Eventual regularity for the parabolic minimal surface equation

G. Bellettini, M. Novaga, G. Orlandi

Abstract

We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.

1 Introduction

In this paper we consider the evolution problem

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \quad \text{in } (0, \infty) \times \Omega, \\
\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nu^\Omega &= 0 \quad \text{in } (0, \infty) \times \partial \Omega, \\
u(0, \cdot) &= u_0(\cdot) \quad \text{in } \Omega,
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^N \) is a bounded open subset with smooth boundary, \(\nu^\Omega \) denotes the exterior unit normal to \(\partial \Omega \), and \(\cdot \) is the scalar product in \(\mathbb{R}^N \).

*Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy, e-mail: belletti@mat.uniroma2.it

†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, e-mail: novaga@dm.unipi.it

‡Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy, e-mail: giandomenico.orlandi@univr.it
Problem (1.1) corresponds to the L^2-gradient flow [9] of the convex lower semicontinuous functional $F : L^2(\Omega) \rightarrow [0, +\infty]$, defined as

$$F(u) := \begin{cases} \int_\Omega \sqrt{1 + |\nabla u|^2} \, dx + |D^s u|(\Omega) & \text{if } u \in BV(\Omega), \\ +\infty & \text{otherwise}, \end{cases}$$

where, for $u \in BV(\Omega)$, we write its distributional derivative Du as

$$Du = \nabla u \, dx + D^s u.$$

Here, $D^s u$ is the singular part of the measure Du, with respect to the Lebesgue measure (see [20]), and $|D^s u|$ stands for its total variation.

Equation (1.1) arises in several models of physical systems describing, for instance, the motion of capillary surfaces and the motion of grain boundaries in annealing metals (see [8]). For such reasons, this evolution problem has been already considered in the mathematical literature. In particular, Lichnewski and Temam [21] showed existence of generalized solutions, while Gerhardt [19] and Ecker [15] proved estimates on $u, u_t, |Du|$ similar to the ones we present in this paper (see Lemma 3.1).

We point out that equation (1.1) should not be confused with the mean curvature flow for graphs, which has been deeply studied in [16, 17], and reads as

$$\frac{\partial u}{\partial t} = \sqrt{1 + |\nabla u|^2} \, \text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right).$$

Let us state our main result.

Theorem 1.1. Let $u_0 \in L^2(\Omega)$ and let u be the unique solution of (1.1). Suppose that one of the two following cases hold:

1) $N = 1$,

2) $N > 1$, and the generalized graph of u_0\footnote{Roughly, the graph of u_0 with the addition of the “vertical” parts.},

$$\text{graph}(u_0) := \partial \{(x, y) : x \in \Omega, y < u_0(x)\} \cap (\Omega \times \mathbb{R}),$$

is a compact hypersurface of class $C^{1,1}$, meeting orthogonally $(\partial \Omega) \times \mathbb{R}$.
Then there exists $T > 0$ such that
\[u \in C^\omega((T, +\infty) \times \Omega). \]
Namely, $u(t)$ is analytic in Ω, for any $t \in (T, +\infty)$. Moreover, $u(t)$ converges to the mean value \(\overline{u}_0 := \frac{1}{|\Omega|} \int_\Omega u_0 \, dx \) of u_0 in $C^\infty(\Omega)$ as $t \to +\infty$.

The assumption on $\text{graph}(u_0)$ when $N > 1$ is technical, but we are presently not able to remove it. Notice that from this condition it follows that
\[u_0 \in L^\infty(\Omega) \cap BV(\Omega), \]
and u_0 is of class $C^{1,1}$ in a neighbourhood of $\partial \Omega$, with Neumann boundary condition on $\partial \Omega$.

Theorem 1.1 states that the solution $u(t)$ to (1.1) becomes smooth after some time T, which in general is strictly positive. This behaviour is somewhat different from the usual regularity results for parabolic partial differential equations. Indeed, for this problem there is no instantaneous regularization of the solution, which holds for uniformly parabolic equations but does not hold in general for (1.1).

Another well-known degenerate parabolic problem which shares this property is the so-called total variation flow, which has relevant applications in image analysis and denoising (see, e.g., [24, 6, 3, 12, 14]).

Example 1.1. As an example of eventual but not instantaneous regularization of u, we consider the following situation: $N = 1$, $\Omega = (0, 2)$, c a positive constant, and
\[
 u_0(x) := \begin{cases}
 \sqrt{1-x^2} + c & \text{if } x \in (0, 1), \\
 -\sqrt{1-(2-x)^2} & \text{if } x \in (1, 2).
\end{cases}
\]
Then u_0 is discontinuous at $x = 1$, and $\text{graph}(u_0)$ is a curve of class $C^{1,1}$ consisting of two quarters of unit circles (hence with constant curvature equal to 1) and a vertical segment of length c, with the correct boundary condition. Then
\[
 u(t, x) = \begin{cases}
 -t + \sqrt{1-x^2} + c & \text{if } (t, x) \in (0, \frac{c}{2}) \times (0, 1), \\
 t - \sqrt{1-(2-x)^2} & \text{if } (t, x) \in (0, \frac{c}{2}) \times (1, 2),
\end{cases}
\]
\[\text{As shown in [2], solutions to the total variation flow in the whole of } \mathbb{R}^N \text{ become extinct (hence in particular smooth) in finite time, even if the discontinuity set does not disappear immediately (see, e.g., [7, 11])}.\]
which is still discontinuous at \(x = 1 \), because the upper quarter of circle as unit negative vertical velocity, while the lower quarter of circle as unit positive vertical velocity. Hence the time necessary to let the jump disappear is \(T := c/2 \), and one checks that the solution becomes smooth in \((T, +\infty) \times (0, 2)\).

Acknowledgements. This problem has been proposed to us by our friend and colleague Vicent Caselles, who prematurely died in August 2013. Without his contribution and insight this project would not have been possible. We are deeply indebted with him, and we dedicate this work to his memory.

2 Notation and preliminary results

We denote by \(\partial F \) the subdifferential of \(F \) in the sense of convex analysis, which defines a maximal monotone operator in \(L^2(\Omega) \). A characterization of \(\partial F \) is given in Remark 2.2.

Definition 2.1. Let \(u_0 \in L^2(\Omega) \). We say that a function \(u : [0, +\infty) \to \Omega \) is a strong solution (briefly, a solution) of (1.1), if

(i) \(u \in H^1((0, T); L^2(\Omega)) \cap L^\infty((\tau, +\infty); BV(\Omega)) \) for any \(T > 0 \) and \(\tau > 0 \),

(ii) \(\lim_{t \to 0^+} u(t) = u_0 \) in \(L^2(\Omega) \).

We let \(X(\Omega) := \{ z \in L^2(\Omega; \mathbb{R}^N) : \text{div } z \in L^2(\Omega) \} \).

It is known that, for \(z \in X(\Omega) \), the normal trace \([z, \nu^\Omega] \) of \(z \) on \(\partial \Omega \) is well defined (see [4, 3]).

Remark 2.2. Following [3], inclusion (2.1) can be equivalently written as

\[
\begin{cases}
 u_t = \text{div } z & \text{in } D'(\Omega), \text{ for a.e. } t \in (0, +\infty), \\
 z = \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} & \text{a.e. in } (0, +\infty) \times \Omega, \\
 z(t) \in X(\Omega) & \text{for a.e. } t \in (0, +\infty), \\
 [z(t, \cdot), \nu^\Omega] = 0 & \text{for a.e. } t \in (0, +\infty).
\end{cases}
\]
Note that, in the expression of z, only the absolutely continuous part of the spatial gradient of u is involved.

Let us recall the following results, proved in [9, Theorems 3.2, 3.7, 3.11] (see also [3, Chapter 6]).

Theorem 2.1. Let $u_0 \in L^2(\Omega)$. Then there exists a unique solution u of (1.1). Moreover:

(i) the function $t \in (0, +\infty) \mapsto F(u(t))$ is nonincreasing, and

\[
\frac{d}{dt} F(u(t)) = - \int_{\Omega} u_t^2 \, dx \quad \text{for a.e. } t \in (0, +\infty);
\]

(ii) $\lim_{t \to +\infty} u(t) = \pi_0 := \frac{1}{|\Omega|} \int_{\Omega} u_0 \, dx$ in $L^2(\Omega)$;

(iii) $\|u_t\|_{L^2(\Omega)} \leq \frac{\|u_0\|_{L^2(\Omega)}}{t}$ for almost any $t > 0$.

Remark 2.3. Regarding point (ii) of Theorem 2.1, from [9, Theorem 3.11] it follows that $u(t)$ converges in $L^2(\Omega)$, as $t \to +\infty$, to a minimizer of F, that is, to a constant in Ω. The value of this constant is fixed from

\[
\frac{d}{dt} \int_{\Omega} u(t, x) \, dx = \int_{\Omega} \text{div} z(t, x) \, dx = 0,
\]

where the last equality follows from the Gauss-Green Theorem [4].

The maximum and minimum principles ensure the following result.

Proposition 2.4. Let $u_0 \in L^\infty(\Omega)$. Then the function

\[
t \in (0, +\infty) \mapsto \|u(t)\|_{L^\infty(\Omega)}
\]

is nonincreasing.

The following approximation result is proved in [9, Theorem 3.16].

Proposition 2.5. Let $u_0, u_{0n} \in L^2(\Omega)$ be such that

\[
\lim_{n \to +\infty} \|u_0 - u_{0n}\|_{L^2(\Omega)} = 0.
\]

Let u be the solution to (1.1), and let u_n be the solution to the first two equations of (1.1), and with $u_n(0, \cdot) = u_{0n}(\cdot)$. Then, for all $T > 0$ we have

\[
\lim_{n \to +\infty} \|u(t) - u_n(t)\|_{L^2(\Omega)} = 0 \quad \text{uniformly in } [0, T]. \quad (2.3)
\]
3 Proof of the main result

We start with the following estimates, which have been shown in [19, 15]. It can be useful to have a detailed proof, which we include here for completeness.

Lemma 3.1. Let \(u_0 \in C^\infty(\Omega) \), and let \(u \) be the solution to (1.1) given by Theorem 2.1. For all \(t > 0 \) we have

\[
\| \nabla u(t) \|_{L^\infty(\Omega)} \leq \| \nabla u_0 \|_{L^\infty(\Omega)} \quad \text{(3.1)}
\]

\[
\| u_t(t) \|_{L^\infty(\Omega)} \leq \| u_t(0) \|_{L^\infty(\Omega)} \quad \text{(3.2)}
\]

In particular, by parabolic regularity theory, from (3.1) it follows that \(u \in C^\infty([0, +\infty) \times \Omega) \).

Proof. Both estimates follow by a direct computation and by the maximum principle. By [22] we have that there exists \(\tau > 0 \) such that \(u \in C^{(2+\alpha)/2, 2+\alpha}([0, \tau) \times \Omega) \) for all \(\alpha \in (0, 1) \), and therefore, by parabolic regularity, we have \(u \in C^\infty([0, \tau) \times \Omega) \).

Let us first show (3.1), arguing at points in \((0, \tau) \times \Omega\). Differentiating (1.1), we get

\[
\frac{\partial}{\partial t} \left(\frac{|\nabla u|^2}{2} \right) = \nabla u \cdot \nabla u_t = \nabla u \cdot \nabla \left(\text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \right)
\]

\[
= \nabla u \cdot \nabla \left(\frac{\Delta u}{\sqrt{1 + |\nabla u|^2}} - \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^2)^{3/2}} \right).
\]

Letting \(\partial_i = \frac{\partial}{\partial x_i}, \partial_{ij} = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \), and denoting by \(\nabla^2 u \) the Hessian of \(u \), we compute

\[
\nabla u \cdot \nabla \left(\frac{\Delta u}{\sqrt{1 + |\nabla u|^2}} \right) = \sum_{i=1}^N \partial_i u \Delta(\partial_i u) \frac{\Delta u}{\sqrt{1 + |\nabla u|^2}} - \Delta u \left(\frac{\nabla u \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right)}{(1 + |\nabla u|^2)^{3/2}} \right)
\]

\[
= \frac{\Delta \left(\frac{|\nabla u|^2}{2} \right) - |\nabla^2 u|^2}{\sqrt{1 + |\nabla u|^2}} - \Delta u \left(\frac{\nabla u \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right)}{(1 + |\nabla u|^2)^{3/2}} \right).
\]
where \(|\nabla^2 u|^2 := \sum_{i,j=1}^{N} (\partial_i \partial_j u)^2|\). Also

\[
\nabla u \cdot \nabla \left(\frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^{2/3})^2} \right) = \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right)}{\sqrt{1 + |\nabla u|^2}} \nabla u - \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^{2/3})^2} \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^{2/3})^2}.
\]

Summing up, we get

\[
\frac{\partial}{\partial t} \frac{|\nabla u|^2}{2} \leq \Delta \left(\frac{|\nabla u|^2}{2} \right) - \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right)}{\sqrt{1 + |\nabla u|^2}} - \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^{2/3})^2} \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^{2/3})^2}.
\]

The estimate (3.1) then follows from the maximum principle applied to (3.3). By standard arguments [22], it now follows that \(u \in C^\infty([0, +\infty) \times \Omega)\), and (3.1) holds for all \(t > 0\).

Let us now show (3.2). From (1.1), we get

\[
\frac{\partial}{\partial t} \left(\frac{u^2}{2} \right) = u_t \left(\text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \right) \tag{3.4}
\]

We have

\[
u_t \text{ div} \left(\frac{\nabla u_t}{\sqrt{1 + |\nabla u|^2}} \right) = u_t \sum_i \partial_i \left(\frac{\partial_i u_t}{\sqrt{1 + |\nabla u|^2}} \right) = \frac{u_t \Delta u_t}{\sqrt{1 + |\nabla u|^2}} - \sum_i \frac{u_t \partial_i u_t \nabla u \cdot \nabla \partial_i u}{(1 + |\nabla u|^2)^{3/2}} = \frac{u_t \Delta u_t}{\sqrt{1 + |\nabla u|^2}} - \frac{\nabla \left(\frac{u^2}{2} \right) \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right)}{(1 + |\nabla u|^2)^{3/2}} =: I + II,
\]
and

\[u_t \text{ div} \left(\frac{\nabla u_t \cdot \nabla u \nabla u}{(1 + |\nabla u|^2)^{3/2}} \right) = \Delta u \frac{\nabla u \cdot u_t \nabla u_t}{(1 + |\nabla u|^2)^{3/2}} + u_t \nabla u \cdot \nabla^2 u_t \nabla u \]

\[\quad + \frac{\nabla^2 u \nabla u \cdot u_t \nabla u_t}{(1 + |\nabla u|^2)^{3/2}} \]

\[- 3 \sum_i \partial_i u_t \frac{u_t(\nabla u_t \cdot \nabla u)(\nabla \partial_i u \cdot \nabla u)}{(1 + |\nabla u|^2)^{5/2}} \]

\[(3.6) \]

\[= \Delta u \frac{\nabla u \cdot \nabla \left(\frac{u_t^2}{2} \right)}{(1 + |\nabla u|^2)^{3/2}} + u_t \nabla u \cdot \nabla^2 u_t \nabla u \]

\[\quad + \frac{\nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla \left(\frac{u_t^2}{2} \right)}{(1 + |\nabla u|^2)^{3/2}} \]

\[- 3 \frac{\nabla \left(\frac{u_t^2}{2} \right) \cdot \nabla u \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right) \cdot \nabla u}{(1 + |\nabla u|^2)^{5/2}} \]

\[=: \text{III} + \text{IV} + V + VI, \]

with \(V = -II \), hence

\[\frac{\partial}{\partial t} \left(\frac{u_t^2}{2} \right) = I - \text{III} - \text{IV} - 2V - VI. \]

\[(3.7) \]

Now, we write \(u_t \Delta u = \Delta \left(\frac{u_t^2}{2} \right) - |\nabla u_t|^2 \), and

\[u_t \nabla u \cdot \nabla^2 u_t \nabla u = \nabla u \cdot \nabla^2 \left(\frac{u_t^2}{2} \right) \nabla u - (\nabla u \cdot \nabla u_t)^2, \]

whence

\[I - \text{IV} = \frac{\Delta \left(\frac{u_t^2}{2} \right) - \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \cdot \nabla^2 \left(\frac{u_t^2}{2} \right) \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}}{\sqrt{1 + |\nabla u|^2}} \]

\[- \frac{|\nabla u_t|^2 - \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla u_t \right)^2}{\sqrt{1 + |\nabla u|^2}}. \]
Substituting into (3.7) we then get

\[
\frac{\partial}{\partial t} \left(\frac{u_t^2}{2} \right) = \frac{\Delta u - \frac{\nabla u \cdot \nabla^2 \left(\frac{u_t^2}{2} \right)}{\sqrt{1 + |\nabla u|^2}}}{\sqrt{1 + |\nabla u|^2}} - \nabla u \cdot \nabla \left(\frac{u_t^2}{2} \right) \frac{|\nabla u|^2}{(1 + |\nabla u|^2)^{3/2}} - 2 \nabla \left(\frac{u_t^2}{2} \right) \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right) \frac{1}{(1 + |\nabla u|^2)^{5/2}}.
\]

Observing that \(|\nabla u_t|^2 \leq \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla u_t \right)^2\), we get

\[
\frac{\partial}{\partial t} \left(\frac{u_t^2}{2} \right) \leq \frac{\Delta u - \frac{\nabla u \cdot \nabla \left(\frac{u_t^2}{2} \right)}{\sqrt{1 + |\nabla u|^2}}}{\sqrt{1 + |\nabla u|^2}} - \nabla u \cdot \nabla \left(\frac{u_t^2}{2} \right) \frac{|\nabla u|^2}{(1 + |\nabla u|^2)^{3/2}} - 2 \nabla \left(\frac{u_t^2}{2} \right) \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right) \frac{1}{(1 + |\nabla u|^2)^{5/2}} + 3 \nabla \left(\frac{u_t^2}{2} \right) \cdot \nabla \left(\frac{|\nabla u|^2}{2} \right) \frac{1}{(1 + |\nabla u|^2)^{5/2}}.
\] (3.8)

The estimate (3.2) follows as above from the maximum principle applied to (3.8).

Proof of Theorem 1.1.

Case 1. Assume that \(N = 1\). Note that \(X(\Omega) = H^1(\Omega)\). Let \(L \subset (0, +\infty)\) be a set of zero Lebesgue measure such that the partial differential equation in (2.2) and Theorem 2.1 (iii) hold for any \(t \in J := (0, +\infty) \setminus L\). We deduce that for all \(\tau > 0\) there exists a constant \(C = C(\tau) > 0\) such that

\[\|z(t, \cdot)\|_{H^1(\Omega)} \leq C, \quad t \geq \tau, \; t \in J.\]

In particular, by Sobolev embedding, \(z(t, \cdot)\) is \(1/2\)-Hölder continuous, uniformly for \(t \geq \tau, \; t \in J\). Therefore, for all \(\eta \in (0, 1)\) there exists \(\varepsilon = \varepsilon(\eta) > 0\)
independent of \(t \geq \tau, \ t \in J \), such that, if
\[
|z(t, x_0)| \geq \eta \quad \text{for some } (t, x_0) \in J \times \Omega,
\] (3.9)
then
\[
|z(t, x)| \geq \frac{\eta}{2} \quad \text{for all } x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap \Omega.
\]
Hence
\[
\text{either } \ u_x(t, x) \geq \frac{\eta}{\sqrt{4 - \eta^2}} \text{ or } u_x(t, x) \leq -\frac{\eta}{\sqrt{4 - \eta^2}},
\] (3.10)
for almost every \(x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap \Omega \). We then get
\[
\|u(t) - \bar{u}_0\|^2_{L^2(\Omega)} \geq \min_{\alpha \in \mathbb{R}} \|u(t) - \alpha\|^2_{L^2(\Omega)} \geq \min_{\beta \in \mathbb{R}} f(\beta),
\] (3.11)
where
\[
f(\beta) := \int_0^\varepsilon \left(\frac{\eta}{\sqrt{4 - \eta^2}} x - \beta \right)^2 \, dx, \quad \beta \in \mathbb{R},
\]
and we use that \(|\Omega \cap (x_0 - \varepsilon, x_0 + \varepsilon)| \geq \varepsilon \) as soon as \(\varepsilon \in (0, |\Omega|] \).

One checks that \(\min_{\beta \in \mathbb{R}} f(\beta) = f \left(\frac{\varepsilon \eta}{2 \sqrt{4 - \eta^2}} \right) = \frac{\eta^2}{4 - \eta^2} \varepsilon^3/12 \).

Hence
\[
\|u(t) - \bar{u}_0\|^2_{L^2(\Omega)} \geq \frac{\eta^2}{4 - \eta^2} \varepsilon^3/12.
\]
Since \(u(t) \to \bar{u}_0 \) in \(L^2(\Omega) \) as \(t \to +\infty \) by Theorem 2.1 (ii), in order not to have a contradiction it follows that, given \(\eta \in (0, 1) \), there exists \(T = T(\eta) \) such that \(|z(t, x)| < \eta \) for all \((t, x) \in J \times \Omega, \ t \geq T \). Therefore \(u(t, \cdot) \) is \((\eta/\sqrt{4 - \eta^2}) \)-Lipschitz in \(\Omega \) for all \(t > T \), \(t \in J \), and hence for all \(t > T \).

Thus, by parabolic regularity theory,
\[
u(t, \cdot) \in C^\infty(\Omega) \quad \text{for all } t > T,
\]
and \(u(t) \to \bar{u}_0 \) in \(C^\infty(\Omega) \) as \(t \to +\infty \).

\(^3\)Indeed, if \(c := \frac{\eta}{\sqrt{4 - \eta^2}} \), for any \(\alpha \in \mathbb{R} \) and \(x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap \Omega \) we have \(|u(t, x) - \alpha| = |u(t, x) - \alpha + \int_{x_0}^x u'(t, \xi) \, d\xi| \geq |u(t, x_0) - \alpha + c(x - x_0)| = |cx - \beta|, \) where \(\beta := \alpha - u(t, x_0) + cx_0 \). Hence \(\int_\Omega (u(t, x) - \alpha)^2 \, dx \geq \int_\Omega (cx - \beta)^2 \, dx \), and therefore \(\min_{\alpha \in \mathbb{R}} \int_\Omega (u(t, x) - \alpha)^2 \geq \min_{\beta \in \mathbb{R}} \int_\Omega (cx - \beta)^2 \, dx \).

10
Case 2. Assume that $N > 1$. Let $u_0 \in L^\infty(\Omega) \cap BV(\Omega)$, and suppose that graph(u_0) is a hypersurface of class $C^{1,1}$ meeting orthogonally $\partial \Omega$. We divide the proof into four steps.

Step 1. There exists a sequence $(u^n_0) \subset C^\infty(\Omega) \cap Lip(\Omega)$ converging to u_0 in $L^2(\Omega)$ and such that

$$
\sup_{n \in \mathbb{N}} \left\| \text{div} \left(\frac{\nabla u^n_0}{\sqrt{1 + |\nabla u^n_0|^2}} \right) \right\|_{L^\infty(\Omega)} < +\infty. \tag{3.12}
$$

Indeed, let $\Sigma(t)$ be the mean curvature evolution starting from graph(u_0) = $\Sigma(0)$, with Neumann boundary conditions on $\partial \Omega \times \mathbb{R}$ (see [25, 10]). Since graph(u_0) is of class $C^{1,1}$, there exists an evolution $t \mapsto \Sigma(t)$, with $t \in [0, \tau]$ for some $\tau > 0$, such that $\Sigma(t)$ is of class C^∞ (actually analytic) and $\Sigma(t)$ is of class $C^{1,1}[25]$ uniformly in $[0, \tau]$. Moreover, letting $\nu(t)$ be the unit normal to $\Sigma(t)$ pointing upward, so that $\nu_{n+1}(0) \geq 0$ on $\Sigma(0)$, by the strong maximum principle we have $\nu_{n+1}(t) > 0$ on $\Sigma(t)$ for any $t \in (0, \tau]$. That is, $\Sigma(t)$ is the graph of a function $v(t) \in C^\infty(\Omega) \cap Lip(\Omega)$. We conclude by letting

$$
u_n := v(t_n),$$

where $(t_n) \subset (0, \tau)$ is a sequence converging to 0 as $n \to +\infty$, so that graph(u^n_0) is of class $C^{1,1}$ uniformly in $n \in \mathbb{N}$, which implies (3.12).

Step 2. The function u satisfies

$$
\sup_{t \in (0, +\infty)} \| u(t) \|_{L^\infty(\Omega)} < +\infty. \tag{3.13}
$$

Let $u_n(t)$, $t \in [0, +\infty)$, be the solution of the first two equations of (1.1), with initial condition $u_n(0) = u^n_0$, where u^n_0 is as in step 1. From Lemma 3.1 we have $u_n \in C^\infty((0, +\infty) \times \Omega)$; from (3.12) and (3.2), it follows that

$$
\sup_{n \in \mathbb{N}} \| \partial_t u_n(t) \|_{L^\infty(\Omega)} \leq C \quad \forall t \in (0, +\infty), \tag{3.14}
$$

where $C > 0$ is a constant bounding the left hand side of (3.12). Notice that (3.14) is equivalent to say that the functions $u_n(\cdot, x)$ are C-Lipschitz on $(0, +\infty)$, uniformly in $n \in \mathbb{N}$ and $x \in \Omega$. Recalling that, by Proposition 4.1, the fact that $\Sigma(t)$ is of class $C^{1,1}$ uniformly in $[0, \tau]$ follows from the assumption on graph(u_0) and the estimates in [25] (see, e.g., [5, Ch. 13] for related references and a precise argument).
2.5, $\lim_{n \to +\infty} u_n = u$ in $L^2((0,T) \times \Omega)$ for all $T > 0$, we can extract a (not relabelled) subsequence so that $\lim_{n \to +\infty} u_n = u$ almost everywhere in $(0, +\infty) \times \Omega$. Passing to the limit, as $n \to +\infty$, in the inequality $|u_n(t,x) - u_n(s,x)| \leq C|t-s|$ for almost every $(t,s,x) \in (0, +\infty) \times (0, +\infty) \times \Omega$, we get that $u(\cdot,x)$ is also C-Lipschitz in $(0, +\infty)$, uniformly in $x \in \Omega$, which gives (3.13).

Step 3. We have that
\[
\text{graph}(u(t)) \text{ is } C^{1,\alpha} \text{ for any } \alpha \in (0,1), \text{ uniformly in } t \in (0, +\infty).
\] (3.15)

To prove assertion (3.15) it is enough to closely follow [13, Proposition 4.4] and use (3.13): we repeat here the argument for completeness. Suppose by contradiction that (3.15) does not hold. Then, for any $n \in \mathbb{N}$, we can find $(t_n, x_n, y_n) \in (0, +\infty) \times \Omega \times \mathbb{R}$ such that $(x_n, y_n) \in \text{graph}(u(t_n))$ and, for all $\rho > 0$, the hypersurfaces $\text{graph}(u(t_n)) \cap B_\rho(x_n, y_n)$ are not uniformly $C^{1,\alpha}$ with respect to n. Letting $\tilde{u}_n(x) := u(t_n, x) - u(t_n, x_n)$, from (1.1) and (3.13) we have that
\[
-\text{div} \left(\frac{\nabla \tilde{u}_n(x)}{\sqrt{1 + |\nabla \tilde{u}_n(x)|^2}} \right) = \kappa_n(x), \quad x \in \Omega.
\] (3.16)

with
\[
\sup_{n \in \mathbb{N}} \|\kappa_n\|_{L^\infty(\Omega)} < +\infty.
\] (3.17)

In particular, \tilde{u}_n is a minimizer of the prescribed curvature functional
\[
v \in BV(\Omega) \mapsto \int_\Omega \left(\sqrt{1 + |\nabla v|^2} - \kappa_n v \right) dx + |D^s v|(\Omega).
\]

From (3.17) and the compactness theorem for quasi minimizers of the perimeter [1], [20], the hypersurfaces $\text{graph}(\tilde{u}_n)$ converge in $L^1(\Omega \times \mathbb{R})$, and up to a (not relabelled) subsequence, to a limit hypersurface $\Gamma_{\infty} \subset \overline{\Omega} \times \mathbb{R}$ of class $C^{1,\alpha}$, for all $\alpha \in (0,1)$. Possibly passing to a further subsequence, we can also assume that $\lim_{n \to +\infty} x_n = x_{\infty}$, for some $x_{\infty} \in \overline{\Omega}$. Observe that $\tilde{u}_n(x_n) = 0$, and so $(x_{\infty}, 0) \in \Gamma_{\infty}$.

By [26, Theorem 1] there exists $\rho > 0$ such that both $\text{graph}(\tilde{u}_n) \cap B_\rho(x_{\infty}, 0)$ and $\Gamma_{\infty} \cap B_\rho(x_{\infty}, 0)$ can be written as graphs of functions of N
variables, in the normal direction to Γ_∞ at $(x_\infty, 0)$. Therefore, by regularity of minimizers of the prescribed curvature functional [23], the hypersurfaces $\text{graph}(\widetilde{u}_n) \cap B_\rho(x_\infty, 0)$ are uniformly (with respect to $n \in \mathbb{N}$) of class $C^{1,\alpha}$ for all $\alpha \in (0, 1)$, thus leading to a contradiction.

Step 4. From (3.15) it follows that the vector field $z(t, \cdot)$ in (2.2) is α-Hölder continuous in Ω, uniformly with respect to $t \in (0, +\infty)$. We can now proceed as in case 1, with only minor changes. Indeed, letting L and $J := (0, +\infty) \setminus L$ be as in case 1, from the Hölder continuity of z we get that, for all $\eta \in (0, 1)$, there exists $\varepsilon = \varepsilon(\eta) > 0$ independent of $t \in J$, such that, if for some $\nu \in S^{N-1}$,

$$z(t, x_0) \cdot \nu \geq \eta \text{ for some } (t, x_0) \in J \times \Omega,$$

then

$$z(t, x) \cdot \nu \geq \frac{\eta}{2} \text{ for all } x \in B_\varepsilon(x_0) \cap \Omega.$$

It then follows

$$\nabla u(t, x) \cdot \nu \geq \frac{\eta}{\sqrt{4 - \eta^2}} \text{ for almost every } x \in B_\varepsilon(x_0) \cap \Omega,$$

which implies, as in case 1,

$$\|u(t) - \alpha_0\|^2_{L^2(\Omega)} \geq \min_{\alpha \in \mathbb{R}} \|u(t) - \alpha\|^2_{L^2(\Omega)} \geq \min_{\beta \in \mathbb{R}} g(\beta),$$

where

$$g(\beta) := \int_{B_\varepsilon(x_0) \cap \Omega} \left(\frac{\eta}{\sqrt{4 - \eta^2}} x \cdot \nu - \beta \right)^2 dx, \quad \beta \in \mathbb{R}.$$

One checks that

$$\min_{\beta \in \mathbb{R}} g(\beta) = g \left(\frac{\eta \int_{B_\varepsilon(x_0) \cap \Omega} x \cdot \nu \, dx}{\sqrt{4 - \eta^2} |B_\varepsilon(x_0) \cap \Omega|} \right)$$

$$= \frac{\eta^2}{4 - \eta^2} \left(\int_{B_\varepsilon(x_0) \cap \Omega} (x \cdot \nu)^2 \, dx - \frac{1}{|B_\varepsilon(x_0) \cap \Omega|} \left(\int_{B_\varepsilon(x_0) \cap \Omega} x \cdot \nu \, dx \right)^2 \right)$$

$$\geq C \frac{\eta^2}{4 - \eta^2} \varepsilon^{N+2},$$
for all \(\varepsilon \in (0, \varepsilon_0(\Omega)) \), where \(\varepsilon_0(\Omega) > 0 \) depends only on \(\Omega \), and the constant \(C > 0 \) depends only on the dimension \(N \). Hence

\[
\|u(t) - \bar{u}_0\|_{L^2(\Omega)}^2 \geq C \frac{\eta^2}{4 - \eta^2} \varepsilon^{N+2}.
\]

Since \(\|u(t) - \bar{u}_0\|_{L^2(\Omega)}^2 \to 0 \) as \(t \to +\infty \) by Theorem 2.1, it follows that, given \(\eta \in (0, 1) \), there exists \(T = T(\eta) \) (in particular independent of \(\nu \)) such that \(|z(t,x)| \leq \eta \) for all \((t,x) \in J \times \Omega, \ t \geq T \). Therefore \(u(t, \cdot) \) is \((\eta/\sqrt{4 - \eta^2}) \)-Lipschitz in \(\Omega \) for all \(t > T \), so that by parabolic regularity theory \(u(t, \cdot) \in C^\omega(\Omega) \) for all \(t > T \), and \(u(t) \to \bar{u}_0 \) in \(C^\infty(\Omega) \) as \(t \to +\infty \).

We conclude the paper with an example showing that, in contrast with the one-dimensional case, in higher dimensions there is no instantaneous regularization of graph \(u(t) \).\footnote{In dimension one, we have proven that \(z(t, \cdot) \) becomes instantaneously \(1/2 \)-Hölder continuous, and this implies that the graph of \(u(t, \cdot) \) becomes instantaneously of class \(C^{1,3/2} \).}

Example 3.2. Let \(N \geq 3, \ \Omega = B_1 \) be the unit ball of \(\mathbb{R}^N \) centered at the origin, and \(\sigma := \frac{1}{N-1} \). Let \(u_0(x) := 1/|x|, \ x \in \Omega \setminus \{0\} \); notice that \(u_0 \in L^2(\Omega) \cap BV(\Omega) \). Let \(u \) be the solution to (1.1) given by Theorem 2.1, so that \(u(t, \cdot) \in L^2(\Omega) \cap BV(\Omega) \) for all \(t > 0 \). Let us check that the function

\[
v(t,x) := \frac{a(t)}{|x|}, \quad t > 0, \ x \in \Omega \setminus \{0\}
\]

where

\[
a(t) := \max \left(1 - (N - 1) t, 0 \right), \quad t > 0,
\]

is a subsolution of (2.2). For all \((t,x) \in (0, \sigma) \times (\Omega \setminus \{0\}) \), a direct computation gives \(|
\nabla v(t,x)|^2 = \frac{a(t)^2}{|x|^2}, \) and

\[
\begin{align*}
\text{div} \left(\frac{\nabla v(t,x)}{\sqrt{1 + |\nabla v(t,x)|^2}} \right) \\
= -a \left(\frac{N - 3}{|x|} \frac{1}{\sqrt{a(t)^2 + |x|^4}} + \frac{2}{|x|} \frac{a(t)^2}{(a(t)^2 + |x|^4)^{3/2}} \right) \\
\geq -a \frac{N - 1}{|x|} \frac{1}{\sqrt{a(t)^2 + |x|^4}}.
\end{align*}
\]
Hence

\[v_t(t, x) = -\frac{(N - 1)}{|x|} \leq \frac{(N - 1)}{|x|} \frac{a(t)}{\sqrt{a(t)^2 + |x|^2}} \]

\[\leq \text{div} \left(\frac{\nabla v(t, x)}{\sqrt{1 + |\nabla v(t, x)|^2}} \right) \]

and therefore \(v \) is a subsolution of (2.2). By comparison principle (see [3]) it follows that \(u \geq v \) almost everywhere in \((0, +\infty) \times \Omega\). As a consequence, \(\text{graph}(u(t)) \) is not of class \(C^1(\Omega) \) for \(t \in [0, \sigma) \).

References

