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Abstract

We show that the jump set of the solution of the minimizing Total Variation �ow decreases with

time for any initial condition in BV (Ω)∩LN (Ω). We prove that the size of the jump also decreases

with time.

1 Introduction

The use of total variation as a regularization tool for image denoising and restoration was introduced

by L. Rudin, S. Osher and E. Fatemi in [18]. If Ω denotes the image domain, the Total Variation

denoising problem corresponds to solving the minumum problem

min
u∈BV (Ω)

{∫
Ω

|Du|+ 1

2λ

∫
Ω

(u− f)2 dx, λ > 0

}
. (1)

One of the main features of (1), con�rmed by numerical simulations, is its ability to restore the

discontinuities of the image [18, 13, 15]. The a priori assumption is that functions of bounded variation

(the BV model [3]) are a reasonable functional setting for many problems in image processing and,

in particular, for denoising and restoration. Typically, functions of bounded variation admit a set of

discontinuities which is countably recti�able [3], being continuous (in the measure theoretic sense) away

from discontinuities. The discontinuity set corresponds to the edges in the image, and the ability of

Total Variation regularization to recover edges is one of the main features which advocates for the use

of this model in image processing (its ability to describe textures is less clear, even if some textures can

be recovered up to a certain scale of oscillation).

As a support to this idea, in [10] (see also [11, 12]) it has been proved that the jump set of the

solution u of the TV denoising problem (1) is contained in the jump set of the datum f , assuming that

f ∈ BV (Ω) ∩ L∞(Ω). Moreover the size of the jump of u at any point x in its jump set is bounded by

the size of the jump of f . This result was explicitly stated in [17] in a more general context, even if for

the Total Variation it is essentially contained in [10] (see also [12]).

The purpose of this paper is to prove the corresponding result for solutions of the the minimizing

Total Variation �ow, with Neumann or Dirichlet boundary conditions, and for the Cauchy problem in

RN . That is, if u(t) is the solution of the TV �ow and Ju(t) denotes the jump set of u(t), we prove that

Ju(t) ⊆ Ju(s) ⊆ Ju(0) HN−1 a.e. for any t > s > 0. (2)
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Moreover, letting [u(t)] be the jump size of u(t), we also show that

[u(t)] ≤ [u(s)] HN−1 a.e. on Ju(t) for any t ≥ s ≥ 0. (3)

The inclusions in (2) have already been proved in [10], under the assumption that u0 belongs to the

domain of the operator −div
(
Du
|Du|

)
in L∞(Ω). Some su�cient conditions for this to happen were given

in [10]. By exploting (3), in the present paper we get rid of this condition on u(0).

Let us �nally describe the plan of the paper. In Section 2 we recall some basic facts about functions

of bounded variation that will be used in the sequel. In Section 3 we review the result of [10] on the

jump of the solutions of the denoising problem (1), explicitly proving that the size of the jump of the

solution is bounded by the size of the jump of the initial datum. Finally, in Section 4 we extend this

result to the Total Variation �ow.

2 Notation and preliminaries on BV functions

Let Ω be an open subset of RN . A function u ∈ L1(Ω) whose gradient Du in the sense of distributions

is a (vector valued) Radon measure with �nite total variation in Ω is called a function of bounded

variation. The class of such functions will be denoted by BV (Ω). The total variation of Du on Ω turns

out to be

sup

{∫
Ω

u div z dx : z ∈ C∞0 (Ω;RN ), |z(x)| ≤ 1 ∀x ∈ Ω

}
, (4)

(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N
i=1 v

2
i ) and will be denoted by |Du|(Ω) or

by
∫

Ω
|Du|. The map u → |Du|(Ω) is L1

loc(Ω)-lower semicontinuous. BV (Ω) is a Banach space when

endowed with the norm ‖u‖ :=
∫

Ω
|u| dx+ |Du|(Ω).

A measurable set E ⊆ Ω is said to be of �nite perimeter in Ω if (4) is �nite when u is substituted

with the characteristic function χE of E. The perimeter of E in Ω is de�ned as P (E,Ω) := |DχE |(Ω).

We denote by LN and HN−1, respectively, the N -dimensional Lebesgue measure and the (N − 1)-

dimensional Hausdor� measure in RN .
Let u ∈ [L1

loc(Ω)]m. We say that u has approximate limit at x ∈ Ω if there exists z ∈ Rm such that

lim
ρ↓0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y)− z|dy = 0. (5)

The set of points where this does not hold is called the approximate discontinuity set of u, and is

denoted by Su. Using Lebesgue's di�erentiation theorem, one can show that the approximate limit z

exists at LN -a.e. x ∈ Ω, and is equal to u(x): in particular, |Su| = 0.

If x ∈ Ω \ Su, the vector z is uniquely determined by (5) and we denote it by ũ(x). We say that u

is approximately continuous at x if x 6∈ Su and ũ(x) = u(x), that is if x is a Lebesgue point of u with

respect to the Lebesgue measure.

For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes into its absolutely continuous

and singular parts Du = Dau+Dsu. Then Dau = ∇u dx where ∇u is the Radon-Nikodym derivative

of the measure Du with respect to the Lebesgue measure in RN . The function u is approximately

di�erentiable LN a.e. in Ω and the approximate di�erential coincides with ∇u(x) LN a.e.. The singular
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part Dsu can be also split in two parts: the jump part Dju and the Cantor part Dcu. We say that

x ∈ Ω is an approximate jump point of u if there exist u+(x) 6= u−(x) ∈ R and |νu(x)| = 1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫
B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0

lim
ρ↓0

1

|B−ρ (x, νu(x))|

∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0,

where

B+
ρ (x, νu(x)) = {y ∈ B(x, ρ) : 〈y − x, νu(x)〉 > 0}

B−ρ (x, νu(x)) = {y ∈ B(x, ρ) : 〈y − x, νu(x)〉 < 0}.

We denote by Ju the set of approximate jump points of u. If u ∈ BV (Ω), the set Su is countably HN−1

recti�able, Ju is a Borel subset of Su and HN−1(Su \ Ju) = 0 (see [3]). In particular, we have that

HN−1-a.e. x ∈ Ω is either a point of approximate continuity of ũ, or a jump point with two limits in

the above sense. Eventually, we have

Dju = Dsu Ju = (u+ − u−)νuHN−1
Ju and Dcu = Dsu (Ω\Su).

For x ∈ Ju we set [u(x)] = u+(x)− u−(x) .

For a comprehensive treatment of functions of bounded variation we refer to [3].

3 The jump set of solutions of the TV denoising problem

Given a function f ∈ L2(Ω) and λ > 0 we consider the minimum problem

min
u∈BV (Ω)

∫
Ω

|Du|+ 1

2λ

∫
Ω

(u− f)2 dx =: Fλ(u) . (6)

Notice that problem (6) always admits a unique solution uλ, since the functional Fλ is strictly convex.

As we mentioned in the Introduction, one of the main reasons to introduce the Total Variation as a

regularization term in imaging problems is its ability to recover the discontinuities of the function f . In

this section we recall a result proved in [10] showing that the jump set of uλ is always contained in the

jump set of f , that is, the model (6) does not create any new discontinuity besides the existing ones.

We re�ne the proof given in [10] proving that the size of the jump decreases. This fact was observed in

[17] where it was proved in the more general context of weighted total variation.

Let us recall the following Proposition, which is proved in [14, 1].

Proposition 3.1. Let uλ be the (unique) solution of (6). Then, for any t ∈ R, {uλ > t} (respectively,
{uλ ≥ t}) is the minimal (resp., maximal) solution of the minimal surface problem

min
E⊆Ω

P (E,Ω) +
1

λ

∫
E

(t− f(x)) dx. (7)

In particular, for all t ∈ R but a countable set, {uλ = t} has zero measure and the solution of (7) is

unique (up to a negligible set).
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A proof that {uλ > t} and {uλ ≥ t} both solve (7) is found in [14, Prop. 2.2]. The proof of

Proposition 3.1 then follows from the co-area formula and from the following comparison result for

solutions of (7) (see [1, Lemma 4]):

Lemma 3.2. Let f, g ∈ L1(Ω) and E and F be respectively minimizers of

min
E

P (E,Ω)−
∫
E

f(x) dx and min
F

P (F,Ω)−
∫
F

g(x) dx .

Then, if f < g a.e., |E \ F | = 0 (in other words, E ⊆ F up to a negligible set).

From Proposition 3.1 and the regularity theory for surfaces of prescribed curvature (see for instance

[2]), one has the following regularity result.

Corollary 3.3. Let f ∈ Lp(Ω), with p > N . Then, for all t ∈ R the super-level set Et := {uλ > t}
(respectively, {uλ ≥ t}) has boundary of class C1,α, for all α < (p−N)/p, out of a closed singular set

Σ of Hausdor� dimension at most N − 8. Moreover, if p =∞, the boundary of Et is of class W 2,q out

of Σ, for all q <∞, and is of class C1,1 if N = 2.

Before stating the main result of this section, we recall two simple Lemmata (see).

Lemma 3.4. Let U be an open set in RN and v ∈W 2,p(U), p ≥ 1. We have that

div

(
∇v√

1 + |∇v|2

)
= trace

(
A(∇v)D2v

)
a.e. in U,

where

A(ξ)ij :=
1

(1 + |ξ|2)
1
2

(
δij −

ξiξj
(1 + |ξ|2)

)
ξ ∈ RN .

Lemma 3.5. Let U be an open set in RN and v ∈W 2,1(U). Assume that u has a minimum at y0 ∈ U
and

lim
ρ→0+

1

|B(y0, ρ)|

∫
B(y0,ρ)

∣∣u(y)− u(y0)−∇u(y0) · (y − y0)− 1
2 〈D

2v(y0)(y − y0), y − y0〉
∣∣

ρ2
dy = 0 , (8)

then D2v(y0) ≥ 0.

Recall that, if v ∈W 2,1(U), then (8) holds a.e. in U [19, Th. 3.4.2].

Theorem 1. Let f ∈ BV (Ω) ∩ L∞(Ω). Then, for all λ > 0,

Juλ ⊆ Jf (9)

up to a set of zero HN−1-measure. Moreover

[uλ(x)] ≤ [f(x)] HN−1-a.e. on Juλ . (10)

Proof. Notice that (10) implies (9), so that it is enough to prove (10).

Let us �rst recall some consequences of Corollary 3.3. Let Et := {uλ > t}, t ∈ R, and let Σt be

its singular set given by Corollary 3.3. Since f ∈ L∞(Ω), around each point x ∈ ∂Et \ Σt, t ∈ R, ∂Et
is locally the graph of a function in W 2,p for all p ∈ [1,∞) (hence in C1,α for any α ∈ (0, 1)). Let Q
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be a countable dense set in R such that {uλ > t} is a set of �nite perimeter for any t ∈ Q. If we let

N :=
⋃
t∈Q Σt, we then have HN−1(N ) = 0.

Since we can write (as in [3])

Juλ =
⋃

t1,t2∈Q,t1<t2

∂Et1 ∩ ∂Et2 ,

in order to prove (10) it su�ces to show

t2 − t1 ≤ [f(x)] HN−1-a.e. on ∂Et1 ∩ ∂Et2 , (11)

for all t1, t2 ∈ Q with t1 < t2.

Fix t1, t2 ∈ Q with t1 < t2, and let B′R be the ball of radius R > 0 in RN−1 centered at 0. Let

CR := B′R × (−R,R), and denote x ∈ CR as x = (y, z) ∈ B′R × (−R,R). Given x ∈ ∂Et1 ∩ ∂Et2 \ N ,

by Corollary 3.3 there is R > 0 such that, after a suitable change of coordinates, we can write the set

∂Eti ∩ CR, i = 1, 2, as the graph of a function vi ∈ W 2,p(B′R), p ∈ [1,∞), such that x = (0, vi(0)) ∈
CR ⊆ Ω and ∇vi(0) = 0. Without loss of generality, we assume that vi > 0 in B′R, and that Eti is the

supergraph of vi, . From t1 < t2 and Lemma 3.2, it follows Et2 ⊆ Et1 , which gives in turn v2 ≥ v1 in

B′R. We may also assume that

HN−1 ({y ∈ B′R : v1(y) = v2(y)}) > 0. (12)

Notice that, since ∂Eti is of �nite HN−1-measure, we may cover ∂Et1 ∩ ∂Et2 \N by a countable set of

such cylinders. By [3, Th. 3.108], for HN−1-a.e. y ∈ B′R the function f(y, ·) belongs to BV ((−R,R)),

and the jumps of f(y, ·) are the points z such that (y, z) ∈ Jf . Recalling that vi is a local minimizer of

min
v

∫
B′R

√
1 + |∇v|2 dy − 1

λ

∫
B′R

∫ v(y)

0

(ti − f(y, z)) dz dy =: Ei(v),

by taking a positive smooth test function ψ(y) witn compact support in B′R, and computing

lim
ε→0+

Ei(v + εψ)− Ei(v)

ε
≥ 0,

we deduce that

div

(
∇vi(y)√

1 + |∇vi(y)|2

)
+

1

λ

(
ti − f+(y, vi(y)

)
≤ 0, HN−1-a.e. in B′R. (13)

In a similar way, we get

div

(
∇vi(y)√

1 + |∇vi(y)|2

)
+

1

λ

(
ti − f−(y, vi(y)

)
≥ 0, HN−1-a.e. in B′R. (14)

Finally we observe that, since v1, v2 ∈ W 2,p(B′R) for any p ∈ [1,∞) and v2 ≥ v1 in B′R, by Lemma

3.5 we have that ∇v1(y) = ∇v2(y) and D2(v1 − v2)(y) ≤ 0 HN−1-a.e. on {y ∈ B′R : v1(y) = v2(y)}.
Using both inequalities (13) and (14) and Lemma 3.4, it follows that

0 < t2 − t1 ≤ λ
(
trace(A(∇v1(y))D2v1(y))− trace(A(∇v2(y))D2v2(y))

)
+ f+(y, v2(y))− f−(y, v1(y))

≤ f+(y, v2(y))− f−(y, v1(y)) ,

HN−1-a.e. on {y ∈ B′R : v1(y) = v2(y)}, which gives (11) and concludes the proof.
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4 The jump set of solutions of the Total Variation �ow

Let Ω be an open bounded set with Lipschitz boundary. We consider the Total Variation �ow

∂u

∂t
= div

(
Du

|Du|

)
in QT = (0, T )× Ω,

Du

|Du|
· νΩ = 0 in QT = (0, T )× ∂Ω,

(15)

with the initial condition

u(0, x) = f(x), x ∈ Ω. (16)

Let us recall that (15) it is the L2-gradient �ow of the total variation as de�ned in [9]. In the general

case we shall follow [4, 8]. The purpose of this Section is to prove the following result.

Theorem 2. Let f ∈ LN (Ω) ∩ BV (Ω). Let u(t) be the solution of (15) with initial condition (16).

Then u(t) ∈ L∞(Ω) ∩BV (Ω) for any t > 0, and

Ju(t) ⊆ Ju(s) ⊆ Jf ∀t > s > 0. (17)

Moreover

[u(t)] ≤ [u(s)] ≤ [f ] HN−1 a.e. ∀t > s > 0. (18)

The proof of Theorem 2 is based on the approach in [10] and uses the estimate (10). Let us �rst

recall some basic facts about the operator −div
(
Du
|Du|

)
in Lp spaces. Since it su�ces for our purposes,

we shall only consider the case p ∈ [ N
N−1 ,∞]. For any p ∈ [1,∞], let us de�ne the space

X(Ω)p :=
{
z ∈ L∞(Ω,RN ) : div(z) ∈ Lp(Ω)

}
.

If z ∈ X(Ω)p and w ∈ BV (Ω)∩Lq(Ω), p−1+q−1 = 1, we de�ne the functional (z ·Dw) : C∞0 (Ω)→ R
by the formula

〈(z ·Dw), ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx.

Then (z ·Dw) is a Radon measure in Ω, and (z ·Dw) = z · ∇w if w ∈W 1,1(Ω) ∩ Lq(Ω).

Following [7], we observe that for any z ∈ X(Ω)p there exists a function [z ·νΩ] ∈ L∞(∂Ω) satisfying

‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), and such that for any u ∈ BV (Ω) ∩ Lq(Ω) we have∫
Ω

u div z dx+

∫
Ω

(z ·Du) =

∫
∂Ω

[z · νΩ]u dHN−1.

De�nition 4.1. We de�ne the operator Ap ⊆ Lp(Ω)× Lp(Ω), with N
N−1 ≤ p ≤ ∞, by:

(u, v) ∈ Ap if and only if u, v ∈ Lp(Ω), u ∈ BV (Ω) and there exists z ∈ X(Ω)p with ‖z‖∞ ≤ 1, such

that (z ·Du) = |Du| , [z · νΩ] = 0 and

v = −div(z) in D′(Ω).

By v ∈ Apu we mean that (u, v) ∈ Ap. By L1
w((0, T );BV (Ω)) we denote the space of weakly

measurable functions w : [0, T ] → BV (Ω) (i.e., the map t ∈ [0, T ] → 〈w(t), φ〉 is measurable for any

φ ∈ BV (Ω)∗ where BV (Ω)∗ denotes the dual of BV (Ω)) such that
∫ T

0
‖w(t)‖ dt <∞.
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De�nition 4.2. A function u ∈ C([0, T ];Lp(Ω)) is a strong solution of (15) if u ∈W 1,1
loc (0, T ;Lp(Ω))∩

L1
w((0, T );BV (Ω)) and there exists z ∈ L∞

(
(0, T )× Ω;RN

)
with ‖z‖∞ ≤ 1 such that∫

Ω

(z(t) ·Du(t)) =

∫
Ω

|Du(t)| for a.e. t > 0. (19)

[z(t) · νΩ] = 0 in ∂Ω for a.e. t > 0. (20)

and

ut = div z in D′ ((0, T )× Ω) .

Proposition 4.3. The operator Ap is m-accretive in Lp(Ω), that is for any f ∈ Lp(Ω) and any λ > 0

there is a unique solution u ∈ Lp(Ω) of the problem

u+ λApu 3 f. (21)

Moreover, if u1, u2 ∈ Lp(Ω) are the solutions of (21) corresponding to the right hand sides f1, f2 ∈
Lp(Ω), then

‖u1 − u2‖p ≤ ‖f1 − f2‖p.

Moreover the domain of Ap is dense in Lp(Ω) when p <∞.

We denote by Jλf the solution of (21).

We also recall the notion of strong solution for nonlinear semigroups generated by accretive opera-

tors.

De�nition 4.4. A function u is called a strong solution in the sense of semigroups of

du

dt
+Apu 3 0

with u(0) = f if

u ∈ C([0, T ];Lp(Ω)) ∩W 1,1
loc ((0, T );Lp(Ω))

u(t) ∈ Dom(Ap) a.e. in t > 0 and u′ +Apu(t) 3 0 a.e. t ∈ (0, T )

u(0) = f.

(22)

By Crandall-Ligget's semigroup generation theorem [16], using Proposition 4.3 as in [6, 10], one

obtains the following result:

Theorem 3. Let f ∈ Lp(Ω) if N
N−1 ≤ p < ∞, or f ∈ Dom(A∞) if p = ∞. Then there is a unique

strong solution in the sense of semigroups u(t) = S(t)f := limλ↓0,kλ→t J
k
λf ∈ C([0, T ], Lp(Ω)) of the

problem
du

dt
+Apu 3 0, u(0) = f. (23)

Moreover, the semigroup solution is a strong solution of (15) and conversely, any strong solution of

(15) is a strong solution in the sense of semigroups of (23).
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Remark 4.5. Notice that given p ∈ [ N
N−1 ,∞] the limit limλ↓0,kλ→t J

k
λf is taken in Lp(Ω).

To prove Theorem 2, we need the following Lemma.

Lemma 4.6. Let (un)n∈N be a sequence of functions in BV (Ω)∩L∞(Ω). Assume that Jun ⊆ Ju0
, for

all n ∈ N, and un → u strongly in L∞(Ω). Then, HN−1-almost every point of Ω\Ju0
is a Lebesgue point

for u. In particular, if u ∈ BV (Ω), then Ju ⊆ Ju0 . Moreover, if all the functions un are continuous at

x ∈ Ω, then also u is continuous at x.

Proof. The thesis follows observing that if x ∈ Ω is a Lebesgue point for all the functions un, then it is

also a Lebesgue point for u, and the same is true for a continuity point.

Proof of Theorem 2. We divide the proof into three steps.

Step 1. Assume that f ∈ Dom(A∞) ∩ BV (Ω). In this case we know from [16] that Jkλf → u(t) when

λ→ 0+ and kλ→ t. Then the result follows from Theorem 1, Remark 4.5 and Lemma 4.6.

Step 2. Let f ∈ LN (Ω). By Theorem 3, u ∈ C([0, T ], LN (Ω)). We also know from [6] that u(t) =

S(t)f ∈ C((0, T ];L∞(Ω)) and u(t) ∈ BV (Ω) for any t > 0. Moreover, the following estimate is a

consequence of the 0-homogeneity of the operator A∞ [4, 6]:∥∥∥∥ ddtS(t)fλ

∥∥∥∥
∞
≤ 2
‖fλ‖∞
t

≤ 2
‖f‖∞
t

for any t > 0. (24)

This implies that u(t) ∈ Dom(A∞) for any t > 0. Notice that by Step 1 and Theorem 1, we know that

Ju(t) ⊆ Ju(s) for all t > s > 0. (25)

Moreover, by (10) we have

[u(t)] ≤ [u(s)] HN−1-a.e. on Ju(t), for all t > s > 0. (26)

Step 3. Let f ∈ LN (Ω) ∩ BV (Ω). We shall prove that Ju(t) ⊆ Jf (modulo an HN−1 null set) for any

t > 0.

Let Z ⊂ Ju(t) be such that [u(t, ·)] ≥ ε > 0 on Z and let x0 be a point of HN−1-density 1 in Z. Let

us consider tn ↓ 0+, tn < t. By (25) we have Ju(tn) ⊆ Ju(tn−1) and Z ⊆ Ju(tn) for all n ∈ N (modulo a

HN−1-null set). By (26) we also have

[u(tn, x)] ≥ [u(t, x)] ≥ ε HN−1 − a.e. on Z.

Now, observe that ∫
Ω

|Du(t)| ≤
∫

Ω

|Df |. (27)

Since

lim sup
t→0+

∫
Ω

|Du(t)| ≤
∫

Ω

|Df | ≤ lim inf
t→0+

∫
Ω

|Du(t)|.

we have that

lim
t→0+

∫
Ω

|Du(t)| =
∫

Ω

|Df |. (28)
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By Step 2 we know that u(t)→ f in LN (Ω). Then Du(t)→ Df as t→ 0+ weakly∗ as vector measures

in Ω. Since (28) holds, we also have that |Du(t)| → |Df | as t → 0+ weakly∗ as measures in Ω ([3],

Proposition 1.62).

Let r > 0 be such that |Df |(∂B(x0, r)) = 0. By [3, Proposition 1.62] we get

|Df |(B(x0, r)) = lim
n→∞

|Du(tn)|(B(x0, r)) ≥ εHN−1(Z ∩B(x0, r)).

It follows that, for all points x0 of HN−1 density 1 in Z, we have

lim inf
r→0+

|Df |(B(x0, r))

ωN−1rN−1
≥ ε,

where ωN−1 is the area of the (N − 1)-dimensional ball. This implies that Z ⊂ Jf (modulo an HN−1

null set). Thus, Ju(t) ⊆ Jf (modulo an HN−1 null set) for any t > 0.

Remark 4.7. Theorem 2 still holds, with analogous proof, in the case of zero Dirichlet boundary

conditions or in RN [5, 8, 6]. Moreover, as in [10] (see also [17]), it also holds for the anisotropic Total

Variation �ow, when the anisotropy is smooth and elliptic.
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