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Abstract

The use of total variation as a regularization term in imaging problems was motivated

by its ability to recover the image discontinuities. This is at the basis of his numerous

applications to denoising, optical flow, stereo imaging and 3D surface reconstruction,

segmentation, or interpolation, to mention some of them. On one hand, we review

here the main theoretical arguments that have been given to support this idea. On

the other, we review the main numerical approaches to solve different models where

total variation appears. We describe both the main iterative schemes and the global

optimization methods based on the use of max-flow algorithms. Then we review the use

of anisotropic total variation models to solve different geometric problems and its use in

finding a convex formulation of some non convex total variation problems. Finally we

study the total variation formulation of image restoration.

1 Introduction

The Total Variation model in image processing was introduced in the context of image

restoration [57] and image segmentation, related to the study of the Mumford-Shah segmen-

tation functional [34]. Being more related to our purposes here, let us consider the case of

image denoising and restoration.

We assume that the degradation of the image occurs during image acquisition and can

be modeled by a linear and translation invariant blur and additive noise:

f = h ∗ u+ n, (1)
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where u : R2 → R denotes the ideal undistorted image, h : R2 → R is a blurring kernel, f is

the observed image which is represented as a function f : R2 → R, and n is an additive white

noise with zero mean and standard deviation σ. In practice, the noise can be considered as

Gaussian.

A particular and important case contained in the above formulation is the denoising

problem which corresponds to the case where h = δ, so that equation (1) is written as

f = u+ n, (2)

where n is an additive Gaussian white noise of zero mean and variance σ2.

The problem of recovering u from f is ill-posed. Several methods have been proposed

to recover u. Most of them can be classified as regularization methods which may take into

account statistical properties (Wiener filters), information theoretic properties [36], a priori

geometric models [57] or the functional analytic behaviour of the image given in terms of its

wavelet coefficients (see [50] and references therein).

The typical strategy to solve this ill-conditioning is regularization [58]. In the linear case

the solution of (1) is estimated by minimizing a functional

Jγ(u) =‖ Hu− f ‖2
2 +γ ‖ Qu ‖2

2, (3)

which yields the estimate

uγ = (HtH + γQtQ)−1Htf, (4)

where Hu = h ∗ u, and Q is a regularization operator. Observe that to obtain uγ we have

to solve a system of linear equations. The role of Q is, on one hand, to move the small

eigenvalues of H away from zero while leaving the large eigenvalues unchanged, and, on the

other hand, to incorporate the a priori (smoothness) knowledge that we have on u.

If we treat u and n as random vectors and we select γ = 1 and Q = R
−1/2
s R

1/2
n with Rs

and Rn the image and noise covariance matrices, then (4) corresponds to the Wiener filter

that minimizes the mean square error between the original and restored images.

One of the first regularization methods consisted in choosing between all possible solutions

of (1) the one which minimized the Sobolev (semi) norm of u

∫

R2

|Du|2 dx, (5)

which corresponds to the case Qu = Du. In the Fourier domain the solution of (3) given by

(4) is û = ĥ
|ĥ|2+4γπ2|ξ|2

f̂ . From the above formula we see that high frequencies of f (hence,

the noise) are attenuated by the smoothness constraint.

This formulation was an important step, but the results were not satisfactory, mainly due

to the inability of the previous functional to resolve discontinuities (edges) and oscillatory

textured patterns. The smoothness required by the finiteness of the Dirichlet integral (5)

constraint is too restrictive. Indeed, functions in W 1,2(R2) (i.e., functions u ∈ L2(R2) such

that Du ∈ L2(R2)) cannot have discontinuities along rectifiable curves. These observations
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motivated the introduction of Total Variation in image restoration problems by L. Rudin, S.

Osher and E. Fatemi in their work [57]. The a priori hypothesis is that functions of bounded

variation (the BV model) [10] are a reasonable functional model for many problems in image

processing, in particular, for restoration problems [57]. Typically, functions of bounded

variation have discontinuities along rectifiable curves, being continuous in some sense (in

the measure theoretic sense) away from discontinuities [10]. The discontinuities could be

identified with edges. The ability of total variation regularization to recover edges is one of

the main features which advocates for the use of this model but its ability to describe textures

is less clear, even if some textures can be recovered, up to a certain scale of oscillation. An

interesting experimental discussion of the adequacy of the BV -model to describe real images

can be found in [42].

In order to work with images, we assume that they are defined in a bounded domain

Ω ⊆ R2 which we assume to be the interval [0, N [2. As in most of the works, in order to

simplify this problem, we shall assume that the functions h and u are periodic of period N

in each direction. That amounts to neglecting some boundary effects. Therefore, we shall

assume that h, u are functions defined in Ω and, to fix ideas, we assume that h, u ∈ L2(Ω).

Our problem is to recover as much as possible of u, from our knowledge of the blurring kernel

h, the statistics of the noise n, and the observed image f .

On the basis of the BV model, Rudin-Osher-Fatemi [57] proposed to solve the following

constrained minimization problem

Minimize

∫

Ω
|Du|

subject to

∫

Ω
|h ∗ u(x) − f(x)|2 dx ≤ σ2|Ω|.

(6)

Notice that the image acquisition model (1) is only incorporated through a global constraint.

Assuming that h ∗ 1 = 1 (energy preservation), the additional constraint that
∫
Ω h ∗ u dx =∫

Ω f(x) is automatically satisfied by its minima [24]. In practice, the above problem is solved

via the following unconstrained minimization problem

Minimize

∫

Ω
|Du| + 1

2λ

∫

Ω
|h ∗ u− f |2 dx (7)

where the parameter λ is positive. Recall that we may interpret λ as a penalization parameter

which controls the trade-off between the goodness of fit of the constraint and the smoothness

term given by the Total Variation. In this formulation, a methodology is required for a correct

choice of λ. The connections between (6) and (7) were studied by A. Chambolle and P.L.

Lions in [24] where they proved that both problems are equivalent for some positive value of

the Lagrange multiplier λ.

In the denoising case, the unconstrained variational formulation (7) with h = δ is

Minimize

∫

Ω
|Du| + 1

2λ

∫

Ω
|u− f |2 dx, (8)

and it has been the object of much theoretical and numerical research (see [11, 58] for a

survey). Even if this model represented a theoretical and practical progress in the denoising
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problem due to the introduction of BV functions as image models, the experimental analysis

readily showed its main drawbacks. Between them, let us mention the staircasing effect (when

denoising a smooth ramp plus noise, the staircase is an admissible result), the pixelization

of the image at smooth regions and the loss of fine textured regions, to mention some of

them. This can be summarized with the simple observation that the residuals f −u, where u

represents the solution of (8), do not look like noise. This has motivated the development on

non local filters [17] for denoising, the use of a stochastic optimization techniques to estimate

u [49], or the consideration of the image acquisition model as a set of local constraints [3, 4]

to be discussed below.

Let us finally mention that, following the analysis of Y. Meyer in [50], the solution u of

(8) permits to obtain a decomposition of the data f as a sum of two components u+v where

u contains the geometric sketch of f while v is supposed to contain its noise and textured

parts. As Meyer observed, the L2 norm of the residual v := f−u in (8) is not the right one to

obtain a decomposition of f in terms of geometry plus texture and he proposed to measure

the size of the textured part v in terms of a dual BV norm showing that some models of

texture have indeed a small dual BV norm.

In spite of its limitations, the Total Variation model has become one of the basic image

models and has been adapted to many tasks: optical flow, stereo imaging and 3D surface

reconstruction, segmentation, interpolation, or the study of u + v models to mention a

few cases. On the other hand, when compared to other robust regularization terms, it

combines simplicity and geometric character and makes it possible a rigorous analysis. The

theoretical analysis of the behavior of solutions of (8) has been the object of several works

[6, 14, 15, 52, 50, 20] and will be summarized in Sections 3 and 4.

Recall that one of the main reasons to introduce the Total Variation as a regularization

term in imaging problems was its ability to recover discontinuities in the solution. This

intuition has been confirmed by the experimental evidence and has been the motivation for

the study of the local regularity properties of (8) in [20, 21]. After recalling in Section 2

some basic notions and results in the theory of bounded variation functions, we prove in

Section 3.1 that the set of jumps (in the BV sense) of the solution of (8) is contained in

the set of jumps of the datum f [20]. In other words, model (8) does not create any new

discontinuity besides the existing ones. As a refinement of the above statement, the local

Hölder regularity of the solutions of (8) is studied in Section 3.2. This has to be combined

with results describing which discontinuities are preserved. No general statement in this

sense exists but many examples are described in the papers [11, 14, 15, 7]. The preservation

of a jump discontinuity depends on the curvature of the level line at the given point, the size

of the jump and the regularization parameter λ. This is illustrated in the example given in

Section 4. The examples support the idea that total variation is not perfect but may be a

reasonable regularization term in order to restore discontinuities.

Being considered as a basic model, the numerical analysis of the total variation model

has been the object of intensive research. Many numerical approaches have been proposed

in order to give fast, efficient methods which are also versatile to cover the whole range of

applications. In Section 5 we review some basic iterative methods introduced to solve the
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Euler-Lagrange equations of (8). In particular, we review in Section 5.2 the dual approach

introduced by A. Chambolle in [25]. In Section 5.3 we review the primal dual scheme of Zhu

and Chan [60]. Both of them are between the most popular schemes by now. In Section 6

we discuss global optimization methods based on graph-cut techniques adapted to solve a

quantized version of (8). Those methods have also become very popular due to its efficiency

and versatility in applications and are an active area of research, as it can be seen in the

references. Then, in Section 7.1 we review the applications of anisotropic TV problems to find

the global solution of geometric problems. Similar anisotropic TV formulations appear as

convexifications of nonlinear energies for disparity computation in stereo imaging, or related

problems [29, 54], and they are reviewed in Section 7.2.

In Section 8 we review the application of Total Variation in image restoration (6), describ-

ing the approach where the image acquisition model is introduced as a set of local constraints

[3, 4, 56].

We could not close this Chapter without reviewing in Section 9 a recent algorithm in-

troduced by C. Louchet and L. Moisan [49] which uses a Bayesian approach leading to an

estimate of u as the expected value of the posterior distribution of u given the data f . This

estimate requires to compute an integral in a high dimensional space and the authors use a

Monte-Carlo method with Markov Chain (MCMC) [49]. In this context, the minimization

of the discrete version of (8) corresponds to a Maximum a Posterior (MAP) estimate of u.

2 Notation and preliminaries on BV functions

2.1 Definition and basic properties

Let Ω be an open subset of RN . Let u ∈ L1
loc(Ω). Recall that the distributional gradient of

u is defined by ∫

Ω
σ ·Du = −

∫

Ω
u(x)div σ(x) dx∀C∞

c (Ω,RN ),

where C∞
c (Ω; RN ) denotes the vector fields with values in RN which are infinitely differen-

tiable and have compact support in Ω. The total variation of u in Ω is defined by

V (u,Ω) := sup

{∫

Ω
u divσ dx : σ ∈ C∞

c (Ω; RN ), |σ(x)| ≤ 1 ∀x ∈ Ω

}
, (9)

where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i . Following the usual

notation, we will denote V (u,Ω) by |Du|(Ω) or by
∫
Ω |Du|.

Definition 2.1. Let u ∈ L1(Ω). We say that u is a function of bounded variation in Ω if

V (u,Ω) < ∞. The vector space of functions of bounded variation in Ω will be denoted by

BV (Ω).

Using Riesz representation Theorem [10], the above definition can be rephrased by saying

that u is a function of bounded variation in Ω if the gradient Du in the sense of distributions

is a (vector valued) Radon measure with finite total variation V (u,Ω).
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Recall that BV (Ω) is a Banach space when endowed with the norm ‖u‖ :=
∫
Ω |u| dx +

|Du|(Ω). Recall also that the map u → |Du|(Ω) is L1
loc(Ω)-lower semicontinuous, as a sup

(9) of continuous linear forms [10].

2.2 Sets of finite perimeter. The coarea formula

Definition 2.2. A measurable set E ⊆ Ω is said to be of finite perimeter in Ω if χE ∈ BV (Ω).

The perimeter of E in Ω is defined as P (E,Ω) := |DχE|(Ω). If Ω = RN , we denote the

perimeter of E in RN by P (E).

The following inequality holds for any two sets A,B ⊆ Ω:

P (A ∪B,Ω) + P (A ∩B,Ω) ≤ P (A,Ω) + P (B,Ω). (10)

Theorem 1. Let u ∈ BV (Ω). Then for a.e. t ∈ R the set {u > t} is of finite perimeter in

Ω and one has ∫

Ω
|Du| =

∫ ∞

−∞
P ({u > t},Ω) dt.

In other words, the total variation of u amounts to the sum of the perimeters of its upper

level sets.

An analogous formula with the lower level sets is also true. For a proof we refer to [10].

2.3 The structure of the derivative of a BV function

Let us denote by LN and HN−1, respectively, the N -dimensional Lebesgue measure and the

(N − 1)-dimensional Hausdorff measure in RN (see [10] for precise definitions). of

Let u ∈ [L1
loc(Ω)]m (m ≥ 1). We say that u has an approximate limit at x ∈ Ω if there

exists ξ ∈ Rm such that

lim
ρ↓0

1

|B(x, ρ)|

∫

B(x,ρ)
|u(y) − ξ|dy = 0. (11)

The set of points where this does not hold is called the approximate discontinuity set of

u, and is denoted by Su. Using Lebesgue’s differentiation theorem, one can show that the

approximate limit ξ exists at LN -a.e. x ∈ Ω, and is equal to u(x): in particular, |Su| = 0. If

x ∈ Ω \ Su, the vector ξ is uniquely determined by (11) and we denote it by ũ(x).

We say that u is approximately continuous at x if x 6∈ Su and ũ(x) = u(x), that is if x is

a Lebesgue point of u (with respect to the Lebesgue measure).

Let u ∈ [L1
loc(Ω)]m and x ∈ Ω \ Su; we say that u is approximately differentiable at x if

there exists an m×N matrix L such that

lim
ρ↓0

1

|B(x, ρ)|

∫

B(x,ρ)

|u(y) − ũ(x) − L(y − x)|
ρ

dy = 0. (12)

In that case, the matrix L is uniquely determined by (12) and is called the a approximate

differential of u at x.
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For u ∈ BV (Ω), the gradientDu is aN -dimensional Radon measure that decomposes into

its absolutely continuous and singular parts Du = Dau+Dsu. Then Dau = ∇u dx where ∇u
is the Radon-Nikodym derivative of the measure Du with respect to the Lebesgue measure

in RN . The function u is approximately differentiable LN -a.e. in Ω and the approximate

differential coincides with ∇u(x) LN -a.e. The singular part Dsu can be also split in two

parts: the jump part Dju and the Cantor part Dcu.

We say that x ∈ Ω is an approximate jump point of u if there exist u+(x) 6= u−(x) ∈ R

and |νu(x)| = 1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫

B+
ρ (x,νu(x))

|u(y) − u+(x)| dy = 0

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫

B−
ρ (x,νu(x))

|u(y) − u−(x)| dy = 0,

where B+
ρ (x, νu(x)) = {y ∈ B(x, ρ) : 〈y−x, νu(x)〉 > 0} and B−

ρ (x, νu(x)) = {y ∈ B(x, ρ) :

〈y−x, νu(x)〉 < 0}. We denote by Ju the set of approximate jump points of u. If u ∈ BV (Ω),

the set Su is countably HN−1 rectifiable, Ju is a Borel subset of Su and HN−1(Su \ Ju) = 0

[10]. In particular, we have that HN−1-a.e. x ∈ Ω is either a point of approximate continuity

of ũ, or a jump point with two limits in the above sense. Finally, we have

Dju = Dsu Ju = (u+ − u−)νuHN−1
Ju and Dcu = Dsu (Ω\Su).

For a comprehensive treatment of functions of bounded variation we refer to [10].

3 The regularity of solutions of the TV denoising problem

3.1 The discontinuities of solutions of the TV denoising problem

Given a function f ∈ L2(Ω) and λ > 0 we consider the minimum problem

min
u∈BV (Ω)

∫

Ω
|Du| + 1

2λ

∫

Ω
(u− f)2 dx . (13)

Notice that problem (13) always admits a unique solution uλ, since the energy functional is

strictly convex.

As we mentioned in the Introduction, one of the main reasons to introduce the Total

Variation as a regularization term in imaging problems was its ability to recover the discon-

tinuities in the solution. This Section together with Sections 3.2 and 4 is devoted to analyze

this assertion. In this Section we prove that the set of jumps of uλ (in the BV sense) is con-

tained in the set of jumps of f , whenever f has bounded variation. Thus, model (13) does

not create any new discontinuity besides the existing ones. Section 3.2 is devoted to review

a local Hölder regularity result of [21]: the local Hölder regularity of the data is inherited

by the solution. This has to be combined with results describing which discontinuities are

preserved. In Section 4 we give an example of explicit solution of (13) which shows that the

preservation of a jump discontinuity depends on the curvature of the level line at the given
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point, the size of the jump and the regularization parameter λ. Other examples are given in

the papers [11, 14, 15, 7, 2]. The examples support the idea that total variation may be a

reasonable regularization term in order to restore discontinuities.

Let us recall the following observation, which is proved in [26, 7, 19].

Proposition 3.1. Let uλ be the (unique) solution of (13). Then, for any t ∈ R, {uλ > t}
(respectively, {uλ ≥ t}) is the minimal (resp., maximal) solution of the minimal surface

problem

min
E⊆Ω

P (E,Ω) +
1

λ

∫

E
(t− f(x)) dx (14)

(whose solution is defined in the class of finite-perimeter sets, hence, up to a Lebesgue-

negligible set). In particular, for all t ∈ R but a countable set, {uλ = t} has zero measure

and the solution of (14) is unique up to a negligible set.

A proof that {uλ > t} and {uλ ≥ t} both solve (14) is found in [26, Prop. 2.2]. A complete

proof of this proposition, which we do not give here, follows from the co-area formula, which

shows that, up to a renormalization, for any u ∈ BV (Ω) ∩ L2(Ω),

∫

Ω
|Du| + 1

2λ

∫

Ω
(u− f)2 dx =

∫

R

(
P ({u > t},Ω) +

1

λ

∫

{u>t}
(t− f) dx

)
dt ,

and from the following comparison result for solutions of (14) which is proved in [7, Lemma 4]:

Lemma 3.2. Let f, g ∈ L1(Ω) and E and F be respectively minimizers of

min
E
P (E,Ω) −

∫

E
f(x) dx and min

F
P (F,Ω) −

∫

F
g(x) dx .

Then, if f < g a.e., |E \ F | = 0 (in other words, E ⊆ F up to a negligible set).

Proof. Observe that we have

P (E,Ω) −
∫

E
f(x) dx ≤ P (E ∩ F,Ω) −

∫

E∩F
f(x) dx

P (F,Ω) −
∫

F
g(x) dx ≤ P (E ∪ F,Ω) −

∫

E∪F
g(x) dx.

Adding both inequalities and using that for two sets of finite perimeter we have (10) P (E ∩
F,Ω) + P (E ∪ F,Ω) ≤ P (E,Ω) + P (F,Ω), we obtain that

∫

E\F
(g(x) − f(x)) dx ≤ 0.

Since g(x) − f(x) > 0 a.e., this implies that E \ F is a null set.

The proof of this last lemma is easily generalized to other situations (Dirichlet boundary

conditions, anisotropic and/or nonlocal perimeters, see [7] and also [2] for a similar general

statement). Eventually, we mention that the result of Proposition 3.1 remains true if the

term (u(x) − f(x))2/(2λ) in (13) is replaced with a term of the form Ψ(x, u(x)), with Ψ of
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class C1 and strictly convex in the second variable, and replacing (t−f(x))/λ with ∂uΨ(x, t)

in (14).

From Proposition 3.1 and the regularity theory for surfaces of prescribed curvature (see

for instance [9]), we obtain the following regularity result (see also [2]).

Corollary 3.3. Let f ∈ Lp(Ω), with p > N . Then, for all t ∈ R the super-level set

Et := {uλ > t} (respectively, {uλ ≥ t}) has boundary of class C1,α, for all α < (p −N)/p,

out of a closed singular set Σ of Hausdorff dimension at most N − 8. Moreover, if p = ∞,

the boundary of Et is of class W 2,q out of Σ, for all q <∞, and is of class C1,1 if N = 2.

We now show that the jump set of uλ is always contained in the jump set of f . Before

stating this result let us recall two simple Lemmas.

Lemma 3.4. Let U be an open set in RN and v ∈W 2,p(U), p ≥ 1. We have that

div

(
∇v√

1 + |∇v|2

)
(y) = Trace

(
A(∇v(y))D2v(y)

)
a.e. in U,

where A(ξ) = 1

(1+|ξ|2)
1
2

(
δij − ξiξj

(1+|ξ|2)

)N

i,j=1
, ξ ∈ RN .

The proof follows simply by taking ϕ ∈ C∞
0 (U), integrating by parts in U , and regular-

izing v with a smoothing kernel.

Lemma 3.5. Let U be an open set in RN and v ∈W 2,1(U). Assume that u has a minimum

at y0 ∈ U and

lim
ρ→0+

1

Bρ(y0)

∫

Bρ(y0)

|u(y) − u(y0) −∇u(y0) · (y − y0) − 1
2〈D2v(y0)(y − y0), y − y0〉|

ρ2
dy = 0.

(15)

Then D2v(y0) ≥ 0.

If A is a symmetric matrix and we write A ≥ 0 (respectively, A ≤ 0) we mean that A is

positive (resp., negative) semidefinite.

The result follows by proving that HN−1-a.e. for ξ in SN−1 (the unit sphere in RN) we

have 〈D2v(y0)ξ, ξ〉 ≥ 0.

Recall that if v ∈W 2,1(U), then (15) holds a.e. on U [61, Theorem 3.4.2].

Theorem 2. Let f ∈ BV (Ω) ∩ L∞(Ω). Then, for all λ > 0,

Juλ
⊆ Jf (16)

(up to a set of zero HN−1-measure).

Before giving the proof let us explain its main idea which is quite simple. Notice that,

by (14), formally the Euler-Lagrange equation satisfied by ∂Et is

κEt +
1

λ
(t− f) = 0 on ∂Et,
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where κEt is the sum of the principal curvatures at the points of ∂Et. Thus if x ∈ Juλ
\ Jf ,

then we may find two values t1 < t2 such that x ∈ ∂Et1 ∩ ∂Et2 \ Jf . Notice that Et2 ⊆ Et1

and the boundaries of both sets have a contact at x. Of the two, the smallest level set is the

highest and has smaller mean curvature. This contradicts its contact at x.

Proof. Let us first recall some consequences of Corollary 3.3. Let Et := {uλ > t}, t ∈ R,

and let Σt be its singular set given by Corollary 3.3. Since f ∈ L∞(Ω), around each point

x ∈ ∂Et \ Σt, t ∈ R, ∂Et is locally the graph of a function in W 2,p for all p ∈ [1,∞) (hence

C1,α for any α ∈ (0, 1)). Moreover, if N :=
⋃

t∈Q Σt, then HN−1(N ) = 0.

Let us prove that HN−1(Juλ
\ Jf ) = 0. Observe that we may write [10]

Juλ
=

⋃

t1,t∈Q,t1<t2

∂Et1 ∩ ∂Et2 .

Thus it suffices to prove that for all t1, t2 ∈ Q, t1 < t2, we have

HN−1 (∂Et1 ∩ ∂Et2 \ (N ∪ Jf )) = 0. (17)

Let us denote by B′
R the ball of radius R > 0 in RN−1 centered at 0. Let CR := B′

R×(−R,R).

Let us fix t1, t2 ∈ Q, t1 < t2. Given x ∈ ∂Et1 ∩ ∂Et2 \ N , by Corollary 3.3, we know that

there is some R > 0 such that, after a change of coordinates that aligns the xN -axis with

the normal to ∂Et1 ∩ ∂Et2 at x, we may write the set ∂Eti ∩ CR as the graph of a function

vi ∈W 2,p(B′
R), ∀p ∈ [1,∞), x = (0, vi(0)) ∈ CR ⊆ Ω, ∇vi(0) = 0, i ∈ {1, 2}. Without loss of

generality, we assume that vi > 0 in B′
R, and that Eti is the supergraph of vi, i = 1, 2. From

t1 < t2 and Lemma 3.2, it follows Et2 ⊆ Et1 , which gives in turn v2 ≥ v1 in B′
R.

Notice that, since ∂Eti is of finite HN−1 measure, we may cover ∂Et1 ∩ ∂Et2 \ N by a

countable set of such cylinders. Thus, it suffices to prove that

HN−1 ((∂Et1 ∩ ∂Et2 ∩ CR) \ (N ∪ Jf )) = 0. (18)

holds for any such cylinder CR as constructed in the last paragraph.

Let us denote the points x ∈ CR as x = (y, z) ∈ B′
R × (−R,R). Then (18) will follow if

we prove that

HN−1(MR) = 0, (19)

where

MR := {y ∈ B′
R : v1(y) = v2(y)} \ {y ∈ B′

R : (y, v1(y)) ∈ Jf}.
Recall that, by Theorem 3.108 in [10], HN−1-a.e. in y ∈ B′

R, the function f(y, ·) ∈
BV ((−R,R)) and the jumps of f(y, ·) are the points z such that (y, z) ∈ Jf . Recall that vi

is a local minimizer of

min
v

Ei(v) :=

∫

B′
R

√
1 + |∇v|2 dy − 1

λ

∫

B′
R

∫ v(y)

0
(ti − f(y, z)) dz dy.

By taking a positive smooth test function ψ(y) of compact support in B′
R, and computing

limε→0+
1
ε (Ei(v + εψ) − Ei(v)) ≥ 0, we deduce that

div
∇vi(y)√

1 + |∇vi(y)|2
+

1

λ
(ti − f(y, vi(y) + 0) ≤ 0, HN−1-a.e. in B′

R. (20)
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In a similar way, we have

div
∇vi(y)√

1 + |∇vi(y)|2
+

1

λ
(ti − f(y, vi(y) − 0) ≥ 0, HN−1-a.e. in B′

R. (21)

Finally we observe that since v1, v2 ∈ W 2,p(B′
R) for any p ∈ [1,∞) and v2 ≥ v1 in B′

R,

by Lemma 3.5 we have that D2(v1 − v2)(y) ≤ 0 HN−1-a.e. on {y ∈ B′
R : v1(y) = v2(y)}.

Thus, if HN−1(MR) > 0, then there is a point ȳ ∈ MR such that ∇v1(ȳ) = ∇v2(ȳ),
D2(v1 − v2)(ȳ) ≤ 0, f(ȳ, ·) is continuous at v1(ȳ) = v2(ȳ), and both equations (20) and (21)

hold at ȳ. As a consequence, using Lemma 3.4 and subtracting the two equations, we obtain

0 ≥ trace(A(∇v1(ȳ))D2v1(ȳ)) − trace(A(∇v2(ȳ))D2v2(ȳ)) =
t2 − t1
λ

> 0,

This contradiction proves (19).

3.2 Hölder regularity results

Let us review the local regularity result proved in [21]: if the datum f is locally Hölder

continuous with exponent β ∈ [0, 1] in some region Ω′ ⊂ Ω, then a local minimizer u of (13)

is also locally Hölder continuous in Ω′ with the same exponent.

Recall that a function u ∈ BV (Ω) is a local minimizer of (13) if for any v ∈ BV (Ω) such

that u− v has support in a compact subset K ⊂ Ω, we have

∫

K
|Du| +

1

2

∫

K
|u(x) − f(x)|2 dx ≤

∫

K
|Dv| +

1

2

∫

K
|v(x) − f(x)|2 dx (22)

It follows that u satisfies the equation [19]

−div z + u = f (23)

with z ∈ L∞(Ω,RN ) with ‖z‖∞ ≤ 1, and z ·Du = |Du| [11].

As in Section 3.1 [20], the analysis of the regularity of the local minimizers of u is

based on the following observation: for any t ∈ R, the level sets {u > t} (resp., {u ≥ t})
are solutions (the minimal and maximal, indeed) of the prescribed curvature problem (14)

which is defined in the class of finite-perimeter sets and hence up to a Lebesgue-negligible

set. The local regularity of u can be described in terms of the distance of any two of its level

sets. This is the main idea in [20] which can be refined to obtain the Hölder regularity of

solutions of (14). As we argued in Section 3.1, outside the jump discontinuities of f (modulo

an HN−1-null set), any two level sets at different heights cannot touch and hence the function

u is continuous there. To be able to assert a Hölder type regularity property for u one needs

to prove a local estimate of the distance of the boundaries of two level sets. This can be

done here under the assumption of local Hölder regularity for f [21].

Theorem 3. Let N ≤ 7 and let u be a solution of (23). Assume that f is in C0,β locally in

some open set A ⊆ Ω, for some β ∈ [0, 1]. Then u is also C0,β locally in A.
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The Lipschitz case corresponds to β = 1.

One can also state a global regularity result for solutions of the Neumann problem when

Ω ⊂ RN is a convex domain. Let f : Ω → R be a uniformly continuous function, with

modulus of continuity ωf : [0,+∞) → [0,+∞), that is |f(x) − f(y)| ≤ ωf (|x − y|) for

all x, y ∈ Ω. We consider the solution u of (23) with homogeneous Neumann boundary

condition, that is, such that (22) for any compact set K ⊂ Ω and any v ∈ BV (Ω) such that

v = u out of K. This solution is unique, as can be shown adapting the proof of [19, Cor. C.2.]

(see also [11] for the required adaptations to deal with the boundary condition), which deals

with the case Ω = RN .

Then, the following result holds true [21]:

Theorem 4. Assume N ≤ 7. Then, the function u is uniformly continuous in Ω, with

modulus ωu ≤ ωf .

Again, is quite likely here that the assumption N ≤ 7 is not necessary for this result.

4 Some explicit solutions

Recall that a convex body in RN is a compact convex subset of RN . We say that a convex

body is non-trivial if it has nonempty interior.

We want to exhibit the explicit solution of (13) when f = χC and C is a non-trivial

convex body in RN . This will show that the preservation of a jump discontinuity depends on

the curvature of ∂C at the given point, the size of the jump and the regularization parameter

λ.

Let uλ,C be the unique solution of the problem:

min
u∈BV (RN )

∫

RN

|Du| + 1

2λ

∫

RN

(u− χC)2 dx . (24)

The following result was proved in [7].

Proposition 4.1. We have that 0 ≤ uλ,C ≤ 1, uλ,C = 0 in RN \ C and uλ,C is concave in

{uλ,C > 0}.

The proof of 0 ≤ uλ,C ≤ 1 follows from a weak version of the maximum principle [7].

Thanks to the convexity of C, by comparison with the characteristic function of hyperplanes

one can show that uλ,C = 0 out of C [7]. To prove that uλ,C is concave in {uλ,C > 0} one

considers first the case where C is of class C1,1 and λ > 0 is small enough. Then one proves

that uλ,C is concave by approximating uλ,C by the solution uε of

u− λdiv

(
∇u√

ε2 + |∇u|2

)
in C

∇u√
ε2 + |∇u|2

· νC = 0 in ∂C,

(25)
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as ε→ 0+, using Korevaar’s concavity Theorem [48]. Then one considers the case where C

is of class C1,1 and we take any λ > 0. In this case, the concavity of uλ,C in {uλ,C > 0} is

derived after proving Theorems 5 and 6 below. The final step proceeds by approximating a

general convex body C by convex bodies of class C1,1 [5].

Moreover, since uλ,C = 0 out of C, the upper level set {uλ,C > s} ⊆ C for any s ∈ (0, 1].

Then, as in Proposition 3.1, one can prove that for any s ∈ (0, 1] the level set {uλ,C > s} is

a solution of

(P )µ min
E⊆C

P (E) − µ|E|. (26)

for the value of µ = λ−1(1 − s). When taking λ ∈ (0,+∞) and s ∈ (0, 1] we are able to

cover the whole range of µ ∈ [0,∞) [7]. By Lemma 3.2 we know that if µ < µ′ and Cµ, Cµ′

are minimizers of (P )µ, (P )µ′ , respectively, then Cµ ⊆ Cµ′ . This implies that the solution

of (P )µ is unique for any value µ ∈ (0,∞) up to a countable exceptional set. Thus the sets

Cµ can be identified with level sets of uλ,C for some λ > 0 and, therefore, we obtain its

uniqueness from the concavity of uλ,C . One can prove [7, 18, 5]:

Theorem 5. There is a value µ∗ > 0 such that





if µ < µ∗, Cµ = ∅,
if µ > µ∗, Cµ is unique (and convex),

if µ = µ∗, there are two solutions ∅ and Cµ∗ ,

where Cµ∗ is the unique Cheeger set of C. Moreover for any λ < ‖χC‖∗ we have µ∗ :=
1−‖uλ,C‖∞

λ and Cµ := {uλ,C > 1 − µλ} for any µ > µ∗, where

‖χC‖∗ := max

{∫

RN

uχC dx : u ∈ BV (RN ),

∫

RN

|Du| ≤ 1

}
.

The set Cµ∗ coincides with the level set {uλ,C = ‖uλ,C‖∞} and is of class C1,1.

We call a Cheeger set in a nonempty open bounded subset Ω of RN any set G ⊆ Ω which

minimizes

CΩ := min
F⊆Ω

P (F )

|F | . (27)

The Theorem contains the assertion that there is a unique Cheeger set in any nonempty

convex body of RN and µ∗ = CΩ. This result was proved in [18] for uniformly convex bodies

of class C2, and in [5] in the general case. Notice that the solution of (24) gives a practical

algorithm to compute the Cheeger set of C.

Theorem 6. Let C be a non-trivial convex body in RN . Let

HC(x) :=

{
− inf{µ : x ∈ Cµ} if x ∈ C

0 if x ∈ RN \ C.

Then uλ,C(x) := (1 + λHC(x))+χC .
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Figure 1: Left: The denoising of a square. Right: The Cheeger set of a cube.

If N = 2 and µ > µ∗, the set Cµ coincides with the union of all balls of radius 1/µ

contained in C [6]. Thus its boundary outside ∂C is made by arcs of circle which are tangent

to ∂C. In particular, if C is a square, then the Cheeger set corresponds to the arcs of circle

with radius R > 0 such that
P (Cµ∗ )

|Cµ∗ |
= 1

R . We can see that the corners of C are rounded

and the discontinuity disappears as soon as λ > 0 (see the left part of Figure 1). This is a

general fact at points of ∂C where its mean curvature is infinite.

Remark 4.2. By adapting the proof of Proposition 4 in [7] one can prove the following result.

If Ω is a bounded subset of RN with Lipschitz continuous boundary, and u ∈ BV (Ω)∩L2(Ω)

is the solution of the variational problem

min
u∈BV (Ω)∩L2(Ω)

{∫

Ω
|Du| + 1

2λ

∫

Ω
(u− 1)2 dx+

∫

∂Ω
|u| dHN−1

}
, (28)

then 0 ≤ u ≤ 1 and for any s ∈ (0, 1] the upper level set {u ≥ s} is a solution of

min
F⊆Ω

P (F ) − λ−1(1 − s)|F |. (29)

If λ > 0 is big enough, indeed greater than 1/‖χΩ‖∗, then the level set {u = ‖u‖∞} is the

maximal Cheeger set of Ω. In particular, the maximal Cheeger set can be computed by

solving (28), and for that we can use the algorithm in [25] described in Section 5.2. In the

right side of Figure 1 we display the Cheeger set of a cube.

Other explicit solutions corresponding to the union of convex sets can be found in [14, 2]. In

particular, Allard [2] describes the solution corresponding to the union of two discs in the

plane and also the case of two squares with parallel sides touching by a vertex. Some explicit

solutions for functions whose level sets are a finite number of convex sets in R2 can be found

in [15].
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5 Numerical algorithms: iterative methods

5.1 Notation

Let us fix our main notations. We denote by X the Euclidean space RN×N . The Eu-

clidean scalar product and the norm in X will be denoted by 〈·, ·〉X and ‖ · ‖X , respectively.

Then the image u ∈ X is the vector u = (ui,j)
N
i,j=1, and the vector field ξ is the map

ξ : {1, . . . , N}×{1, . . . , N} → R2. To define the discrete total variation, we define a discrete

gradient operator. If u ∈ X, the discrete gradient is a vector in Y = X ×X given by

∇u := (∇xu,∇yu),

where

(∇xu)i,j =

{
ui+1,j − ui,j if i < N

0 if i = N,
(30)

(∇yu)i,j =

{
ui,j+1 − ui,j if j < N

0 if j = N
(31)

for i, j = 1, . . . , N . Notice that the gradient is discretized using forward differences and

∇+,+u could be a more explicit notation. For simplicity we have preferred to use ∇u. Other

choices of the gradient are possible, this one will be convenient for the developments below.

The Euclidean scalar product in Y is defined in the standard way by

〈ξ, ξ̃〉Y =
∑

1≤i,j≤N

(ξ1i,j ξ̃
1
i,j + ξ2i,j ξ̃

2
i,j)

for every ξ = (ξ1, ξ2), ξ̃ = (ξ̃1, ξ̃2) ∈ Y . The norm of ξ = (ξ1, ξ2) ∈ Y is, as usual,

‖ξ‖Y = 〈ξ, ξ〉1/2
Y . We denote the euclidean norm of a vector v ∈ R2 by |v|. Then the discrete

total variation is

Jd(u) = ‖∇u‖Y =
∑

1≤i,j≤N

|(∇u)i,j |. (32)

We have

Jd(u) = sup
ξ∈Y, |ξi,j |≤1∀(i,j)

〈ξ,∇u〉Y . (33)

By analogy with the continuous setting, we introduce a discrete divergence div as the

dual operator of ∇, i.e., for every ξ ∈ Y and u ∈ X we have

〈−div ξ, u〉X = 〈ξ,∇u〉Y .

One can easily check that div is given by

(div ξ)i,j =





ξ1i,j − ξ1i−1,j if 1 < i < N

ξ1i,j if i = 1

−ξ1i−1,j if i = N

+





ξ2i,j − ξ2i,j−1 if 1 < j < N

ξ2i,j if j = 1

−ξ2i,j−1 if j = N

(34)
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for every ξ = (ξ1, ξ2) ∈ Y .

We have

Jd(u) := max
ξ∈V

〈u,div ξ〉, (35)

where

V = {ξ ∈ Y : |ξi,j|2 − 1 ≤ 0, ∀ i, j ∈ {1, . . . , N}}

5.2 Chambolle’s algorithm

Let us describe the dual formulation for solving the problem:

min
u∈X

Jd(u) +
1

2λ
‖u− f‖2

X (36)

where f ∈ X. Using (35) we have

min
u∈X

Jd(u) +
1

2λ
‖u− f‖2

X = min
u∈X

max
ξ∈V

〈u,div ξ〉 +
1

2λ
‖u− f‖2

X

= max
ξ∈V

min
u∈X

〈u,div ξ〉 +
1

2λ
‖u− f‖2

X .

Solving explicitly the minimization in u, we have u = f − λdiv ξ. Then

max
ξ∈V

min
u∈X

〈u,div ξ〉 +
1

2λ
‖u− f‖2

X = max
ξ∈V

〈f,div ξ〉 − λ

2
‖div ξ‖2

X

= −λ
2

min
ξ∈V

(∥∥∥∥div ξ − f

λ

∥∥∥∥
2

X

−
∥∥∥∥
f

λ

∥∥∥∥
2

X

)
.

Thus if ξ∗ is the solution of

min
ξ∈V

∥∥∥∥div ξ − f

λ

∥∥∥∥
2

X

. (37)

then u = f − λdiv ξ∗ is the solution of (36).

Notice that div ξ∗ is the projection of f
λ onto the convex set

Kd := {div ξ : |ξi,j| ≤ 1, ∀ i, j ∈ {1, . . . , N}}.

As in [25], the Karush-Kuhn-Tucker Theorem yields the existence of Lagrange multipliers

αi,j ≥ 0 for the constraints ξ ∈ V, such that we have for each (i, j) ∈ {1, . . . , N}2

∇[div ξ − λ−1f ]i,j − α∗
i,jξi,j = 0, (38)

with either α∗
i,j > 0 and |ξi,j| = 1, or α∗

i,j = 0 and |ξi,j| ≤ 1. In the later case, we have

∇[div ξ − λ−1f ]i,j = 0. In any case, we have

α∗
i,j = |∇[div ξ − λ−1f ]i,j|. (39)

Let ν > 0, ξ0 = 0, p ≥ 0. We solve (38) using the following gradient descent (or fixed

point) algorithm

ξp+1
i,j = ξp

i,j + ν∇[div ξp − λ−1f ]i,j − ν|∇[div ξp − λ−1f ]i,j|ξp+1
i,j , (40)
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Figure 2: Denoising results obtained with Chambolle’s algorithm. a) Top left: the original

image. b) Top right: the image with a Gaussian noise of standard deviation σ = 10. c)

Bottom left: the result obtained with λ = 5. d) Bottom right: the result obtained with

λ = 10.

hence

ξp+1
i,j =

ξp
i,j + ν∇[div ξp − λ−1f ]i,j

1 + ν|∇[div ξp − λ−1f ]i,j|
. (41)

Observe that |ξp
i,j | ≤ 1 for all i, j ∈ {1, . . . , N} and every p ≥ 0.

Theorem 7. In the discrete framework, assuming that ν < 1
8 , then div ξp converges to the

projection of f
λ onto the convex set Kd. If div ξ∗ is that projection, then u = f − λdiv ξ∗ is

the solution of (36).

In Figure 2 we display some results obtained using Chambolle’s algorithm with different

set of parameters, namely λ = 5, 10.

Today, the algorithms of Nesterov [51] or Beck and Teboulle [13] provide more efficient

way to solve this dual problem.
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5.3 Primal-dual approaches

The primal gradient descent formulation is based on the solution of (36). The dual gra-

dient descent algorithm corresponds to (41). The primal-dual formulation is based on the

formulation

min
u∈X

max
ξ∈V

G(u, ξ) := 〈u,div ξ〉 +
1

2λ
‖u− f‖2

X

and performs a gradient descent in u and gradient ascent in ξ.

Given the intermediate solution (uk, ξk) at iteration step k we update the dual variable

by solving

max
ξ∈V

G(uk, ξ). (42)

Since the gradient ascent direction is ∇ξG(uk, ξ) = −∇uk, we update ξ as

ξk+1 = PV(ξk − τk
λ
∇uk), (43)

where τk denotes the dual stepsize and PV denotes the projection onto the convex set V.

The projection PV can be computed as in (41) or simply as

(PVξ)i,j =
ξi,j

max(|ξi,j |, 1)
.

Now we update the primal variable u by a gradient descent step of

min
u∈X

G(u, ξk+1). (44)

The gradient ascent direction is ∇uG(u, ξk+1) and the update is

uk+1 = uk − θk

(
λdiv ξk+1 + uk − f

)
, (45)

where θk denotes the primal stepsize.

The primal-dual scheme was introduced in [60] where the authors observed its excellent

performance although, as they point out, there is no global convergence proof. The con-

vergence is empirically observed for a variety of suitable stepsize pairs (τ, θ) and is given in

terms of the product τθ. For instance, convergence is reported for increasing values θk and

τkθk ≤ 0.5, see [60].

The primal gradient descent and the dual projected gradient descent method are special

cases of the above algorithm. Indeed if one solves the problem (42) exactly (taking τk = ∞
in (43)) the resulting algorithm is

uk+1 = uk − θk

(
−λdiv

∇uk

|∇uk| + uk − f

)
, (46)

with the implicit convention that we may take any element in the unit ball of R2 when

∇uk = 0.

If we solve (44) exactly and still apply gradient ascent to (42), the resulting algorithm is

ξk+1 = PV

(
ξk + τk∇(div ξk − f

λ
)

)
, (47)
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which essentially corresponds to (41).

The primal-dual approach can be extended to the total variation deblurring problem

min
u∈X

Jd(u) +
1

2λ
‖Bu− f‖2

X (48)

where f ∈ X and B is a matrix representing the discretization of the blurring operator H.

The primal-dual scheme is based on the formulation

min
u∈X

max
ξ∈V

〈u,div ξ〉 +
1

2λ
‖Bu− f‖2

X , (49)

and the numerical scheme can be written as

ξk+1 = PV

(
ξk − τk∇uk

)

uk+1 = uk − θk
(
−div ξk+1 + λBt(Buk+1 − f)

)
.

(50)

Since B is the matrix of a convolution operator, the second equation can be solved explicitly

using the FFT. Again, convergence is empirically observed for a variety of suitable stepsize

pairs (τ, θ) and is given in terms of the product τθ, see [60].

For a detailed study of different primal-dual methods we refer to [39].

6 Numerical algorithms: maximum flow methods

It has been noticed probably first in [53] that maximal flow/minimum cut techniques could

be used to solve discrete problems of the form (14), that is, to compute finite sets minimizing

a discrete variant of the perimeter and an additional external field term. Combined with (a

discrete equivalent of) Proposition 3.1, this leads to efficient techniques for solving (only)

the denoising problem (8), including a method, due to D. Hochbaum, to compute an exact

solution in polynomial time (up to machine precision). A slightly more general problem is

considered in [28], where the authors describe in detail algorithms which solve the problem

with an arbitrary precision.

6.1 Discrete perimeters and discrete total variation

We will call a discrete total variation any convex, nonnegative function J : RM → [0,+∞]

satisfying a discrete co-area formula:

J(u) =

∫ +∞

−∞
J(χ{u≥s}) ds (51)

where χ{u≥s} ∈ {0, 1}M denotes the vector such that χ
{u≥s}
i = 0 if ui ≤ s and χ

{u≥s}
i = 1 if

ui ≥ s.

As an example we can consider the (anisotropic) discrete total variation

J(u) =
∑

1≤i<N
1≤j≤N

|ui+1,j − ui,j| +
∑

1≤i≤N
1≤j<N

|ui,j+1 − ui,j| (52)
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In this case u = (ui,j)
N
i,j=1 can be written as a vector in RM with M = N2. Then, (51)

obviously holds since for any a, b ∈ R, we have |a− b| =
∫ +∞
−∞ |χ{a>s} − χ{b>s}| ds.

Observe, on the other hand, that the discretization (36) does not enter this category

(unfortunately). In fact, a discrete total variation will be always very anysotropic (or “crys-

talline”).

We assume that J is not identically +∞. Then, we can derive from (51) the following

properties [28]:

Proposition 6.1. Let J be a discrete total variation. Then:

1. J is positively homogeneous: J(λu) = λJ(u) for any u ∈ RM and λ ≥ 0.

2. J is invariant by addition of a constant: J(c1 + u) = J(u) for any u ∈ RM and c ∈ R,

where 1 = (1, . . . , 1) ∈ RM is a constant vector. In particular, J(1) = 0.

3. J is lower-semicontinuous.

4. p ∈ ∂J(u) ⇔ (∀z ∈ R, p ∈ ∂J(χ{u≥z}).

5. J is submodular: for any u, u′ ∈ {0, 1}M ,

J(u ∨ u′) + J(u ∧ u′) ≤ J(u) + J(u′). (53)

More generally, this will hold for any u, u′ ∈ RM .

Conversely, if J : {0, 1}M → [0,+∞] is a submodular function with J(0) = J(1) = 0, then

the co-area formula (51) extends it to RM into a convex function, hence a discrete total

variation.

If J is a discrete total variation, then the discrete counterpart of Proposition 3.1 holds:

Proposition 6.2. Let J be a discrete total variation. Let f ∈ RM and let u ∈ RM be the

(unique) solution of

min
u∈RM

λJ(u) +
1

2
‖u− f‖2 (54)

Then, for all s > 0, the characteristic functions of the super-level sets Es = {u ≥ s} and

E′
s = {u > s} (which are different only if s ∈ {ui, i = 1, . . . ,M}) are respectively the largest

and smallest minimizer of

min
θ∈{0,1}M

λJ(θ) +

M∑

i=1

θi(s− fi) . (55)

The proof is quite clear, since the only properties which were used for showing Proposi-

tion 3.1 where (a) the co-area formula of Theorem 1; (b) the submodularity of the perime-

ters (10).

As a consequence, Problem (54) can be solved by successive minimizations of (55), which

in turn can be done by computing a maximal flow through a graph, as will be explained in

the next section. It seems that efficiently solving the successive minimizations has been first
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proposed in the seminal work of Eisner and Severance [38] in the context of augmenting-

path maximum-flow algorithms. It was then developed, analyzed and improved by Gallo,

Grigoriadis and Tarjan [40] for preflow-based algorithms. Successive improvements were also

proposed by Hochbaum [44], specifically for the minimization of (54). We also refer to [27, 33]

for variants, and to [46] for detailed discussions about this approach.

6.2 Graph representation of energies for binary MRF

It was first observed by Picard and Ratliff [53] that binary Ising-like energies, that is, of the

form ∑

i,j

αi,j|θi − θj | −
∑

i

βiθi , (56)

αi,j ≥ 0, βi ∈ R, θi ∈ {0, 1}, could be represented on a graph and minimized by standard

optimization techniques, and more precisely using maximum flow algorithms. Kolmogorov

and Zabih [47] showed that the submodularity of the energy is a necessary condition, while,

up to sums of ternary submodular interactions, it is also a sufficient condition in order to be

representable on a graph. (But other energies are representable, and it does not seem to be

known whether any submodular J can be represented on a graph, see [28, Appendix B] and

the references therein.)

In case J(u) has only pairwise interactions, as in (52), then Problem (55) has exactly the

form (56), with αi,j = λ if nodes i and j correspond to neighboring pixels, 0 else, and βi is

s− fi.

Let us build a graph as follows: we consider V = {1, . . . ,M} ∪ {S} ∪ {T} where the two

special nodes S and T are respectively called the “source” and the “sink”. We consider then

oriented edges (S, i) and (i, T ), i = 1, . . . ,M , and (i, j), 1 ≤ i, j ≤ M , and to each edge we

associate a capacity defined as follows:





c(S, i) = β−i i = 1, . . . ,M ,

c(i, T ) = β+
i i = 1, . . . ,M ,

c(i, j) = αi,j 1 ≤ i, j ≤M .

(57)

Here β+
i = max{0, βi} and β−i = max{0,−βi}, so that βi = β+

i − β−i . By convention, we

consider there is no edge between two nodes if the capacity is zero. Let us denote by E the

set of edges with nonzero capacity and by G = (V, E) the resulting oriented graph.

We then define a “cut” in the graph as a partition of E into two sets S and T , with S ∈ S
and T ∈ T . The cost of a cut is then defined as the total sum of the capacities of the edges

that start on the source-side of the cut and land on the sink-side:

C(S,T ) =
∑

(µ,ν)∈E
µ∈S,ν∈T

c(µ, ν) .
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Then, if we let θ ∈ {0, 1}M be the characteristic function of S ∩ {1, . . . ,M}, we have

C(S,T ) =

M∑

i=1

(1 − θi)β
−
i + θiβ

+
i +

M∑

i,j=1

αi,j(θi − θj)
+

=
M∑

i,j=1

αi,j(θi − θj)
+ +

M∑

i=1

θiβi +
M∑

i=1

β−i

If αi,j = αj,i (but other situations are also interesting), this is nothing else than energy (56),

up to a constant.

Thus, the problem of finding a minimum of (56) (or (55)) can be reformulated as the

problem of finding a minimal cut in the graph. Very efficient algorithms are available, based

on a duality result of Ford and Fulkerson [1]. It states that the maximum flow on the graph

constrained by the capacities of the edges is equal to the minimal cost of a cut. The problem

reduces then to find the maximum flow in the graph. This is precisely defined as follows:

starting from S, we “push” a quantity (xµ,ν) along the oriented edges (µ, ν) ∈ E of the graph,

with the constraint that along each edge,

0 ≤ xµ,ν ≤ c(µ, ν)

and that each “interior” node i must satisfy the flow conservation constraint

∑

µ

xµ,i =
∑

µ

xi,µ

(while the source S only sends flow to the network, and the sink T only receives).

It is clear that the total flow f(x) =
∑

i xS,i =
∑

i xi,T which can be sent is bounded from

above, and not hard to show that a bound is given by a minimal-cost cut (S,T ). The duality

theorem of Ford and Fulkerson expresses the fact that this bound is actually reached by the

maximal flow (xµ,ν)(µ,ν)∈E (which maximizes f(x)), and the partition (S,T ) is obtained by

cutting along the saturated edges (µ, ν), where xµ,ν = cµ,ν while xν,µ = 0.

We can find starting from S the first saturated edge along the graph, and cut there, or

do the same starting from T and scanning the reverse graph: for βi = s−fi, this will usually

give the same solution except for a finite number of levels s, which correspond exactly to the

levels {ui : i = 1, . . . ,M} of the solution of (54) and are called the “breakpoints”.

Several efficient algorithms are available to compute a maximum flow in polynomial

time [1]. Although the time complexity of the algorithm in [16], of Boykov and Kolmogorov,

is not polynomial, this algorithm seems to outperform others in terms in time computations,

as it is particularly designed for the graphs with low connectivity which arise in image

processing.

The idea of a “parametric maximum flow algorithm” [40] is to re-use the same graph

(and the “residual graph” which remains after a run of a max-flow algorithm) to solve

problems (55) for increasing values s ∈ {s0, s1, . . . , sn}. This is easily shown to solve (54) up

to an arbitrary precision (and in polynomial time, see [40]). It seems this idea was already

present in a paper of Eisner and Severance [38].
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However, it was shown in [44] by D. Hochbaum that in fact the exact solution to (54) can

be computed, also in polynomial time. Let us now explain the basic idea of this approach,

for details we refer to [28, 44].

Let u = (ui)
M
i=1 be the (unique) solution of (54). Proposition 6.2 tells us that as s varies,

problem (55) has the same solution χ{u≥s} as long as s does not cross any of the values

{ui : i = 1, . . . ,M}, which are precisely the breakpoints.

Assume we have found, for two levels s1 < s2, solutions θ1 ≥ θ2 of (55) and assume also

that these solutions differ. It means that there is a breakpoint ui0 in between: there is at

least one location i0 (and possibly other) with s1 ≤ ui0 ≤ s2.

Suppose for a while that the value ui0 were the only breakpoint between s1 and s2 (that

is, at no other location i1, we can have both s1 ≤ ui1 ≤ s2 and ui0 6= ui1).

In this case, for s ∈ [s1, s2], the optimal energy should be

F(s) = F1(s) =

(
λJ(θ1) −

M∑

i=1

θ1
i fi

)
+ s

M∑

i=1

θ1
i

if s ≤ ui0 , and

F(s) = F2(s) =

(
λJ(θ2) −

M∑

i=1

θ2
i fi

)
+ s

M∑

i=1

θ2
i

for s ≥ ui0. And the value ui0 is necessary the (only) solution of the equation F1(ui0) =

F2(ui0).

Observe that in any case, as θ1 ≥ θ2 and they are different, the slope of the affine function

F1(s) is strictly above the slope of the affine function F2(s). Since also F1(s1) ≤ F2(s1) (as

θ1 is optimal for s1) and F2(s2) ≤ F1(s2), there is always a (unique) value s3 ∈ [s1, s2] for

which F1(s3) = F2(s3).

The idea of the algorithm is now clear: we have to compute a new maximal flow (which,

in fact, re-uses the residual flows from the computations of θ1 and θ2) to solve (55) for the

level s = s3. We find a solution θ3, of energy

F3(s3) =

(
λJ(θ3) −

M∑

i=1

θ3
i fi

)
+ s3

M∑

i=1

θ3
i

Then, there are two cases:

• Either F3(s3) = F1(s3) = F2(s3): in this case we have found a breakpoint, and there

is no other in the interval [s1, s2]. Hence, the level sets {u ≥ s} have been found for all

values s ∈ [s1, s2]: χ
{u≥s} = θ1 for s ∈ [s1, s3] and θ2 for s ∈ [s3, s2].

• Or F3(s3) < F1(s3) = F2(s3). Then, in particular, it must be that the solution

θ3 differs from both θ1 and θ2 (otherwise the energies would be the same). Hence

we can start again to try solving the problem at the levels s4 and s5 which solve

F1(s4) = F3(s4) and F3(s5) = F2(s5). Now, since there are only a finite number of

possible sets θ solving (55) (bounded by M , as the solutions are nonincreasing with s),

this situation can occur at most a finite number of time, bounded by M .
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In practice, this can be done in a very efficient way, using “residual graphs” to start the

new maximal flow algorithms, and to compute efficiently the new levels where to cut (there

is no need, in fact, to compute the values λJ(θ) +
∑

i θifi and
∑

i θi for this). See [44, 28]

for details.

For experimental results in the case of total variation denoising we refer to [27, 28, 33, 41].

7 Other problems: Anisotropic total variation models

7.1 Global solutions of geometric problems

The theory of anisotropic perimeters developed in [8] permits to extend model (28) to general

anisotropic perimeters, including as particular cases the geodesic active contour model with

an inflating force [23, 45], and a model for edge linking [22]. This permits to find the global

minima of geometric problems that appear in image processing [31, 22, 26, 28].

The anisotropic total variation and perimeter. Let us define the general notion of total

variation with respect to an anisotropy. Following [8] we say that a function φ : Ω × RN →
[0,∞) is a metric integrand if φ is a Borel function satisfying the conditions:

for a.e. x ∈ Ω, the map ξ ∈ RN → φ(x, ξ) is convex, (58)

φ(x, tξ) = |t|φ(x, ξ) ∀x ∈ Ω, ∀ξ ∈ RN , ∀t ∈ R, (59)

and there exists a constant Λ > 0 such that

0 ≤ φ(x, ξ) ≤ Λ‖ξ‖ ∀x ∈ Ω, ∀ξ ∈ RN . (60)

We could be more precise and use the term symmetric metric integrand, but for simplicity

we use the term metric integrand. Recall that the polar function φ0 : Ω × RN → R ∪ {+∞}
of φ is defined by

φ0(x, ξ∗) = sup{〈ξ∗, ξ〉 : ξ ∈ RN φ(x, ξ) ≤ 1}. (61)

The function φ0(x, ·) is convex and lower semicontinuous.

Let

Kφ(Ω) := {σ ∈ X∞(Ω) : φ0(x, σ(x)) ≤ 1 for a.e. x ∈ Ω, [σ · νΩ] = 0}.

Definition 7.1. Let u ∈ L1(Ω). We define the φ-total variation of u in Ω as

∫

Ω
|Du|φ := sup

{∫

Ω
u div σ dx : σ ∈ K∞

φ (Ω)

}
, (62)

We set BVφ(Ω) := {u ∈ L1(Ω) :
∫
Ω |Du|φ <∞} which is a Banach space when endowed with

the norm |u|BVφ(Ω) :=
∫
Ω |u|dx+

∫
Ω |Du|φ.

We say that E ⊆ RN has finite φ-perimeter in Ω if χE ∈ BVφ(Ω). We set

Pφ(E,Ω) :=

∫

Ω
|DχE |φ.
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If Ω = RN , we denote Pφ(E) := Pφ(E,RN ). By assumption (60), if E ⊆ RN has finite

perimeter in Ω it has also finite φ-perimeter in Ω.

A variational problem and its connection with geometric problems. Let φ : Ω ×
RN → R be a metric integrand in Ω and h ∈ L∞(Ω), h(x) > 0 a.e., with

∫
Ω

1
h(x) dx < ∞.

Let us consider the problem

min
u∈BVφ(Ω)

∫

Ω
|Du|φ +

∫

∂Ω
φ(x, νΩ)|u| dHN−1 +

λ

2

∫

Ω
h (u− f)2 dx, (63)

where νΩ denotes the outer unit normal to ∂Ω. To shorten the expressions inside the integrals

we shall write h, u instead of h(x), u(x), with the only exception of φ(x, νΩ). The following

result was proved in [22].

Theorem 8. (i) Let f ∈ L2(Ω, hdx), i.e.,
∫
Ω f(x)2 h(x) dx < ∞. Then there is a unique

solution of the problem (63).

(ii) If u ∈ BVφ(Ω) ∩ L2(Ω, h dx) be the solution of the variational problem (63) with f = 1.

Then 0 ≤ u ≤ 1 and the level sets Es := {x ∈ Ω : u(x) ≥ s}, s ∈ (0, 1], are solutions of

min
F⊆Ω

Pφ(F ) − µ|F |h. (64)

where |F |h =
∫
F h(x) dx. As in the euclidian case, the solution of (64) is unique for any

s ∈ (0, 1] up to a countable exceptional set.

(iii) When λ is big enough, the level set associated to the maximum of u, {u = ‖u‖∞}, is

the maximal (φ, h)-Cheeger set of Ω, i.e., is a minimizer of the problem

inf

{
Pφ(F )

|F |h
: F ⊆ Ω of finite perimeter, |F |h > 0

}
. (65)

The computation of the maximal (φ, h)-Cheeger set (together with the solution of the

family of problems (64)) can be computed by adapting Chambolle’s algorithm [25] described

in Section 5.2.

Examples. We illustrate this formalism with two examples: a) the geodesic active contour

model; and b) a model for edge linking.

a) The geodesic active contour model. Let I : Ω → R+ be a given image in L∞(Ω), G be a

Gaussian function, and

g(x) =
1√

1 + |∇(G ∗ I)|2
, (66)

(where in G ∗ I we have extended I to RN by taking the value 0 outside Ω). Observe that

g ∈ C(Ω) and infx∈Ω g(x) > 0. The geodesic active contour model [23, 45] with an inflating

force corresponds to the case where φ(x, ξ) = g(x)|ξ| and |Du|φ = g(x)|Du| and h(x) = 1,

x ∈ Ω. The purpose of this model is to locate the boundary of an object of the image at the

points where the gradient is large. The presence of the inflating term helps to avoid minima

collapsing into a point. The model was intially formulated [23, 45] in a level set framework
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In this case we may write Pg(F ) instead of Pφ(F ), and we have Pg(F ) :=
∫
∂∗F g dHN−1,

where ∂∗F is the reduced boundary of F [10].

In this case the Cheeger sets are a particular instance of geodesic active contour with an

inflating force whose constant is µ = Cg,1
Ω . An interesting feature of this formalism is that it

permits to define local Cheeger sets as local (regional) maxima of the function u. They are

Cheeger sets in a sub-domain of Ω. They can be identified with boundaries of the image and

the above formalism permits to compute several active contours at the same time (the same

holds true for the edge linking model).

b) An edge linking model. Another interesting application of the above formalism is to

edge linking. Given a set Γ ⊆ Ω (which may be curves if Ω ⊆ R2 or pieces of surface if

Ω ⊆ R3), we define dΓ(x) = dist(x,Γ) and the anisotropy φ(x, ξ) = dΓ(x)|ξ|. In that case,

we experimentally see that the Cheeger set determined by this anisotropy links the set of

curves (or surfaces) Γ. If Γ is a set of edges computed with an edge detector we obtain a set

or curves (N = 2) or surfaces (N = 3) linking them.

Notice that, for a given choice of φ, we actually find many local φ-Cheeger sets, disjoint

from the global minimum, that appear as local minima of the Cheeger ratio on the tree of

connected components of upper level sets of u. The computation of those sets is partially

justified by Proposition 6.11 in [22]. These are the sets which we show on the following

experiments.

Let us mention the formulation of active contour models without edges proposed by

Chan-Vese in [32] can also be related to the general formulation (64).

On Figure 3, we display some local φ-Cheeger sets of 2D images for the choices of met-

ric φ corresponding to geodesic active contour models with an inflating force (the first three

columns) and to edge linking problems (the last three columns). The first row displays the

original images, the second row displays the metric g = (
√

1 + |∇(G ∗ I)|2)−1 or g = dS .

The last row displays the resulting segmentation or set of linked edges, respectively. Let us

remark here a limitation of this approach, that can be observed in the last subfigure. Even

if this linking is produced, the presence of a bottleneck (bottom right subfigure) makes the

dS-Cheeger set to be a set with large volume. This limitation can be circumvented by adding

barriers in the domain Ω: we can enforce hard restrictions on the result by removing from

the domain some points that we do not want to be enclosed by the output set of curves.

7.2 A convex formulation of continuous multi-label problems

Let us consider the variational problem

min
u∈BV (Ω),0≤u≤M

∫

Ω
|Du| +

∫

Ω
W (x, u(x)) dx, (67)

where W : Ω × R → R+ is a potential which is Borel measurable in x and continuous in u,

but not necessarily convex. Thus the functional is nonlinear and non-convex. The functional

can be relaxed to a convex one by considering the subgraph of u as an unknown.

Our purpose is to write the nonlinearities in (67) in a ”convex way” by introducing a

new auxiliary variable [54]. This will permit to use standard optimization algorithms. The
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Figure 3: Geodesic active contours and edge linking experiments. The first row shows the

images I to be processed. The first three columns correspond to segmentation experiments,

the last three are edge linking experiments. The second row shows the weights g used for

each experiment (white is 1, black is 0), in the first two cases g = (
√

1 + |∇(G ∗ I)|2)−1, for

the third g = 0.37(
√

0.1 + |∇(G ∗ I)|2)−1 and for the linking experiments g = dS , the scaled

distance function to the given edges. The third row shows the disjoint minimum g-Cheeger

sets extracted from u (shown in the background), there are 1,7,2,1,1 and 1 sets respectively.

The last linking experiment illustrates the effect of introducing a barrier in the initial domain

(black square).

treatment here will be heuristic.

Without loss of generality, let us assume that M = 1. Let φ(x, s) = H(u(x) − s), where

H = χ
[0,+∞) is the Heaviside function and s ∈ R. Notice that the set of points where u(x) > s

(the subgraph of u) is identified as φ(x, s) = 1. That is, φ(x, s) is an embedding function

for the subgraphs of u. This permits to consider the problem as a binary set problem. The

graphs of u is a ’cut’ in φ.

Let

A := {φ ∈ BV (Ω × [0, 1]) : φ(x, s) ∈ {0, 1},∀(x, s) ∈ Ω × [0, 1]}.

Using the definition of anisotropic total variation [8] we may write the energy in (67) in

terms of φ as

min
φ∈A

∫

Ω

∫ 1

0
(|Dxφ| +W (x, s)|∂sφ(x, s)|) dx dt+

∫

Ω
(W (x, 0)|φ(x, 0)−1|+W (x, 1)|φ(x, 1)|) dx,

(68)

where the boundary conditions φ(x, 0) = 1, φ(x, 1) = 0 are taken in a variational sense.

Although the energy (68) is convex in φ the problem is non-convex since the minimization

is carried on A which is a non-convex set. The proposal in [54] is to relax the variational
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problem by allowing φ to take values in [0, 1]. This leads to the following class of admissible

functionals

Ã := {φ ∈ BV (Ω × [0, 1]) : φ(x, s) ∈ [0, 1], ∀(x, s) ∈ Ω × [0, 1], φs ≤ 0}. (69)

The associated variational problem is written as

min
φ∈Ã

∫

Ω

∫ 1

0
(|Dxφ| +W (x, s)|∂sφ(x, s)|) dx dt+

∫

Ω
(W (x, 0)|φ(x, 0)−1|+W (x, 1)|φ(x, 1)|) dx.

(70)

This problem is now convex and can be solved using the dual or primal-dual numerical

schemes explained in Section 5.2 and 5.3. Formally, the level sets of a solution of (70) give

solutions of (67). This can be proved using the developments in [8, 22].

In [29] the authors address the problem of convex formulation of multi-label problems

with finitely many values including (67) and the case of non-convex neighborhood potentials

like the Potts model or the truncated total variation. The general framework permits to

consider the relaxation in BV (Ω) of functionals of the form

F (u) :=

∫

Ω
f(x, u(x),∇u(x)) dx (71)

where u ∈ W 1,1(Ω) and f : Ω × R × RN → [0,∞[ be a Borel function such that f(x, z, ξ) is

a convex function of ξ for any (x, z) ∈ Ω × RN satisfying some coercivity assumption in ξ.

Let f∗ denote the Legendre-Fenchel conjugate of f with respect to ξ. If

K := {φ = (φx, φs) : Ω × R → R2 : φ is smooth and f∗(x, s, φx(x, s)) ≤ φs(x, s)}.

then the lower semicontinuous relaxation of F is

F(u) = sup
φ∈K

∫

Ω

∫

R

φ ·Dχ{(x,s):s<u(x)}.

Based on this formula one can use a dual or a primal-dual numerical scheme to minimize

F(u) if one knows how to compute the projection onto the convex set K. We refer to [29]

for details.

8 Other problems: Image restoration

To approach the problem of image restoration from a numerical point of view we shall assume

that the image formation model incorporates the sampling process in a regular grid

fi,j = (h ∗ u)i.j + ni,j, (i, j) ∈ {1, . . . , N}2, (72)

where u : R2 → R denotes the ideal undistorted image, h : R2 → R is a blurring kernel, f

is the observed sampled image which is represented as a function f : {1, . . . , N}2 → R, and

ni,j is, as usual, a white Gaussian noise with zero mean and standard deviation σ.

Let us denote by ΩN the interval [0, N [2. As we said in the introduction, in order to

simplify this problem, we assume that h, u are functions defined in ΩN and are periodic of
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period N in each direction. To fix ideas, we assume that h, u ∈ L2(ΩN ), so that h ∗ u is a

continuous function in ΩN and the samples (h ∗ u)i,j, (i, j) ∈ {1, . . . , N}2, have sense.

Let us define the discrete functional

Jβ
d (u) =

∑

1≤i,j≤N

√
β2 + |(∇u)i,j |2, β ≥ 0.

For any function w ∈ L2(ΩN ), its Fourier coefficients are

ŵ l
N

, j
N

=

∫

ΩN

w(x, y)e−2πi
(lx+jy)

N for (l, j) ∈ Z2.

Our plan is to compute a band limited approximation to the solution of the restoration

problem for (72). For that we define

B := {u ∈ L2(ΩN ) : û is supported in {−1
2 + 1

N , . . . ,
1
2}}.

We notice that B is a finite dimensional vector space of dimension N2 which can be identified

with X. Both J(u) =
∫
ΩN

|Du| and J0
d (u) are norms on the quotient space B/R, hence they

are equivalent. With a slight abuse of notation we shall indistinctly write u ∈ B or u ∈ X.

We shall assume that the convolution kernel h ∈ L2(ΩN ) is such that ĥ is supported in

{−1
2 + 1

N , . . . ,
1
2} and ĥ(0, 0) = 1.

In the discrete framework, the ROF model for restoration is

Minimizeu∈XJ
β
d (u) (73)

subject to

N∑

i,j=1

|(h ∗ u)i,j − fi,j|2 ≤ σ2N2. (74)

Notice again that the image acquisition model (1) is only incorporated through a global con-

straint. In practice, the above problem is solved via the following unconstrained formulation

min
u∈X

max
α≥0

Jβ
d (u) +

α

2


 1

N2

N∑

i,j=1

|(h ∗ u)i,j − fi,j|2 − σ2


 (75)

where α ≥ 0 is a Lagrange multiplier. The appropriate value of α can be computed using

Uzawa’s algorithm [3] so that the constraint (74) is satisfied. Recall that if we interpret α−1

as a penalization parameter which controls the importance of the regularization term, and

we set this parameter to be small, then homogeneous zones are well denoised while highly

textured regions will loose a great part of its structure. On the contrary, if α−1 is set to be

small, texture will be kept but noise will remain in homogeneous regions. On the other hand,

as the authors of [3] observed, if we use the constrained formulation (73)-(74) or, equivalently

(75), then the Lagrange multiplier does not produce satisfactory results since we do not keep

textures and denoise flat regions simultaneously, and they proposed to incorporate the image

acquisition model as a set of local constraints.

Following [3], we propose to replace the constraint (74) by

G ∗ (h ∗ u− f)i,j ≤ σ2, ∀(i, j) ∈ {1, . . . , N}2, (76)
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where G is a discrete convolution kernel such that Gi,j > 0 for all (i, j) ∈ {1, . . . , N}2. The

effective support of G must permit the statistical estimation of the variance of the noise

with (76) [3]. Then we shall minimize the functional Jβ
d (u) on X submitted to the family

of constraints (76) (plus eventually the constraint
∑N

i,j=1(h ∗ u)i,j =
∑N

i,j=1 fi,j). Thus, we

propose to solve the optimization problem:

min
u∈B

Jβ
d (u)

subject to G ∗ (h ∗ u− f)2i,j ≤ σ2 ∀(i, j).

(77)

This problem is well-posed, i.e., there exists a solution and is unique if β > 0 and infc∈RG ∗
(f−c)2 > σ2. In case that β = 0 and infc∈RG∗(f−c)2 > σ2, then h∗u is unique. Moreover,

it can be solved with a gradient descent approach and Uzawa’s method [3].

To guarantee that the assumptions of Uzawa’s method hold we shall use a gradient

descent strategy. For that, let v ∈ X and γ > 0. At each step we have to solve a problem

like
min

u∈mathcalB
γ|u− v|2X + Jβ

d (u)

subject to G ∗ (h ∗ u− f)2i,j ≤ σ2 ∀(i, j).

(78)

We solve (78) using the unconstrained formulation

min
u∈X

max
α≥0

Lγ(u, {α}; v),

where α = (αi,j)
N
i,j=1 and

Lγ(u, {α}; v) = γ|u− v|2X + Jβ
d (u) +

N∑

i,j=1

αi,j(G ∗ (h ∗ u− f)2i,j − σ2).

Algorithm: TV based restoration algorithm with local constraints

1. Set u0 = 0 or, better, u0 = f . Set n = 0.

2. Use Uzawa’s algorithm to solve the problem

min
u∈X

max
α≥0

Lγ(u, {α};un), (79)

that is:

(a) Choose any set of values α0
i,j ≥ 0, (i, j) ∈ {1, . . . , N}2, and un

0 = un.

Iterate from p = 0 until convergence of αp the following steps:

(b) With the values of αp solve DP(γ, un):

min
u

Lγ(u, {αp};un)

starting with the initial condition un
p . Let un

p+1 be the solution obtained.
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(c) Update α in the following way:

αp+1
i,j = max(αp

i,j + ρ(G ∗ (h ∗ un
p − f)2i,j − σ2), 0) ∀(i, j).

Let un+1 be the solution of (79). Stop when convergence of un.

We notice that, since γ > 0, Uzawa’s algorithm converges if f ∈ h ∗ B. Moreover, if u0

satisfies the constraints, then un tends to a solution u of (77) as n→ ∞ [3].

Finally, to solve problem (79) in Step 2.(b) of the Algorithm we use either the extension

of Chambolle’s algorithm [25] to the restoration case if we use β = 0, or the quasi-Newton

method as in [4] adapted to solve (79) when β > 0. For more details, we refer to [3, 4] and

references therein.

Figure 4: Reference image and a filtered and noised image. a) Left: reference image. b)

Right: the data. This image has been generated applying the MTF given in (80) to the top

image and adding a Gaussian white noise of zero mean and standard deviation σ = 1.

8.1 Some restoration experiments

To simulate our data we use the modulation transfer function corresponding to SPOT 5

HRG satellite with Hipermode sampling (see [55] for more details):

ĥ(η1, η2) = e−4πβ1|η1|e−4πα
√

η2
1+η2

2 sinc(2η1)sinc(2η2)sinc(η1), (80)

where η1, η2 ∈ [−1/2, 1/2], sinc(η1) = sin(πη1)/(πη2), α = 0.58, and β1 = 0.14. Then we

filter the reference image given in Figure 4.a with the filter (80) and we add some Gaussian

white noise of zero mean and standard deviation σ (in our case σ = 1, which is a realistic

assumption for the case of satellite images [55]) to obtain the image displayed in Figure 4.b.

Figure 5.a displays the restoration of the image in Figure 4.b obtained using the Algorithm

of last section with β = 0. We have used a Gaussian function G of radius 6. The mean value
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of the constraint is mean((G∗(Ku−f))2) = 1.0933 and RMSE = 7.9862. Figure 5.b displays

the function αi,j obtained.

Figure 6 displays some details of the results that are obtained using a single global

constraint (74) and show its main drawbacks. Figure 6.a corresponds to the result obtained

with the Lagrange multiplier α = 10 (thus, the constraint (74) is satisfied). The result is not

satisfactory because it is difficult to denoise smooth regions and keep the textures at the same

time. Figure 6.b shows that most textures are lost when using a small value of α (α = 2)

and Figure 6.c shows that some noise is present if we use a larger value of α (α = 1000).

This result is to be compared with the same detail of Figure 5.a which is displayed in Figure

6.d.

Figure 5: Restored image with local Lagrange multipliers. a) Left: the restored image cor-

responding to the data given in Figure 4.b. The restoration has been obtained using the

Algorithm of last section with a Gaussian function G of radius 6. b) Right: the function αi,j

obtained.

8.2 The image model

For the purpose of image restoration the process of image formation can be modeled in a

first approximation by the formula [55]

f = Q
{
Π(h ∗ u) + n

}
, (81)

where u represents the photonic flux, h is the point spread function of the optical-sensor

joint apparatus, Π is a sampling operator, i.e. a Dirac comb supported by the centers of the

matrix of digital sensors, n represents a random perturbation due to photonic or electronic

noise, and Q is a uniform quantization operator mapping R to a discrete interval of values,

typically [0, 255].
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Figure 6: A detail of the restored images with global and local constraints. Top: a), b) and

c) display a detail of the results that are obtained using a a single global constraint (74) and

show its main drawbacks. Figure a) corresponds to the result obtained with the value of α

such that the constraint (74) is satisfied, in our case α = 10. Figure b) shows that most

textures are lost when using a small value of α (α = 2)and Figure c) shows that some noise

is present if we use a larger value of α (α = 1000). Bottom: d) displays the same detail of

Figure 5.a which has been obtained using restoration with local constraints.

The modulation transfer function for satellite images. We describe here a simple

model for the Modulation Transfer Function of a general satellite. More details can be found

in [55] where specific examples of MTF for different acquisition systems are shown. The

MTF used in our experiments (80) corresponds to a particular case of the general model

described below [55].

Recall that the MTF, that we denote by ĥ, is the Fourier transform of the point spread

function of the system. Let (η1, η2) ∈ [−1/2, 1/2] denote the coordinates in the frequency

domain. There are different parts in the acquisition system that contribute to the global

transfer function: the optical system, the sensor, and the blur effects due to motion. Since

each subsystem is considered as linear and translation invariant, it is modeled by a convo-

lution operator. The kernel k of the joint system is thus the convolution of the point spread

functions of the separated systems.

- Sensors: In CCD arrays every sensor has a sensitive region where all the photons that

arrive are integrated. This region can be approximated by a unit square [−c/2, c/2]2 where c

is the distance between consecutive sensors. Its impulse response is then the convolution of

two pulses, one in each spatial direction. The corresponding transfer function also includes

the effect of the conductivity (diffusion of information) between neighbouring sensors, which
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is modeled by an exponential decay factor, thus:

ĥS(η1, η2) = sinc(η1c)sinc(η2c)e
−2πβ1c|η1|e−2πβ2c|η2|,

where sinc(η1) = sin(πη1)/(πη1) and β1, β2 > 0.

- Optical system: The optical system has essentially two effects on the image: it projects

the objects from the object plane to the image plane and degrades it. The degradation of

the image due to the optical system makes that a light point source looses definition and

appears as a blurred (small) region. This effect can be explained by the wave nature of light

and its diffraction theory. Discarding other degradation effects due to the imperfect optical

systems like lens aberrations [12], the main source of degradation will be the diffraction of

the light when passing through a finite aperture: those systems are called diffraction limited

systems.

Assuming that the optical system is linear and translation invariant we know that it

can be modeled by a convolution operator. Indeed, if the system is linear and translation

invariant, it suffices to know the response of the system to a light point source located at the

origin, which is modeled by a Dirac delta function δ, since any other light distribution could

be approximated (in a weak topology) by superpositions of Dirac functions. The convolution

kernel is, thus, the result of the system acting on δ.

If we measure the light intensity and we use a circular aperture the MTF is considered

as an isotropic low-pass filter

ĥO(η1, η2) = e−2παc
√

η2
1+η2

2 , α > 0.

- Motion: each sensor counts the number of photons that arrive to its sensitive region

during a certain time of acquisition. During the sampling time the system moves a distance

τ and so does the sensor; this produces a motion blur effect in the motion direction (d1, d2):

ĥM (η1, η2) = sinc(〈(η1, η2), (d1, d2)〉τ).

Finally, the global MTF is the product of each of these intermediate transfer functions

modeling the different aspects of the satellite:

ĥ(η1, η2) = ĥS ĥOĥM .

Noise. We shall describe the typical noise in case of a CCD array. Light is constituted

by photons (quanta of light) and those photons are counted by the detector. Typically, the

sensor registers light intensity by transforming the number of photons which arrive to it into

an electric charge, counting the electrons which the photons take out of the atoms. This is

a process of a quantum nature and therefore there are random fluctuations in the number of

photons and photoelectrons on the photoactive surface of the detector. To this source of noise

we have to add the thermal fluctuations of the circuits that acquire and process the signal

from the detector’s photoactive surface. This random thermal noise is usually described by

34



a zero-mean white Gaussian process. The photoelectric fluctuations are more complex to

describe: for low light levels, photoelectric emission is governed by Bose-Einstein statistics,

which can be approximated by a Poisson distribution whose standard deviation is equal to the

square root of the mean; for high light levels, the number of photoelectrons emitted (which

follows a Poisson distribution) can be approximated by a Gaussian distribution which, being

the limit of a Poisson process, inherits the relation between its standard deviation and its

mean [12]. In a first approximation this noise is considered as spatially uncorrelated with a

uniform power spectrum, thus a white noise. Finally, both sources of noise are assumed to

be independent.

Taken together, both sources of noise are approximated by a gaussian white noise, which

is represented in the basic equation (81) by the noise term n. The average signal to noise

ratio, called the SNR, can be estimated by the quotient between the signals average and

the square root of the variance of the signal.

The detailed description of the noise requires a knowledge of the precise system of image

acquisition. More details in the case of satellite images can be found in [55] and references

therein.

9 Final remarks: A different total variation based approach

to denoising

Let us briefly comment on the interesting work [49] which interprets the total variation model

for image denoising in a Bayesian way leading to a different algorithm based on stochastic

optimization which produces better results.

We work again in the discrete setting and consider the image model

fi,j = ui,j + ni,j (i, j) ∈ {1, . . . , N}2, (82)

where ni,j is a white Gaussian noise with zero mean and standard deviation σ.

The solution of (36) can be viewed as a Maximum a Posteriori (MAP) estimate of the

original image u. Let β > 0 and let pβ be the prior probability density function defined by

pβ(u) ∝ e−βJd(u) u ∈ X,

where we have omitted the normalization constant. The prior distribution models the gradi-

ent norms of each pixel as independent and identically distributed random variables following

a Laplace distribution. Although the model does not exactly fit the reality since high gra-

dient norms in real images are concentrated along curves and are not independent, it has

been found to be convenient and efficient for many tasks in image processing and we follow

it here.

Since the probability density of f given u is the density for n = f − u, then

p(f |u) ∝ e−
‖f−u‖2X

2σ2 .
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Figure 7: a) Left: the result obtained by computing E(u|f) and βσ2 = λ = 20, σ = 10 (image

courtesy of Cécile Louchet). b) Right: the result obtained using Chambolle’s algorithm with

λ = 20.

Using Bayes rule, the posterior density of u given f is

pβ(u|f) =
1

Z
p(f |u)pβ(u) =

1

Z
e
−

(
‖f−u‖2

X
2σ2 +βJd(u)

)

, (83)

where Z =

∫

RN2
e
−

(
‖f−u‖2X

2σ2 +βJd(u)

)

du is the normalization constant making the mass of

pβ(u|f) to be 1. Then the maximization of the a posteriori density (83) is equivalent to the

minimization problem (36) provided that βσ2 = λ.

The estimation of u proposed in [49] consists in computing the expected value of u given

f :

E(u|f) =
1

Z

∫

RN2
upβ(u|f) du =

1

Z

∫

RN2
ue

−

(
‖f−u‖2

X
2σ2 +βJd(u)

)

du. (84)

This estimate requires to compute an integral in a high dimensional space. In [49], the

authors propose to approximate this integral with a Markov Chain Monte-Carlo algorithm

(MCMC). In Figure 7.a we display the result of denoising the image in Figure 2.b which has

a noise of standard deviation σ = 10 with the parameter β = 20
σ2 . In Figure 7.b we display

the denoising of the same image using Chambolle’s algorithm with λ = 20. Notice that in

both cases the parameter λ is the same.
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[55] B. Rougé. Théorie de l’echantillonage et satellites d’observation de la terre. Analyse de

Fourier et traitement d’images, Journées X-UPS 1998.

[56] L. Rudin and S. Osher. Total Variation based Image Restoration with Free Local

Constraints. In Proc. of the IEEE ICIP-94, vol. 1, Austin, TX, pp. 31-35, 1994.

[57] L. Rudin, S. Osher, and E. Fatemi. Nonlinear Total Variation based Noise Removal

Algorithms. Physica D. 60, 259-268, 1992.

[58] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational

methods in imaging. Applied Mathmatical Sciences, Spriner Verlag, 2008.

[59] L. Vese. A Study in the BV Space of a Denoising-Deblurring Variational Problem. Appl.

Math. Optim. 44, 131-161, 2001.

[60] M. Zhu and T.F. Chan. An efficient primal-dual hybrid gradient algorithm for total

variation image restoration. Preprint 2008.

[61] W. P. Ziemer. Weakly Differentiable Functions, GTM 120, Springer Verlag, 1989.

40


