Some remarks on uniqueness and regularity of Cheeger sets

V. Caselles* , A. Chambolle † , M. Novaga ‡

Abstract

We show that the subsets of \mathbb{R}^N with finite volume have a unique Cheeger set, up to small perturbations. We also prove that Cheeger sets are $C^{1,1}$, when the ambient set is $C^{1,1}$.

Contents

1	Introduction	1
2	Maximal and minimal Cheeger sets	3
3	Uniqueness of Cheeger sets up to small perturbations	5
4	Regularity of Cheeger sets in regular domains	6

1 Introduction

Given a nonempty set $\Omega \subset \mathbb{R}^N$ with finite volume, we call Cheeger constant of Ω the quantity

$$h_{\Omega} := \min_{F \subseteq \Omega} \frac{P(F)}{|F|}, \qquad (1)$$

where |F| denotes de N-dimensional volume of F, P(F) denotes the perimeter of F [5], and the minimum is taken over all nonempty sets of finite perimeter contained in Ω . A *Cheeger* set of Ω is any set $G \subseteq \Omega$ which minimizes (1).

For any set F of finite perimeter in \mathbb{R}^N , let us define

$$\lambda_F := \frac{P(F)}{|F|}.$$

^{*}Departament de Tecnologia, Universitat Pompeu-Fabra, Barcelona, Spain, e-mail: vicent.caselles@tecn.upf.es

 $^{^{\}dagger}{\rm CMAP},$ CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France, e-mail: antonin.chambolle@polytechnique.fr

[‡]Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, e-mail: novaga@dm.unipi.it

Notice that for any Cheeger set G of Ω it holds $\lambda_G = h_{\Omega}$, as a consequence G is a Cheeger set of Ω if and only if G solves the minimum problem (whose value is zero):

$$\min_{F \subseteq \Omega} P(F) - h_{\Omega}|F|.$$
(2)

Finding the Cheeger sets of a given set Ω is, in general, a difficult task. This task is simplified if Ω is a convex set and N = 2. In that case, there is a unique Cheeger set and is given by $\Omega^R \oplus B_R$ where $\Omega^R := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > R\}$ and R > 0 is such that $|\Omega^R| = \pi R^2$ [2, 23] (we denote by $X \oplus Y$ the set $\{x + y : x \in X, y \in Y\}$). In particular, we observe that the Cheeger set of Ω is convex. Both features, uniqueness and convexity of the Cheeger set are due to the convexity of Ω (a simple counterexample is given in [23] when Ω is not convex).

The uniqueness of the Cheeger set inside bounded convex subsets of \mathbb{R}^N was proved in [13] when the convex body is uniformly convex and of class C^2 , and in [1] in the general case. In the convex case, the $C^{1,1}$ regularity of Cheeger sets is a consequence of the results in [18, 19, 28]. Moreover, a Cheeger set can be characterized in terms of the mean curvature of its boundary: the sum of the principal curvatures being bounded by the Cheeger constant (see [17, 6, 23, 2] for N = 2 and [3, 1] for the general case).

Let us comment on the role played by the Cheeger constant in other contexts. Given an open bounded set $\Omega \subseteq \mathbb{R}^N$ with Lipschitz boundary and $p \in (1, \infty)$, the Cheeger constant of Ω permits to give a lower bound on the first eigenvalue of the *p*-Laplacian on Ω with Dirichlet boundary conditions. Indeed, if we define

$$\lambda_p(\Omega) := \min_{0 \neq v \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} |v|^p \, dx},\tag{3}$$

then

$$\lambda_p(\Omega) \ge \left(\frac{h_\Omega}{p}\right)^p \,. \tag{4}$$

This result was proved in [15] when p = 2 and extended to any $p \in (1, \infty)$ in [21]. When p = 1 the first eigenvalue of the 1-Laplacian is defined by

$$\lambda_1(\Omega) := \min_{0 \neq v \in BV(\Omega)} \frac{\int_{\Omega} |Dv| + \int_{\partial \Omega} |v| \, d\mathcal{H}^{N-1}}{\int_{\Omega} |v| \, dx} \,, \tag{5}$$

where $BV(\Omega)$ denotes the space of functions of bounded variation in Ω . Then $\lambda_1(\Omega) = h_\Omega$ and both problems are equivalent in the following sense: a function $u \in BV(\Omega)$ is a minimum of (5) if and only if almost every level set is a Cheeger set (see [22]). These results have been extended in several directions, in particular, using weighted volume and perimeter [11, 7] and for anisotropic versions of the perimeter [24]. Let us also recall that Cheeger sets are related to the global behavior of solutions of the time-dependent constant-mean-curvature equation under vanishing initial condition and Dirichlet boundary data [26]. Finally, we mention an interesting interpretation of the Cheeger constant in terms of the max flow min cut theorem [27, 20]. The plan of the paper is the following: in Section 2 we show the existence of the maximal and the minimal Cheeger sets, inside any set $\Omega \subset \mathbb{R}^N$ of finite volume. In Section 3 we prove that there exists a unique Cheeger set, up to arbitrarily small perturbations of Ω . Finally, in Section 4 we show that Cheeger sets are always of class $C^{1,1}$, out of a singular set of dimension at most N - 8, when Ω is also of class $C^{1,1}$. In Remark 4.2, we point out that the uniqueness and regularity results can be extended to minimizers of (2), with h_{Ω} replaced by a generic $\lambda > h_{\Omega}$.

2 Maximal and minimal Cheeger sets

Definition 2.1. Let Ω be a measurable set in \mathbb{R}^N of finite volume. We say that a Cheeger set $X \subseteq \Omega$ is a maximal Cheeger set if $Y \subseteq X$ for all Cheeger sets $Y \subseteq \Omega$. We say that Xis a minimal Cheeger set if either $Y \supseteq X$ or $Y \cap X = \emptyset$ for all Cheeger sets $Y \subseteq \Omega$.

Lemma 2.2. Let X, Y be two Cheeger sets in Ω . Then $X \cup Y$ and $X \cap Y$ (if non-empty) are also Cheeger sets in Ω .

Proof. Since X, Y are Cheeger sets, we have

$$P(X \cup Y) + P(X \cap Y) \le P(X) + P(Y) = h_{\Omega}(|X| + |Y|) = h_{\Omega}(|X \cup Y| + |X \cap Y|).$$

Now, using that

$$\frac{P(X \cap Y)}{|X \cap Y|} \ge h_{\Omega}$$

we have that

$$P(X \cup Y) \le h_{\Omega}|X \cup Y|.$$

As a consequence $X \cup Y$ is Cheeger, hence $P(X \cup Y) = h_{\Omega}|X \cup Y|$. Then, we deduce that $P(X \cap Y) = h_{\Omega}|X \cap Y|$, that is $X \cap Y$ is also a Cheeger set.

As a consequence of Lemma 2.2, we obtain:

Lemma 2.3. There exists a maximal Cheeger set $C_{\max} \subseteq \Omega$. Moreover C_{\max} is a bounded set.

The second assertion easily follows from standard density estimates for solutions of (2): there exists $\rho_0 > 0$ and $\delta > 0$ such that if $\rho < \rho_0$, either $|B_{\rho}(x) \cap C_{\max}| > \delta$, or there exists $\rho' < \rho$ with $|B_{\rho'}(x) \cap C_{\max}| = 0$, see [4]. In particular, it shows that the set of points where C_{\max} (or any other Cheeger set of Ω) has Lebesgue density zero is an open set. This is not true for the points of density one, at least if Ω is not open, as shown by the example of a set Ω with empty interior.

Lemma 2.4. Let X, Y be two Cheeger sets in Ω . Assume that X is minimal, that is, it contains no other Cheeger set inside. Then either $X \subseteq Y$ or $X \cap Y = \emptyset$. In particular, two minimal Cheeger sets are disjoint.

Proof. If $X \cap Y$ is nonempty, then it is also a Cheeger set contained in X. Since X is minimal, we have $X \cap Y = X$, that is $X \subseteq Y$.

Recall that, by the isoperimetric inequality, there exists a constant $\alpha = \alpha(\Omega) > 0$ such that any Cheeger set in Ω has volume greater or equal to α .

Lemma 2.5. There are minimal Cheeger sets in Ω and they are finite in number. In particular, Cheeger sets of minimal volume are minimal Cheeger sets, and any Cheeger set contains a minimal Cheeger set.

Proof. Consider the problem $\min\{|X| : X \text{ is a Cheeger set of } \Omega\}$. Then any minimizing sequence has a subsequence converging to a set, say X, such that X is a Cheeger set of minimal volume. By Lemma 2.2, the set X does not intersect any other Cheeger set, therefore is minimal. Since any of such sets has a volume $\geq \alpha$, there are only finitely many of them. To prove the last assertion, we just take a minimal volume Cheeger set between the ones contained in the given Cheeger set.

Remark 2.6. If Ω is an open set and C is a minimizer of (2), by classical regularity results [25] we know that $(\partial C \setminus \Sigma) \cap \Omega$ is analytic, where Σ is a closed singular set of dimension at most N-8. Moreover, if Ω is of class $C^{1,1}$, then C is a minimizer of a prescribed curvature problem with curvature in L^{∞} [8], hence $\partial C \setminus \Sigma$ is of class $W^{2,p}$ for all $p < \infty$ (see also [29] for the case N = 3).

Remark 2.7. By a result of Giusti [17], an open set $X \subset \Omega$ is a minimal Cheeger set iff X has finite perimeter and there is a solution of the capillary problem in X (with vertical contact angle), i.e. there exists a vector field $z: X \to \mathbb{R}^N$ such that |z| < 1 and $-\text{div} z = h_{\Omega}$.

Remark 2.8. The computation of the maximal Cheeger set has been the object of recent interest [12]. By adapting the proof of Proposition 4 in [3] one can prove the following result. Let Ω be a bounded subset of \mathbb{R}^N with Lipschitz continuous boundary, and let $u \in BV(\Omega) \cap L^2(\Omega)$ be the solution of the variational problem

$$(Q)_{\lambda}: \min_{u \in BV(\Omega) \cap L^{2}(\Omega)} \left\{ \int_{\Omega} |Du| + \frac{\lambda}{2} \int_{\Omega} (u-1)^{2} dx + \int_{\partial \Omega} |u| d\mathcal{H}^{N-1} \right\}.$$
(6)

Then $0 \le u \le 1$. Let $E_s := \{u \ge s\}, s \in (0, 1]$. Then for any $s \in (0, 1]$ we have

$$P(E_s) - \lambda(1-s)|E_s| \le P(F) - \lambda(1-s)|F|$$
(7)

for any $F \subseteq \Omega$. If $\lambda > 0$ is big enough, indeed greater than $1/\|\chi_{\Omega}\|_*$ where

$$\|\chi_{\Omega}\|_{*} := \max\left\{\int_{\mathbb{R}^{N}} u\,\chi_{\Omega}\,dx: \ u \in BV(\mathbb{R}^{N}), \ \int_{\Omega} |Du| \leq 1\right\}$$

then the level set $\{u = ||u||_{\infty}\}$ is the maximal Cheeger set of Ω . In particular, the maximal Cheeger set can be computed by solving (6), and for that we can use the algorithm in [14].

3 Uniqueness of Cheeger sets up to small perturbations

We prove that the Cheeger is unique, up to arbitrarily small perturbations of the ambient set Ω .

Theorem 1. Let $\Omega \subset \mathbb{R}^N$ be an open set with finite volume. Then, for any compact set $K \subset \Omega$ there exists a bounded open set $\Omega_K \subseteq \Omega$ such that $K \subset \Omega_K$ and Ω_K has a unique Cheeger set.

Proof. By Lemma 2.5, we know that Ω has a finite number of disjoint minimal Cheeger sets. Let C be a minimal Cheeger set of Ω , let $\overline{\Omega}$ be any open set such that $K \subset \overline{\Omega} \subset \subset \Omega$, and let $\Omega_K := C \cup \Omega$. Notice that C is also a (minimal) Cheeger set in Ω_K , and we want to show that it is the only one. Indeed, let D be a Cheeger set in Ω_K , then by Lemma 2.4 either $D \supseteq C$ or $D \cap C = \emptyset$. The latter cannot happen, since in this case we would have $D \subseteq \Omega_K \setminus C \subseteq \Omega \subset \Omega$, but the distance of D from the boundary of Ω cannot be positive, otherwise we could decrease the quotient P(D)/|D| by rescaling D with a factor larger than one. It then follows $D \supseteq C$. By Remark 2.6 there exist singular sets $\Sigma_C \subset \partial C$ and $\Sigma_D \subset \partial D$, of dimension at most N-8, such that $A_C := (\partial C \setminus \Sigma_C) \cap \Omega$ and $A_D := (\partial D \setminus \Sigma_D) \cap \Omega$ are both analytic solutions of the geometric equation $(N-1)\mathbf{H} = h_{\Omega}$, where **H** denotes the mean curvature. As a consequence, since $\mathcal{H}^{N-1}(A_C \cap A_D) \geq \mathcal{H}^{N-1}((\partial C \setminus \widetilde{\Omega}) \cap \Omega) > 0$, by analytic continuation we get $A_D = A_C$. More precisely, assume by contradiction that we can find $\bar{x} \in A_C \cap A_D$ such that $A_C \cap B_\rho(\bar{x}) \neq A_D \cap B_\rho(\bar{x})$ for all $\rho > 0$. Letting T be the tangent hyperplane to ∂D at \bar{x} , we can write ∂D and ∂C as the graph of two smooth functions v^* and v_* , respectively, over $T \cap B_\rho(\bar{x})$ for $\rho > 0$ small enough. Identifying $T \cap B_{\rho}(\bar{x})$ with $B_{\rho} \subset \mathbb{R}^{N-1}$, we have that $v_*, v^* : B_{\rho} \to \mathbb{R}$ both solve the equation

$$-\operatorname{div}\frac{Dv}{\sqrt{1+|Dv|^2}} = h_{\Omega}.$$
(8)

Moreover, it holds $v_* \geq v^*$, $v_*(0) = v^*(0)$ and $v_*(\tilde{y}) > v^*(\tilde{y})$ for some $\tilde{y} \in B_{\rho}$. Let B be an open ball such that $\overline{B} \subset B_{\rho}$, $v_* > v^*$ on B and $v_*(y) = v^*(y)$ for some $y \in \partial B$. Notice that, since both v^* and v_* belong to $C^{\infty}(B) \cap C^1(\overline{B})$, the fact that $v_*(y) = v^*(y)$ also implies that $Dv_*(y) = Dv^*(y)$. In B, both functions solve (8). Letting now $w = v_* - v^*$, we have that w(y) = 0 and Dw(y) = 0, while w > 0 inside B. For any $x \in B$ we have

$$0 = \operatorname{div} (D\Psi(Dv_*(x)) - D\Psi(Dv^*(x)))$$

= $\operatorname{div} \left(\left(\int_0^1 D^2 \Psi(Dv^*(x) + t(Dv_*(x) - Dv^*(x))) dt \right) Dw(x) \right),$

where $\Psi(p) = \sqrt{1 + |p|^2}$, so that w solves a linear, uniformly elliptic equation with smooth coefficients. Then Hopf's lemma [16] implies that $Dw(y) \cdot \nu_B(y) < 0$, a contradiction. Hence $A_C = A_D$, which is equivalent to C = D.

Remark 3.1. Notice that, given any open set Ω with finite volume, for all $\epsilon > 0$, we can find a set $\Omega_{\epsilon} \subset \Omega$ such that $|\Omega \setminus \Omega_{\epsilon}| < \epsilon$ and Ω_{ϵ} has a unique Cheeger set. Indeed, considering

as above a minimal Cheeger set $C \subset \Omega$, we can define

$$\Omega_\epsilon := \Omega \setminus \bigcup_{q \in \mathbb{Q}^N \cap \Omega \backslash C} \overline{B_{r(q)}},$$

where r(q) > 0 is such that $B_{r(q)} \subset \Omega \setminus C$ and

$$\sum_{q \in \mathbb{Q}^N \cap \Omega \setminus C} r(q) < \epsilon.$$

Let D be a Cheeger set in Ω_{ϵ} different from C, then $|D \setminus C| > 0$. By the regularity result in Remark 2.6, it follows that $D \setminus C$ has nonempty interior, which is impossible by the construction of Ω_{ϵ} .

We can require that also Ω_{ϵ} is open but the construction is a bit more complicated. First, we need to remove from Ω a small closed ball inside each minimal Cheeger set different from C. This ensures that any Cheeger set C' in the new set must contain C. Then, we remove from Ω a (possibly countable) union of closed balls contained in $\Omega \setminus C$, each one touching a connected component of $\partial C \cap \Omega$.

Remark 3.2. For a general open set Ω , one may also consider a different notion of Cheeger set, based on the following definition of perimeter:

$$P_{\Omega}(E) := \sup\left\{\int_{E} \operatorname{div} \phi \, dx : \phi \in C^{1}(\Omega, \mathbb{R}^{N}), \, |\phi| \leq 1, \, \operatorname{div} \phi \in L^{\infty}(\Omega)\right\},\,$$

which coincides with the lower semicontinuous relaxation of the usual perimeter restricted to the compact subsets of Ω . Notice that such notion of Cheeger set gives a higher Cheeger constant of Ω , which still verifies (4), and it coincides with the classical notion if, for instance, Ω is the subgraph of a continuous function near each point of its boundary. We observe that Theorem 1 remains true also with this definition of Cheeger set.

4 Regularity of Cheeger sets in regular domains

We now show that each Cheeger set of Ω is of class $C^{1,1}$, if Ω is also of class $C^{1,1}$.

Theorem 2. Let Ω be a bounded open set with boundary of class $C^{1,1}$. Then any Cheeger set C of Ω has boundary of class $C^{1,1}$, out of a closed singular set $\Sigma \subset \partial C$ of dimension at most N-8.

Proof. We know that any Cheeger set is a solution of the variational problem (2). Let C be a Cheeger set of Ω , and let $x_0 \in (\partial C \setminus \Sigma) \cap \partial \Omega$, where the singular set Σ is as in Remark 2.6. We may assume that near x_0 , $\partial \Omega$ is the graph of a $C^{1,1}$ function $f : B_{2r} \to \mathbb{R}$ where B_{2r} is an (N-1)-dimensional ball centered at x_0 of radius 2r. We may as well assume that ∂C is the graph of $u : B_{2r} \to \mathbb{R}$. We know that $u \in W^{2,p}(B_{2r})$ for any $p < \infty$, in particular $u \in C^{1,\alpha}(B_{2r})$ for any $\alpha < 1$. We observe that u is a solution of

$$\min\left\{\int_{B_r} \left(\sqrt{1+|\nabla v|^2} + h_\Omega v\right) \, dx: \ v \in BV(B_r), \ v \ge f, \ v|_{\partial B_r} = u|_{\partial B_r}\right\}. \tag{9}$$

The result follows by adapting the proof of regularity for the obstacle problem in [9]. Indeed, since $\partial\Omega$ is of class $C^{1,1}$, ∇f has modulus of continuity $\sigma(r) \leq \kappa r$, $\kappa > 0$. Letting $L(x) := f(x_0) + \nabla f(x_0) \cdot (x - x_0)$, we have

$$L(x) - \kappa r^2 \le f(x) \le u(x)$$
 $x \in B_r$.

We shall prove that

$$u(x) \le L(x) + Cr^2 \qquad x \in B_{\frac{r}{2}},\tag{10}$$

for some constant C > 0. We shall denote by C a positive constant that may vary from line to line. Consider $w = u - (L - \kappa r^2) \ge 0$, and observe that u satisfies the equation

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) + h_{\Omega} \ge 0 \qquad x \in B_r,\tag{11}$$

with equality in $D = \{x \in B_r : u(x) > f(x)\}$. Due to the regularity of u, (11) can be written

$$-a_{ij}(x)\partial_{x_ix_j}u + h_{\Omega} \ge 0 \qquad x \in B_r,$$
(12)

where $a_{ij} \in C^{\alpha}(B_r)$ are uniformly positive. It follows that also w satisfies (12) (and, still, with an equality in D). Let now w_1 be the solution of

$$-a_{ij}(x)\partial_{x_ix_j}w_1 + h_\Omega = 0 \qquad x \in B_r,$$

with $w_1|_{\partial B_r} = w|_{\partial B_r} \ge 0$. Observe that $w_1 \le w$. Without loss of generality, we assume that $x_0 = 0$. Let $\gamma = h_\Omega/(\min_{x \in B_r} Tr(A(x)))$, where $A(x) = (a_{ij}(x))$, and $Q(x) = (\gamma/2)(|x|^2 - r^2)$. Then, Q is a subsolution of (12) in B_r , with $Q|_{\partial B_r} = 0$, so that $Q \le w_1$ in B_r . In particular, we have that

$$-a_{ij}(x)\partial_{x_ix_j}(w_1-Q) = h_\Omega\left(\frac{Tr(A(x))}{\min_{B_r} Tr(A)} - 1\right) \qquad x \in B_r,$$

and the right-hand side of this equation is bounded by Cr^{α} (since A(x) is Hölderian of exponent α). We have

$$w_1(x_0) \le w(x_0) = u(x_0) - (L(x_0) - \kappa r^2) = f(x_0) - (L(x_0) - \kappa r^2) = \kappa r^2,$$

while, since $w_1 - Q \ge 0$, it satisfies a Harnack inequality [16, Thms 9.20 and 9.22] in $B_{r/2}$:

$$w_1(x) - Q(x) \le C \inf_{B_r} (w_1 - Q) + Cr^2$$

 $\le C w_1(x_0) + C \frac{\gamma}{2} r^2 + Cr^2 \le Cr^2,$

hence also $w_1(x) \leq Cr^2$, for any $x \in B_{r/2}$ (for some constant C > 0 which does not blow-up as $r \to 0$).

Let now $w_2 := w - w_1$. The function w_2 satisfies $0 \le w_2 \le w - Q$, $w_2|_{\partial B_r} = 0$, and

$$-a_{ij}(x)\partial_{x_ix_j}w_2 \ge 0 \qquad x \in B_r,\tag{13}$$

again, with an equality if $x \in D$. Consider $\bar{x} \in B_r$ a point where w_2 reaches its maximum: then, either $w_2(\bar{x}) = 0$, in which case $w_2 = 0$ inside B_r , or $w_2(\bar{x}) > 0$, in which case we must have $\bar{x} \notin D$, since (13) is satisfied with an equality in D (it could be that w_2 is constant and maximal in D, in which case we may always assume $\bar{x} \in \partial D \cap B_r$).

Thus, either $w_2 = 0$ in B_r , or $u(\bar{x}) = f(\bar{x})$. In particular, in the latter case, we find that for any $x \in B_r$,

$$w_2(x) \leq w_2(\bar{x}) \leq w(\bar{x}) - Q(\bar{x}) = u(\bar{x}) - (L(\bar{x}) - \kappa r^2) + \frac{\gamma}{2}(r^2 - |x|^2)$$

$$\leq f(\bar{x}) - f(0) - \nabla f(0) \cdot \bar{x} + Cr^2 \leq Cr^2,$$

so that $w(x) = w_1(x) + w_2(x) \leq Cr^2$ if $x \in B_{r/2}$, which shows (10).

Remark 4.1. Since the Cheeger sets of Ω are solutions of (2), if Ω is of class $C^{1,1}$ and C is a Cheeger set of Ω , we have $(N-1)\mathbf{H}_C(x) \leq h_{\Omega}$ for a.e. $x \in \partial C$.

Remark 4.2. We point out that Theorems 1 and 2 extend also to minimizers of (2), with h_{Ω} replaced by any $\lambda > h_{\Omega}$ (see [3]).

Acknowledgement. The first author acknowledges partial support by PNPGC project, reference MTM2006-14836. The second author is partially supported by the "Agence Nationale de la Recherche", project ANR-06-BLAN-0082.

References

- [1] F. Alter, V. Caselles. Uniqueness of the Cheeger set of a convex body. To appear in Nonlinear Analysis, TMA.
- [2] F. Alter, V. Caselles, A. Chambolle. Evolution of Convex Sets in the Plane by the Minimizing Total Variation Flow. Interfaces and Free Boundaries 7, 29-53 (2005).
- [4] L. Ambrosio. Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore, Pisa, 1997.
- [5] L. Ambrosio, N. Fusco, D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000.
- [6] G. Bellettini, V. Caselles, M. Novaga. The Total Variation Flow in ℝ^N. J. Differential Equations 184, 475-525 (2002).
- [7] G. Buttazzo, G. Carlier, and M. Comte. On the selection of maximal Cheeger sets. Differential and Integral Equations 20 (9), 991-1004 (2007).
- [8] E. Barozzi and U. Massari. Regularity of minimal boundaries with obstacles. Rend. Sem. Mat. Univ. Padova 66, 129–135 (1982).

- [9] L. A. Caffarelli, The obstacle problem revisited. The Journal of Fourier Analysis and Applications 4, 383-402 (1998).
- [10] L.A. Caffarelli and N.M. Riviere. On the rectifiability of domains with finite perimeter. Ann. Scuola Normale Superiore di Pisa 3, 177-186 (1976).
- [11] G. Carlier, M. Comte, On a weighted total variation minimization problem, J. Funct. Anal. 250, 214–226 (2007).
- [12] G. Carlier, M. Comte, and G. Peyré. Approximation of maximal Cheeger sets by projection. Preprint (2007).
- [13] V. Caselles, A. Chambolle, and M. Novaga. Uniqueness of the Cheeger set of a convex body. Pacific Journal of Mathematics 232 (1), 77-90 (2007).
- [14] A. Chambolle, An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89-97 (2004).
- [15] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970, 195-199.
- [16] D. Gilbarg and N.S. Trudinger. Elliptic partial Differential Equations of Second Order, Springer Verlag, 1998.
- [17] E. Giusti. On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions. Invent. Math. 46, 111-137 (1978).
- [18] E. H. A. Gonzalez, U. Massari, I. Tamanini. Minimal boundaries enclosing a given volume, Manuscripta Math. 34 381-395 (1981).
- [19] E. Gonzalez, U. Massari, I. Tamanini. On the regularity of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. Journal, 32, 25-37 (1983).
- [20] D. Grieser. The first eigenvalue of the Laplacian, isoperimetric constants, and the max-flow min-cut theorem. Arch. Math., 87 (1), 75-85 (2006).
- [21] L. Lefton, D. Wei. Numerical approximation of the first eigenpair of the p-laplacian using finite elements and the penalty method. Numer. Funct. Anal. Optim., 18 (3-4), 389-399 (1997).
- [22] B. Kawohl, V. Fridman, Isoperimetric estimates for the first eigenvalue of the *p*-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae 44, 659-667 (2003).
- [23] B. Kawohl, T. Lachand-Robert. Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (1), 103-118 (2006).
- [24] B. Kawohl, M. Novaga. The *p*-Laplace eigenvalue problem as $p \to 1$ and Cheeger sets in a Finsler metric. J. Convex Anal. **15** (3), 623-634 (2008).

- [25] U. Massari. Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in \mathbb{R}^n . Arch. Rat. Mech. Anal. **55**, 357-382 (1974).
- [26] P. Marcellini, K. Miller. Asymptotic growth for the parabolic equation of prescribed mean curvature. J. Differential Equations 51 (3), 326-358 (1984).
- [27] G. Strang. Maximal flow through a domain. Math. Programming 26 (2), 123-143 (1983).
- [28] E. Stredulinsky, W.P. Ziemer. Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7, 653-677 (1997).
- [29] J. Taylor. Boundary regularity for solutions to various capillarity and free boundary problems. Comm. in Partial Differential Equations 2, 323-357 (1977).