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Abstract

We show that the subsets of RN with �nite volume have a unique Cheeger set, up to

small perturbations. We also prove that Cheeger sets are C1,1, when the ambient set

is C1,1.
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1 Introduction

Given a nonempty set Ω ⊂ RN with �nite volume, we call Cheeger constant of Ω the quantity

hΩ := min
F⊆Ω

P (F )
|F |

, (1)

where |F | denotes de N -dimensional volume of F , P (F ) denotes the perimeter of F [5], and

the minimum is taken over all nonempty sets of �nite perimeter contained in Ω. A Cheeger

set of Ω is any set G ⊆ Ω which minimizes (1).

For any set F of �nite perimeter in RN , let us de�ne

λF :=
P (F )
|F |

.
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Notice that for any Cheeger set G of Ω it holds λG = hΩ, as a consequence G is a Cheeger

set of Ω if and only if G solves the minimum problem (whose value is zero):

min
F⊆Ω

P (F )− hΩ|F |. (2)

Finding the Cheeger sets of a given set Ω is, in general, a di�cult task. This task is

simpli�ed if Ω is a convex set and N = 2. In that case, there is a unique Cheeger set and

is given by ΩR ⊕ BR where ΩR := {x ∈ Ω : dist(x, ∂Ω) > R} and R > 0 is such that

|ΩR| = πR2 [2, 23] (we denote by X ⊕ Y the set {x + y : x ∈ X, y ∈ Y }). In particular, we

observe that the Cheeger set of Ω is convex. Both features, uniqueness and convexity of the

Cheeger set are due to the convexity of Ω (a simple counterexample is given in [23] when Ω
is not convex).

The uniqueness of the Cheeger set inside bounded convex subsets of RN was proved in

[13] when the convex body is uniformly convex and of class C2, and in [1] in the general

case. In the convex case, the C1,1 regularity of Cheeger sets is a consequence of the results

in [18, 19, 28]. Moreover, a Cheeger set can be characterized in terms of the mean curvature

of its boundary: the sum of the principal curvatures being bounded by the Cheeger constant

(see [17, 6, 23, 2] for N = 2 and [3, 1] for the general case).

Let us comment on the role played by the Cheeger constant in other contexts. Given an

open bounded set Ω ⊆ RN with Lipschitz boundary and p ∈ (1,∞), the Cheeger constant
of Ω permits to give a lower bound on the �rst eigenvalue of the p-Laplacian on Ω with

Dirichlet boundary conditions. Indeed, if we de�ne

λp(Ω) := min
0 6=v∈W 1,p

0 (Ω)

∫
Ω |∇v|p dx∫
Ω |v|p dx

, (3)

then

λp(Ω) ≥
(

hΩ

p

)p

. (4)

This result was proved in [15] when p = 2 and extended to any p ∈ (1,∞) in [21]. When

p = 1 the �rst eigenvalue of the 1-Laplacian is de�ned by

λ1(Ω) := min
0 6=v∈BV (Ω)

∫
Ω |Dv|+

∫
∂Ω |v| dH

N−1∫
Ω |v| dx

, (5)

where BV (Ω) denotes the space of functions of bounded variation in Ω. Then λ1(Ω) = hΩ

and both problems are equivalent in the following sense: a function u ∈ BV (Ω) is a minimum

of (5) if and only if almost every level set is a Cheeger set (see [22]). These results have been

extended in several directions, in particular, using weighted volume and perimeter [11, 7]

and for anisotropic versions of the perimeter [24]. Let us also recall that Cheeger sets are

related to the global behavior of solutions of the time-dependent constant-mean-curvature

equation under vanishing initial condition and Dirichlet boundary data [26]. Finally, we

mention an interesting interpretation of the Cheeger constant in terms of the max �ow min

cut theorem [27, 20].
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The plan of the paper is the following: in Section 2 we show the existence of the maximal

and the minimal Cheeger sets, inside any set Ω ⊂ RN of �nite volume. In Section 3 we

prove that there exists a unique Cheeger set, up to arbitrarily small perturbations of Ω.
Finally, in Section 4 we show that Cheeger sets are always of class C1,1, out of a singular

set of dimension at most N − 8, when Ω is also of class C1,1. In Remark 4.2, we point out

that the uniqueness and regularity results can be extended to minimizers of (2), with hΩ

replaced by a generic λ > hΩ.

2 Maximal and minimal Cheeger sets

De�nition 2.1. Let Ω be a measurable set in RN of �nite volume. We say that a Cheeger

set X ⊆ Ω is a maximal Cheeger set if Y ⊆ X for all Cheeger sets Y ⊆ Ω. We say that X

is a minimal Cheeger set if either Y ⊇ X or Y ∩X = ∅ for all Cheeger sets Y ⊆ Ω.

Lemma 2.2. Let X, Y be two Cheeger sets in Ω. Then X ∪ Y and X ∩ Y (if non-empty)

are also Cheeger sets in Ω.

Proof. Since X, Y are Cheeger sets, we have

P (X ∪ Y ) + P (X ∩ Y ) ≤ P (X) + P (Y ) = hΩ(|X|+ |Y |) = hΩ(|X ∪ Y |+ |X ∩ Y |).

Now, using that
P (X ∩ Y )
|X ∩ Y |

≥ hΩ

we have that

P (X ∪ Y ) ≤ hΩ|X ∪ Y |.

As a consequence X ∪ Y is Cheeger, hence P (X ∪ Y ) = hΩ|X ∪ Y |. Then, we deduce that
P (X ∩ Y ) = hΩ|X ∩ Y |, that is X ∩ Y is also a Cheeger set.

As a consequence of Lemma 2.2, we obtain:

Lemma 2.3. There exists a maximal Cheeger set Cmax ⊆ Ω. Moreover Cmax is a bounded

set.

The second assertion easily follows from standard density estimates for solutions of (2):

there exists ρ0 > 0 and δ > 0 such that if ρ < ρ0, either |Bρ(x) ∩ Cmax| > δ, or there exists

ρ′ < ρ with |Bρ′(x)∩Cmax| = 0, see [4]. In particular, it shows that the set of points where

Cmax (or any other Cheeger set of Ω) has Lebesgue density zero is an open set. This is not

true for the points of density one, at least if Ω is not open, as shown by the example of a

set Ω with empty interior.

Lemma 2.4. Let X, Y be two Cheeger sets in Ω. Assume that X is minimal, that is, it

contains no other Cheeger set inside. Then either X ⊆ Y or X ∩ Y = ∅. In particular, two

minimal Cheeger sets are disjoint.
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Proof. If X ∩ Y is nonempty, then it is also a Cheeger set contained in X. Since X is

minimal, we have X ∩ Y = X, that is X ⊆ Y .

Recall that, by the isoperimetric inequality, there exists a constant α = α(Ω) > 0 such

that any Cheeger set in Ω has volume greater or equal to α.

Lemma 2.5. There are minimal Cheeger sets in Ω and they are �nite in number. In

particular, Cheeger sets of minimal volume are minimal Cheeger sets, and any Cheeger set

contains a minimal Cheeger set.

Proof. Consider the problem min{|X| : X is a Cheeger set of Ω}. Then any minimizing

sequence has a subsequence converging to a set, say X, such that X is a Cheeger set of

minimal volume. By Lemma 2.2, the set X does not intersect any other Cheeger set,

therefore is minimal. Since any of such sets has a volume ≥ α, there are only �nitely many

of them. To prove the last assertion, we just take a minimal volume Cheeger set between

the ones contained in the given Cheeger set.

Remark 2.6. If Ω is an open set and C is a minimizer of (2), by classical regularity results

[25] we know that (∂C \Σ)∩Ω is analytic, where Σ is a closed singular set of dimension at

most N − 8. Moreover, if Ω is of class C1,1, then C is a minimizer of a prescribed curvature

problem with curvature in L∞ [8], hence ∂C \Σ is of class W 2,p for all p < ∞ (see also [29]

for the case N = 3).

Remark 2.7. By a result of Giusti [17], an open set X ⊂ Ω is a minimal Cheeger set i�

X has �nite perimeter and there is a solution of the capillary problem in X (with vertical

contact angle), i.e. there exists a vector �eld z : X → RN such that |z| < 1 and −div z = hΩ.

Remark 2.8. The computation of the maximal Cheeger set has been the object of recent

interest [12]. By adapting the proof of Proposition 4 in [3] one can prove the following

result. Let Ω be a bounded subset of RN with Lipschitz continuous boundary, and let

u ∈ BV (Ω) ∩ L2(Ω) be the solution of the variational problem

(Q)λ : min
u∈BV (Ω)∩L2(Ω)

{∫
Ω
|Du|+ λ

2

∫
Ω
(u− 1)2 dx +

∫
∂Ω
|u| dHN−1

}
. (6)

Then 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then for any s ∈ (0, 1] we have

P (Es)− λ(1− s)|Es| ≤ P (F )− λ(1− s)|F | (7)

for any F ⊆ Ω. If λ > 0 is big enough, indeed greater than 1/‖χΩ‖∗ where

‖χΩ‖∗ := max
{∫

RN

u χΩ dx : u ∈ BV (RN ),
∫

Ω
|Du| ≤ 1

}
,

then the level set {u = ‖u‖∞} is the maximal Cheeger set of Ω. In particular, the maximal

Cheeger set can be computed by solving (6), and for that we can use the algorithm in [14].
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3 Uniqueness of Cheeger sets up to small perturbations

We prove that the Cheeger is unique, up to arbitrarily small perturbations of the ambient

set Ω.

Theorem 1. Let Ω ⊂ RN be an open set with �nite volume. Then, for any compact set

K ⊂ Ω there exists a bounded open set ΩK ⊆ Ω such that K ⊂ ΩK and ΩK has a unique

Cheeger set.

Proof. By Lemma 2.5, we know that Ω has a �nite number of disjoint minimal Cheeger

sets. Let C be a minimal Cheeger set of Ω, let Ω̃ be any open set such that K ⊂ Ω̃ ⊂⊂ Ω,
and let ΩK := C ∪ Ω̃. Notice that C is also a (minimal) Cheeger set in ΩK , and we want

to show that it is the only one. Indeed, let D be a Cheeger set in ΩK , then by Lemma 2.4

either D ⊇ C or D ∩ C = ∅. The latter cannot happen, since in this case we would have

D ⊆ ΩK \ C ⊆ Ω̃ ⊂⊂ Ω, but the distance of D from the boundary of Ω cannot be positive,

otherwise we could decrease the quotient P (D)/|D| by rescaling D with a factor larger than

one. It then follows D ⊇ C. By Remark 2.6 there exist singular sets ΣC ⊂ ∂C and ΣD ⊂ ∂D,

of dimension at most N − 8, such that AC := (∂C \ ΣC) ∩ Ω and AD := (∂D \ ΣD) ∩ Ω
are both analytic solutions of the geometric equation (N − 1)H = hΩ, where H denotes

the mean curvature. As a consequence, since HN−1(AC ∩AD) ≥ HN−1((∂C \ Ω̃) ∩Ω) > 0,
by analytic continuation we get AD = AC . More precisely, assume by contradiction that

we can �nd x̄ ∈ AC ∩ AD such that AC ∩ Bρ(x̄) 6= AD ∩ Bρ(x̄) for all ρ > 0. Letting

T be the tangent hyperplane to ∂D at x̄, we can write ∂D and ∂C as the graph of two

smooth functions v∗ and v∗, respectively, over T ∩Bρ(x̄) for ρ > 0 small enough. Identifying

T ∩Bρ(x̄) with Bρ ⊂ RN−1, we have that v∗, v
∗ : Bρ → R both solve the equation

− div
Dv√

1 + |Dv|2
= hΩ. (8)

Moreover, it holds v∗ ≥ v∗, v∗(0) = v∗(0) and v∗(ỹ) > v∗(ỹ) for some ỹ ∈ Bρ. Let B be an

open ball such that B ⊂ Bρ, v∗ > v∗ on B and v∗(y) = v∗(y) for some y ∈ ∂B. Notice that,

since both v∗ and v∗ belong to C∞(B) ∩ C1(B), the fact that v∗(y) = v∗(y) also implies

that Dv∗(y) = Dv∗(y). In B, both functions solve (8). Letting now w = v∗ − v∗, we have

that w(y) = 0 and Dw(y) = 0, while w > 0 inside B. For any x ∈ B we have

0 = div (DΨ(Dv∗(x))−DΨ(Dv∗(x)))

= div

((∫ 1

0
D2Ψ(Dv∗(x) + t(Dv∗(x)−Dv∗(x))) dt

)
Dw(x)

)
,

where Ψ(p) =
√

1 + |p|2, so that w solves a linear, uniformly elliptic equation with smooth

coe�cients. Then Hopf's lemma [16] implies that Dw(y) ·νB(y) < 0, a contradiction. Hence
AC = AD, which is equivalent to C = D.

Remark 3.1. Notice that, given any open set Ω with �nite volume, for all ε > 0, we can

�nd a set Ωε ⊂ Ω such that |Ω\Ωε| < ε and Ωε has a unique Cheeger set. Indeed, considering
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as above a minimal Cheeger set C ⊂ Ω, we can de�ne

Ωε := Ω \
⋃

q∈QN∩Ω\C

Br(q),

where r(q) > 0 is such that Br(q) ⊂ Ω \ C and∑
q∈QN∩Ω\C

r(q) < ε.

Let D be a Cheeger set in Ωε di�erent from C, then |D \ C| > 0. By the regularity result

in Remark 2.6, it follows that D \ C has nonempty interior, which is impossible by the

construction of Ωε.

We can require that also Ωε is open but the construction is a bit more complicated. First,

we need to remove from Ω a small closed ball inside each minimal Cheeger set di�erent from

C. This ensures that any Cheeger set C ′ in the new set must contain C. Then, we remove

from Ω a (possibly countable) union of closed balls contained in Ω \C, each one touching a

connected component of ∂C ∩ Ω.

Remark 3.2. For a general open set Ω, one may also consider a di�erent notion of Cheeger

set, based on the following de�nition of perimeter:

PΩ(E) := sup
{∫

E
div φdx : φ ∈ C1(Ω, RN ), |φ| ≤ 1, div φ ∈ L∞(Ω)

}
,

which coincides with the lower semicontinuous relaxation of the usual perimeter restricted

to the compact subsets of Ω. Notice that such notion of Cheeger set gives a higher Cheeger

constant of Ω, which still veri�es (4), and it coincides with the classical notion if, for instance,
Ω is the subgraph of a continuous function near each point of its boundary. We observe that

Theorem 1 remains true also with this de�nition of Cheeger set.

4 Regularity of Cheeger sets in regular domains

We now show that each Cheeger set of Ω is of class C1,1, if Ω is also of class C1,1.

Theorem 2. Let Ω be a bounded open set with boundary of class C1,1. Then any Cheeger

set C of Ω has boundary of class C1,1, out of a closed singular set Σ ⊂ ∂C of dimension at

most N − 8.

Proof. We know that any Cheeger set is a solution of the variational problem (2). Let C be

a Cheeger set of Ω, and let x0 ∈ (∂C \ Σ) ∩ ∂Ω, where the singular set Σ is as in Remark

2.6. We may assume that near x0, ∂Ω is the graph of a C1,1 function f : B2r → R where

B2r is an (N − 1)-dimensional ball centered at x0 of radius 2r. We may as well assume that

∂C is the graph of u : B2r → R. We know that u ∈ W 2,p(B2r) for any p < ∞, in particular

u ∈ C1,α(B2r) for any α < 1. We observe that u is a solution of

min
{∫

Br

(√
1 + |∇v|2 + hΩv

)
dx : v ∈ BV (Br), v ≥ f, v|∂Br = u|∂Br

}
. (9)
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The result follows by adapting the proof of regularity for the obstacle problem in [9]. Indeed,

since ∂Ω is of class C1,1, ∇f has modulus of continuity σ(r) ≤ κr, κ > 0. Letting L(x) :=
f(x0) +∇f(x0) · (x− x0), we have

L(x)− κr2 ≤ f(x) ≤ u(x) x ∈ Br.

We shall prove that

u(x) ≤ L(x) + Cr2 x ∈ B r
2
, (10)

for some constant C > 0. We shall denote by C a positive constant that may vary from line

to line. Consider w = u− (L− κr2) ≥ 0, and observe that u satis�es the equation

−div

(
∇u√

1 + |∇u|2

)
+ hΩ ≥ 0 x ∈ Br, (11)

with equality in D = {x ∈ Br : u(x) > f(x)}. Due to the regularity of u, (11) can be

written

−aij(x)∂xixju + hΩ ≥ 0 x ∈ Br, (12)

where aij ∈ Cα(Br) are uniformly positive. It follows that also w satis�es (12) (and, still,

with an equality in D) . Let now w1 be the solution of

−aij(x)∂xixjw1 + hΩ = 0 x ∈ Br,

with w1|∂Br = w|∂Br ≥ 0. Observe that w1 ≤ w. Without loss of generality, we assume that

x0 = 0. Let γ = hΩ/(minx∈Br Tr(A(x)), where A(x) = (aij(x)), and Q(x) = (γ/2)(|x|2 −
r2). Then, Q is a subsolution of (12) in Br, with Q|∂Br = 0, so that Q ≤ w1 in Br. In

particular, we have that

−aij(x)∂xixj (w1 −Q) = hΩ

(
Tr(A(x))

minBr Tr(A)
− 1
)

x ∈ Br,

and the right-hand side of this equation is bounded by Crα (since A(x) is Hölderian of

exponent α). We have

w1(x0) ≤ w(x0) = u(x0)− (L(x0)− κr2) = f(x0)− (L(x0)− κr2) = κr2,

while, since w1 −Q ≥ 0, it satis�es a Harnack inequality [16, Thms 9.20 and 9.22] in Br/2:

w1(x)−Q(x) ≤ C inf
Br

(w1 −Q) + Cr2

≤ Cw1(x0) + C
γ

2
r2 + Cr2 ≤ Cr2,

hence also w1(x) ≤ Cr2, for any x ∈ Br/2 (for some constant C > 0 which does not blow-up

as r → 0).
Let now w2 := w − w1. The function w2 satis�es 0 ≤ w2 ≤ w −Q, w2|∂Br = 0, and

−aij(x)∂xixjw2 ≥ 0 x ∈ Br, (13)
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again, with an equality if x ∈ D. Consider x̄ ∈ Br a point where w2 reaches its maximum:

then, either w2(x̄) = 0, in which case w2 = 0 inside Br, or w2(x̄) > 0, in which case we must

have x̄ 6∈ D, since (13) is satis�ed with an equality in D (it could be that w2 is constant

and maximal in D, in which case we may always assume x̄ ∈ ∂D ∩Br).

Thus, either w2 = 0 in Br, or u(x̄) = f(x̄). In particular, in the latter case, we �nd that

for any x ∈ Br,

w2(x) ≤ w2(x̄) ≤ w(x̄)−Q(x̄) = u(x̄)− (L(x̄)− κr2) +
γ

2
(r2 − |x|2)

≤ f(x̄)− f(0)−∇f(0) · x̄ + Cr2 ≤ Cr2,

so that w(x) = w1(x) + w2(x) ≤ Cr2 if x ∈ Br/2, which shows (10).

Remark 4.1. Since the Cheeger sets of Ω are solutions of (2), if Ω is of class C1,1 and C is

a Cheeger set of Ω, we have (N − 1)HC(x) ≤ hΩ for a.e. x ∈ ∂C.

Remark 4.2. We point out that Theorems 1 and 2 extend also to minimizers of (2), with

hΩ replaced by any λ > hΩ (see [3]).
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