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Abstract

We consider the sharp interface limit ε →
0+ of the semilinear wave equation 2u +
∇W (u)/ε2 = 0 in R1+n, where u takes val-
ues in Rk, k = 1, 2, and W is a double-well
potential if k = 1 and vanishes on the unit
circle and is positive elsewhere if k = 2. For
fixed ε > 0 we find some special solutions,
constructed around minimal surfaces in Rn.
In the general case, under some additional as-
sumptions, we show that the solutions con-
verge to a Radon measure supported on a
time-like k-codimensional minimal submani-
fold of the Minkowski space-time. This result
holds also after the appearence of singulari-
ties, and enforces the observation made by
J. Neu that this semilinear equation can be
regarded as an approximation of the Born-
Infeld equation.

1 Introduction

In this paper we consider the following sys-
tem of semilinear hyperbolic equations

2u +
1
ε2
∇W (u) = 0 , (1)

for

u : R× Rn → Rk, n ≥ 1, k = 1, 2,
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where 2u = utt − ∆u = ∂x0x0u − ∂xixiu is
the wave operator in R1+n with coordinates
x0 = t, x1, . . . , xn, ε > 0 is a small parame-
ter, and W (u) = W̃ (|u|), where W̃ : R→ R+

is a double-well potential. Equation (1) is
a Lorentz invariant field equation, governing
the dynamics of topological defects such as
vortices [9]; it is also strictly related to time-
like lorentzian minimal submanifolds of codi-
mension k in Minkowski (1 + n)-dimensional
space-time [10]. We refer to [12] for a discus-
sion on the existence of local and global so-
lutions to (1). The elliptic/parabolic analog
of (1) is called the Ginzburg-Landau equa-
tion, and has been recently investigated by
many authors in connection with euclidean
minimal surfaces and mean curvature flow in
codimension k (see for instance [2] and refer-
ences therein). Here we are interested in the
asymptotic limit as ε → 0+ of solutions uε
to (1). The case k = 1 will be referred to as
the scalar case, since (1) reduces to a single
equation, and solutions will be denoted by
uε; note that in this case, the vacuum states
±1 are stable solutions.
For n = 3 and k = 1, the asymptotic limit
as ε→ 0+ of uε has been formally computed
by Neu in [10], using suitable asymptotic ex-
pansions. The author shows that there are
solutions which take the constant values ±1
out of a transition layer of thickness ε, pro-
vided such a layer is suitably close to a one-
codimensional time-like lorentzian minimal
surface Σ. The one-codimensional time-like
minimal surface equation can be described as
follows: the points (x0, x1, · · · , xn) on each
time-slice Σ(t) := Σ ∩ {x0 = t} of Σ must
satisfy the equation

A = (1− V 2)κ (2)

in normal direction, where A, V and κ are
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respectively the acceleration, the velocity
and the euclidean mean curvature of Σ(t)
at (x0, x1, · · · , xn). We point out that Eq.
(2) is the Euler-Lagrange equation of the n-
dimensional area induced by the Minkowski
metric, given by

A(Σ) =
∫

Σ

√
−ν2

0 + |ν̂|2 dHn,

where ν = (ν0, ν̂) is a unit euclidean normal
to Σ, and Hn is the n-dimensional euclidean
Hausdorff measure. We refer to [3], [8], [5]
for the analysis of various aspects of Eq. (2).
Interestingly, Neu [10] showed also that, due
to possible oscillations on a small scale on the
initial interface, which are not dissipated in
time, solutions to (1) may not converge to a
solution of (2), as the oscillation scale tends
to zero.
In the first part of the present paper we com-
pute some explicit selfsimilar solutions of (1).
In particular, we show that, given any eu-
clidean nondegenerate minimal hypersurface
M in Rn, there exists a solution to (1) travel-
ing around M (see Propositions 2.2 and 2.4).
In the second part of the paper we adapt to
the hyperbolic setting the parabolic strategy
followed in [1]. Given a solution uε to (1) let

`ε(uε) := ck(ε)
(
−|uεt|2 + |∇uε|2

2
+
W (uε)
ε2

)
be the rescaled lagrangian integrand, where

ck(ε) :=
{
ε if k = 1,

1
| log ε| if k = 2.

In our main result (Theorem 3.3) we show
that, under some technical assumptions,
`ε(uε) concentrates on a k-codimensional set
Γ, as ε → 0+. Moreover, Γ is a time-like
lorentzian minimal submanifold whenever it
is smooth. In order to prove this result we
suitably extend the notion of rectifiable vari-
fold to the lorentzian setting, and prove that
the stress-energy tensor of the solutions of
(1) converges to a stationary lorentzian var-
ifold, as ε → 0+. The proof of Theorem 3.3
naturally leads to Definition 3.1, which gen-
eralizes the concept of minimality, with re-
spect to the Minkowski area, to nonsmooth

k-codimensional submanifolds. A weak no-
tion of lorentzian minimal submanifold (a
lorentzian stationary varifold in our case)
seems here to be unavoidable, in view of the
presence of singularities.
Finally, we conclude the paper by discussing
the validity of our assumptions in relation to
the example of Neu [10].

1.1 Notation

Throughout the paper bold letters will refer
to the case k = 2. The greek indices α, β, γ, δ
run from 0 to n, while the roman indices i, j
run from 1 to n; we adopt the Einstein sum-
mation convention over repeated indices.
We let η−1 = diag(−1, 1, . . . , 1) be the in-
verse Minkowski metric tensor with con-
travariant components ηαβ ; ηαβ are the co-
variant components of the Minkowski metric
tensor η.
Given ξ = (ξ0, ξ̂) ∈ R × Rn we set |ξ̂|2 :=
ηij ξ̂iξ̂j ,

〈ξ, ξ〉m := −(ξ0)2 + |ξ̂|2 = ηαβξαξβ ,

and if 〈ξ, ξ〉m 6= 0 we set |ξ|m := 〈ξ,ξ〉m
|〈ξ,ξ〉m|1/2

.
We say that ξ is space-like (resp. time-like)
if 〈ξ, ξ〉m > 0 (resp. 〈ξ, ξ〉m < 0). Given
a (1, 1)-tensor A, we say that A is space-
like (resp. time-like) if Aξ is space-like (resp.
time-like) for all ξ ∈ R× Rn \ {(0, 0)}.
∇ (resp. ∇) indicates the euclidean gradient
in Rn (resp. in R1+n); for a smooth function
g : R1+n → R we set ∇mg := (−gt,∇g) =
ηαβ ∂g

∂xβ
= η−1∇g.

Hh denotes the h-dimensional euclidean area
(i.e. the Hausdorff measure) either in Rn or
in R1+n for h ∈ {0, . . . , n}; is the symbol
of restriction of measures and ⇀ denotes the
weak convergence of Radon measures. If µ is
a measure absolutely continuous with respect
to λ, we write µ << λ, and we denote by
dµ/dλ the Radon-Nikodym derivative of µ
with respect to λ.
We recall that a smooth k-codimensional
submanifold M of Rn without boundary is
said minimal if M has vanishing mean cur-
vature. A minimal submanifold M ⊂ Rn is
said nondegenerate if the second variation of
its (n − k)-dimensional area, represented by
the associated Jacobi operator, is injective.
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2 Selfsimilar solutions

Unless otherwise specified, in what follows we
take W (u) = 1

4 (1 − |u|2)2 if n ≤ 4, and if
n > 4 we suppose W to be a function of |u|
with the proper growth at infinity in order
problem (1) to be well-posed [12].
We let

eε(uε) := ck(ε)
(
|uεt|2 + |∇uε|2

2
+
W (uε)
ε2

)
be the rescaled energy integrand of a solution
uε of (1). By |uεt|2 (resp. |∇uε|2) we mean
the square euclidean norm of uεt ∈ Rk (resp.
of ∇uε, i.e., the sum of the squares of the
elements of the matrix ∇uε).
We notice that the following quantity is con-
served for any t ≥ 0:∫

Rn
eε(uε(t, x)) dx =

∫
Rn
eε(uε(0, x)) dx,

(3)
assuming the proper growth conditions on
the right hand side.

2.1 Traveling waves

Let k = 1, 2. We construct solutions of (1),
which are traveling waves along a prescribed
direction ν ∈ Rn, |ν| = 1. Up to a rotation of
Rn, we can assume ν = (0, . . . , 0, 1). Letting
x = (y, z) ∈ Rn = Rn−1 × R, we look for
traveling wave solutions of (1) of the form

uε(t, x) = v(y, z − vt), (4)

for some v ∈ (−1, 1) and a suitable map v :
Rn → Rk. Then (1) becomes

−∆yv − (1− v2)vzz +
1
ε2
∇W (v) = 0, (5)

where ∆y is the Laplacian in Rn−1 with re-
spect to the y = (y1, . . . , yn−1)-coordinates.
Let

f(y, z) := v(y,
√

1− v2z). (6)

Then f satisfies the elliptic Ginzburg-Landau
system

−∆f +
1
ε2
∇W (f) = 0. (7)

Hence traveling wave solutions of (1), with
v ∈ (−1, 1), correspond to solutions of the
elliptic system (7).
We recall the following result [11].

Theorem 2.1. For any smooth nondegener-
ate embedded minimal submanifold M ⊂ Rn
of codimension 1 without boundary, there ex-
ist solutions fε of (7) such that

ε

(
|∇fε|2

2
+
W (fε)
ε2

)
⇀ σHn−1 M

as ε → 0+, where σ = σ(W,n) is a positive
constant independent of M .

As a consequence our first result is the exis-
tence of traveling waves close to any nonde-
generate minimal hypersurface of Rn.

Proposition 2.2. Let k = 1. Let M ⊂ Rn
be a smooth nondegenerate embedded min-
imal submanifold of codimension 1 without
boundary, and let v ∈ (−1, 1). Define

Σ :=
{(

t, y,
√

1− v2z + vt
)
∈ R× Rn−1 × R :

(y, z) ∈M
}
.

Then there exist traveling wave solutions uε :
R1+n → R of (1) of the form (4), such that

`ε(uε) ⇀ σµ Σ ε→ 0+, (8)

where the measure µ is the n-dimensional
area induced by the Minkowski metric.

Proof. Set γ := (1 − v2)−1/2. If fε are as in
Theorem 2.1, we define uε(t, x) := fε(y, γ(z−
vt)). Then `ε(uε) = ε

(
|∇fε|2

2 + W (fε)
ε2

)
,

hence if ϕ ∈ Cc(R1+n),∫
R

∫
Rn
`ε(uε)ϕ dxdt

(9)

=
∫

R

∫
Rn
ε

(
|∇fε|2

2
+
W (fε)
ε2

)
ϕ dxdt

where the integrand in parentheses is eval-
uated at (y, γ(z − vt)). Therefore, making
the change of variables (t′, y′, z′) = L(t, y, z),
where L is the Lorentz transformation given
by

L(t, y, z) := (γ(t− vz), y, γ(z − vt)) ,

we have that (9) equals∫
R

∫
Rn
ε

(
|∇fε|2

2
+
W (fε)
ε2

)
ϕ dx′dt′

→ σ

∫
R

∫
M

ϕ dHn−1(x′) dt′ = σ

∫
Σ

ϕ dµ,
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where µ is the image of Hn R×M , through
the map L−1.

Remark 2.3. The hypersurface Σ in Propo-
sition 2.2 is a time-like lorentzian minimal
hypersurface. Indeed, let d : Rn → R be the
signed (euclidean) distance function from M ,
negative in the interior of M (note that M
is the boundary of a smooth open subset of
Rn), so that M = {(y, z) ∈ Rn : d(y, z) = 0},
|∇d|2 = 1 in a neighbourhood of M , and
∆d = 0 on M . Define g : R1+n → R as
g(t, x) := d(y, γ(z− vt)), x = (y, z). Observe
that Σ = {g = 0}, so that the minkowskian
mean curvature of Σ is given by the euclidean
divergence in R1+n of ∇mg/|∇mg|m, namely
by( −gt√
−(gt)2 + |∇g|2

)
t
+
( gxi√
−(gt)2 + |∇g|2

)
xi

evaluated on Σ. The equality |∇d|2 = 1 im-
plies

√
−(gt)2 + |∇g|2 = 1 in a neighbour-

hood of Σ. Therefore we only have to check
that

−gtt + gxixi = 0 on Σ, (10)

which is verified because −gtt + gxixi on Σ
coincides with ∆d on M .

Note that `ε(uε) concentrates on Σ in the
limit ε → 0+; the same happens for eε(uε),
since eε(uε), and `ε(uε) in Proposition 2.2 are
mutually absolutely continuous.

2.2 Rotating waves

In this section we let W (u) = (1 − |u|2)2/4,
W̃ : R → R be defined as W̃ (s) := (1 −
s2)2/4, and let k = 2; we identify the target
space R2 with the complex plane. We look
for solutions of (1) of the form

uε(t, x) = ρ(x)eiωt, ρ : Rn → R, (11)

for some ω ∈ R. Substituting (11) into (1),
we get that ρ must satisfy

−∆ρ− ω2ρ+
1
ε2
W̃ ′(ρ) = 0. (12)

This scalar equation can be rewritten as

−∆ρ+
1
ε2
W̃ ′ε(ρ) = 0, (13)

where

W̃ε(ρ) :=
(1 + ε2ω2 − ρ2)2

4

= (1 + ε2ω2)2 W̃

(
ρ√

1 + ε2ω2

)
.

Therefore (13) reduces to (7) with k = 1 and
W replaced by W̃ , after the change of vari-
ables

f(x) =
ρ
(

x√
1+ε2ω2

)
√

1 + ε2ω2
,

and we can still apply Theorem 2.1. In par-
ticular, we get the following

Proposition 2.4. Let M ⊂ Rn be a smooth
nondegenerate embedded minimal submani-
fold of codimension 1 without boundary, and
let ω ∈ R. Define

Σ := R×M.

Then there exist solutions uε : R1+n → R2 of
(1) of the form (11), such that

ε

(
−|uεt|2 + |∇uε|2

2

)
+
W (uε)
ε

⇀ σ µ Σ

as ε → 0+, where the measure µ is the n-
dimensional area induced by the Minkowski
metric.

Proof. If ϕ ∈ C∞c (R1+n) we have∫
R

∫
Rn

ε

c2(ε)
`ε(uε)ϕ dxdt

=
∫

R

∫
Rn

[
ε
|∇ρ|2

2

+
1
ε

(
W̃ (ρ) + ε2

ρ2ω2

2

)]
ϕ dxdt

→ σ

∫
R

∫
M

ϕ dHn−1dt = σ

∫
Σ

ϕ dµ.

Note that in Proposition 2.4 ε
c2(ε)`ε(uε) con-

centrates on the lorentzian minimal subman-
ifold Σ of codimension 1, even if k = 2.
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3 Convergence as ε→ 0+

We are interested in passing to the limit in
(1), as ε → 0+. As already mentioned in
the introduction, a formal limit has been per-
formed in [10] when k = 1. Rigorous asymp-
totic results for well prepared initial data
have been recently announced in [7].
From now on we shall assume that there ex-
ists a constant C > 0 such that

sup
ε∈(0,1)

∫
Rn
eε(uε(0, x)) dx ≤ C. (14)

3.1 Assumptions on ` and e

Under assumption (14), from (3) it follows
that the measures eε(uε) dtdx converge, up
to a (not relabelled) subsequence as ε →
0+, to a Radon measure e in R1+n. Since
|`ε(uε)| and ck(ε)W (uε)/ε2 are both bounded
by eε(uε), they also weakly converge, up to
a subsequence, to two measures ` and w re-
spectively,

`ε(uε) dtdx ⇀ `, (15)

ck(ε)W (uε)/ε2 dtdx ⇀ w, (16)

and ` and w are absolutely continuous with
respect to e, with density less than or equal
to 1. In the following, we shall assume that

(A1) e is absolutely continuous with respect
to `.

Assumption (A1) is a weak way to say that
|uεt|2 is controlled by |∇uε|2, or equivalently
that the tensor∇uε, suitably normalized, be-
comes space-like in the limit ε → 0+. Such
an assumption essentially implies that the set
Γ defined in (18) below is time-like.
Following [1], we shall assume also that

(A2) for `-almost every (t, x) it holds

0 < lim
ρ→0+

`(Bρ(t, x))
ρn+1−k < +∞, (17)

where Bρ(t, x) denotes the euclidean ball of
radius ρ centered at (t, x). Recalling Preiss’
Theorem [4], from (A2) it follows that the
support of the measures e and `

Γ := spt(`) = spt(e) (18)

is a rectifiable set of dimension n+1−k, and

` = f Hn+1−k Γ

in the sense of measures, for some Borel mea-
surable function f > 0.
Assumption (A2) also ensures that the la-
grangian integrands `ε(uε) concentrate on a
time-like rectifiable set Γ of codimension k in
the limit ε → 0+. Hence Γ has the correct
codimension, but is not necessarily smooth
everywhere. We observe at this point that,
in general, time-like lorentzian minimal sub-
manifolds are singular, and that the density
f defined above is typically 0 at the singular
points of Γ; for instance the limit in (17) van-
ishes if (t, x) is the vertex of half a light-cone.
Note carefully that we are not excluding the
presence of zero density points on Γ, since
(A2) is required to be valid only for `-almost
all points, and not for all points of Γ. Dif-
ferently with respect to the parabolic case
considered in [1], we cannot expect here a
uniform lower density bound (where the zero
on the left hand side of (17) would be sub-
stituted by an absolute positive constant).

3.2 Rectifiable lorentzian vari-
folds

A matrix P represents a lorentzian orthog-
onal projection on a time-like subspace of
codimension k of R1+n if there exists a
Lorentz transformation L such that

L−1 P L =

{
diag(1, 0, 1, . . . , 1) if k = 1,
diag(1, 0, 0, 1, . . . , 1) if k = 2.

The pair of Radon measures V = (µV , δP )
is called rectifiable lorentzian varifold (with-
out boundary) of codimension k if spt(µV ) ⊂
R1+n is an (n + 1 − k)-rectifiable set whose
tangent space is time-like Hn+1−k-almost ev-
erywhere, and δP is the Dirac delta concen-
trated in P , where P is the lorentzian or-
thogonal projection onto the tangent space
to spt(µV ). Notice that, when k = 1 and
spt(µV ) is smooth and time-like, the orthog-
onal lorentzian projection P can be written
as

P = Id− η−1νm ⊗ νm,
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where ν is a normal (co)vector to spt(µV ),
and νm := ν/|ν|m.

Definition 3.1. We say that the rectifiable
lorentzian varifold V = (µV , δP ) is station-
ary if ∫

R1+n
tr
(
P ∇X

)
dµV = 0 (19)

for all vector fields X ∈ (C1
c (R1+n))n+1.

Notice that (19) is equivalent to require that
the generalized varifold (µV , δP ) (in the sense
of [1, Def. 3.4]) is stationary.

Remark 3.2. When spt(µV ) is smooth, a
direct computation [13] shows that condition
(19) implies that spt(µV ) is a time-like min-
imal submanifold of codimension k, and µV
coincides, up to a positive constant, with the
(n + 1 − k)-dimensional Minkowski area re-
stricted to spt(µV ).

3.3 The stress-energy tensor

We let

Tαβε (u) := −ck(ε)ηαγ∂xγu · ηβδ∂xδu
+`ε(u) ηαβ

be the contravariant components of the sym-
metric stress-energy tensor, where · is the eu-
clidean scalar product in Rk. Notice that

|Tαβε (u)| ≤ eε(u), (20)

for any α, β ∈ {0, . . . , n}. A direct computa-
tion shows that a solution uε of (1) satisfies

∂xβT
αβ
ε (uε) = 0. (21)

As a consequence, for every vector field X ∈
C1
c (R1+n) we have∫

R1+n
η Tαβε (uε) ∂xβX dtdx = 0. (22)

Since |Tαβε (uε)| is bounded by eε(uε), for any
α, β ∈ {0, . . . , n} there exists a measure Tαβ

such that

Tαβε (uε)dtdx ⇀ Tαβ (23)

as ε → 0+. We denote by T the measure-
valued tensor with components Tαβ . Note
that Tαβ = T βα and spt(T ) = Γ.
From (20) it follows that Tαβ on the right
hand side of (23) is absolutely continuous
with respect to e, and therefore is also ab-
solutely continuous with respect to `, thanks
to (A1). We denote by T̃αβ the density of the
measure Tαβ with respect to the measure `,
i.e.,

T̃αβ :=
dTαβ

d`
, (24)

and by T̃ the tensor with components T̃αβ .
In addition to (A2), we shall also assume that

(A3) for Hn+1−k-almost every x ∈ Γ,
the tensor Id− ηT̃ (x) is space-like.

Recalling the expression of Tε(uε) −
`ε(uε)η−1, we point out that (A3) is rem-
iniscent to require that the tensor ∇uε,
suitably normalized, becomes space-like
near Γ as ε → 0+, and that Γ is time-like
Hn+1−k-almost everywhere. In particular, if
k = 1 and Γ is smooth, the tensor Id − ηT̃
turns out to be equal to η−1νm⊗ νm, so that
ηT̃ is a lorentzian orthogonal projection, and
(A3) is equivalent to require that the normal
vector νm to Γ is space-like Hn-almost
everywhere. This is for instance consistent
with the explicit solution corresponding to a
singular pulsating sphere considered in [14].

3.4 Main result

We are now in a position to prove the main
result of the paper.

Theorem 3.3. Assume that the initial data
uε(0, x) satisfy (14). Let `, w and T̃ be de-
fined as in (15), (16) and (24) respectively.
Under the assumptions (A1)-(A3), the fol-
lowing two statements hold:

(i) Let k = 1, and assume further

(A4)
dw

dl
=

1
2
.

Then (`, δηT̃ ) is a stationary lorentzian
rectifiable varifold of codimension one.

(ii) Let k = 2. Then (`, δηT̃ ) is a stationary
lorentzian rectifiable varifold of codimen-
sion two.
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As a consequence of Theorem 3.3, the set Γ
defined in (18) is a rectifiable set of dimension
n+1−k, and the tangent space to Γ is time-
like for Hn-almost everywhere, by assump-
tion (A3). Moreover, in the regions where it
is smooth, Γ is a time-like minimal submani-
fold of codimension k, and ` coincides, up to
a constant, with the (n + 1 − k)-Minkowski
area restricted to Γ.
Assumption (A4) corresponds to the so-
called equipartition. In the parabolic
case and when k = 1, the analog of
(A4) turns out to be automatically satis-
fied [6], and in that framework this prop-
erty shows that

∫
Rn ε|∇uε(t, ·)|

2 dx and∫
Rn

1
εW (uε(t, ·)) dx equally contribute in the

limit ε→ 0+. Still in the parabolic case and
when k = 2, there is no equipartition, and
the contribution of c2(ε)

∫
Rn

1
ε2W (uε(t, ·)) dx

turns out to be negligible with respect to
c2(ε)

∫
Rn |∇uε(t, ·)|2 dx. This has an analog

in our hyperbolic case (see formula (33) be-
low).

Proof. Passing to the limit in the linear con-
dition (22) we have∫

R1+n
∂xβX dηTαβ = 0, (25)

for any α ∈ {0, . . . , n}. Note that (25)
is (the generic component of) the station-
arity condition for the lorentzian varifold
(`, δηT̃ ). Therefore, it is enough to prove that
(`, δηT̃ ) is a rectifiable lorentzian varifold, i.e.
for Hn+1−k-almost every x ∈ Γ the matrix
ηT̃ (x) is the lorentzian orthogonal projection
onto the tangent space to Γ at x.
By a rescaling argument around Hn+1−k-
almost every point x ∈ Γ as in [1, Eq. (3.6)],
from (25) we obtain

ηT̃ (x)
∫

R1+n
∇φdν = 0, (26)

for all test functions φ supported in the eu-
clidean unit ball of R1+n, and for all ν in the
tangent space to ` at x. As in [1, Lemma 3.9],
from (26) it follows that for Hn+1−k-almost
every x ∈ Γ

at least k eigenvalues of ηT̃ (x) are zero.
(27)

These eigenvalues correspond to the direc-
tions in the normal space to Γ at x.
From the equalities

tr(∂xαuε · ηβδ∂xδuε) = −|uεt|2 + |∇uε|2

and

ck(ε)(|uεt|2−|∇uε|2) = 2
ck(ε)W (uε)

ε2
−2`ε(uε),

we obtain

tr(ηTε(uε)) = 2
ck(ε)W (uε)

ε2
+ (n− 1)`ε(uε).

(28)
Passing to the limit as ε→ 0+ we get

tr(ηT ) = 2w + (n− 1)` (29)

in the sense of measures. Considering the
density with respect to ` we get

tr(ηT̃ ) = 2
dw

d`
+ (n− 1). (30)

Thanks to assumption (A3), for Hn+1−k-
almost every x ∈ Γ the tensor Id− ηT̃ (x), is
space-like. Therefore, letting λ0, λ1, . . . , λn
be the eigenvalues of ηT̃ (x), there exists a
Lorentz transformation L(x) such that

L−1(x)(ηT̃ (x)− Id)L(x)

= L−1(x) ηT̃ (x)L(x)− Id
= diag(0, λ1 − 1, . . . , λn − 1).

In particular
λ0 = 1.

Passing to the limit in the expression of
Tε(uε) − `ε(uε)η−1 as ε → 0+, we get that
T̃ − η−1 = η−1(ηT̃ − Id) is negative semidef-
inite (in the euclidean sense), which implies

λi ≤ 1 ∀i ∈ {1, . . . , n}. (31)

From (31) and (27) we then obtain

tr(ηT̃ (x)) =
n∑
i=0

λi ≤ n+ 1− k . (32)

Note that equality in (31) holds if and only
if ηT̃ (x) is a lorentzian orthogonal projec-
tion on a time-like subspace of codimension

7



k. Consequently, our aim is now to prove
equality in (32).
Case (i): k = 1. Using (A4), (30) becomes
tr(ηT̃ (x)) = n.
Case (ii): k = 2. From (30) and (32) it
follows

dw

d`
≤ 0.

Since w is a positive measure, we deduce

dw
d`

= 0. (33)

Therefore, (30) becomes tr(ηT̃ (x)) = n − 1.

In [10] it is shown by a formal asymptotic ar-
gument (made rigorous in [7]) that the the-
sis of Theorem 3.3 holds true when k = 1,
for well-prepared initial data and before the
appearence of singularities. However, the
“small ripples” example in [10] suggests that
Theorem 3.3 (i) may not be true in general,
without assuming (A4). In particular, differ-
ently from the parabolic case [6], we expect
that (A4) is not always satisfied for not well-
prepared initial data.
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