∂E(t) at x, φ is a given norm

on RN representing the surface tension, κ
E(t)
φ is the anisotropic mean curvature of ∂E(t) associated

with the anisotropy φ, ψ is a norm evaluated at the outer unit normal νE(t) to ∂E(t), and g is a

bounded spatially Lipschitz continuous forcing term. The factor ψ plays the role of a mobility1.

We recall that when φ is differentiable in RN \ {0}, then κEφ is given by the surface divergence of

a “Cahn-Hoffman” vector field [17, 48, 47]:

(1.2) κEφ = divτ
(
∇φ(νE)

)
,

however in this work we will be interested mostly in the “crystalline case”, which is whenever the

level sets of φ are polytopes and (1.2) should be replaced with

(1.3) κEφ ∈ divτ
(
∂φ(νE)

)
,

and which we will describe later on.

Equation (1.1) is relevant in materials science and the study of crystal growth, see for instance

[49, 48, 43] and the references therein. Its mathematical well-posedness is classical in the smooth

setting, that is when φ, ψ, g and the initial set are sufficiently smooth (and φ satisfies suitable

ellipticity conditions). However, it is also well-known that in dimensions N ≥ 3 singularities may

form in finite time even in the smooth case. When this occurs the strong formulation of (1.1)

ceases to be applicable and one needs a weaker notion of solution leading to a (possibly unique)

globally defined evolution.

Among the different approaches that have been proposed in the literature for the classical mean

curvature flow (and for several other “regular” flows) in order to overcome this difficulty, we start

by mentioning the so-called level set approach [45, 30, 31, 26, 37], which consists in embedding

the initial set in the one-parameter family of sets given by the sublevels of some initial function

u0, and then in letting all these sets evolve according to the same geometric law. The evolving

sets are themselves the sublevels of a time-dependent function u(x, t), which turns out to solve a

(degenerate) parabolic equation for u (with the prescribed initial datum u0). The crucial point is

that such a parabolic Cauchy problem is shown to admit a global-in-time unique viscosity solution

for many relevant geometric motions: in fact, one only needs the continuity2 of the Hamiltonian

of the level-set equation which corresponds to (1.1) [26, 36]. When this happens, the evolution

of the sublevels of u defines a generalized motion (with initial set given by the corresponding

1Strictly speaking, the mobility is ψ(νE(t))−1.
2Which is of course weaker than the requirements for the existence of strong solutions, which at least include

ellipticity properties.
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sublevels of u0), which exists for all times and agrees with the classical one until the appearance of

singularities (see [31]). Moreover, such a generalized motion satisfies the comparison principle and

is unique whenever the level sets of u have an empty interior. Let us mention that the appearance

of a nontrivial interior (the so called fattening phenomenon) may in fact occur even starting from

a smooth set (see for instance [8]). On the other hand, such a phenomenon is rather rare: for

instance, given any uniformly continuous initial function u0, all its sublevels, with the exception

of at most countably many, will not generate any fattening.

The second approach which is relevant for the present treatment is represented by the minimizing

movements scheme devised by Almgren, Taylor and Wang [3] and, independently, by Luckhaus

and Sturzenhecker [44]. It is variational in nature and hinges on the gradient flow structure of the

geometric motion. More precisely, it consists in building a family of discrete-in-time evolutions by

an iterative minimization procedure and in considering any limit of these evolutions (as the time

step ∆t > 0 vanishes) as an admissible global-in-time solution to the geometric motion, usually

referred to as a flat flow (or ATW flat flow). The problem which is solved at each step has the

form [3, §2.6]

(1.4) min
E

Pφ(E) +
1

∆t

ˆ
E4En−1

dist(x, ∂En−1)dx

where E4En−1 denotes the symmetric difference of the two sets E and En−1, and the anisotropic

perimeter Pφ(E) =
´
∂E

φ(ν)dHN−1 is defined rigorously in (2.1) below. (We generalize slightly

the scheme later on, in particular to deal with non-compact boundaries, of possibly infinite mass.)

This scheme is studied in great details in [3] and many convergence properties are proven, including

to the previously mentioned viscosity solutions, under some technical assumption. If φ (and the

initial set) is smooth enough, also convergence to strong solutions are proven. However, except in

dimension 2 [2], the convergence of this scheme in the crystalline case remained open.

In this paper, we show for the first time that, up to exceptional initial sets which might develop

non-uniqueness, this discrete procedure converges to a unique motion in all cases, including crys-

talline. In practice, if we replace the distance in (1.4) with an anisotropic distance based on a norm

“compatible” with φ (“φ-regular”, Def. 4.1), it is relatively easy, though a bit technical, to extend

our previous results in [22] and show convergence of the scheme. Our main result in this work is a

stability result which shows additionally that even if this φ-regularity is lost (as is always the case

when the distance in (1.4) is Euclidean and φ crystalline), the discrete-in-time flows remain close

to φ-regular flows and their limit is still unique. While the stability for the limiting flow (only) is

relatively simple [20], the stability at the discrete level, for ∆t > 0, which only allows to derive

the uniqueness of the flat flow, is quite technical and requires precise estimates on the minimizers

of (1.4), established in Section 3.4. The remainder of this introduction describes more closely the

technical content of this paper.

Practically, it is somewhat convenient to combine the variational approach with the level set

point of view, by implementing the Almgren-Taylor-Wang scheme (ATW) for all the sublevels of

the initial function u0 (level set ATW). As already mentioned, it turns out that the two approaches

produce in general the same solutions. A very simple proof of convergence of the level set ATW to

the viscosity solution of the level set equation in the case of anisotropic mean curvature flows (with

smooth anisotropy) is given in [23] (see also [3, 19]); such a result implies in turn the convergence

of the ATW to the aforementioned generalized motion whenever fattening does not occur.
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When the anisotropy is crystalline, all the results mentioned before for regular anisotropies

become much more difficult, starting from the very definition of crystalline curvature which cannot

be given by (1.2) anymore, but rather by (1.3): one has to consider a suitable selection z of

the (multivalued) subdifferential map x 7→ ∂φ(νE(x)) (of “Cahn-Hoffmann fields”), such that the

tangential divergence divτz has minimal L2-norm among all possible selections. The crystalline

curvature is then given by the tangential divergence divτzopt of the optimal Cahn-Hoffman field

(see [16, 35]) and thus, in particular, has a nonlocal character.

We briefly recall what is known about the mathematical well-posedness of (1.1) in the crystalline

case. In two dimensions, the problem has been essentially settled in [34] (when g is constant) by

developing a crystalline version of the viscosity approach for the level-set equation, see also [49,

48, 50, 2, 7, 33, 38] for important former work. The viscosity approach adopted in [34] applies in

fact to more general equations of the form

(1.5) V = f(ν,−κEφ ) ,

with f continuous and non-decreasing with respect to the second variable, however without spa-

tial dependence. Former studies were rather treating the problem as a system of coupled ODEs

describing the relative motion of each facet of an initial crystal [49, 48, 2, 7]. We mention also

the recent paper [25], where short time existence and uniqueness of strong solutions for initial

“regular” sets (in a suitable sense) is shown.

In dimension N ≥ 3 the situation was far less clear until very recently. Before commenting on

the new developments, let us remark that before these, the only general available notion of global-

in-time solution was that of a flat flow associated with the ATW scheme, defined as the limit of

a converging subsequence of time discrete approximations. However, no general uniqueness and

comparison results were available, except for special classes of initial data [18, 13, 39] or for very

specific anisotropies [35]. As mentioned before, substantial progress in this direction has been

made only very recently, in [41] and [22].

In [41], the authors succeed in extending the viscosity approach of [34] to N = 3. They are able

to deal with very general equations of the general form (1.5) establishing existence and uniqueness

for the corresponding level set formulations. In a preprint just appeared [42], they show how to

extend their approach to any dimension, which is a major breakthrough (moreover the new proof

is considerably simpler than before). It seems that their method, as far as we know, still requires

a purely crystalline anisotropy φ (so mixed situations are not allowed), bounded initial sets, and

the only possible forcing term is a constant.

In [22], the first global-in-time existence and uniqueness (up to fattening) result for the crys-

talline mean curvature flow valid in all dimensions, for arbitrary (possibly unbounded) initial sets,

and for general (including crystalline) anisotropies φ was established, but under the particular

choice ψ = φ (and g = 0) in (1.1). It is based on a new stronger distributional formulation of the

problem in terms of distance functions, which is reminiscent of, but not quite the same as, the

distance formulation proposed and studied in [46] (see also [28, 11, 6, 18, 4]). Such a formulation

enables the use of parabolic PDE’s arguments to prove comparison results, but of course makes

it more difficult to prove existence. The latter is established by implementing the variant of the

ATW scheme devised in [19, 18]. The methods of [22] yield, as a byproduct, the uniqueness, up to

fattening, of the ATW flat flow for the equation (1.1) with ψ = φ and g = 0. But it leaves open
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the uniqueness issue for the general form of (1.1) and, in particular, for the constant mobility case

(1.6) V = −κEφ ,

originally appearing in [3], which is approximated by (1.4). The main reason is technical: the

distributional formulation introduced in [22] becomes effective in yielding uniqueness results only

if, roughly speaking, the level sets of the ψ◦-distance function from any closed set (ψ◦ being the

norm polar to the mobility ψ) have (locally) bounded crystalline curvatures. This is certainly the

case when φ = ψ (and explains such a restriction in [22]).

As said, we remove in this paper the restriction φ = ψ and extend the existence and uniqueness

results of [22] to the general equation (1.1). In order to deal with general mobilities, we cannot

rely anymore on a distributional formulation in the spirit of [22], but instead we extend the notion

of solution via an approximation procedure by suitable regularized versions of (1.1).

We now describe more in details the contributions and the methods of the paper. Before

addressing the general mobilities, we consider the case where ψ may be different from φ but satisfies

a suitable regularity assumption, namely we assume that the Wulff shape (2.3) associated with ψ

(in short the ψ-Wulff shape) admits an inner tangent φ-Wulff shape at all points of its boundary.

We call such mobilities φ-regular (see Definition 4.1). The φ-regularity assumption implies in turn

that the level sets of the ψ◦-distance function from any closed set have locally bounded crystalline

curvatures and makes it possible to extend the distributional formulation (and the methods) of

[22] to (1.1) (Definition 2.2), to show that such a notion of solution bears a comparison principle

(Theorem 2.7) and that the ATW scheme converges to it (Theorem 4.3). As is classical, we then

use these results to build a unique level set flow (and a corresponding generalized motion), which

satisfies comparison and geometricity properties (Theorem 4.8).

Having accomplished this, we deal with the general case of ψ being any norm. As mentioned

before, the idea here is to build a level set flow by means of approximation, after the easy observation

that for any norm ψ there exists a sequence {ψn} of φ-regular mobilities such that ψn → ψ. More

precisely, we say that u is a solution to the level set flow associated with (1.1) if there exists an

approximating sequence {ψn} of φ-regular mobilities such that the corresponding level set flows

un constructed in Section 4 locally uniformly converge to u (Definition 5.6).

In Theorems 5.7 and 5.9 we establish the main results of the paper: we show that for any norm

ψ a solution-via-approximation u always exists; moreover u satisfies the following properties:

(i) (Uniqueness and stability): The solution-via-approximation u is unique in that it is inde-

pendent of the choice of the approximating sequence of φ-regular mobilities {ψn}. In fact,

it is stable with respect to the convergence of any sequence of mobilities and anisotropies.

(ii) (Comparison): if u0 ≤ v0, then the corresponding level set solutions u and v satisfy u ≤ v.

(iii) (Convergence of the level set ATW): u is the unique limit of the level set ATW.

(iv) (Generic non-fattening): As in the classical case, for any given uniformly continuous initial

datum u0 all but countably many sublevels do not produce any fattening.

(v) (Comparison with other notions of solutions): Our solution-via-approximation u coincides

with the classical viscosity solution in the smooth case and with the Giga-Požár viscosity

solution [41, 42] whenever such a solution is well-defined, that is, when g is constant, φ is

purely crystalline and the initial set is bounded.
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(vi) (Phase-field approximation): When g is constant, a phase-field Allen-Cahn type approxi-

mation of u holds.

We finally mention that property (iii) implies the convergence of the ATW scheme, whenever no

fattening occurs and thus settles the long-standing problem of the uniqueness (up to fattening) of

the flat flow corresponding to (1.1) (and in particular for (1.6)) when the anisotropy is crystalline.

In our later paper [20] we show that it is also possible to build crystalline flows by approximating

the anisotropies with smooth ones and relying for existence on the standard viscosity theory of

generalized solutions. However this variant, even if slightly simpler, does not show that flat flows

are unique.

The plan of the paper is the following. In Section 2 we extend the distributional formulation

of [22] to our setting and we study the main properties of the corresponding notions of sub and

supersolutions. The main result of the section is the comparison principle established in Section 2.3.

In Section 3 we set up the minimizing movements algorithm and we start paving the way for

the main results of the paper by establishing some preliminary results. In particular, the density

estimates and the barrier argument of Section 3.4, which do not require any regularity assumption

on the mobility ψ, will be crucial for the stability analysis of the ATW scheme needed to deal with

the general mobility case and developed in Section 5.1.

In Section 4 we develop the existence and uniqueness theory under the assumption of φ-regularity

for the mobility ψ. More precisely, we establish the convergence of the ATW scheme to a distribu-

tional solution of the flow, whenever fattening does not occur. Uniqueness then follows from the

results of Section 2.

Finally, in Section 5 we establish the main results of the paper, namely the existence and

uniqueness of a solution via approximation by φ-regular mobilities. As already mentioned, the

approximation procedure requires a delicate stability analysis of the ATW scheme with respect to

varying mobilities. Such estimates are established in Section 5.1 and represent the main technical

achievement of Section 5.

2. A distributional formulation of curvature flows

In this section we generalize the approach introduced in [22] by introducing a suitable distribu-

tional formulation of (1.1) and we show that such a formulation yields a comparison principle and

is equivalent to the standard viscosity formulation when the anisotropy φ and the mobility ψ are

sufficiently regular.

The existence of the distributional solution defined in this section will be established in Section 4

under the additional assumption that the mobility ψ satisfies a suitable regularity assumption (see

Definition 4.1 below).

2.1. Preliminaries. We introduce the main objects and notation used throughout the paper.

Given a norm η on RN (a convex, even3, one-homogeneous real-valued function with η(ν) > 0

if ν 6= 0), we define a polar norm η◦ by η◦(ξ) := supη(ν)≤1 ν · ξ and an associated anisotropic

perimeter Pη as

(2.1) Pη(E) := sup

{ˆ
E

divζ dx : ζ ∈ C1
c (RN ;RN ), η◦(ζ) ≤ 1

}
.

3For simplicity we develop the theory in the symmetric case; See Remark 6.3.
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As is well known, (η◦)◦ = η so that when the set E is smooth enough one has

Pη(E) =

ˆ
∂E

η(νE)dHN−1 ,

which is the perimeter of E weighted by the surface tension η(νE). The notation Hs, s > 0, stands

for the s-dimensional Hausdorff measure. It is also useful to recall the notion of relative perimeter:

given an open set Ω ⊂ RN we will denote by Pη(E; Ω) the η-perimeter of E relative to Ω; i.e.,

Pη(E; Ω) := sup

{ˆ
E

divζ dx : ζ ∈ C1
c (Ω;RN ), η◦(ζ) ≤ 1

}
.

As before, note that if E is sufficiently regular, then

Pη(E; Ω) =

ˆ
∂E∩Ω

η(νE)dHN−1 .

We will often use the following characterization:

(2.2) ∂η(ν) = {ξ : η◦(ξ) ≤ 1 and ξ · ν≥ η(ν)}

(and the symmetric statement for η◦). In particular, if ν 6= 0 and ξ ∈ ∂η(ν), then η◦(ξ) = 1, and

∂η(0) = {ξ : η◦(ξ) ≤ 1}. For R > 0 we denote

(2.3) W η(x,R) := {y : η◦(y − x) ≤ R} .

Such a set is called the Wulff shape (of radius R and center x) associated with the norm η and

represents the unique (up to translations) solution of the anisotropic isoperimetric problem

min {Pη(E) : |E| = |W η(0, R)|} ,

see for instance [32]. We let W η := W η(0, 1), B1 = W |·| the unit ball and more generally, for

r > 0, Br = {x : |x| ≤ r}.
We denote by distη(·, E) the distance from E induced by the norm η, that is, for any x ∈ RN

distη(x,E) := inf
y∈E

η(x− y)

if E 6= ∅, and distη(x, ∅) := +∞. Moreover, we denote by dηE the signed distance from E induced

by η, i.e.,

(2.4) dηE(x) := distη(x,E)− distη(x,Ec) .

so that distη(x,E) = dηE(x)+ and distη(x,Ec) = dηE(x)−, where we adopted the standard notation

t+ := t∨ 0 and t− := (−t)+. Note that by (2.2) we have η(∇dη
◦

E ) = η◦(∇dηE) = 1 a.e. in RN \ ∂E.

We will write dist(·, E) and dE without any superscript to denote the Euclidean distance and

signed distance from E, respectively.

Finally we recall that a sequence of closed sets (En)n≥1 in Rm converges to a closed set E in

the Kuratowki sense if the following conditions are satisfied:

(i) if xn ∈ En for each n, any limit point of (xn)n≥1 belongs to E;

(ii) any x ∈ E is the limit of a sequence (xn)n≥1, with xn ∈ En for each n.
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We write in this case:

En
K−→ E .

It is easily checked that En
K−→ E if and only if (for any norm η) distη(·, En)→ distη(·, E) locally

uniformly in Rm. In particular, Ascoli-Arzelà Theorem shows that any sequence of closed sets

admits a converging subsequence in the Kuratowski sense.

2.2. The distributional formulation. In this subsection we give the precise formulation of the

crystalline mean curvature flows we will deal with. Throughout the paper the norms φ and ψ will

stand for the anisotropy and the mobility, respectively, appearing in (1.1). Note that we do not

assume any regularity on φ (nor on ψ) and in fact we are mainly interested in the case when φ is

crystalline, that is, when the associated unit ball is a polytope.

Moreover, we will assume throughout the paper that the forcing term g : RN × [0,+∞) → R
satisfies the following two hypotheses:

H1) g ∈ L∞(RN × (0,∞));

H2) there exists L > 0 such that g(·, t) is L-Lipschitz continuous (with respect to the metric

ψ◦) for a.e. t > 0.

Remark 2.1. Assumption H1) can be weakened and replaced by

H1)’ for every T > 0, g ∈ L∞(RN × (0, T )).

Indeed under the weaker assumption H1)’, all the arguments and the estimates presented through-

out the paper continue to work in any time interval (0, T ), with some of the constants involved

possibly depending on T . In the same way, if one restricts our study to the evolution of sets with

compact boundary, then one could assume that g is only locally bounded in space. We assume

H1) instead of H1)’ to simplify the presentation.

In all that follows by the expression “admissible forcing term” we will mean a forcing term g

satisfying H1) and H2) above.

We are now ready to provide a suitable distributional formulation of the curvature flow (1.1).

Definition 2.2. Let E0 ⊂ RN be a closed set. Let E be a closed set in RN × [0,+∞) and for each

t ≥ 0 denote E(t) := {x ∈ RN : (x, t) ∈ E}. We say that E is a superflow of (1.1) with initial

datum E0 if

(a) Initial Condition: E(0) ⊆ E0;

(b) Left Continuity: E(s)
K−→ E(t) as s↗ t for all t > 0;

(c) If E(t) = ∅ for some t ≥ 0, then E(s) = ∅ for all s > t.

(d) Differential Inequality: Set T ∗ := inf{t > 0 : E(s) = ∅ for s ≥ t}, and

d(x, t) := distψ
◦
(x,E(t)) for all (x, t) ∈ RN × (0, T ∗) \ E.

Then there exists M > 0 such that the inequality

(2.5) ∂td ≥ divz + g −Md

holds in the distributional sense in RN × (0, T ∗) \ E for a suitable z ∈ L∞(RN × (0, T ∗))

such that z ∈ ∂φ(∇d) a.e., divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ ∈ (0, 1).
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We say that A, open set in RN × [0,+∞), is a subflow of (1.1) with initial datum E0 if Ac is

a superflow of (1.1) with g replaced by −g and with initial datum (E̊0)c.

Finally, we say that E, closed set in RN × [0,+∞), is a solution of (1.1) with initial datum E0

if it is a superflow and if E̊ is a subflow, both with initial datum E0, assuming in addition that

both E0 and E coincide with the closure of their interior.

In Subsection 4.2 we will prove the existence of solutions satisfying (2.5) with M = L. In our

definition, “super”-flow refers to the fact that the distance function may grow faster than the

distance to a solution of the mean curvature flow, which corresponds to a set shrinking also faster

than expected with (1.1).

Remark 2.3. Notice that the closedness of E yields that d is lower semicontinuous. Indeed, if

(xk, tk) → (x, t), with tk, t ≤ T ∗, we can choose yk ∈ E(tk) with ψ◦(xk − yk) = d(xk, tk), then,

since any limit point of (yk, tk) is in E, one deduces d(x, t) ≤ lim infk d(xk, tk). On the other hand,

condition (b) implies that d(·, t) is left-continuous. Moreover, by condition (d) of Definition 2.2, the

distributional derivative ∂td is a Radon measure in RN × (0, T ∗) \E, so that d is locally a function

with bounded variation; using the fact that the distance functions are uniformly Lipschitz, we can

deduce that for any t ∈ [0, T ∗), d(·, s) converges locally uniformly in {x : d(x, t) > 0} as s ↘ t to

some function dr with dr ≥ d(·, t) in {x : d(x, t) > 0}, while d(·, s) converges locally uniformly to

d(·, t) as s↗ t (cf [22, Lemma 2.4]).

Remark 2.4. Notice that the initial condition for subflows may be rewritten as E̊0 ⊆ A(0). In

particular, if E is a solution according to the previous definition, then E(0) = E0.

We now introduce the corresponding notion of sub- and supersolution to the level set flow

associated with (1.1).

Definition 2.5 (Level set subsolutions and supersolutions). Let u0 be a uniformly continuous

function on RN . We will say that a lower semicontinuous function u : RN × [0,+∞) → R is a

supersolution to the level set flow corresponding to (1.1) (level set supersolution for short), with

initial datum u0, if u(·, 0) ≥ u0 and if for a.e. λ ∈ R the closed sublevel set {(x, t) : u(x, t) ≤ λ} is

a superflow of (1.1) in the sense of Definition 2.2, with initial datum {u0 ≤ λ}.
We will say that an upper-semicontinuous function u : RN × [0,+∞) → R is a subsolution to

the level set flow corresponding to (1.1) (level set subsolution for short), with initial datum u0,

if −u is a level set supersolution in the previous sense, with initial datum −u0 and with g replaced

by −g.

Finally, we will say that a continuous function u : RN × [0,+∞)→ R is a solution to the level

set flow corresponding to (1.1) if it is both a level set subsolution and supersolution.

2.3. The comparison principle. In this subsection we establish a comparison principle between

sub- and superflows as defined in the previous subsection. A first technical result is a (uniform)

left-continuity estimate for the distance function to a superflow.

Lemma 2.6. Let E be a superflow in the sense of Definition 2.2, and d(x, t) = distψ
◦
(x,E(t)) the

associated distance function. Then, there exist τ0, χ depending on N, ‖g‖∞,M such that for any

x, t ≥ 0 and any s ∈ [0, τ0],

(2.6) d(x, t+ s) ≥ d(x, t)e−5Ms − χ
√
s,
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and (for any s ∈ [0, τ0] with s ≤ t)

(2.7) d(x, t− s) ≤ d(x, t)e5Ms + χ
√
s.

Proof. The proof follows the lines of the proof of [22, Lemma 3.2] up to minor changes that we

will briefly describe in the following. By definition of a superflow we have

∂td ≥ divz −Md− ‖g‖∞,

wherever d > 0. Consider (x̄, t̄) with d(x̄, t̄) = R > 0. For s > 0, let τ(s) := log(1 + Ms)/M and

define

δ(x, s) = d(x, t̄+ τ(s))(1 +Ms) + ‖g‖∞s ≥ 0.

We have that δ(x, 0) = d(x, t̄), while, in {d > 0}, δ(x, ·) is BV in time, the singular part ∂ssδ is

nonnegative (as the singular part ∂st d is nonnegative thanks to (2.5) and the assumption on divz)

and the absolutely continuous part satisfies

∂as δ(x, s) = (∂at d(x, t̄+τ(s))τ ′(s)(1 +Ms) +Md(x, t̄+τ(s)) + ‖g‖∞ ≥ divz(x, t̄+τ(s)).

As z(x, τ(s)) ∈ ∂φ(∇δ(x, s)), we obtain that δ is a supersolution of the φ-total variation flow

starting from d(·, t̄), and we can reproduce the proof of [22, Lemma 3.2]: we find that there

exists a constant χN such that δ(x̄, s) ≥ R − χN
√
s for s ≥ 0 as long as this bound ensures that

d(x̄, t̄+ τ(s)) > 3R/4, which is as long as

(2.8)
R

4
− χN

√
s−

(
‖g‖∞ +

3MR

4

)
s > 0.

Now we prove that for any s ≥ 0

(2.9) d(x̄, t̄+ τ(s))(1 +Ms) ≥ R− 4χN
√
s− (4‖g‖∞ + 3MR)s.

Indeed, as long as (2.8) holds true we have

R− 4χN
√
s− (4‖g‖∞ + 3MR)s ≤ R− χN

√
s− ‖g‖∞s

≤ δ(x̄, s)− ‖g‖∞s = d(x̄, t̄+ τ(s))(1 +Ms).

On the other hand, for later times the left-hand side of (2.9) is (always) nonnegative and the

right-hand side becomes nonpositive. Notice that (2.9) can be rewritten as

d(x̄, t̄+ τ(s))(1 +Ms) ≥ d(x̄, t̄)(1− 3Ms)− 4χN
√
s− 4‖g‖∞s,

and since this holds for any s ≥ 0 and does not depend on the particular value of R, it holds in

fact for any x̄, t̄ and we denote this point simply by x, t in the sequel.

Since s = (eMτ(s) − 1)/M , we deduce that for any x, t ≥ 0, τ ≥ 0,

d(x, t+ τ) ≥ d(x, t)(4e−Mτ − 3)− 4‖g‖∞
1− e−Mτ

M
− 4χN

√
eMτ − 1

M
e−Mτ .

Inequality (2.6) follows by Taylor expansion, while (2.7) is in fact equivalent to (2.6), up to a

change of constants. �

We can now show the following important comparison result.
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Theorem 2.7. Let E be a superflow with initial datum E0 and F be a subflow with initial datum

F 0 in the sense of Definition 2.2. Assume that distψ
◦
(E0, F 0c) =: ∆ > 0. Then,

distψ
◦
(E(t), F c(t)) ≥ ∆e−Mt for all t ≥ 0,

where M > 0 is as in (2.5) for both E and F .

Proof. Let T ∗E and T ∗F be the maximal existence time for E and F . For all t > min{T ∗E , T ∗F } =: T ∗

we have that either E or F c is empty. For all such t’s the conclusion clearly holds true.

Thus, we may assume without loss of generality that T ∗E , T
∗
F > 0 and we consider the case

t ≤ T ∗. By iteration (thanks to the left-continuity of d) it is clearly enough to show the conclusion

of the theorem for a time interval (0, t∗) for some 0 < t∗ ≤ T ∗.
Let us fix 0 < η1 < η2 < η3 < ∆/2. We denote by zE and zF c the fields appearing in the

definition of superflow (see Definition 2.2), corresponding to E and F c, respectively. Consider the

set

S := {x ∈ RN : dψ
◦

E (x, 0) > η1} ∩ {x ∈ RN : dψ
◦

F c(x, 0) > η1} .

We now set

d̃E := dψ
◦

E ∨ (η2 + Ct) ,

d̃F c := dψ
◦

F c ∨ (η2 + Ct) ,

with C > 0 to be chosen later. By our assumptions (d̃E + d̃F c)(·, 0) ≥ ∆. Moreover, since by

construction

d̃E + d̃F c ≥ ∆ + (η2 − η1) on ∂S × {0} ,

it follows from Lemma 2.6 that there exists t∗ ∈ (0, 1 ∧ T ∗) such that

(2.10) d̃E + d̃F c ≥ ∆ on ∂S × (0, t∗) .

Relying again on Lemma 2.6 and arguing similarly we also have (for a possibly smaller t∗)

(2.11) S ⊂
{
x ∈ RN : dψ

◦

E (x, t) >
η1

2

}
∩
{
x ∈ RN : dψ

◦

F c(x, t) >
η1

2

}
for all t ∈ (0, t∗) ,

E(t) ⊂⊂ F (t) for t ∈ (0, t∗)

and:

(2.12) d̃E = dψ
◦

E and d̃F c = dψ
◦

F c in S′′ × (0, t∗) ,

where

S′′ := {x ∈ RN : dψ
◦

E (x, 0) > η3} ∩ {x ∈ RN : dψ
◦

F c(x, 0) > η3} .

Since dψ
◦

E is Lipschitz continuous in space and ∂td
ψ◦

E is a measure wherever dψ
◦

E is positive, it

follows that dψ
◦

E (and in turn d̃E) is a function in BVloc(S × (0, t∗)) and its distributional time

derivative has the form4

∂td
ψ◦

E =
∑
t∈J

(
dψ
◦

E (·, t+ 0)− dψ
◦

E (·, t− 0)
)
dx+ ∂dt d

ψ◦

E

where J is the (countable) set of times where dψ
◦

E jumps and ∂dt d
ψ◦

E is the diffuse part of the

derivative. It turns out that (see Remark 2.3) dψ
◦

E (·, t + 0) − dψ
◦

E (·, t − 0) ≥ 0 for each t ∈ J .

4with a slight abuse of notation, in the jump part at t ∈ J we denote dx what should be the Hausdorff measure

HN on the hyperplane RN × {t}.
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Moreover, since the positive part of divzE is absolutely continuous with respect to the Lebesque

measure (cf Def. 2.2, (d)), (2.5) entails

∂dt d
ψ◦

E ≥ divzE + g −Mdψ
◦

E

in S × (0, t∗). Using the chain rule (see for instance [5]), in S × (0, t∗) we have

∂dt d̃E =

C a.e. in {(x, t) : η2 + Ct > dψ
◦

E (x, t)} ,

∂dt d
ψ◦

E |∂dt d
ψ◦

E |-a.e. in {(x, t) : η2 + Ct ≤ dψ
◦

E (x, t)} .

An analogous formula holds for ∂dt d̃F c . Recalling that (divzE)+ and (divzF c)
+ belong to L∞(S ×

(0, t∗)) it follows that

(2.13) ∂dt d̃E ≥ divzE + g −Md̃E and ∂dt d̃F c ≥ divzF c − g −Md̃F c

in the sense of measures in S × (0, t∗) provided that we have chosen (cf (2.11) and the conditions

in Def. 2.2, (d))

C ≥ ‖(divzE)+‖L∞(S×(0,t∗)) + ‖(divzF c)
+‖L∞(S×(0,t∗)) + ‖g‖L∞(S×(0,t∗)) .

Note also that a.e. in S × (0, t∗)

(2.14) zE ∈ ∂φ(∇d̃E) and zF c ∈ ∂φ(∇d̃F c) .

Fix p > N and set Ψ(s) := (s+)p and w := Ψ(∆− eMt(d̃E + d̃F c)). By (2.10) we have

(2.15) w = 0 on ∂S × (0, t∗) .

Using as before the chain rule for BV functions, recalling (2.13) and the fact that the jump parts

of ∂td̃E and ∂td̃F c are nonnegative, in S × (0, t∗) we have

(2.16) ∂tw ≤ −Ψ′
(
∆− eMt(d̃E + d̃F c)

)
eMt

(
M(d̃E + d̃F c) + ∂dt (d̃E + d̃F c)

)
≤ −Ψ′

(
∆− eMt(d̃E + d̃F c)

)
eMtdiv(zE + zF c) ,

where in the last inequality we have used (2.13). Choose a cut-off function η ∈ C∞c (RN ) such that

0 ≤ η ≤ 1 and η ≡ 1 on B1. For every ε > 0 we set ηε(x) := η(εx). Using (2.15) and (2.16), we

have

∂t

ˆ
S

wηpεdx ≤ −eMt

ˆ
S

ηpεΨ′
(
∆− eMt(d̃E + d̃F c)

)
div(zE + zF c)

= −eMt

ˆ
S

ηpεΨ′′
(
∆− eMt(d̃E + d̃F c)

)
(∇d̃E +∇d̃F c) · (zE + zF c) dx

+ peMt

ˆ
S

ηp−1
ε Ψ′

(
∆− eMt(d̃E + d̃F c)

)
∇ηε · (zE + zF c) dx

≤ peMt

ˆ
S

ηp−1
ε Ψ′

(
∆− eMt(d̃E + d̃F c)

)
∇ηε · (zE + zF c) dx ,

where we have also used the inequality (zE + zF c) · (∇d̃E +∇d̃F c) ≥ 0, which follows from (2.14)

and the convexity and symmetry of φ. By Hölder Inequality and using the explicit expression of

Ψ and Ψ′, we get

∂t

ˆ
S

w ηpεdx ≤ Cp2‖∇ηε‖Lp(RN )

(ˆ
S

w ηpεdx

)1− 1
p

,
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for some constant C > 0 depending only on the L∞-norms of zE and zF c and on t∗. Since w = 0

at t = 0, a simple ODE argument then yieldsˆ
S

w ηpεdx ≤
(
Cp‖∇ηε‖Lp(RN )t

)p
for all t ∈ (0, t∗). Observing that ‖∇ηε‖pLp(RN )

= εp−N‖∇η‖p
Lp(RN )

→ 0 and ηε ↗ 1 as ε→ 0+, we

conclude that w = 0, and in turn d̃E+ d̃F c ≥ ∆e−Mt in S×(0, t∗). In particular, by (2.12), we have

shown that dψ
◦

E +dψ
◦

F c ≥ ∆e−Mt in S′′× (0, t∗). In turn, this easily implies that dist(E(t), F c(t)) ≥
∆e−Mt for t ∈ (0, t∗) (see the end of the proof of [22, Theorem 3.3]). This concludes the proof of

the theorem. �

The previous theorem easily yields a comparison principle also between level set subsolutions

and supersolutions.

Theorem 2.8. Let u0, v0 be uniformly continuous functions on RN and let u, v be respectively a

level set subsolution with initial datum u0 and a level set supersolution with initial datum v0, in

the sense of Definition 2.5. If u0 ≤ v0, then u ≤ v.

Proof. Recall that by Definition 2.5 there exists a null set N0 ⊂ R such that for all λ 6∈ N0 the

sets {(x, t) : u(x, t) < λ} and {(x, t) : v(x, t) ≤ λ} are respectively a subflow with initial datum

{u0 ≤ λ} and a superflow with initial datum {v0 ≤ λ}, in the sense of Definition 2.2. Fix now

λ ∈ R and choose λ < λ′′ < λ′, with λ′, λ′′ 6∈ N0. Since {v0 ≤ λ′′} ⊂ {v0 ≤ λ′} ⊂ {u0 ≤ λ′}, we

have

distψ
◦
({v0 ≤ λ′′}, {u0 > λ′}) ≥ distψ

◦
({v0 ≤ λ′′}, {v0 > λ′}) := ∆ > 0 ,

where the last inequality follows from the uniform continuity of v0. Thus, by Theorem 2.7, for all

t ≥ 0,

{(x, t) : v(x, t) ≤ λ} ⊂ {(x, t) : v(x, t) ≤ λ′′} ⊂ {(x, t) : u(x, t) < λ′} .

Letting λ′ ↘ λ, with λ′ 6∈ N0, we conclude that {(x, t) : v(x, t) ≤ λ} ⊆ {(x, t) : u(x, t) ≤ λ} for all

λ ∈ R, which is clearly equivalent to u ≤ v. �

2.4. Distributional versus viscosity solutions. We show here that in the smooth cases, the

notion of solution in Definition 2.2 coincides with the definition of standard viscosity solutions for

geometric motions, as for instance proposed in [12].

Lemma 2.9. Assume φ, ψ, ψ◦ ∈ C2(RN \ {0}), and assume that g is continuous also with respect

to the time variable. Let E be a superflow in the sense of Definition 2.2. Then, −χE is a viscosity

supersolution of

(2.17) ut = ψ(∇u)
(
div∇φ(∇u) + g

)
in RN × (0, T ∗), and in fact in RN × (0, T ∗] whenever T ∗ < +∞, where T ∗ is the extinction time

of E introduced in Definition 2.2.

A converse statement is also true, see [22, 20].

Proof. We follow the proof of a similar statement in [22, Appendix]. Let ϕ(x, t) be a smooth

test function and assume −χE − ϕ has a (strict) local minimum at (x̄, t̄), 0 < t̄ ≤ T ∗. In other

words, we can assume that near (x̄, t̄), −χE(x, t) ≥ ϕ(x, t), while −χE(x̄, t̄) = ϕ(x̄, t̄). We can also
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assume that the latter quantity is −1 (i.e., (x̄, t̄) ∈ E), as if it is zero then we trivially deduce that

∇ϕ(x̄, t̄) = 0 while ∂tϕ(x̄, t̄) ≥ 0.

If∇ϕ(x̄, t̄) = 0, thanks to [10, Prop. 2.2] we can assume that also the spatial Hessian D2ϕ(x̄, t̄) =

0 (and then D3ϕ(x̄, t̄) = 0, D4ϕ(x̄, t̄) ≤ 0). As usual, if we assume that −a = ∂tϕ(x̄, t̄) < 0 and

choose a′ < a, we observe that near x̄, ∂tϕ(x, t̄) < −a′ and, for t ≤ t̄ close enough to t̄ and x close

enough to x̄,

ϕ(x, t) = ϕ(x, t̄) + ∂tϕ(x, t̄)(t− t̄) + o(|t− t̄|) ≥ ϕ(x, t̄) + a′(t̄− t).

Hence, one has that near (x̄, t̄) (for t ≤ t̄), for some γ > 0

ϕ(x, t) ≥ −1 + a′(t̄− t)− γ|x− x̄|4.

It follows that for such t, N ∩ {x : γ|x − x̄|4 < a′(t̄ − t)} ∩ E(t) = ∅, where N is a neighborhood

of x̄. For t̄ − t > 0 small enough we deduce that B(x̄, (a′(t̄ − t)/γ)1/4) does not meet E(t), in

other words d(x̄, t) ≥ c((a′/γ)(t̄− t))1/4 for constant c depending only on ψ. It then follows from

Lemma 2.6, and more precisely from (2.6), that (provided t̄− t ≤ τ0 where τ0 is as in Lemma 2.6)

d(x̄, t̄) ≥ (t̄− t) 1
4

(
c

(
a′

γ

)1/4

e−5M(t̄−t) − χ(t̄− t) 1
4

)
,

which is positive if t is close enough to t̄, a contradiction. Hence ∂tϕ(x̄, t̄) ≥ 0.

If, on the other hand, ∇ϕ(x̄, t̄) 6= 0 then we can introduce the set F = {ϕ ≤ −1}, and we have

that F (t) is a smooth set near x̄, for t ≤ t̄ close to t̄, which contains E(t), with a contact at (x̄, t̄).

We then let δ(x, t) = distψ
◦
(x, F (t)), which at least C2 near (x̄, t̄) (as ψ,ψ◦ are C2) and is touching

d from below at all the points (x̄+ s∇φ(νF (t̄)), t̄) for s > 0 small.

Assume that

(2.18) ∂tδ < ψ(∇δ)(div∇φ(∇δ) + g) = D2φ(∇δ) : D2δ + g

at (x̄, t̄). Then, by continuity, we can find s̄ > 0 small and a neighborhood B = {|x− x̄| < ρ, t̄−ρ <
t ≤ t̄} of (x̄, t̄) in RN × (0, t̄] where

∂tδ < D2φ(∇δ) : D2δ + g −Ms̄.

Possibly reducing ρ and using (cf Rem. 2.3) the left-continuity of d, since d(x̄, t̄) = 0, we can also

assume that d ≤ s̄ in B.

We choose then s < s̄ small enough so that x̄s = x̄+ s∇φ(νF (t̄)) is such that |x̄s − x̄| < ρ, and

for η > 0 small we define δη(x, t) = δ(x, t) − η(|x − x̄s|2 + |t − t̄|2)/2. Then d − δη has a unique

strict minimum point at (x̄s, t̄) in B. Moreover if η is small enough, by continuity, we still have

that

∂tδ
η < D2φ(∇δη) : D2δη + g −Ms̄.

in B.

Then we continue as in [22, Appendix]: given Ψ ∈ C∞(R) nonincreasing, convex, vanishing on

R+ and positive on (−∞, 0), we introduce w = Ψ(d− δη − ε)χB for ε< d(x̄s, t̄− ρ)− δη(x̄s, t̄− ρ)
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small enough. We then show that, thanks to (2.5), for t̄− ρ < t < t̄,

∂t

ˆ
wdx ≤

ˆ
B

Ψ′(d− δη − ε)(divz + g −Md− div∇φ(∇δη)− g +Ms̄)dx

≤ −
ˆ
B

Ψ′′(d− δη − ε)(∇d−∇δη) · (z −∇φ(∇δη))dx+M

ˆ
B

Ψ′(d− δη − ε)(s̄− d)dx ≤ 0

as we have assumed d ≤ s̄ in B. This is in contradiction with Ψ(d(x̄s, t̄)−δη(x̄s, t̄)−ε) = Ψ(−ε) > 0,

and it follows that (2.18) cannot hold: one must have

∂tδ ≥ ψ(∇δ)(div∇φ(∇δ) + g)

at (x̄, t̄). Since this equation is geometric and the level set {δ ≤ 0} is F , which is the level −1 of

ϕ (near (x̄, t̄)), we also deduce that at the same point,

∂tϕ ≥ ψ(∇ϕ)(div∇φ(∇ϕ) + g)

so that −χE is a supersolution of (2.17). �

3. Minimizing movements

As in [22], in order to build solutions to our geometric evolution problem, we implement a

variant of the Almgren-Taylor-Wang [3] minimizing movements scheme (1.4) (in short the ATW

scheme) introduced in [19, 18]. In Section 3.2 we adapt this construction to take into account the

forcing term, as in [24]. We start by presenting some preliminary properties of the incremental

problem.

3.1. The incremental problem. Given z ∈ L∞(RN ;RN ) with divz ∈ L2
loc(RN ) and w ∈

BVloc(RN ) ∩ L2
loc(RN ), let z · Dw denotes the Radon measure associated with the linear func-

tional

Lϕ := −
ˆ
RN

wϕdivz dx−
ˆ
RN

w z · ∇ϕdx for all ϕ ∈ C∞c (RN ),

see [9]. We recall the following result:

Proposition 3.1. Let p > max{N, 2}, f ∈ Lploc(RN ) and h > 0. There exist a field z ∈
L∞(RN ;RN ) and a unique function u ∈ BVloc(RN ) ∩ Lploc(RN ) such that the pair (u, z) satis-

fies

(3.1)


−hdivz + u = f in D′(RN ),

φ◦(z) ≤ 1 a.e. in RN ,
z ·Du = φ(Du) in the sense of measures.

Moreover, for any R > 0 and v ∈ BV (BR) with Supp (u− v) b BR,

φ(Du)(BR) +
1

2h

ˆ
BR

(u− f)2 dx ≤ φ(Dv)(BR) +
1

2h

ˆ
BR

(v − f)2 dx,

and for every s ∈ R the set Es := {x ∈ RN : u(x) ≤ s} solves the minimization problem

min
F∆EsbBR

Pφ(F ;BR) +
1

h

ˆ
F∩BR

(f(x)− s) dx.

If f1 ≤ f2 and if u1, u2 are the corresponding solutions to (3.1) (with f replaced by f1 and f2,

respectively), then u1 ≤ u2.
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Finally if in addition f is Lipschitz with ψ(∇f) ≤ 1 for some norm ψ, then the unique solution u

of (3.1) is also Lipschitz and satisfies ψ(∇u) ≤ 1 a.e. in RN . As a consequence, (3.1) is equivalent

to

(3.2)

{
−hdivz + u = f in D′(RN ),

z ∈ ∂φ(∇u) a.e. in RN .

Proof. See [18, Theorem 2], [1, Theorem 3.3]. �

The comparison property in the previous proposition has a “local” version, which results from

the geometric character of (3.1):

Lemma 3.2. Let f1, f2 be Lipschitz functions and let (ui, zi), i = 1, 2, be solutions to (3.1) with

f replaced by fi. Assume also that for some λ ∈ R,

(3.3) |({u1 ≤ λ} ∪ {u2 ≤ λ}) \ {f1 ≤ f2}| = 0 for i = 1, 2 .

Then, min{u1, λ} ≤ min{u2, λ} a.e.

Proof. Let us set vi := min{ui, λ} for i = 1, 2 and observe that

(3.4) zi ∈ ∂φ(∇vi) a.e..

Writing (3.1) for ui and subtracting the equations we get

(3.5) −hdiv(z1 − z2) + (u1 − u2) = f1 − f2 .

Let ψ be a smooth, increasing, nonnegative function with support in (0,+∞) and η ∈ C∞c (RN ;R+),

and let p > N . First notice thatˆ
RN

(v1 − v2)ψ(v1 − v2)ηp dx =

ˆ
{v1>v2}

(v1 − v2)ψ(v1 − v2)ηp dx ≤
ˆ
RN

(u1 − u2)ψ(v1 − v2)ηp dx

since it can be easily checked that v1−v2 ≤ u1−u2 in {v1 > v2}. Thus, from (3.5) we deduce that

ph

ˆ
RN

(z1 − z2) · ∇η ψ(v1 − v2)ηp−1dx+ h

ˆ
RN

(z1 − z2) · (∇v1 −∇v2)ψ′(v1 − v2)ηp dx

+

ˆ
RN

(v1 − v2)ψ(v1 − v2)ηp dx ≤
ˆ
RN

(f1 − f2)ψ(v1 − v2)ηp dx.

Notice that the last integral in this equation is nonpositive, since by (3.3), the set {f1 > f2} is

contained (up to a negligible set) in {u1 > λ} ∩ {u2 > λ} ⊆ {v1 = v2}. Hence, using also that

(z2 − z1) · (∇v2 −∇v1) ≥ 0 thanks to (3.4), we deduce

ph

ˆ
RN

(z1 − z2) · ∇η ψ(v1 − v2)ηp−1dx+

ˆ
RN

(v1 − v2)ψ(v1 − v2)ηp dx ≤ 0.

Letting ψ(s)→ (s+)p−1 we obtain

‖(v1 − v2)+η‖p
Lp(RN )

≤ −ph
ˆ
RN

(z1 − z2) · ∇η
(
(v1 − v2)+η

)p−1
dx

≤ ph‖(z1 − z2)∇η‖Lp(RN )‖(v1 − v2)+η‖p−1
Lp(RN )

so that

‖(v1 − v2)+η‖Lp(RN ) ≤ 2phC‖∇η‖Lp(RN )



CRYSTALLINE MEAN CURVATURE FLOWS 17

where C = max∂φ(0) |z|. Replacing now η(·) with η(·/R), R > 0, assuming η(0) = 1, we obtain

‖(v1 − v2)+η(·/R)‖Lp(RN ) ≤ 2phCRd/p−1‖∇η‖Lp(RN )
R→∞−→ 0

as we have assumed p > N . It follows that (v1−v2)+ = 0 a.e., which is the thesis of the Lemma. �

Remark 3.3. The result remains true if fi ∈ Lploc(RN ), p > N , are not assumed to be Lipschitz.

This is because again, in this case, the pairing (z1− z2) ·D(ψ(v1− v2)) is non-negative, which may

be shown for instance by first approximating the functions fi with Lipschitz functions.

We conclude this subsection with the following useful computation, proved in [18, page 1576].

Lemma 3.4. Let R > 0 and u the solution to (3.2), with f := c1(φ◦ − R) ∨ c2(φ◦ − R), where

0 < c1 ≤ c2. Then u is given by

u(x) =


√
c1h

2N√
N+1

− c1R if φ◦(x) ≤
√

h
c1

(N + 1),

f(x) + h N−1
φ◦(x) otherwise,

as long as h/c1 ≤ R2/(N + 1).

3.2. The ATW scheme. Let φ, ψ and g satisfy all the assumptions stated in Subsection 2.2. Set

G(·, t) :=

ˆ t

0

g(·, s) ds .

Let E0 ⊂ RN be closed. Fix a time-step h > 0 and set E0
h := E0. We then inductively define

Ek+1
h (for all k ∈ N) according to the following procedure: If Ekh 6∈ {∅, RN}, then let (uk+1

h , zk+1
h ) :

RN → R× RN satisfy

(3.6)

{
−hdivzk+1

h + uk+1
h = dψ

◦

Ekh
+G(·, (k + 1)h)−G(·, kh) in D′(RN ),

zk+1
h ∈ ∂φ(∇uk+1

h ) a.e. in RN ,

and set Ek+1
h := {x : uk+1

h ≤ 0}.5 If either Ekh = ∅ or Ekh = RN , then set Ek+1
h := Ekh. We denote

by T ∗h the first discrete time hk such that Ekh = ∅, if such a time exists; otherwise we set T ∗h = +∞.

Analogously, we denote by T ′h
∗

the first discrete time hk such that Ekh = RN , if such a time exists;

otherwise we set T ′h
∗

= +∞.

Remark 3.5. In the following, when changing mobilities, forcing terms, and initial data, we will

sometimes write (E0)ψ,kg,h in place of Ekh in order to highlight the dependence of the scheme on ψ, g,

and E0. More generally, given any closed set H, Hψ,k
g,h will denote the k-th minimizing movements

starting from H with mobility ψ, forcing term g and time-step h, as described by the algorithm

above.

Remark 3.6 (Monotonicity of the scheme). From the comparison property stated in Proposition 3.1

it easily follows that if E0 ⊆ F 0 are closed sets, then (with the notation introduced in the previous

remark) (E0)ψ,kg,h ⊆ (F 0)ψ,kg,h for all k ∈ N. In addition, note that
(
(E0)ψ,kg,h

)c
=
(
(E0)c

)ψ,k
−g,h for all

k. Thus, if dist(E0, F 0) > 0, then we may apply Lemma 5.2 below with g1 = g2 = g, c = 0, and

with η the Euclidean norm, to deduce that dist
(

(E0)ψ,kg,h , (F
0)ψ,k−g,h

)
> 0 for all k ∈ N.

5Choosing Ek+1
h = {uk+1

h < 0} might provide a different (smaller) solution, which would enjoy exactly the same

properties as the one we (arbitrarily) choose.
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The assumption that the sets are at positive distance is necessary, otherwise one could only

conclude, for instance, that the smallest solution of the ATW scheme from E0 is in the complement

of any solution from F 0, etc.

We now study the space regularity of the functions ukh constructed above. In the following

computations, given any function f : RN → Rm and τ ∈ RN , we denote fτ (·) := f(· + τ). Then,

the function (uk+1
h )τ satisfies

(3.7) − hdiv(zk+1
h )τ + (uk+1

h )τ = (dψ
◦

Ekh
)τ + (G(·, (k + 1)h))τ − (G(·, kh))τ ≤

dψ
◦

Ekh
+G(·, (k + 1)h)−G(·, kh) + ψ◦(τ)(1 + Lh) ,

where in the last inequality we also used the Lipschitz-continuity of g. By the comparison property

stated in Proposition 3.1 we deduce that (uk+1
h )τ − (1 +Lh)ψ◦(τ) ≤ uk+1

h . By the arbitrariness of

τ ∈ RN , we get ψ(∇uk+1
h ) ≤ 1 + Lh, and in turn

(3.8)
uk+1
h ≤ (1 + Lh)dψ

◦

Ek+1
h

in
{
x : dψ

◦

Ek+1
h

(x) > 0
}
,

uk+1
h ≥ (1 + Lh)dψ

◦

Ek+1
h

in
{
x : dψ

◦

Ek+1
h

(x) < 0
}
.

We are now in a position to define the discrete-in-time evolutions constructed via minimizing

movements. Precisely, we set

(3.9)



Eh(t) := E
[t/h]
h ,

Eh := {(x, t) : x ∈ Eh(t)},
dh(x, t) := dψ

◦

Eh(t)(x),

uh(x, t) := u
[t/h]
h (x),

zh(x, t) := z
[t/h]
h (x),

where [·] stands for the integer part.

We conclude this subsection with the following remark.

Remark 3.7 (Discrete comparison principle). Remark 3.6 now reads as follows: If E0 ⊆ F 0 are

closed sets and if we denote by Eh and Fh the discrete evolutions with initial datum E0 and F 0,

respectively, then Eh(t) ⊆ Fh(t) for all t ≥ 0. Analogously, if dist(E0, F 0) > 0, Eh is defined with

a forcing g and Fh with the forcing −g, then dist(Eh(t), Fh(t)) > 0 for all t ≥ 0.

3.3. Evolution of φ-Wulff shapes. We start paving the way for the convergence analysis of the

scheme, by deriving some estimates on the minimizing movements starting from a Wulff shape. We

consider as initial set the φ-Wulff shape Wφ(0, R), for R > 0. First, thanks to Lemma 3.4 (with

c1 = c2 = 1) (cf also [18, Appendix B, Eq. (39)]), the solution of (3.1) with f = dφ
◦

Wφ(0,R)
= φ◦−R

is given by φ◦h −R, where

(3.10) φ◦h(x) :=


√
h 2N√

N+1
if φ◦(x) ≤

√
h(N + 1),

φ◦(x) + h N−1
φ◦(x) else.

Observe then that there exist two positive constants c1 ≤ c2 such that

(3.11) c1φ
◦ ≤ ψ◦ ≤ c2φ◦ ,
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and in particular

(3.12) dψ
◦

Wφ(0,R)
≤ c1(φ◦ −R) ∨ c2(φ◦ −R).

Thus, for any k ∈ N we have

(3.13) dψ
◦

Wφ(0,R)
+G(·, (k + 1)h)−G(·, kh) ≤ c1(φ◦ −R) ∨ c2(φ◦ −R) + ‖g‖∞h =: f .

Denoting by u the solution to (3.2), with f defined above, then Lemma 3.4 yields

u(x) = ‖g‖∞h+


√
c1h

2N√
N+1

− c1R if φ◦(x) ≤
√

h
c1

(N + 1),

f(x) + h N−1
φ◦(x) otherwise,

provided that h/c1 ≤ C(N)R2 (here and in the following C(N) denotes a positive constant that

depends only on the dimension N and may change from line to line). Notice that {u ≤ 0} =

Wφ(0, r̄) for

r̄ :=
R− h

c1
‖g‖∞ +

√(
R− h

c1
‖g‖∞

)2 − 4 h
c1

(N − 1)

2
.

Taking into account (3.13), we may apply the comparison principle stated in Proposition 3.1 to

infer that if k = [t/h] and Ekh = Eh(t) = Wφ(0, R), then

Wφ(0, r̄) = {u ≤ 0} ⊆ {uk+1
h ≤ 0} = Eh(t+ h) ,

provided that h/c1 ≤ C(N)R2. Since

r̄ ≥
√(

R− h
c1
‖g‖∞

)2 − 4 h
c1

(N − 1)
(R≤1)

≥
√
R2 − 2 h

c1

(
2(N − 1) + ‖g‖∞

)
and setting for 0 ≤ s− t ≤ c1R

2

4
(

2(N−1)+‖g‖∞
)

(3.14) rR(s) :=

√
R2 − 2

s− t
c1

(
2(N − 1) + ‖g‖∞

)
≥ R√

2
,

by iteration we deduce that

(3.15) Wφ(0, rR(s)) ⊆ Eh(s)

for all 0 ≤ s− t ≤ c1R
2

4
(

2(N−1)+‖g‖∞
) and h ≤ c1C(N)R2.

In particular, there exist a constant C depending only on ‖g‖∞, c1 and the dimension N , and

h0 > 0, depending also on R, such that for any y ∈ RN and for all h ≤ h0

(3.16) Wφ(y,R− C
Rh) ⊆

(
Wφ(y,R)

)ψ,1
g,h
⊆Wφ(y,R).

3.4. Density estimates and barriers. In this section we collect some preliminary estimates on

the incremental problem that will be crucial for the stability properties established in Section 5.1.

The following density lemma and the subsequent corollary show that the solution to the incremental

problem starting from a closed set E cannot be too “thin” in RN \E. The main point is that the

estimate turns out to be independent of h and ψ, see also Lemma 1.3 and Remark 1.4 in [44]. We

observe that there exist positive constants a1, a2 such that

(3.17) a1|ξ| ≤ φ(ξ) ≤ a2|ξ| for all ξ ∈ RN .
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Lemma 3.8. Let E ⊂ RN be a closed set, h > 0, and let gh ∈ L∞(RN ) with ‖gh‖∞ ≤ Gh for

some G > 0. Let E′ be a solution to

(3.18) min
F∆E′⊂⊂BR

Pφ(F ;BR) +
1

h

ˆ
F∩BR

(dψ
◦

E (x) + gh(x)) dx

for all positive R. Then, there exist σ > 0, depending only on N, a1, and r0 > 0 depending on N,G,

with the following property: if x̄ is such that |E′∩Wφ(x̄, s)| > 0 for all s > 0 and Wφ(x̄, r)∩E = ∅
with r ≤ r0, then

|E′ ∩Wφ(x̄, r)| ≥ σrN .

Proof. We adapt to our context a classical argument from the regularity theory of the (quasi)

minimizers of the perimeter [44, Lem. 1.3, Rem. 1.4]. As mentioned before, the main point is

to use the fact that the Wulff shapes Wφ(x̄, r) lies outside E to deduce that the constants σ, r0

are independent of h and ψ◦. Let x̄ and Wφ(x̄, r) be as in the statement. Fix R > 0 such that

Wφ(x̄, r) ⊂ BR. For all s ∈ (0, r), set E′(s) := E′ \Wφ(x̄, s). For a.e. s, we have:6

Pφ(E′(s);BR) = Pφ(E′;BR)− Pφ(E′ ∩Wφ(x̄, s)) + 2

ˆ
E′∩∂Wφ(x̄,s)

φ(ν)dHN−1

with ν the outer normal vector to ∂Wφ(x̄, s). Using also the fact thatˆ
E′(s)∩BR

dψ
◦

E dx ≤
ˆ
E′∩BR

dψ
◦

E dx

(since dψE > 0 in Ec), by minimality of E′ in (3.18) we find:

Pφ(E′ ∩Wφ(x̄, s)) +
1

h

ˆ
E′∩BR

gh(x)dx ≤ 2

ˆ
E′∩∂Wφ(x̄,s)

φ(ν)dHN−1 +
1

h

ˆ
E′(s)∩BR

gh(x)dx.

The above inequality and the (anisotropic, see for instance [32]) isoperimetric inequality yield:

2

ˆ
E′∩∂Wφ(x̄,s)

φ(ν)dHN−1 ≥ N |Wφ|
1
N |E′ ∩Wφ(x̄, s)|

N−1
N −G|E′ ∩Wφ(x̄, s)|

≥ (N −Gs)|Wφ|
1
N |E′ ∩Wφ(x̄, s)|

N−1
N ,(3.19)

where we have used that |E′ ∩Wφ(x̄, s)| 1
N ≤ |Wφ|

1
N s. We observe also that (using φ(∇φ◦) = 1

and the co-area formula):

|E′ ∩Wφ(x̄, s)| =
ˆ
E′∩{φ◦(·−x̄)≤s}

φ

(
∇φ◦

|∇φ◦|

)
|∇φ◦|dx =

ˆ s

0

ˆ
E′∩∂Wφ(x̄,t)

φ(ν)dHN−1dt

so that for a.e. s,
´
E′∩∂Wφ(x̄,s)

φ(ν)dHN−1 = d
ds |E

′ ∩Wφ(x̄, s)|. Using that |E′ ∩Wφ(x̄, s)| > 0 for

all s > 0, the inequality (3.19) implies in turn that

d

ds
|E′ ∩Wφ(x̄, s)| 1

N ≥ 1

2
|Wφ|

1
N

(
1− G

N s
)

for a.e. s ≥ 0.

If r ≤ r0 := N/G we obtain, integrating the above inequality on (0, r),

|E′ ∩Wφ(x̄, r)| 1
N ≥ r

4
|Wφ|

1
N ≥ a1r

4
|B1|

1
N

where we have used (3.17) for the last inequality. The thesis follows. �

6We use here that φ is even, otherwise the constant 2 in the formula should be replaced by 1 + cφ where cφ is

such that φ(ξ) ≤ cφφ(−ξ); see also Remark 6.3.
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Remark 3.9. The same argument shows that a similar but h-dependent density estimate holds

inside E.

We introduce the following notation: For any set A ⊂ RN , for any norm η, and for ρ ∈ R we

denote

(3.20) (A)ηρ := {x ∈ RN : dηA(x) ≤ ρ} ,

and we will omit η in the notation if η is the Euclidean norm. We also recall the notation Eψ,kg,h

introduced in Remark 3.5 to denote the k-th minimizing movement starting from E, with mobility

ψ, forcing term g and time-step h.

Corollary 3.10. Let g and ψ be an admissible forcing term and a mobility, respectively, and

let h > 0. Denote by Eψ,1g,h the corresponding (single) minimizing movement starting from E

(see Section 3.2 and Remark 3.5). Let σ and r0 be the constants provided by Lemma 3.8 for

G := ‖g‖∞ + 1. If x̄ ∈ Eψ,1g,h and Wφ(x̄, r) ∩ E = ∅ with r ≤ r0, then

|Eψ,1g,h ∩W
φ(x̄, r)| ≥ σrN .

Proof. Recall that Eψ,1g,h = {u(·) ≤ 0}, where u solves
−hdivz + u = dψ

◦

E +
´ h

0
g(·, s) ds in D′(RN ),

φ◦(z) ≤ 1 a.e. in RN ,
z ·Du = φ(Du) in the sense of measures.

Thus, by virtue of Proposition 3.1, setting E′η := {u(·) ≤ η} for η ∈ (0, h), we have that E′η solves

(3.18) with gh :=
´ h

0
g(·, s) − η. Since x̄ belongs to the interior of E′η and ‖gh‖∞ ≤ Gh, from

Lemma 3.8 we deduce that

(3.21) |E′η ∩Wφ(x̄, r)| ≥ σrN .

The thesis follows by monotone convergence by letting η ↘ 0+. �

Lemma 3.11. Let F ⊂ RN be a convex set and let r > 0. Then,

|((F )ε \ F ) ∩Br| ≤ C(N)εrN−1 for all ε ≥ 0,

where C(N) depends only on the dimension N .

Proof. Notice that (F )s is convex for all positive ε, so that (F )s ∩Br is a convex set contained in

Br, and

HN−1(∂((F )s ∩Br)) ≤ HN−1(∂Br) = C(N)rN−1 for all s > 0.

Therefore, thanks to the coarea formula,

|((F )ε \ F ) ∩Br(0)| =
ˆ ε

0

HN−1(∂(F )s ∩Br) ds ≤
ˆ ε

0

HN−1(∂((F )s ∩Br)) ds ≤ C(N)εrN−1.

�

The next lemma provides a crucial estimate on the “expansion” of any closed set E under a

single minimizing movement, provided that E satisfies a uniform exterior Wulff shape condition.

The result is achieved by combining a barrier argument with the the density estimate established

in Corollary 3.10.
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Lemma 3.12. For any β, G, ∆ > 0, there exists h0 > 0, depending on the previous constants, on

the anisotropy φ and the dimension N , and there exists M0 > 0 depending on the same quantities

but ∆, with the following property: Let ψ be a mobility satisfying

(3.22) ψ ≤ βφ

and let g be an admissible forcing term with ‖g‖∞ ≤ G. Then for any closed set E ⊆ RN such

that RN \ E =
⋃
W∈GW , where G is a family of (closed) φ-Wulff shapes of radius ∆, and for all

h ≤ h0, we have Eψ,1g,h ⊂ (E)φ
◦

M0h
∆

.

Proof. First notice that (3.22) is equivalent to 1
βφ
◦ ≤ ψ◦ . Hence, recalling (3.16), there exists a

constant C, depending only on ‖g‖∞, β (= 1/c1 in (3.16)), and N , such that

Wφ(y,∆− C
∆h) ⊆

(
Wφ(y,∆)

)ψ,1
−g,h ⊆W

φ(y,∆)

for all h ≤ h0. By Lemma 3.11 it follows that for a possibly different constant C, depending only

on ‖g‖∞, β, and N , we have

(3.23)
∣∣∣(Wφ(y,∆) \

(
Wφ(y,∆)

)ψ,1
−g,h

)
∩Br(x)

∣∣∣ ≤ C

∆
hrN−1 for all x, y ∈ RN , r > 0, h ≤ h0 .

Observe now that there exists θ > 0, depending only on Wφ(0, 1), such that

(3.24)
|Wφ(y,R) ∩Qr(x)|

|Qr(x)|
≥ θ for all y ∈ RN , x ∈Wφ(y,R), R ≥ 1, and r ∈ (0, 1),

where Qr(x) stands for the cube of side r centered at x. Let σ > 0 be the constant provided

by Corollary 3.10, and let N be the constant provided by the covering Lemma 3.13 below, corre-

sponding to the constant θ in (3.24), δ = σ/4 and C = Wφ. Set M0 := (2CN )/σ, where C is the

constant in (3.23) and note that for r = M0h
∆ we have

(3.25) N C

∆
hrN−1 = N C

∆N
hNMN−1

0 =
σ

2

(
M0h

∆

)N
=
σ

2
rN .

Let x ∈ RN be such that Wφ
(
x, M0h

∆

)
∩ E = ∅ for some h ≤ h0, and assume by contradiction

that x ∈ Eψ,1g,h . Without loss of generality we may assume x = 0.

By taking h0 smaller if needed, we can also assume that ∆2

M0h
≥ 1 and M0h

∆ ≤ r0 for all h ≤ h0,

where r0 is the radius provided by Corollary 3.10. Thus, recalling also (3.24), for h ≤ h0, applying

Lemma 3.13 below (with δ = σ/4) to the family

F =
∆

M0h
G =

{
∆

M0h
W : W ∈ G

}
which by assumption on G and E covers C = Wφ(0, 1), we find a finite subfamily

F ′ =

{
∆

M0h
Wφ(x1,∆), . . . ,

∆

M0h
Wφ(xN ,∆)

}
of N elements such that ∣∣∣∣Wφ(0, 1) \

N⋃
i=1

∆

M0h
Wφ(xi,∆)

∣∣∣∣ ≤ σ

4
.

By scaling back we obtain

(3.26)
∣∣∣Wφ

(
0,
M0h

∆

)
\
N⋃
i=1

Wφ(xi,∆)
∣∣∣≤ σ

4

(
M0h

∆

)N
.
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Note now that by the comparison principle (see Remark 3.6)

Eψ,1g,h ∩W
φ
(

0,
M0h

∆

)
⊂Wφ

(
0,
M0h

∆

)
\
N⋃
i=1

(
Wφ(xi,∆)

)ψ,1
−g,h .

Thus, using also (3.23), (3.25) and (3.26) we deduce that∣∣∣Eψ,1g,h ∩W
φ
(

0,
M0h

∆

)∣∣∣ ≤∣∣∣Wφ
(

0,
M0h

∆

)
\
N⋃
i=1

(
Wφ(xi,∆)

)ψ,1
−g,h

∣∣∣
≤
∣∣∣Wφ

(
0,
M0h

∆

)
\
N⋃
i=1

Wφ(xi,∆)
∣∣∣+

N∑
i=1

∣∣∣(Wφ(xi,∆) \
(
Wφ(xi,∆)

)ψ,1
−g,h

)
∩Wφ

(
0,
M0h

∆

)∣∣∣
≤ σ

4

(
M0h

∆

)N
+N C

∆
h

(
M0h

∆

)N−1

=
3

4
σ

(
M0h

∆

)N
,

which contradicts the density estimate provided by Corollary 3.10. �

We conclude with the following covering lemma, which we used in the previous proof:

Lemma 3.13. Let F be a family of closed convex sets in RN which covers a closed convex set C.

Assume that there exists θ > 0 such that for all W ∈ F , x ∈W , and r ≤ 1,

(3.27)
|W ∩Qr(x)|
|Qr(x)|

≥ θ,

where Qr(x) = x + [−r/2, r/2]N . Then for every δ > 0 there exists N = N (δ, θ, C, N) and sets

Wi ∈ F , i = 1, . . . , n ≤ N such that

(3.28)
∣∣∣C \ n⋃

i=1

Wi

∣∣∣ ≤ δ.
Proof. Given ε ∈ {2−i : i ∈ N}, let Qε be the set of closed cubes of size ε, centered at εZN , which

are included in C. Consider ε1 the largest dyadic value for which, letting I1 =
⋃
Q∈Qε1

Q, one has

|C \ I1| ≤ 1/2. We denote N1 the cardinality of Qε1 .

For each Q = Qε1(x) ⊂ I1, we choose WQ ∈ F with x ∈WQ and let F1 =
⋃
Q∈Qε1

Q∩WQ ⊆ I1,

F̃1 =
⋃
Q∈Qε1

WQ. By construction and (3.27), |F1| ≥ θ|I1|. Observe moreover that the number

N1 of sets Q ∈ Qε1 with Q ⊂ I1 depends only on the initial convex set C.
We now assume we have built sets Ii, Fi, F̃i, i = 1, . . . , k − 1, such that

i) Ii is the union of Ni dyadic cubes Qi,1, . . . , Qi,Ni ∈ Qεi where εi,Ni depend only on θ, C
and the dimension N ;

ii) Fi =
⋃Ni
l=1WQi,l ∩ Qi,l ⊆ Ii and F̃i =

⋃Nl
l=1WQi,l where WQi,l ∈ F contains the center of

the cube Qi,l;

iii) For j = 1, . . . , k − 1, Ij ⊂ C \ (
⋃j−1
i=1 F̊i) (in particular the sets Fi have disjoint interior)

and |
(
C \ (

⋃j−1
i=1 Fi)

)
\ Ij | ≤ 2−j .

We claim that we can build Ik, Fk, F̃k which satisfy the same conditions, with Ik made of Nk cubes

of size εk, the numbers Nk, εk depending only on θ, C, N .

In order to do this, we show that we can find εk < εk−1 depending only on θ, C, N such that if

Ik is the union of all the cubes in Qεk not intersecting ∪k−1
i=1 F̊i, then |

(
C \ (∪k−1

i=1 Fi)
)
\ Ik| ≤ 2−k.

The set
(
C \ (∪k−1

i=1 F̊i)
)
\ Ik is covered by the dyadic cubes of size εk centered at εkZN which either

• intersect ∂C: the total measure of such cubes is bounded by cHN−1(∂C)εk;
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• intersect, for some i = 1, . . . , k − 1, ∂(WQi,l ∩ Q̊i,l) for some l ∈ {1, . . . ,Ni}, where Qi,l

is a dyadic cube of size εi in Ii: the total measure of such small cubes for a given Qi,l is

bounded, thanks to Lemma 3.11, by c(εi)
N−1εk = c|Qi,l|(εk/εi) ≤ c(εk/εi)|WQi,l ∩Qi,l|/θ,

with c depending only on N , hence the total measure of this region is bounded by

c

θ

k−1∑
i=1

Nk∑
l=1

εk
εi
|WQi,l ∩Qi,l| =

c

θ

k−1∑
i=1

εk
εi
|Fi| ≤

c|C|
θ

εk
εk−1

.

We see that volume of the union of all these “bad” cubes is less than

c|C|
θ

εk
εk−1

+ cHN−1(∂C)εk.

Again, one can find εk depending only on C, N, θ such that this quantity is less than 2−k. It

follows that the total number of cubes in Ik, Nk, depends also only on C, N, θ. We denote Qk,l,

l = 1, . . . ,Nk, the corresponding cubes.

As before we build then Fk ⊂ Ik as the union of Qk,l ∩WQk,l where WQk,l ∈ F is a convex set

containing the center of Qk,l, and F̃k =
⋃Nk
l=1WQk,l . We have then proved that i), ii) and iii) hold

true with k − 1 replaced by k.

Notice that, thanks to (3.27), |Ik| ≤ |Fk|/θ. Recall that the sets Ik and F̊1, . . . , F̊k−1 are disjoint.

Hence |
(
C \ (∪k−1

i=1 Fi)
)
\ Ik| = |C \ (∪k−1

i=1 Fi)| − |Ik| so that

|C \ (∪k−1
i=1 Fi)| ≤

|Fk|
θ

+ 2−k.

Let K ≥ 1. As the sets C \ (∪k−1
i=1 Fi) are decreasing (with k), one has for every k ≤ K + 1 that

|C \ (∪k−1
i=1 Fi)| ≥ |C \ (∪Ki=1Fi)|. Using also that the sets F̊k ⊂ C are pairwise disjoint, it follows:

K|C \ (∪Ki=1Fi)| ≤
K+1∑
k=2

|C \ (∪k−1
i=1 Fi)| ≤

|C|
θ

+ 1

hence

|C \ (∪Ki=1F̃i)| ≤ |C \ (∪Ki=1Fi)| ≤
|C|
θ + 1

K
.

If K ≥ (|C|/θ + 1)/δ, (3.28) holds true and the maximum number of sets W ∈ F used in the

construction, which is bounded by
∑K
k=1Nk, depends only on N, δ, θ, C. �

Remark 3.14. A careful study of the previous proof shows that N only depends on the convex set

C through |C| and HN−1(∂C). Hence, as these quantities, for C = Wφ(0, 1), as well as θ in (3.24)

depend continuously on φ, one can deduce that the constants M0, h0 in Lemma 3.12 can be chosen

as depending on φ only through the ellipticity constants a1, a2 of (3.17).

4. The crystalline mean curvature flow with a φ-regular mobility

Throughout this section we assume the mobility ψ satisfies the following regularity assumption

with respect to the metric induced by φ◦:

Definition 4.1. We will say that a norm ψ is φ-regular if the associated Wulff shape Wψ(0, 1)

satisfies a uniform interior φ-Wulff shape condition, that is, if there exists ε0 > 0 with the following

property: for every x ∈ ∂Wψ(0, 1) there exists y ∈ Wψ(0, 1) such that Wφ(y, ε0) ⊆ Wψ(0, 1) and

x ∈ ∂Wφ(y, ε0).
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Notice that it is equivalent to saying that Wψ(0, 1) is the sum of a convex set and Wφ(0, ε0), or

equivalently that ψ(ν) = ψ0(ν) + ε0φ(ν) for some convex function ψ0. We will show that, under

the above additional regularity assumption, the ATW scheme converges to a (generically) unique

solution of the flow in the sense of Definition 2.2, see Subsections 4.2 and 4.3 below. We start with

some preliminary estimates.

4.1. Evolution of ψ-Wulff shapes and preliminary estimates. We now analyze the minimiz-

ing movement of a ψ-Wulff shape Wψ(0, R), with ψ φ-regular, that is, we assume Eh(t) = Wψ(0, R)

for some time t ≥ 0.

By the regularity assumption in Definition 4.1, setting R := (ε0R)∧1, we have (with the notation

introduced in (3.20)) that for every 0 < r < R((
Wψ(0, R)

)φ◦
−R

)φ◦
r

=
(
Wψ(0, R)

)φ◦
−(R−r) .

Since for every x ∈
(
Wψ(0, R)

)φ◦
−R we have Wφ(x,R) ⊆ Wψ(0, R), from the discrete comparison

principle and the analysis performed in Subsection 3.3 it follows that(
Wψ(0, R)

)φ◦
−(R−rR(s))

⊆ Eh(s)

for all 0 ≤ s− t ≤ c1R
2

4
(

2(N−1)+‖g‖∞
) and h ≤ c1C(N)R

2
, where rR is the function defined in (3.14)

(with R replaced by R).

Now we return to an arbitrary discrete motion Eh(·). If for some (x, t) ∈ RN × [0, T ∗h ) we have

dh(x, t) > R (see (3.9)), then Wψ(x,R) ∩ Eh(t) = ∅. Thus, again by the discrete comparison

principle and the results of Subsection 3.3, we infer that(
Wψ(0, R)

)φ◦
−(R−rR(s))

∩ Eh(s) = ∅

for all 0 ≤ s − t ≤ c1R
2

4
(

2(N−1)+‖g‖∞
) and h ≤ c1C(N)R

2
. Taking into account also (3.11) and the

definition of rR, it follows that

dh(x, s) ≥ dh(x, t)− c2
(
R−

√
R

2 − 2
s− t
c1

(
2(N − 1) + ‖g‖∞

))
= dh(x, t)− c2

c1

(
4(N − 1) + 2‖g‖∞

)
(s− t)

R+
√
R

2 − 2 s−tc1

(
2(N − 1) + ‖g‖∞

)
≥ dh(x, t)− c2

c1

(
4(N − 1) + 2‖g‖∞

)
(s− t)

R

= dh(x, t)− c2
c1

(
4(N − 1) + 2‖g‖∞

)
(ε0R) ∧ 1

(s− t)

for all 0 ≤ s− t ≤ c1
4

(ε20R
2)∧1

2(N−1)+‖g‖∞ and h ≤ c1C(N)((ε2
0R

2) ∧ 1). Letting R↗ dh(x, t) we obtain

(4.1) dh(x, s) ≥ dh(x, t)− c2
c1

4(N − 1) + 2‖g‖∞
(ε0dh(x, t)) ∧ 1

(s− t)

for all 0 ≤ s− t ≤ c1
4

(
ε20d

2
h(x,t)

)
∧1

2(N−1)+‖g‖∞ and h ≤ c1C(N)((ε2
0d

2
h(x, t)) ∧ 1), whenever dh(x, t) > 0.

By an entirely similar argument if dh(x, t) < 0, then we obtain

(4.2) dh(x, s) ≤ dh(x, t) +
c2
c1

4(N − 1) + 2‖g‖∞
(ε0|dh(x, t)|) ∧ 1

(s− t)
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for all 0 ≤ s− t ≤ c1
4

(
ε20d

2
h(x,t)

)
∧1

2(N−1)+‖g‖∞ and h ≤ c1C(N)((ε2
0d

2
h(x, t)) ∧ 1).

4.2. Convergence of the ATW scheme. For every h > 0 let Eh be the discrete evolution

defined in (3.9). We extract a subsequence {Ehl}l∈N such that

Ehl
K−→ E and (E̊hl)

c K−→ Ac

for a suitable closed set E and a suitable open set A ⊂ E. We define E(t) and A(t) as in (3.9).

Observe that if E(t) = ∅ for some t ≥ 0, then (4.1) implies that E(s) = ∅ for all s ≥ t so that

we can define, as in Definition 2.2, the extinction time T ∗ of E, and similarly the extinction time

T ′
∗

of Ac. Notice that at least one between T ∗ and T ′
∗

is +∞. Possibly extracting a further

subsequence, we have the following result, which can be proven arguing exactly as in [22, Proof of

Proposition 4.4], using now (4.1) and (4.2).

Proposition 4.2. There exists a countable set N ⊂ (0,+∞) such that dhl(·, t)+ → dist(·, E(t))

and dhl(·, t)− → dist(·, Ac) locally uniformly for all t ∈ (0,+∞) \ N . Moreover, E and Ac satisfy

the continuity properties (b) and (c) of Definition 2.2. Finally, E(0) = E0 and A(0) = E̊0.

Theorem 4.3. The set E is a superflow in the sense of Definition 2.2 with initial datum E0, while

A is a subflow with initial datum E0.

Proof. Points (a), (b) and (c) of Definition 2.2 follow from Proposition 4.2. It remains to show

(d). We will use the notation in (3.9). Possibly extracting a further subsequence and setting

zhl(·, t) := 0 for t > T ∗hl if T ∗hl < T ∗, we may assume that zhl converges weakly-∗ in L∞(RN×(0, T ∗))

to some vector-field z satisfying φ◦(z) ≤ 1 almost everywhere. Recall that by (3.8) we have

uk+1
hl
≤ (1 + Lhl)d

ψ◦

Ek+1
hl

, whenever dEk+1
hl

≥ 0. In turn, it follows from (3.6) that

(4.3) divzk+1
hl

+
1

hl

ˆ (k+1)hl

khl

g(·, s) ds ≤
(1 + Lhl)d

ψ◦

Ek+1
hl

− dψ
◦

Ekhl

hl
.

Consider a nonnegative test function η ∈ C∞c ((RN × (0, T ∗)) \ E). If l is large enough, then the

distance of the support of η from Ehl is bounded away from zero. In particular, dhl is finite (as a

consequence of (4.1)) and positive on Supp η. We deduce from (4.3) that

0 ≤
ˆˆ

η(x, t)

(
dhl(x, t+ hl)− dhl(x, t)

hl
− divzhl(x, t+ hl)

− 1

hl

ˆ ([ thl
]+1)hl

[ thl
]hl

g(x, s) ds+ Ldhl(x, t+ hl)

)
dtdx

= −
ˆˆ (

η(x, t)− η(x, t− hl)
hl

dhl(x, t)− zhl(x, t+ hl) · ∇η(x, t)

− η(x, t)
( 1

hl

ˆ ([ thl
]+1)hl

[ thl
]hl

g(x, s) ds+ Ldhl(x, t+ hl)
))

dtdx.

Passing to the limit l→∞ we obtain (2.5) with M = L.

Next, we establish an upper bound for divzh away from Ekh. To this aim let x ∈ RN \ Ekh be

such that dψ
◦

Ekh
(x) =: R > 0.
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There exists ξ ∈ Ekh with x ∈ ∂Wψ(ξ,R), and recalling Definition 4.1 there is x̄ such that,

setting R̄ := (ε0R) ∧ 1, Wφ(x̄, R̄) ⊂ Wψ(ξ,R) and x ∈ ∂Wφ(x̄, R̄). In particular, dψ
◦

Ekh
− R ≤

ψ◦(· − ξ)−R = dψ
◦

Wψ(ξ,R)
≤ dψ

◦

Wφ(x̄,R̄)
. Using (3.12), one has for all y ∈ RN

dψ
◦

Ekh
(y) ≤ R+ c2(φ◦(y − x̄)− R̄) ∨ c1(φ◦(y − x̄)− R̄).

Thanks to (3.11),

ˆ (k+1)h

kh

g(y, s) ds ≤
ˆ (k+1)h

kh

g(x, s) ds+ Lhψ◦(y − x) ≤
ˆ (k+1)h

kh

g(x, s) ds+ Lhc2φ
◦(y − x),

hence, since φ◦(y − x) ≤ φ◦(y − x̄) + R̄, summing the two previous inequalities we obtain:

dψ
◦

Ekh
(y) +

ˆ (k+1)h

kh

g(y, s) ds

≤ R+2c2LhR̄+
(
c2(1 + Lh)(φ◦(y − x̄)− R̄)

)
∨
(
(c1 + c2Lh)(φ◦(y − x̄)− R̄)

)
+

ˆ (k+1)h

kh

g(x, s) ds.

As a consequence (cf Lemma 3.4),

uk+1
h (y) ≤ R+ 2c2LhR̄+

ˆ (k+1)h

kh

g(x, s) ds

+ c2(1 + Lh)(φ◦(y − x̄)− R̄) ∨ (c1 + c2Lh)(φ◦(y − x̄)− R̄) +
h(N − 1)

φ◦(y − x̄)

if φ◦(y− x̄) ≥
√
h(N + 1)/(c1 + c2Lh) and as long as this quantity is less than R̄√

N+1
. Evaluating

this inequality at y = x, we deduce that if h ≤ C(N)R̄2,

uk+1
h (x) ≤ R+ 2c2LhR̄+

ˆ (k+1)h

kh

g(x, s) ds+
h(N − 1)

R̄

≤ dψ
◦

Ekh
(x) + 2c2Lh+

ˆ (k+1)h

kh

g(x, s) ds+
h(N − 1)

(ε0R) ∧ 1
,

as R̄ ≤ 1. Thanks to (3.6), it follows

(4.4) divzk+1
h (x) ≤ 2c2L+

N − 1

(ε0d
ψ◦

Ekh
(x)) ∧ 1

.

In the limit hl → 0, we deduce that divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ > 0.

We now provide a lower (h-dependent) bound for divzh. To this aim, note that if dψ
◦

Ekh
(x) =:

R > 0, then dψ
◦

Ekh
≥ R−ψ◦(·−x) ≥ R− c2φ◦(·−x). Thus, by comparison with the explicit solution

given by (3.10) (with a change of sign), and using that (c2φ
◦)h = c2φ

◦
h/c2

, we get

uk+1
h (x) ≥ R− c2φ◦h

c2

(0)− h‖g‖∞ ≥ R−
3N
√
c2h√

N + 1
,

for h = hl small enough (so that h‖g‖∞ ≤ N
√
c2h/
√
N + 1). In turn, by (3.6), we deduce both

divzk+1
h ≥ − 1√

h

4N
√
c2√

N + 1
a.e. in {x : dEkh(x) > 0}.
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and, using also (4.4), that for any δ > 0

‖uhl(·, t)− dhl(·, t− hl)‖L∞({x:dhl (x,t−hl)≥δ}) ≤
√
hl

3N
√
c2√

N + 1
+ o(

√
hl),

provided that l is large enough. In particular, recalling the convergence properties of Ehl and

dhl (see also [22, Equation (4.9)]), we deduce that for all t ∈ (0, T ∗) \ N (where recall that N is

introduced in Proposition 4.2),

(4.5) uhl → d a.e. in RN × (0, T ∗) \ E,

with the sequence {uhl} locally (in space and time) uniformly bounded.

Now, with (4.4) and (4.5) at hand, we proceed as in the final part of the proof of [22, Theorem

4.5] to show that φ(∇d) = z · ∇d, which will imply that z ∈ ∂φ(∇d) (as clearly, φ◦(z) ≤ 1 a.e.).

For this, it is enough to show that φ(∇d) ≤ z · ∇d. On the one hand, since zhl ∈ ∂φ(∇uhl), one

has for a nonnegative test function η ∈ C∞c (Ec;R+), using uhl → d, thatˆ ˆ
η φ(∇d)dxdt ≤ lim inf

l

ˆ ˆ
η φ(∇uhl)dxdt = lim inf

l

ˆ ˆ
η zhl · ∇uhldxdt.

On the other hand,ˆ ˆ
η zhl · ∇uhldxdt =

ˆ ˆ
η zhl · ∇d dxdt+

ˆ ˆ
η zhl · ∇(uhl − d)dxdt

and as zhl
∗
⇀ z, we obtain that φ(∇d) ≤ z · ∇d a.e., provided we can show that

lim
l

ˆ ˆ
η zhl · ∇(uhl − d)dxdt = 0.

The proof is as in [22]: we introduce ml(t) := minx∈Supp η(·,t)(uhl(x, t)− d(x, t)) which is bounded

and goes to zero for almost all t, and write

ˆ ˆ
η (zhl · ∇(uhl − d))dxdt =

ˆ ˆ
η (zhl · ∇(uhl − d−ml))dxdt

= −
ˆ ˆ

zhl · ∇η (uhl − d−ml)dxdt−
ˆ ˆ

η (uhl − d−ml)divzhldxdt.

The first integral in the right-hand side clearly goes to zero, while, using (4.4) and uhl−d−ml ≥ 0,

the second is bounded from above by a quantity which vanishes as l → ∞. We deduce that

lim inf l
´ ´

η zhl · ∇(uhl − d)dxdt ≥ 0, and the proof of the reverse inequality is identical.

It follows that z ∈ ∂φ(∇d) a.e. in RN × (0, T ∗) \ E. This concludes the proof that E is a

superflow. The proof that A is a subflow is identical. �

Remark 4.4 (Stability of sub- and superflows). From the proof of Theorem 4.3, we note that the

minimizing movement scheme provides a superflow such that the corresponding field z satisfies

(see (4.4))

(4.6) divz ≤ 2c2L+
(N − 1)

(ε0R) ∧ 1
a.e. in {d ≥ R} ,

where c2 is the constant appearing in (3.11) , L is the Lipschitz constant of g, and ε0 is given in

Definition 4.1. Moreover, from (4.1) we deduce that

(4.7) d(x, s) ≥ d(x, t)− c2
c1

4(N − 1) + 2‖g‖∞
(ε0d(x, t)) ∧ 1

(s− t)
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for all 0 ≤ s − t ≤ c1
4

(
ε20d

2(x,t)
)
∧1

2(N−1)+‖g‖∞ , whenever d(x, t) > 0. An analogous statement clearly holds

also for the subflow provided by the ATW scheme.

We remark that thanks to these estimates, the following stability property holds: Let φn → φ

and ψn → ψ and assume that ψn is φn-regular uniformly in n: there exists ε0 > 0 such that the

ψn-Wulff shape satisfies a uniform inner φn-Wulff shape condition with radius ε0 for all n (see

Definition 4.1)

For every n let En be a superflow as in Definition 2.2, with φ and ψ replaced by φn and ψn,

respectively, and with initial datum En0 . Denote by dn the corresponding distance function, that is,

dn(·, t) := distψ
◦
n(·, En(t)) in RN \En(t), and by zn the corresponding Cahn-Hoffmann field given

by Definition 2.2, and assume that (4.6) and (4.7) hold with z and d replaced by zn and dn (and

again with c1, c2, L, and ε0 independent of n). Finally, assume that En
K−→ E and En0

K−→ E0.

Then, E is a superflow with respect to the anisotropy φ and the mobility ψ satisfying E(0) = E0.

This follows by the same arguments employed in the proofs of Proposition 4.2 (see also [22, Proof

of Proposition 4.4]) and Theorem 4.3. Analogous stability properties hold also for subflows.

4.3. Existence and uniqueness of the level set flow. The convergence theorem proved in the

previous subsection combined with the comparison principles established in Subsection 2.3 yields

existence and uniqueness of the level set formulation of the crystalline curvature flow, when ψ is

φ-regular. In the following we briefly set up the discrete version of such formulation and we give

the precise statements.

Let u0 : RN → R be a uniformly continuous function. Let E0,λ := {u0 ≤ λ} and let Eλ,h be the

corresponding time discrete evolutions, defined according with (3.9) with E0 replaced by E0,λ.

We introduce the level set discrete evolution uh : RN × R→ R defined by

(4.8) uh(x, t) := inf{λ ∈ R : x ∈ Eλ,h(t)}.

(We warn the reader that the discrete level set function uh defined above does not coincide with

the discrete total variation flow function (also denoted by uh) defined in (3.9).) Note that by

construction

(4.9) {uh(·, t) < λ} ⊆ Eλ,h(t) ⊆ {uh(·, t) ≤ λ} .

Let ω denote an increasing modulus of continuity for u0, with respect to the metric induced by

ψ◦. Thus, in particular, if λ1 < λ2 we have

distψ
◦
(E0,λ1 ,RN \ E0,λ2) ≥ ω−1(λ2 − λ1) .

Let L > 0 be the spatial Lipschitz constant of g with respect to ψ◦ and choose h̄ > 0 so small that

(1−Lh)−
1
Lh ≤ 2e for all h ∈ (0, h̄). By Lemma 5.2 below (with η = ψ, β = 1, M = L, g1 = g2 = g

and c = 0) we deduce that

distψ
◦
(Eλ1,h(t),RN \ Eλ2,h(t)) ≥ ω−1(λ2 − λ1)(1− Lh)[ th ] ≥ ω−1(λ2 − λ1)(2e)−Lt

for all t > 0 and h ∈ (0, h̄). In turn, it easily follows that ω̂ : λ 7→ ω
(
(2e)Ltλ

)
is a spatial modulus

of continuity for uh(·, t). Hence:

Lemma 4.5. For any x, x′ ∈ RN , t ≥ 0, |uh(x, t)− uh(x′, t)| ≤ ω(2eLt|x− x′|).

As for the continuity in time, we have:
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Lemma 4.6. For any ε > 0, T > 0, there exists τ > 0 and h0 > 0 (depending on ε) such that for

all t, t′ ≤ T with |t− t′| ≤ τ and h ≤ h0 we have |uh(·, t)− uh(·, t′)| < ε.

(We cannot expect more, as uh is discontinuous at times kh, k integer.)

The proof of the lemma follows by standard comparison arguments with the evolution of the

φ-Wulff shape, whose extinction time can be estimated (see Remark 4.7 below). We refer to [21,

Lemma 6.13] for the details.

Remark 4.7. Let us remark that the extinction time of a φ-Wulff shape of radius R, evolving

according to the forced mean crystalline curvature flow with forcing term g and mobility ψ, is

bounded away from zero by a constant which depends only on R, the infinity norm of g and the

constant c1 in (3.11) (see section 3.3). In turn, h0 and τ depend only on ω, ε, ‖g‖∞ and c1.

We are ready to prove the main result of this section. In the following, together with F̊ , we will

make use of the notation IntF to denote the interior of any set F ∈ Rm, m ∈ N.

Theorem 4.8. Let ψ, g, and u0 be a φ-regular mobility, an admissible forcing term, and a uni-

formly continuous function on RN , respectively. Then the following holds:

(i) (Existence and uniqueness) There exists a unique solution u to the level set flow with initial

datum u0, in the sense of Definition 2.5.

(ii) (Approximation via minimizing movements) The solution u is the locally uniform limit in

RN × [0,+∞), as h→ 0+, of the level set minimizing movements uh defined in (4.8).

(iii) (Properties of the level set flow) For all but countably many λ ∈ R, the fattening phenomenon

does not occur and, that is: ∂{x : u0(x) < λ} = ∂{x : u0(x) ≤ λ} = {x : u0(x) = λ}, i.e.:

(4.10)
{x : u0(x) < λ} = Int ({x : u0(x) ≤ λ}) ,

{x : u0(x) < λ} = {x : u0(x) ≤ λ} .

and ∂{(x, t) : u(x, t) < λ} = ∂{(x, t) : u(x, t) ≤ λ} = {(x, t) : u(x, t) = λ}, i.e.:

(4.11)
{(x, t) : u(x, t) < λ} = Int ({(x, t) : u(x, t) ≤ λ}) ,

{(x, t) : u(x, t) < λ} = {(x, t) : u(x, t) ≤ λ} .

Moreover, for every λ such that (4.10), (4.11) hold true the sublevel set {(x, t) : u(x, t) ≤ λ} is

the unique solution to (1.1) in the sense of Definition 2.2, with initial datum E0,λ, and

(4.12) Eλ,h
K−→ {(x, t) : u(x, t) ≤ λ} and (E̊λ,h)c

K−→ {(x, t) : u(x, t) ≥ λ} .

Finally, for all λ ∈ R the sets {(x, t) : u(x, t) ≤ λ} and {(x, t) : u(x, t) < λ} are respectively the

maximal superflow and minimal sublow with initial datum E0,λ.

Proof. The arguments rely on Theorems 2.7 and 4.3, and are somewhat standard (see for in-

stance [24, 21]). For the reader’s convenience we outline below a self-contained proof.

Step 1. (Convergence) Thanks to Lemmas 4.5 and 4.6, the family {uh} is relatively compact with

respect to the local uniform convergence in RN × [0,+∞). Indeed, the classical proof of Ascoli-

Arzelà’s theorem, which consists in first extracting a subsequence which converges in all points of a

countable dense subset (such as QN ×Q+), and then observing that this subsequence is a Cauchy

sequence in L∞(K) for all compacts K ⊂ RN × [0,+∞), can be reproduced without modification.
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Observe now that if u is a cluster point for {uh}, then by (4.9) and by Theorem 4.3 for all λ ∈ R
there exist a superflow Eλ and a subflow Aλ, with initial datum E0,λ, such that

(4.13) {(x, t) : u(x, t) < λ} ⊆ Aλ ⊆ Eλ ⊆ {(x, t) : u(x, t) ≤ λ} .

Let u1, u2 be two cluster points for {uh} and for any λ ∈ R let Aiλ, Eiλ be as in (4.13), with u

replaced by ui, i = 1, 2. Fix λ < λ′. Since

distψ
◦
(E1

λ(0),RN \A2
λ′(0)) ≥ distψ

◦
({u0 ≤ λ},RN \ {u0 < λ′}) > 0 ,

where the last inequality follows from the uniform continuity of u0, it follows from Theorem 2.7

that E1
λ(t) ⊆ A2

λ′(t) and, in turn, from (4.13)

{u1(·, t) < λ} ⊆ E1
λ(t) ⊆ A2

λ′(t) ⊆ {u2(·, t) ≤ λ′}

for all t > 0. The arbitrariness of λ < λ′ in the above chain of inequalities clearly implies that

u2 ≤ u1. Exchanging the role of u1 and u2, we get in fact u1 = u2. Thus, there exists a unique

cluster point u and uh → u locally uniformly in RN × [0,+∞) as h→ 0+.

Step 2. (Proof of (4.10), (4.11)) For λ ∈ R set Kλ := {(x, t) : u(x, t) ≤ λ}. Since for any

(x, t) the map λ 7→ dist((x, t),Kλ) is non-increasing (here dist denotes the Euclidean distance in

RN × [0,+∞)) and since dist(·,Kλ) is (Lipschitz) continuous, we easily deduce the existence of a

countable set N1 ⊂ R such that for all λ0 ∈ R\N1 the map λ 7→ dist((x, t),Kλ) is continuous at λ0

for all (x, t) ∈ RN × [0,+∞). In turn, by equicontinuity, it follows that dist(·,Kλ) → dist(·,Kλ0)

locally uniformly in RN × [0,+∞), or equivalently, Kλ
K−→ Kλ0

as λ → λ0. In particular, by

taking λn ↗ λ0 and using that
⋃
n≥1Kλn = {u < λ0}, we deduce {(x, t) : u(x, t) < λ0} = {(x, t) :

u(x, t) ≤ λ0}. Analogously, one can show that there exists a countable set N2 ⊂ R such that

for all λ0 6∈ N2 we have {(x, t) : u(x, t) ≥ λ} K−→ {(x, t) : u(x, t) ≥ λ0} as λ → λ0, so that

{(x, t) : u(x, t) > λ0} = {(x, t) : u(x, t) ≥ λ0}. We conclude that for all λ 6∈ N1 ∪N2, (4.11) holds.

A similar proof applied, this time, to the level sets of u0 in RN will ensure that (4.10) holds for

all λ up to an at most countable set of levels N3. We conclude that (4.10) and (4.11) hold for all

λ /∈ N0 := N1 ∪N2 ∪N3.

Step 3. (Conclusion) Fix λ ∈ R \N0 and let Eλ and (Aλ)c be Kuratowski limits along a common

subsequence of Eλ,h and (E̊λ,h)c, respectively. Then, by Theorem 4.3, Eλ and Aλ are a superflow

and subflow, respectively, with initial datum E0,λ. Moreover, (4.13) holds. Thus, recalling (4.11),

Aλ = {(x, t) : u(x, t) < λ} , Eλ = {(x, t) : u(x, t) ≤ λ} and Aλ = E̊λ .

This, together with (4.10), shows that Eλ is a solution to the curvature flow with initial datum E0,λ.

Let now E′ be any superflow with initial datum E0,λ. Then, for all λ′ > λ, with λ′ 6∈ N0, thanks

to Theorem 2.7 we easily deduce that E′ ⊂ {(x, t) : u(x, t) < λ′}. Thus, E′ ⊂ Eλ. Analogously,

if A′ is a subflow with initial datum E0,λ one has {(x, t) : u(x, t) ≤ λ′} ⊂ A′ for all λ′ < λ, with

λ′ 6∈ N0, and thus Aλ ⊂ A′. Therefore, we have

E′ ⊆ Eλ = Āλ ⊆ Ā′,

E̊′ ⊆ E̊λ = Aλ ⊆ A′.

In particular in case E′ and A′ define another solution (in the sense of Definition 2.2), that is,

Ā′ = E′, E̊′ = A′, we deduce that E′ = Eλ, A
′ = Aλ, i.e., the uniqueness of the solution to (1.1),

starting from E0,λ.
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Consider now the case λ ∈ N0: the same argument above shows that if E′ is a superflow with

initial datum E0,λ, then still E′ ⊂ {(x, t) : u(x, t) ≤ λ}. Let now λn ↘ λ, λn 6∈ N0 for all n. Since

{(x, t) : u(x, t) ≤ λn}
K−→ {(x, t) : u(x, t) ≤ λ} it easily follows from the stability property stated

in Remark 4.4 that {(x, t) : u(x, t) ≤ λ} is itself a superflow, thus the maximal superflow with

initial datum E0,λ. Analogously, one can show that {(x, t) : u(x, t) < λ} is the minimal subflow

with initial datum E0,λ.

Finally, the uniqueness of the level set flow follows from the comparison principle proved in

Theorem 2.8. �

We conclude this section with the following remarks.

Remark 4.9 (Independence of the initial level set function). From the minimality and the maxi-

mality properties stated at the end of Theorem 4.8, we immediately deduce that if {u0 < λ} =

{v0 < λ}, then {u(·, t) < λ} = {v(·, t) < λ} for all t > 0. Analogously, if {u0 ≤ λ} = {v0 ≤ λ},
then {u(·, t) ≤ λ} = {v(·, t) ≤ λ} for all t > 0.

Remark 4.10 (Stability of level set flows with respect to varying anisotropies and mobilities). Let

{φn} and {ψn} be sequences of anisotropies and mobilities, respectively, such that ψn is φn-regular

uniformly in n (cf Remark 4.4). Assume also that φn → φ and ψn → ψ. Let un be the unique

level set solution in the sense of Definition 2.5, with φ and ψ replaced by φn and ψn, respectively,

and with initial datum u0. Then un → u locally uniformly, where u is the unique level set solution

in the sense of Definition 2.5, with anisotropy φ, mobility ψ and initial datum u0.

To see this, we start by observing that the sequence {un} is equicontinuous in RN × [0, T ] for all

T > 0 (see the discussion at the beginning of Subsection 4.3 and before Definition 2.5). Thus, up

to a not relabeled subsequence, we may assume that un → u locally uniformly in RN × [0,+∞).

It is enough to show that u is a solution in the sense of Definition 2.5, since then we conclude by

uniqueness. Let now N0 be a countable set such that if λ 6∈ N0, then (4.11) holds for u and for

un for all n. Set En := {un ≤ λ} and dn(·, t) := distψ
◦
n(·, En(t)) in RN \ En(t). By Theorem 4.8

we have that En is a superflow with anisotropy φn, mobility ψn and initial datum E0,λ for all n.

Extracting a further subsequence, if needed, we may also assume that En
K−→ E and (E̊n)c

K−→ Ac

for suitable E and A such that

{u < λ} ⊆ A ⊆ E ⊆ {u ≤ λ} .

But then, recalling (4.11), {u < λ} = A, E = {u ≤ λ}, and A = E̊. Moreover, by Remark 4.4,

E is a superflow with anisotropy φ, mobility ψ and initial datum E0,λ. Analogously, one can

show that A is a subflow with anisotropy φ, mobility ψ and initial datum E0,λ. We conclude

that E = {u ≤ λ} is a solution in the sense of Definiton 2.2 with initial datum E0,λ for all but

countably many λ’s, thus showing that u is a level set solution in the sense of Definition 2.5, with

initial datum u0.

5. The case of general mobilities: Existence and uniqueness by approximation

In this section we prove one of the main results of this paper: namely the existence via approx-

imation by φ-regular mobilities of a unique solution to the level set crystalline flow with a general

mobility. As a byproduct of the proof we will also obtain uniqueness, up to fattening, of the flat

flow, i.e. of the flow obtained by the ATW scheme. The main results are stated and proven in
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Subsection 5.2. In the next subsection we collect some preliminary stability estimates on the ATW

scheme.

5.1. Stability of the ATW scheme with respect to changing mobilities. We start with

the following remark:

Remark 5.1. For any norm η and any closed set E ⊂ RN , it is easily seen that

dη
(E)ηr

≤ dηE − r

where we have used the notation in (3.20) (with φ◦ replaced by η).

We recall (see Remark 3.5) that given a closed set H, Hψ,k
g,h denotes a k-th minimizing movement

starting from H, with mobility ψ, forcing term g, and time step h (and the given anisotropy φ).

As already observed, in the previous notation the dependence on the anisotropy φ is omitted since

we think of φ as fixed. We finally recall that by an admissible forcing term g we mean a function

satisfying assumptions H1), H2) of Subsection 2.2.

The next lemma establishes a comparison result for minimizing movements with different forcing

terms.

Lemma 5.2. Let ψ, η be two norms such that ψ ≤ βη for some β > 0, and let g1, g2 be admissible

forcing terms satisfying

g2 − g1 ≤ c < +∞ in RN × [0,+∞) .

If E ⊂ F are closed sets with distη
◦
(E,RN \ F ) := ∆ > 0, then, for all k ∈ N we have

(5.1) distη
◦
(Eψ,kg1,h

,RN \ Fψ,kg2,h
) ≥

(
∆ +

c

Lη◦

)
(1− βLη◦h)k − c

Lη◦
,

where Lη◦ is the Lipschitz constant of g1 and g2 with respect to η◦.

Proof. We start by considering the case k = 1. Set ĉ := c+ Lη◦∆. Let (u, z) solve

−hdivz + u = dψ
◦

E +

ˆ h

0

g1(·, s) ds, z ∈ ∂φ(∇u).

Let τ ∈ RN , with η◦(τ) ≤ ∆. By our assumptions on g1, g2, one has for all s, g1(· − τ, s) ≥
g2(·, s)− c− Lη◦η◦(τ) ≥ g2(·, s)− ĉ, hence

−hdivz(· − τ) + u(· − τ) = dψ
◦

E+τ +

ˆ h

0

g1(· − τ, s) ds

≥ dψ
◦

E+τ +

ˆ h

0

g2(·, s) ds− ĉh

≥ dψ
◦

(E)ψ
◦

ĉh
+τ

+

ˆ h

0

g2(·, s) ds,

where the last inequality is Remark 5.1. Thus by comparison, and using ψ ≤ βη, we deduce that

Eψ,1g1,h
+ τ ⊆

(
(E)ψ

◦

ĉh + τ
)ψ,1
g2,h
⊆
(
(E)η

◦

βĉh + τ
)ψ,1
g2,h
⊆ Fψ,1g2,h

,

provided that (E)η
◦

βĉh + τ ⊆ F . The latter condition holds true if η◦(τ) + βĉh ≤ ∆. We deduce

that

distη
◦
(
Eψ,1g1,h

, RN \ Fψ,1g2,h

)
≥ ∆− βĉh = ∆(1− βLη◦h)− βch =

(
∆ +

c

Lη◦

)
(1− βLη◦h)− c

Lη◦
.
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The conclusion easily follows by induction. �

In the next lemma we compare the (discrete-time) solutions corresponding to different but close

mobilities and forcing terms.

Lemma 5.3. For any G, ∆ > 0, β ≥ 1 and θ ∈ (0, 1), there exist positive δ0, h0, depending on

all the previous constants, on the dimension N and on the anisotropy φ, and there exists c0 > 0

depending on the same quantities but ∆, with the following property: Let g be an admissible forcing

term, with ‖g‖∞ ≤ G, and let ψ1, ψ2 be two mobilities satisfying

(5.2)
1

β
φ ≤ψi ≤ βφ for i ∈ {1, 2}

and

(5.3) ψ2 ≤ ψ1 ≤ (1 + δ)ψ2

for some 0 < δ ≤ δ0. If E and F are two closed sets with distφ
◦
(E,RN \ F ) ≥ ∆, then, setting

g̃ := g − c0 δ∆ , for all 0 < h ≤ h0 we have

(5.4) distφ
◦
(Eψ1,k

g,h ,RN \ Fψ2,k
g̃,h ) ≥ ∆

(
1− βLφ◦h

)k
for all k ∈ N such that the right-hand side of the above inequality is larger than θ∆. Here Lφ◦

denotes the Lipschitz constant of g with respect to the metric φ◦.

Proof. With the notation introduced in (3.20), set H :=
(
(E)φ

◦

∆

)φ◦
−∆

and note that E ⊆ H and

distφ
◦
(H,RN \ F ) ≥ ∆. Also, it is easy to see that for θ ∈ (0, 1) the set RN \H can be written as

a union of closed φ-Wulff shapes of radius θ∆ =: ∆0. Thus, by Lemma 3.12 (and recalling (5.2))

there exists M0, depending on G, β, φ, and the dimension N , and there exists h0 depending on

the same quantities and on ∆0, such that

(5.5) Hψi,1
ĝ,h ⊂ (H)φ

◦

M0h
∆0

for i = 1, 2, for 0 < h ≤ h0 and for any admissible ĝ s.t. ‖ĝ‖∞ ≤ G+ 1.

By (5.3) it follows that

ψ◦1 ≤ ψ◦2 ≤ (1 + δ)ψ◦1

and, in turn, one has

(5.6)


d
ψ◦1
H (x) ≤ dψ

◦
2

H (x) ≤ (1 + δ)d
ψ◦1
H (x) if x 6∈ H̊,

(1 + δ)d
ψ◦1
H (x) ≤ dψ

◦
2

H (x) ≤ dψ
◦
1

H (x) if x ∈ H

so that

d
ψ◦2
H − d

ψ◦1
H ≤ δ

(
d
ψ◦1
H

)+
.

In particular,

(5.7) d
ψ◦2
H ≤ d

ψ◦1
H + h

βM0

θ

δ

∆
in (H)φ

◦

M0h
∆0

.

Set δ0 := θ∆
2βM0

, c0 := βM0

θ and note that

(5.8) c0
δ

∆
≤ θ

2
≤ 1

2
for 0 < δ ≤ δ0.
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Thus, setting g̃ := g − c0 δ∆ , by (5.5) we have

Hψ1,1
g,h , Hψ2,1

g̃,h ⊂ (H)φ
◦

M0h
∆0

provided that 0 < δ ≤ δ0, 0 < h ≤ h0 (recall ‖g‖∞ ≤ G ≤ G+ 1
2 ). Thus, we may apply (5.7) and

Lemma 3.2 to deduce that

Eψ1,1
g,h ⊆ H

ψ1,1
g,h ⊆ H

ψ2,1
g̃,h .

In turn, by Lemma 5.2 (with g1 = g2 = g̃, c = 0, ψ = ψ2, and η = φ) we get

distφ
◦
(Eψ1,1

g,h ,RN \ Fψ2,1
g̃,h ) ≥ distφ

◦
(Hψ2,1

g̃,h ,RN \ Fψ2,1
g̃,h ) ≥ ∆(1− βLφ◦h) ,

which is (5.4) for k = 1.

We can iterate this construction as long as this distance is larger than ∆0, deducing that (5.4)

holds as long as (1− βLφ◦h)k ≥ θ. �

Combining Lemmas 5.2 and 5.3, we obtain the following proposition.

Proposition 5.4. For any G, ∆ > 0, β ≥ 1, and θ ∈ (0, 1), there exist positive δ0, h0, depending

on all the previous constants, on the dimension N and on the anisotropy φ, and there exists

c0 > 0 depending on the same quantities but ∆, with the following property: Let g be an admissible

forcing term, with ‖g‖∞ ≤ G, and let ψ1, ψ2 be two mobilities satisfying (5.2) and (5.3) for some

0 < δ ≤ δ0. If E and F are two closed sets with distφ
◦
(E,RN \ F ) ≥ ∆, then for all 0 < h ≤ h0

we have

(5.9) distφ
◦
(Eψ1,k

g,h ,RN \ Fψ2,k
g,h ) ≥

(
∆ +

2c0δ

Lφ◦∆

)
(1− βLφ◦h)k − 2c0δ

Lφ◦∆

for all k ∈ N such that (1−βLφ◦h)k ≥ θ. Here Lφ◦ denotes the Lipschitz constant of g with respect

to the metric φ◦.

Proof. In what follows, δ0, h0, and c0 are the constant provided by Lemma 5.3. With the notation

introduced in (3.20), let H := (E)φ
◦

∆
2

, so that

distφ
◦
(E,RN \H) ≥ ∆

2
, distφ

◦
(H,RN \ F ) ≥ ∆

2
.

Set g̃ := g− 2c0
δ
∆ . By (5.4) (with Fψ2,k

g̃,h and ∆ replaced by Hψ2,k
g̃,h and ∆/2, respectively) we have

(5.10) distφ
◦
(Eψ1,k

g,h ,RN \Hψ2,k
g̃,h ) ≥ ∆

2
(1− βLφ◦h)k

for all 0 < h ≤ h0 and for all k ∈ N such that (1− βLφ◦h)k ≥ θ.
Moreover, by Lemma 5.2 (with η = φ, g1 := g̃, g2 := g, c := 2c0

δ
∆ , and E replaced by H) we

have

(5.11) distφ
◦
(Hψ2,k

g̃,h ,RN \ Fψ2,k
g,h ) ≥

(∆

2
+

2c0δ

Lφ◦∆

)
(1− βLφ◦h)k − 2c0δ

Lφ◦∆

for all k ∈ N. Since

distφ
◦
(Eψ1,k

g,h ,RN \ Fψ2,k
g,h ) ≥ distφ

◦
(Eψ1,k

g,h ,RN \Hψ2,k
g̃,h ) + distφ

◦
(Hψ2,k

g̃,h ,RN \ Fψ2,k
g,h ),

the conclusion follows directly by (5.10) and (5.11). �
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Remark 5.5 (Varying anisotropies). A careful inspection of the proof of Proposition 5.4 (and of

Lemma 5.3) together with Remark 3.14 shows that the constants δ0, h0, c0 can be chosen as

depending on φ only through the ellipticity constants a1, a2 in (3.17). This observation implies

that estimate (5.9) holds uniformly with respect to converging sequences of anisotropies.

More precisely, let {φn} be a sequence of anisotropies such that φn → φ and let us denote,

temporarily, by Eψ,φn,kg,h the k-th minimizing movement starting from E, with mobility ψ, forcing

term g, time-step h, and anisotropy φn. Set a′1 = a1/2, a′2 = 2a2, β′ = 2β and observe that for n

large φn satisfies (3.17) with a′i in place of ai. Moreover, if ψ satisfies (5.2), then it also satisfies

(5.2) with φ, β replaced by φn, β′, respectively, provided that n is large enough. Therefore, we may

find δ0, h0, depending on β′, G, ∆, a′1 (and the dimension N), and c0 depending on all the same

quantities but ∆, such that under the assumptions of Proposition 5.4 we have for all n sufficiently

large

distφ
◦
(Eψ1,φn,k

g,h ,RN \ Fψ2,φn,k
g,h ) ≥

(
∆ +

2c0δ

Lφ◦∆

)
(1− βLφ◦h)k − 2c0δ

Lφ◦∆

for all k ∈ N such that (1− βLφ◦h)k ≥ θ.

5.2. Existence and uniqueness by approximation. In the following, given a uniformly con-

tinuous function u0 on RN , an admissible forcing term g and a mobility ψ, we denote by uψh the

corresponding level set minimizing movement, defined according to (4.8). Analogously, we use

the notation Eψλ,h(t) (in place of Eλ,h(t)) to denote the discrete-in-time evolution starting from

E0,λ := {u0 ≤ λ} and with mobility ψ (see Subsection 4.3). In the above notation we have high-

lighted only the dependence on ψ since in the following we will establish stability properties of flat

flows with respect to varying mobilities.

We recall that the existence theory for level set flows (in the sense of Definition 2.5) that we have

so far works only for φ-regular mobilities. The goal of this section is to extend the existence theory

to general mobilities. To this aim, we consider the following notion of solution via approximation:

Definition 5.6 (Level set flows via approximation). Let ψ, g, and u0 be a mobility, an admissible

forcing term, and a uniformly continuous function on RN , respectively.

We will say that a continuous function uψ : RN × [0,+∞)→ R is a solution via approximation

to the level set flow corresponding to (1.1), with initial datum u0, if uψ(·, 0) = u0 and if there exists

a sequence {ψn} of φ-regular mobilities such that ψn → ψ locally uniformly and, denoting by uψn

the unique solution to (1.1) (in the sense of Definition 2.5) with mobility ψn and initial datum u0,

we have uψn → uψ locally uniformly in RN × [0,+∞).

The next theorem is the main result of this section: it shows that for any mobility ψ a solution-

via-approximation uψ in the sense of the previous definition always exists; such a solution is also

unique in that it is independent of the choice of the approximating sequence of φ-regular mobilities

{ψn} and, in fact, coincides with the (unique) limit of the level set minimizing movement scheme

{uψh}. In particular, in the case of a φ-regular mobility the notion of solution via approximation is

consistent with that of Definition 2.5.

Theorem 5.7. Let ψ, g, and u0 be as in Definition 5.6. Then, there exists a unique solution uψ

in the sense of Definition 5.6 with initial datum u0. Moreover, the following holds:

(i) (Convergence of the level set minimizing movements scheme) The solution uψ is the locally

uniform limit in RN × [0,+∞), as h→ 0+, of the level set minimizing movements uψh .
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(ii) (Stability) Let {ψn}n∈N be a sequence of mobilities such that ψn → ψ locally uniformly.

Then uψn converge to uψ uniformly in RN × [0, T ] for all T > 0 as n→∞.

Proof. The strategy is the following: We first show that for any ψ the minimizing movements uψh
converge to a unique function uψ, as h→ 0+. Then we establish the stability property (ii), which

shows, in particular, that uψ is a solution in the sense of Definition 5.6. We split the proof of

theorem into three steps.

Step 1. We claim that for every ε, T > 0 and β ≥ 1, there exist positive δ0, h0 > 0 (depending

also on g, u0, φ, and the dimension N) such that if ψ1 and ψ2 are two mobilities satisfying (5.2)

and (5.3) for some 0 < δ ≤ δ0, then

(5.12) ‖uψ2

h − u
ψ1

h ‖L∞(RN×[0,T ]) ≤ ε for all 0 < h ≤ h0.

To this aim, let ω be an increasing modulus of continuity for u0 with respect to φ◦ and recall that

for any λ ∈ R
distφ

◦
(E0,λ,RN \ E0,λ+ε) ≥ ω−1(ε) .

Set

θ(T ) := (2e)−βLφ◦T ,

where Lφ◦ denotes the spatial Lipschitz constant of the forcing term g with respect to φ◦, and

choose h̄ > 0 so small that (1−βLφ◦h)
− 1
βLφ◦h ≤ 2e for all h ∈ (0, h̄). Let δ0, h0, c0 be the positive

constants provided by Proposition 5.4 and corresponding to the given β, G := ‖g‖∞, ∆ := ω−1(ε),

and θ := θ(T ). Clearly we may assume h0 ≤ h̄.

By Proposition 5.4, if ψ1 and ψ2 satisfy (5.2) and (5.3) for some 0 < δ ≤ δ0, then for h ∈ (0, h0]

we have

distφ
◦(
Eψ1

λ,h,R
N \ Eψ2

λ+ε,h(t)
)
≥
(
ω−1(ε) +

2c0δ

Lφ◦ω−1(ε)

)
(1− βLφ◦h)[ th ] − 2c0δ

Lφ◦ω−1(ε)

≥
(
ω−1(ε) +

2c0δ

Lφ◦ω−1(ε)

)
(2e)−βLφ◦ t − 2c0δ

Lφ◦ω−1(ε)
,(5.13)

for all t ∈ (0, T ]. Clearly, by choosing δ0 smaller if needed, we may assume that right-hand side of

(5.13) is positive for all t ∈ (0, T ]. Recalling (4.9), we conclude that

{uψ1

h (·, t) < λ} ⊆ Eψ1

λ,h(t) ⊆ Eψ2

λ+ε,h(t) ⊆ {uψ2

h (·, t) ≤ λ+ ε}

for all λ ∈ R, h ∈ (0, h0], and t ∈ [0, T ]. This in turn implies that

uψ2

h (·, t) ≤ uψ1

h (·, t) + ε for all h ∈ (0, h0] and t ∈ [0, T ].

We may now repeat the same argument by considering −u0 as initial function, instead of u0. This

leads to the inequality

−uψ2

h (·, t) ≤ −uψ1

h (·, t) + ε for all h ∈ (0, h0] and t ∈ [0, T ],

which together with the previous one proves (5.12).

Step 2. Here we prove that {uψh}h satisfies the Cauchy condition in L∞(K× [0, T ]) for all compact

sets K ⊂ RN and for all T > 0.

To this purpose, let T , ε > 0, let β ≥ 2 satisfy 2
βφ ≤ψ ≤

β
2φ, and let δ0, h0 be the corresponding

constants provided by Step 1. Clearly we may choose a φ-regular mobility (see Definition 4.1) ψ̂
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such that ψ1 := ψ and ψ2 := ψ̂ satisfy (5.2) and (5.3) for some 0 < δ ≤ δ0. Pick any sequence

hn ↘ 0. Then, we may write

‖uψhn − u
ψ
hm
‖L∞(K×[0,T ]) ≤ ‖uψhn − u

ψ̂
hn
‖L∞(K×[0,T ])

+ ‖uψ̂hn − u
ψ̂
hm
‖L∞(K×[0,T ]) + ‖uψ̂hm − u

ψ
hm
‖L∞(K×[0,T ]) .

The first and the third term on the right-hand side of the above inequality are both less than or

equal to ε thanks to (5.12), provided that hn, hm ≤ h0. Recall now that by Theorem 4.8-(ii) the

family
{
uψ̂h
}
h

satisfies the Cauchy condition in L∞(K × [0, T ]); thus also the middle term on the

right-hand side of the above inequality is smaller than ε for n and m large enough. We conclude

that ‖uψhn −u
ψ
hm
‖L∞(K×[0,T ]) ≤ 3ε for n, m sufficiently large. This establishes the claim and shows

that uψh converges locally uniformly in RN × [0,+∞). We denote its limit by uψ.

Step 3. Let {ψn}n be a sequence of mobilities such that ψn → ψ locally uniformly. First of all,

observe that we may find λn → 1−such that ψ̂n := λnψn ≤ ψ for all n.

Fix ε > 0, let β ≥ 2 be as in Step 2, and let δ0, h0 be the corresponding constants provided by

Step 1. Note that for any 0 < δ ≤ δ0 we have:

(5.14) ψ̂n ≤ ψ ≤ (1 + δ)ψ̂n , ψ̂n ≤ ψn ≤ (1 + δ)ψ̂n and
1

β
φ ≤ ψ,ψn, ψ̂n ≤ βφ ,

provided n large enough. Thus, thanks to Step 1, for all such n’s and for all h ≤ h0 we have:

‖uψh − u
ψn
h ‖L∞(RN×[0,T ]) ≤ ‖uψh − u

ψ̂n
h ‖L∞(RN×[0,T ]) + ‖uψ̂nh − u

ψn
h ‖L∞(RN×[0,T ]) ≤ 2ε .

Thanks to Step 2 we may send h→ 0 in the above inequality to infer that ‖uψ−uψn‖L∞(RN×[0,T ]) ≤
2ε for all n sufficiently large. This concludes the proof of the theorem. �

In the next theorem we collect the main properties of the level set solutions introduced in

Definition 5.6.

To this aim, we will say that a uniformly continuous initial function u0 is well-prepared at λ ∈ R
if the following two conditions hold:

(a) If H ⊂ RN is a closed set such that dist(H, {u0 ≥ λ}) > 0, then there exists λ′ < λ such

that H ⊆ {u0 < λ′};
(b) If A ⊂ RN is an open set such that dist({u0 ≤ λ},RN \ A) > 0, then there exists λ′ > λ

such that {u0 ≤ λ′} ⊂ A.

Remark 5.8. Note that the above assumption of well-preparedness is automatically satisfied if the

set {u0 ≤ λ} is bounded.

Theorem 5.9 (Properties of the level set flow). Let uψ be a solution in the sense Definition 5.6,

with initial datum u0. The following properties hold true:

(i) (Non-fattening level sets and unique flat flows) There exists a countable set N ⊂ R such that

for all λ 6∈ N

(5.15)
{(x, t) : uψ(x, t) < λ} = Int ({(x, t) : uψ(x, t) ≤ λ}) ,

{(x, t) : uψ(x, t) < λ} = {(x, t) : uψ(x, t) ≤ λ}

and the flat flow starting from E0,λ is unique. More precisley, we have

Eψλ,h
K−→ {(x, t) : uψ(x, t) ≤ λ} and (IntEψλ,h)

c K−→ {(x, t) : uψ(x, t) ≥ λ}
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as h→ 0+.

(ii) (Distributional formulation when ψ is φ-regular) If ψ is φ-regular, then uψ coincides with

the distributional solution in the sense of Definition 2.5.

(iii) (Comparison) Assume that u0 ≤ v0 and denote the corresponding level set flows by uψ and

vψ, respectively. Then uψ ≤ vψ.

(iv) (Geometricity) Let f : R → R be increasing and continuous. Then uψ is a solution with

initial datum u0 if and only if f ◦ uψ is a solution with initial datum f ◦ u0.

(v) (Independence of the initial level set function) Assume that u0 and v0 are well-prepared at

λ. If {u0 < λ} = {v0 < λ}, then {uψ(·, t) < λ} = {vψ(·, t) < λ} for all t > 0. Analogously, if

{u0 ≤ λ} = {v0 ≤ λ}, then {uψ(·, t) ≤ λ} = {vψ(·, t) ≤ λ} for all t > 0.

Proof. Property (ii) is obvious. Properties (i) can be proven arguing as in the proof of Theorem 4.8.

Property (iii) follows at once from the stability property of flat flows with respect to approximation

with smooth mobilities, and from Theorem 2.8. Also property (iv) follows by approximation, since

clearly it is satisfied when the mobility ψ is φ-regular. Let us now prove property (v): Pick λ1 < λ

and note that by uniform continuity and by assumption we have

dist({u0 ≤ λ1}, {v0 ≥ λ}) = dist({u0 ≤ λ1}, {u0 ≥ λ}) > 0

and thus there exists λ2 ∈ (λ1, λ) such that {u0 ≤ λ1} ⊂ {v0 < λ2}. Let now {ψn} be an

approximating sequence of φ-regular mobilities and recall that by Theorem 4.8-(iii) the set {(x, t) :

uψn(x, t) ≤ λ1} is a superflow with initial datum {u0 ≤ λ1}, while {(x, t) : vψn(x, t) < λ2} is a

subflow with initial datum {v0 < λ2}. Thus, from Theorem 2.7 we deduce that {(x, t) : uψn(x, t) <

λ1} ⊂ {(x, t) : vψn(x, t) < λ2} for all n. In turn, from the latter inclusion we easily deduce that

{(x, t) : uψ(x, t) < λ1} ⊂ {(x, t) : vψ(x, t) ≤ λ2} ⊂ {(x, t) : vψ(x, t) < λ} .

By the arbitrariness of λ1, we conclude that {(x, t) : uψ(x, t) < λ} ⊆ {(x, t) : vψ(x, t) < λ}.
Symmetrically, also the opposite inclusion holds. The equality between the closed sub-level sets

can be proven analogously. �

Remark 5.10 (Generalized motion). We observe that property (v) above allows one to consider

Γt := {uψ(·, t) = 0} as defining a generalized motion starting from Γ0 := {u0 = 0}.

Remark 5.11 (Star-shaped sets, convex sets and graphs). A natural question is to understand under

which circumstances fattening does not occur. To the best of our knowledge, no general results

are available, even for the classical mean curvature flow. On the other hand, it is well-known [46,

Sec. 9] that for the motion without forcing, strictly star-shaped sets do not develop fattening so

that, in particular, their evolution is unique. The proof of this fact, given for instance in [46] for

the mean curvature flow, works also for solutions in the sense of Definition 2.2 when the mobility ψ

is φ-regular, and in turn, by approximation, also for the generalized motion associated to level set

solutions in the sense of Definition 5.6, when ψ is general. Uniqueness also holds for motions with

a time-dependent forcing g(t) [14, Theorem 5] as long as the set remains strictly star-shaped. This

remark obviously applies to initial convex sets, which, in addition, remain convex for all times, as

was shown in [13, 18, 14] with a spatially constant forcing term.7 The case of unbounded initial

7Convexity is preserved also with a spatially convex forcing term but uniqueness is not known in this case.
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convex sets was not considered in these references but can be easily addressed by approximation

(and uniqueness still holds with the same proof).

In the same way, if the initial set E0 = {xN ≤ v0(x1, . . . , xN−1)} is the subgraph of a uniformly

continuous functions v0, and the forcing term does not depend on xN , then one can show that

fattening does not develop and E(t) is still the subgraph of a uniformly continuous function for all

t > 0, as in the classical case [27, 29] (see also [33] for the 2D crystalline case).

Eventually, we extend the stability property in Theorem 5.7-(ii) to varying anisotropies.

Proposition 5.12. Let ψ, g, and u0 be as in Theorem 5.7, let {ψn} and {φn} be a sequences

of mobilities and anisotropies, respectively, such that ψn → ψ and φn → φ locally uniformly as

n→ +∞. Denote by uψn,φn the level set solution in the sense of Definition 5.6 with ψ, φ replaced

by ψn, φn, respectively, and with initial datum u0. Then, uψn,φn → uψ,φ locally uniformly in

RN × [0,+∞) as n→∞.

Proof. From Steps 1 and 3 in the proof of Theorem 5.7 combined with Remark 5.5, we have that for

every ε, β, T > 0 there exist positive δ0, h0 > 0 (depending also on g, u0, φ, the dimension N , but

not on n) such that if ψ1 and ψ2 are two mobilities satisfying (5.2) and max|ξ|=1 |ψ1(ξ)−ψ2(ξ)| ≤ δ0,

then for all n large enough ‖uψ2,φn
h −uψ1,φn

h ‖L∞(RN×[0,T ]) ≤ ε for all 0 < h ≤ h0. Sending h→ 0 we

deduce ‖uψ2,φn − uψ1,φn‖L∞(RN×[0,T ]) ≤ ε for n large enough. Thus, in particular, we may choose

δ > 0 so small that letting ψδn := ψ + δφ◦n, then

(5.16) ‖uψn,φn − uψ
δ
n,φn‖L∞(RN×[0,T ]) ≤ ε for n large enough.

Taking δ smaller, if needed, thanks to Theorem 5.7-(ii) we may also impose

(5.17) ‖uψ
δ,φ − uψ,φ‖L∞(RN×[0,T ]) ≤ ε ,

where ψδ is defined as ψδn, with ψn replaced by ψ. Note now that by construction ψδn is φn-regular

with Wψδn(0, 1) satisfying an inner φn-Wulff shape condition of radius δ (and thus uniformly in n)

and ψδn → ψδ. By Remark 4.10 we then have uψ
δ
n,φn → uψ

δ,φ locally uniformly. Thus, for any

fixed compact set K ⊆ RN , recalling also (5.16) and (5.17), we have

lim sup
n
‖uψn,φn − uψ,φ‖L∞(K×[0,T ]) ≤ 2ε .

The conclusion follows by the arbitrariness of ε. �

6. Concluding remarks

We conclude the paper with the following observations.

Remark 6.1 (Comparison with the Giga-Požár solution). When φ is purely crystalline and g ≡ c,

c ∈ R, the unique level set solution in the sense of Definition 5.6 coincides with the viscosity

solution constructed in [41, 42].

Let φn be a sequence of smooth anisotropies such that {φn ≤ 1} is strictly convex for every n

and φn → φ. By Lemma 2.9 the unique viscosity level set solution un corresponding to the motion

V = −ψ(ν)(κφn + c)
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coincides with the level set solution in the sense of Definition 2.5. By Proposition 5.12, un → u

locally uniformly with u the unique level set solution in the sense of Definition 5.6 corresponding

to

V = −ψ(ν)(κφ + c) .

But thanks to [41, Theorem 8.9], it turns out that u is also the viscosity solution in the sense of

Giga-Požár. This argument also holds in higher dimension, for the solutions defined in [42].

Remark 6.2 (Approximation by anisotropic Allen-Cahn equations). In [40] the authors consider

the anisotropic Allen-Cahn equation

(6.1) vt = ψ(∇v)

(
div
(
φ(∇v)∇φ(∇v)

)
− 1

ε2
W ′(v) +

λ

ε
g

)
,

where ψ, φ are respectively a smooth mobility and anisotropy, g ≡ c, c ∈ R, is a constant forcing

term, W is a standard double-well potential with zeroes in ±1, and λ is a suitable constant

depending only on W .

Let now u0 be a uniformly continuous function, let u be the corresponding solution to the level

set flow given by Theorem 4.8, and let γ : R → R be the (unique) solution to −γ′′ + W ′(γ) = 0

with γ(0) = 0 and limx→±∞ γ(x) = ±1.

In [40, Theorem 2.2] it is shown that the solutions uε to (6.1) with initial data

uε0(x) := γ

(
1

ε
dφ

0

{u0<0}(x)

)
converge as ε → 0 to a family of characteristic functions χE(t) with ∂E(t) ⊂ {x : u(x, t) = 0} for

all t > 0, where u is the level set solution corresponding to (1.1). This means that the solutions to

(6.1) converge to a (generalized) solution to (1.1) which is contained in the zero-level set of u.

In [40, Theorem 2.4] the authors also show that, given two sequences ψn, φn of smooth mobilities

and anisotropies converging to (possibly nonsmooth) limit functions ψ, φ, if the corresponding

level set solutions un, with initial datum u0, converge to a limit function u, then the corresponding

solutions uεn to (6.1) converge as ε → 0 and n → ∞ to a family of characteristic functions χE(t)

with ∂E(t) ⊂ {x : u(x, t) = 0} for all t > 0.

Thanks to Proposition 5.12 we know that the solutions un do indeed converge to the unique

solution u given by Theorem 5.7, so that the convergence result in [40, Theorem 2.4] applies to

our solutions.

Notice also that the solutions uεn converge as n → ∞ to the unique solution uε of the (non-

smooth) Allen-Cahn inclusion corresponding to (6.1) (see [15] for a precise definition), so that the

convergence result also applies to such solutions uε, thus significantly extending the convergence

result in [15].

Remark 6.3 (Non symmetric anisotropies). It is a notational simplification to have considered

symmetric (i.e., norms) anisotropies and mobilities, however that there is no particular difficulty

in extending the results of this paper to arbitrary convex, one-homogeneous functions φ and ψ.

Note, though, that it requires more precision in the definitions and notation. To start with, one

should replace the signed “distance” function (2.4) with:

dηE(x) := inf
y∈E

η(x− y)− inf
y 6∈E

η(y − x).
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Then in Definition 2.2, one should define the superflows with the differential inequality ∂td ≥
divz + g −Md out of E for d(x, t) := infy∈E(t) ψ

◦(x − y) = (dψ
◦

E(t)(x))+, and the subflow with

∂td ≤ divz+ g−Md inside A for d(x, t) = − infy 6∈A(t) ψ
◦(y−x) = −(dψ

◦

A(t)(x))−. The assumptions

and statements such as (in Theorem 2.7) distψ
◦
(E0, F 0c) = ∆ > 0 have to be properly adapted:

in that case for instance, one should ask that E0 + Wψ(0,∆) ⊂ F 0, where Wψ is still defined

by (2.3); similarly, comparison principles such as in Remark 3.7 have to be properly interpreted.

Eventually, the results in [18, 1] which we use in our proofs are easily seen not to depend either on

the symmetry assumption.
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