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Abstract. We consider the fractional mean curvature flow of entire Lipschitz graphs. We
provide regularity results, and we study the long time asymptotics of the flow. In particular
we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation
of a cone, the evolution asymptotically approaches an expanding self-similar solution. We
also discuss some results in the unrescaled case.
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1. Introduction

Given a set E ⊆ Rn+1, we define the fractional mean curvature flow Et starting from E as
the flow obtained by the following geometric evolution law: The velocity at a point p ∈ ∂Et
is given by

(1.1) ∂tp · ν(p) = −Hs(p,Et) := − lim
ε→0

∫
Rn+1\Bε(p)

(
χRn+1\Et(y)− χEt(y)

) 1

|p− y|n+1+s
dy,

where s ∈ (0, 1) is a fixed parameter and ν(p) is the outer normal at ∂Et in p.
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2 A. CESARONI, M. NOVAGA

The fractional mean curvature flow can be interpreted as the fractional analogue of the
classical mean curvature flow: Indeed, as the mean curvature flow is the L2 gradient flow of the
perimeter, the fractional mean curvature flow is the L2 gradient flow of the so-called fractional
perimeter, see [3], which can be interpreted as an interpolation norm (the Gagliardo fractional
seminorm) of the characteristic function of a measurable set, which interpolates between the
BV norm, which is the standard perimeter, and the L1 norm, which is the volume.

Therefore, the fractional mean curvature flow presents some analogies with the classical
mean curvature flow. Recently a local existence result for smooth solutions starting from
compact C1,1 initial sets was provided in [17] (see also [4,8] for an analog of the BMO scheme),
moreover existence and uniqueness of the level set flow for general nonlocal evolution equations,
including (1.1), has been developed in [7] (see also [16]), using the maximum principle and the
monotonicity of the curvature with respect to inclusions. On the other hand, the fractional
flow presents some different features with respect to the classical mean curvature flow, since
nonlocal effects come into play. For instance, as a basic example one can consider a planar
strip, which is stationary for the curvature flow, and shrinking for the fractional flow.

An important issue in the study of the fractional flow, as for the classical one, is the investi-
gation of the long time behavior of solutions and the analysis of the formation of singularities.
In the local case, one of the most important tool in this analysis is the monotonicity formula
established by Huisken in [15]. The analog of such formula in the fractional setting is still
an open problem. As a consequence, it is still missing a systematic approach for the study
of long time asymptotics of the flow and the classification of the possible singularities which
may appear. Nevertheless some results have been recently obtained, we recall for instance the
analysis of the formation of neckpinch singularities in [9], and of the fattening phenomenon
for the evolution of curves with cross-type and cusp-type singularities in [5]. Moreover, in [10]
it has been proved that smooth convex sets evolving under the volume preserving fractional
mean curvature flow approach round spheres.

Here we analyze the evolution (1.1) under the additional assumption that the boundary of
the initial datum E0 can be written as a Lipschitz graph, that is, there exists e ∈ Rn+1, such
that ν(p) · e > 0 for every p ∈ ∂E0. By monotonicity of the flow it is possible to show that
the evolution Et maintains this property for all positive times t > 0, that is, ν(p) · e > 0 for
every p ∈ ∂Et, see Section 2. Up to a rotation of coordinates, we will assume that e = en+1.

For the local case, the analysis of the flow of entire Lipschitz graphs goes back to the work
by Ecker and Huisken [12, 13]. In particular, in [12] it is proved that the evolution admits a
smooth solution for all times, which approaches a self-similar solution as t → +∞, provided
that the initial graph is "straight" at infinity, in the sense that is a sublinear perturbation of a
cone, see assumption (5.1) below. In this paper we provide analogous results in the fractional
setting. In particular, in Section 3 we prove the C1,α regularity of the flow starting from a
Lipschitz graph, which can be strengthened if the initial graph enjoys more regularity. These
results are based on the fact that the fractional curvature is an elliptic operator, and so we may
apply the regularity results for nonlinear fractional parabolic problems obtained in [20, 21].
Actually we do not recover the C∞ regularity obtained in the local case, expect in the case of
self-similar solutions (see Theorem 4.1), and this is due to the fact that a parabolic bootstrap
regularity argument is still missing for quasilinear fractional operators. Moreover, in Section 5
we provide the convergence of the rescaled solution to a self-similar expanding solution, under
the assumption that the initial graph is straight at infinity in the sense of Ecker and Huisken.
We recall here what we mean for self-similar expanding or contracting solution to 1.1.
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Definition 1.1. An expanding homothetic solution is a solution to (1.1) such that Et = λ(t)E1

where λ(1) = 1 and λ′(t) > 0 for t > 1. This is equivalent to assume that E1 is a solution to

(1.2) c(p · ν) = −Hs(p,E1)

for some c > 0. Observe that necessarily λ(t) = [c(s+ 1)(t− 1) + 1]
1
s+1 .

A shrinking homothetic solution to (1.1) is a solution to (1.1) such that Et = λ(t)E1 where
λ(1) = 1 and λ′(t) 6 0 for t > 1. This is equivalent to assume that E1 is a solution to

(1.3) c(p · ν) = Hs(p,E1)

for some c > 0.

In Section 4 we study the main properties of the expanding selsimilar solutions to (1.1),
whereas in Section 7 we show that the only graphical shrinking self-similar solutions to (1.1)
are actually stationary solutions. In the local setting, this result has been obtained for entire
graphs without growth condition at infinity in [22]. In the fractional setting we obtain the
result for entire Lipschitz graphs as a byproduct of a Liouville theorem for ancient solutions
of parabolic nonlinear equations obtained in [20]. We also recall that a preliminary analysis
of existence and stability of fractional symmetric shrinkers has been developed in [6].

Finally Section 6 contains convergence results in the unrescaled setting. In particular we
provide the stability of hyperplanes, when we start the evolution from graphs which are
asymptotically flat. In the local setting this stability can be proved by using comparison
with large balls and area decay estimates, see [11, 13, 18], whereas in the fractional setting
we use comparison with large balls and an argument based on construction of appropriate
periodic barriers. We show also stability of convex cones and, in some particular cases, of
mean convex cones, in the unrescaled setting. Analogous results in the local setting were
obtained in [11].

2. Level set formulation

The level set flow associated to (1.1) can be defined as follows. Given an initial set E0 ⊂ Rn
we choose a bounded Lipschitz continuous function U0 : Rn+1 → R such that

∂E0 = {x ∈ Rn s.t. U0(x) = 0} = ∂{x ∈ Rn s.t. U0(x) > 0}
and E0 = {x ∈ Rn s.t. U0(x) > 0}.

Let also U(x, t) be the viscosity solution of the following nonlocal parabolic problem

(2.1)

{
Ut + |DU |Hs((x, y, t), {(x′, y′, t) |U(x′, z′, t) > U(x, z, t)}) = 0

U(x, 0) = U0(x).

Then the level set flow of ∂E0 is given by

(2.2) ΣE(t) := {x ∈ Rn s.t. U(x, t) = 0}.
We associate to this level set the outer and inner flows defined as follows:

(2.3) E+(t) := {x ∈ Rn s.t. U(x, t) > 0} and E−(t) := {x ∈ Rn s.t. U(x, t) > 0}.
We observe that the equation in (2.4) is geometric, so if we replace the initial condition with
any function V0 with the same level sets {U0 > 0} and {U0 > 0}, the evolutions E+(t)
and E−(t) remain the same. Existence and uniqueness of viscosity solutions to the level set
formulation of (1.1) has been provided in [7,16], and qualitative properties of smooth solutions
have been studied in [19].
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In this paper we consider the particular case in which the initial set E0 can be written-
up to suitable rotation of coordinates- as the subgraph of a function u0 : Rn → R. So, it
is possible to define the evolution Et at time t as the subgraph of the solution u(·, t) to the
following nonlocal quasilinear system

(2.4)

{
ut +

√
1 + |Du|2Hs((x, u(x, t)), {(x′, z) |z 6 u(x′, t)}) = 0

u(x, 0) = u0(x).

Theorem 2.1. Let u0 : Rn → R be a uniformly continuous function.
Let v, w ∈ C(Rn× [0,+∞)) respectively a viscosity subsolution and a viscosity supersolution to
(2.4) such that v(x, 0) 6 u0(x) 6 w(x, 0). Then v(x, t) 6 w(x, t) for all (x, t) ∈ Rn× (0,+∞).

In particular (2.4) admits a unique viscosity solution u(x, t) ∈ C(Rn × [0,+∞)) with
u(x, 0) = u0(x). Moreover, if u0 is Lipschitz continuous with Lipschitz constant ‖Du0‖∞,
then |u(x, t)− u(x′, t)| 6 ‖Du0‖∞|x− x′| for all x, x′ ∈ Rn and t > 0.

Proof. We define the uniformly continuous function U0(x, z) := u0(x) − z and the functions
V (x, z, t) = v(x, t) − z, W (x, z, t) = w(x, t) − z. Then it is easy to check that V,W are
respectively a viscosity sub and supersolution to (2.1) such that V (x, z, 0) 6 U0(x, z) 6
W (x, z, 0). Then by the comparison principle proved in [16] (and for general nonlocal geometric
equations in [7]) we get that V (x, y, t) 6 W (x, z, t) for all x ∈ Rn, z ∈ R, t > 0. This implies
the result.

Moreover, again by the results proved in [7,16], the system (2.1) admits a unique viscosity
solution U(x, z, t). If U0 is Lipschitz continuous, then it is easy to check that also U(x, z, t) is
Lipschitz continuous in space, with Lipschitz constant less or equal to the Lipschitz constant
of U0, by using the comparison principle and the invariance by translation of the differential
operator appearing in (2.1). By comparison and again using the fact that the operator is
invariant by translation in space, for every h ∈ R

U(x, z, t) + h = U(x, z + h, t).

Therefore, we conclude that U(x, z, t) = z−u(x, t), where u is a viscosity solution to (2.4). �

We now define the rescaled time variables as follows:

(2.5) τ(t) :=
log(t(s+ 1) + 1)

s+ 1
that is t =

e(s+1)τ − 1

s+ 1
.

In the rescaled time variables, the evolution (1.1) becomes

(2.6) ∂τ p̃ · ν̃ = −p̃ · ν̃ −Hs(p̃, Ẽτ ).

We define the rescaled variables eτy = x, with τ as in (2.5), and set

(2.7) ũ(y, τ) := e−τu

(
yeτ ,

e(s+1)τ − 1

s+ 1

)
.

Then ũ solves the system

(2.8)

{
ũτ + ũ−Dũ · y +

√
1 + |Dũ|2Hs((y, ũ(y, τ)), {(y′, z) |z 6 ũ(y′, t)}) = 0

ũ(y, 0) = u0(y).

Clearly, the same existence, uniqueness and regularity results stated for (2.4) in Theorem
2.1 are valid for (2.8).
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2.1. Fractional curvature on graphs. We recall an equivalent formulation of the fractional
mean curvature Hs on graphical hypersurfaces, see [2, 19]. First of all observe that if Π =
{(x′, z′), | z′ > u(x, t) +Du(x, t)(x′ − x)} then by symmetry

lim
ε→0

∫
Rn+1\Bε(p)

(
χRn+1\Π(y)− χΠ(y)

) 1

|p− y|n+1+s
dy = 0.

Therefore, for p = (x, u(x, t)) and Et := {(x′, z) | z 6 u(x′, t)}, we get (intending the integrals
in the principal value sense)

Hs(p,Et) =

∫
Rn+1

(
χRn+1\Et(y)− χΠ(y)

|p− y|n+1+s
+
χRn+1\Π(y)− χEt(y)

|p− y|n+1+s

)
dy

= 2

∫
Rn

∫ u(x,t)+Du(x,t)(x′−x)

u(x′,t)

1

(|x′ − x|2 + |z′ − u(x, t)|2)(n+1+s)/2
dzdx′

= 2

∫
Rn

1

|x− x′|n+s

∫ Du(x,t)· x−x
′

|x−x′|

u(x′,t)−u(x,t)
|x−x′|

1

(1 + w2)(n+1+s)/2
dwdx′.(2.9)

We now introduce the function

Gs(t) :=

∫ t

0

1

(1 + w2)(n+1+s)/2
dw.

By (2.9) we get

Hs((x, u(x, t)), Et) = 2

∫
Rn

Gs

(
Du(x, t) · x−x′|x−x′|

)
−Gs

(
u(x′,t)−u(x,t)
|x−x′|

)
|x− x′|n+s

dx′

= 2

∫
Rn

Gs

(
Du(x, t) · z|z|

)
−Gs

(
u(x−z,t)−u(x,t)

|z|

)
|z|n+s

dz.(2.10)

We observe that this formula holds also in the viscosity sense (that is it is verified at points
where the graph of u can be touched with paraboloids).

Moreover, if we change variable from z to −z in (2.10) and recalling that Gs is odd, we get

Hs((x, u(x, t)), Et) = −
∫
Rn

Gs

(
u(x+z,t)−u(x,t)

|z|

)
+Gs

(
u(x−z,t)−u(x,t)

|z|

)
|z|n+s

dz(2.11)

= −
∫
Rn

Gs

(
u(x+z,t)−u(x,t)

|z|

)
−Gs

(
u(x,t)−u(x−z,t)

|z|

)
|z|n+s

dz

= −
∫
Rn
A(x, z, u)

u(x+ z, t) + u(x− z, t)− 2u(x, t)

|z|n+s+1
dz.

where

(2.12) A(x, z, u) :=

∫ 1

0
G′s

(
w
u(x+ z, t)− u(x, t)

|z|
+ (1− w)

u(x, t)− u(x− z, t)
|z|

)
dw.

Observe that A(x, z, u) = A(x,−z, u) and(
1 + 4‖Du0‖2∞

)−n+s+1
2 6 A(x, z, u) 6 1.

This implies that the differential operator Hs((x, u(x, t)), Et) is elliptic, see e.g. [20].
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3. Regularity results

In this section, we provide some regularity results for the flow starting from a Lipschitz
graph. These results are based on the fact that the fractional curvature for graphs is an
elliptic fractional operator, and so it enjoys regularizing effects.

Proposition 3.1. Let u0 : Rn → R be a Lipschitz continuous function. Then there exists
α ∈ (0, s) depending on s and n such that the viscosity solution u(x, t) to (2.4) is in C1+α(Rn)
for every t > 0, with norm uniformly bounded in Rn × [t0,+∞) by a constant only depending
on ‖Du0‖∞ and t0. In particular, there exists a constant C > 0 only depending on ‖Du0‖∞
and t0 such that

‖Du(·, t)‖Cα(Rn) 6 Ct
− α
s+1 for t > t0.

This implies that, if ũ is the rescaled function defined in (2.7), for every τ0 > 0, there exists
a constant C > 0 only depending on ‖Du0‖∞ and τ0 such that

‖D̃u(·, τ)‖Cα(Rn) 6 C

(
1− e−τ0(s+1)

s+ 1

)− α
s+1

for τ > τ0.

Proof. If u0 is Lipschitz continuous, then by Theorem 2.1 the solution to (2.4) is Lipschitz
continuous in x with Lipschitz constant bounded by ‖Du0‖∞. Then the differential operator
Hs on graphical hypersurfaces is elliptic, see (2.11), see e.g. [20, 21] for the definition. Then,
by applying the Hölder regularity theory to the incremental quotients of u, , see [20, Theorem
2.1, Theorem 2.2], we get that they are Cα for some α ∈ (0, 1), and norm bounded by the
Lipschitz constant of u.

Finally observe that for every r > 0, there holds that vr(x, t) = r−1u(rx, r1+st) is the vis-
cosity solution to (2.4) with initial datum v0(x) = r−1u0(x). Then v0 is Lipschitz continuous,
with the same Lipschitz constant as u0, and we may apply to vr the same regularity results as
for u. In. particular for every t0 there exists a constant C depending on t0 and on ‖Du0‖∞
such that for all t > t0, ‖Dvr(·, t)‖Cα 6 C. Rescaling back to u, for every t > t0rs+1 we get

‖Du(·, t)‖Cα 6 Cr−α.

We conclude by choosing r = (t/t0)
1
s+1 .

Finally we consider the rescaled solution ũ. Note that Dũ(y, τ) = Du
(
yeτ , e

τ(s+1)−1
s+1

)
and ‖Dũ(·, t)‖Cα(Rn) = eτα‖Du(·, eτ(s+1)−1

s+1 )‖Cα(Rn). Then by the previous estimate, for every
τ > τ0,

‖Dũ(·, τ)‖Cα(Rn) 6 e
ατC

(
eτ(s+1) − 1

s+ 1

)− α
s+1

6 C

(
1− e−τ0(s+1)

s+ 1

)− α
s+1

.

�

Let now u(x, t) be a C2,1 solution to (2.4) with initial datum u0, and let

w(x, t) :=
√

1 + |Du(x, t)|2Hs((x, u(x, t)), Et).
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Since ut(x, t) = −w(x, t), using (2.11) we compute

wt = −Hs((x, u(x, t)), Et)√
1 + |Du|2

Du(x, t) ·Dw(x, t) +

+2
√

1 + |Du|2
∫
Rn
G′s

(
u(x+ z, t)− u(x, t)

|z|

)
w(x+ z, t)− w(x, t)

|z|n+s+1
dz.

Therefore w is a solution to

(3.1) wt +B(x, t) ·Dw(x, t)− 2

∫
Rn
C(x, z, t)

w(x+ z, t)− w(x, t)

|z|n+s+1
dz = 0,

where
(3.2)

B(x, t) :=
Hs((x, u(x, t)), Et)√

1 + |Du(x, t)|2
Du(x, t) C(x, z, t) :=

√
1 + |Du(x, t)|2G′s

(
u(x+ z, t)− u(x, t)

|z|

)
.

Lemma 3.2. Let u0 : Rn → R be a Lipschitz continuous function such that Hs((x, u0(x)), E0)
is bounded, and let u(x, t) be the viscosity solution to (2.4) with initial datum u0.

Then C(x, z, t) is well defined for every x, z ∈ Rn, t > 0, C(·, z, t) ∈ Cα(Rn) and

0 < (1 + ‖Du0‖2∞)−
n+s+1

2 6 C(x, z, t) 6
√

1 + ‖Du0‖2∞.
Moreover, the following inequalities hold in the viscosity sense:

−1

2
C 6

Hs((x, u(x, t)), Et)√
1 + |Du(x, t)|2

|Du(x, t)| 6 1

2
C,

where C = ‖Hs((x, u0(x)), E0)‖∞(1 + ‖Du0‖∞).

Proof. First of all we observe that by Theorem 2.1, u(·, t) is Lipschitz with ‖Du(x, t)‖∞ 6
‖Du0‖∞. Moreover, by Proposition 3.1 we have that u(·, t) ∈ C1+α(Rn) and u(x, ·) ∈
C

1+α
2 (0,+∞). Then the regularity and the bounds on C(x, z, t) are a direct consequence

of the definition of Gs.
Let C := ‖Hs((x, u0(x)), E0)‖∞(1 + ‖Du0‖∞). Note that u0(x) ± Ct are respectively a

supersolution and a subsolution to (2.4), so that by comparison we get

u0(x)− Ct 6 u(x, t) 6 u0(x) + Ct for all t > 0.

Moreover for every t > τ > 0, the functions u(x, t)± supx |u(x, τ)− u0(x)| are respectively a
supersolution and a subsolution to (2.4) with initial datum u(x, τ), whence

|u(x, t+ τ)− u(x, t)| 6 sup
x
|u(x, τ)− u0(x)| 6 Cτ.

This implies that u(x, ·) is Lipschitz continuous with |ut(x, t)| 6 C, which in turns implies
that, in the viscosity sense,

−C 6
√

1 + |Du(x, t)|2Hs((x, u(x, t)), Et) 6 C

for all x ∈ Rn and t > 0. We now conclude recalling that u(·, t) ∈ C1. �

Theorem 3.3. Let u0 : Rn → R be a Lipschitz continuous function such that Hs((x, u0(x)), E0)
is bounded. Let u(x, t) be the viscosity solution to (2.4) with initial datum u0.

Then u(·, t) ∈ C2+β(Rn), for some β > s, u(x, ·) ∈ C1+α(0,+∞) for some α ∈ (0, 1), with
norms bounded in Rn×[t0,+∞) by constants depending on t0, ‖Du0‖∞ and ‖Hs((x, u0(x)), E0)‖∞.

Finally, the map t 7→ supx∈Rn
√

1 + |Du(x, t)|2|Hs((x, u(x, t)), Et)| is decreasing in t.
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Proof. We first prove the result under the additional assumption that u0 is in C2+α with
bounded norms. Then the general case will follow by the stability of viscosity solutions with
respect to uniform convergence, recalling that all the estimates depend only on the Lipschitz
constant of u0 and on ‖Hs((x, u0(x)), E0)‖∞.

The short time existence result in [17, Theorem 5.1] implies that, if u0 ∈ C2+α with bounded
norms, then there exists a time t > 0, such that the system (2.4) admits a smooth solution
u(x, t).

Let w(x, t) be the unique solution to (3.1) with initial datum
√

1 + |Du0(x)|2Hs((x, u0(x)), E0).
Since u is smooth, by the computations in (3.1) and (3.2), we get that

w(x, t) =
√

1 + |Du(x, t)|2Hs((x, u(x, t)), Et).

By comparison w(x, t) is bounded by ‖w(x, 0)‖∞ and supx |w(x, t+ r)| 6 supx |w(x, r)|, for
every r > 0 and t > 0.

Since w is a bounded viscosity solution of a linear integro-differential equation, with bounded
drift and uniformly elliptic integro-differential operator, the regularity results obtained in
[21, Theorem 8.1] apply. Hence there exists α ∈ (0, s) such that w(·, t) ∈ C1+α(Rn), w(x, ·) ∈
C

1+α
2 (0,+∞) with

sup
t∈(0,T )

‖w(·, t)‖C1+α + sup
x∈Rn

‖w(x, ·)‖
C

1+α
2
6 C(‖Du0‖∞, ‖Hs((x, u0(x)), E0)‖∞, s).

This implies that ut(x, ·) =
√

1 + |Du(x, ·)|2Hs((x, u(x, ·)), Et) ∈ C
1+α
2 ((0,+∞).

Moreover since
√

1 + |Du(x, t)|2Hs((x, u(x, t), Et) ∈ C1+α(Rn) as a function of x, recalling
that u ∈ C1+α by Proposition 3.1, with norm bounded only by ‖Du0‖∞, by the bootstrap
argument in [2, Theorem 6] we get that u(·, t) ∈ C1+s+α+β(Rn) for all β < 1 and all t > 0,
with norm bounded only on ‖Du0‖∞, ‖Hs((x, u0(x)), E0)‖∞. �

4. Homothetically expanding graphical solutions

We shall provide a complete characterization of graphical homothetically expanding solu-
tions to (1.1).

Theorem 4.1. Let ū : Rn → R be a Lipschitz continuous and positively 1-homogeneous
function, that is,

(4.1) ∃C > 0 |ū(x)− ū(y)| 6 C|x− y| ū(rx) = rū(x) ∀r > 0, x, y ∈ Rn.
Then, for every t > 0 the subgraph Ēt of the viscosity solution ū(x, t) to (2.4), with initial
datum ū, satisfies for p ∈ ∂Ēt
(4.2) p · ν = −t(s+ 1)Hs(p, Ēt),

that is, for every t > 0 Ēt satisfies (1.2) with c−1 = t(s+ 1), and the flow starting from Et is
an expanding homothetic solution to (1.1) according to Definition 1.1.

Moreover ū(x, t) is in C∞(Rn × (0,+∞)), and for every T > 0,

lim
t→+∞

|ū(x, t+ T )− ū(x, t)| = 0 locally uniformly in Rn.

Proof. By the fact that the differential operator is invariant under translations and by unique-
ness of solutions, see Theorem 2.1, we get that for all r 6= 0, it holds

ū(x, t) =
1

r
ū(rx, rs+1t).



FRACTIONAL MEAN CURVATURE FLOW OF LIPSCHITZ GRAPHS 9

Letting r := t−
1
s+1 for t > 0, we get

(4.3) ū(x, t) = t
1
s+1 ū(xt−

1
s+1 , 1)

which is exactly (4.7), with λ(t) = t
1
s+1 . This implies that, if p ∈ ∂Ē1 then pt

1
s+1 ∈ Ēt and

(4.4) Hs(pt
1
s+1 , Ēt) = t−

s
s+1Hs(p, Ē1).

Substituting in (1.1) we get that Ē1 solves (1.2) with c−1 = s+ 1. The same argument holds
substituting t = 1 with another positive time t.

By the uniform C1,α estimate in Proposition 3.1 we know that ū(x, 1) is in C1,α and it is
a stationary solution to (2.8). Therefore, since

√
1 + |Dū(x, 1)2Hs(x, ū(x, 1) is in Cα, with

norm locally bounded by the Lipschitz constant of ū, we can apply the bootstrap argument
in [2, Theorem 6] and get that ū(x, 1) is in C∞. Finally, since ū(x, t) = t

1
s+1 ū(xt−

1
s+1 , 1) for

every t > 0, we conclude that ū is in C∞(Rn × (0,+∞)).
Now, observe that by rescaling properties (4.3), for every T > 0 and t > 0 and by the fact

that ū(x, t) is Lipschitz continuous with the same Lipschitz constant as ū,

|ū(x, t+ T )− ū(x, t)| = |(t+ T )
1
s+1 ū(x(t+ T )−

1
s+1 , 1)− t

1
s+1 ū(xt−

1
s+1 , 1)|

6 (t+ T )
1
s+1 |ū(x(t+ r)−

1
s+1 , 1)− ū(xt−

1
s+1 , 1)|

+[(t+ r)
1
s+1 − t

1
s+1 ||ū(xt−

1
s+1 , 1)|

6 C(t+ T )
1
s+1 |x||(t+ r)−

1
s+1 − t−

1
s+1 |+ C[(t+ T )

1
s+1 − t

1
s+1 ||x|t−

1
s+1

6 C|x|

((
1 +

T

t

) 1
s+1

−
(

1− T

t

) 1
s+1

)
.

Sending t→ +∞, we get the result.
�

By using the properties of homothetically expanding solutions, we show the following result
about uniform continuity of solutions to (2.4).

Proposition 4.2. Let u0 : Rn → R be a Lipschitz continuous function. Then the viscosity
solution to (2.4) with initial datum u0 satisfies for all x, y ∈ Rn, t, s > 0

|u(x, t)− u(y, r)| 6 ‖Du0‖∞|x− y|+K|t− r|
1
s+1

for some constant K > 0 which depends only on ‖Du0‖∞.

Proof. We prove just the Hölder continuity in time, since the Lipschitz continuity has already
been proved in Theorem 2.1. Let C = ‖Du0‖∞.

Fix x0 ∈ Rn and consider v0(x − x0) = C|x − x0|. Then, in the translated variables y =
x−x0, v0 satisfies (4.1), so that the solution vC(y, t) with initial datum v0 is a homothetically
expanding solution to (2.4). Moreover, since Hs((y, C|y|), {(x′, z′), | z′ 6 C|x′|}) 6 0 in
the viscosity sense at every y ∈ Rn, v0(y) is a stationary subsolution to (2.4), which implies
by comparison that vC(y, t) > v0(y) for every t > 0, and then, again by comparison that
vC(y, t) > vC(y, r) if 0 < r < t.

Therefore, since by Lipschitz continuity we get that u0(x) 6 v0(x−x0)+u0(x0), we conclude
that u(x, t) 6 vC(x − x0, t) + u0(x0), for all x. If we compute the previous inequality in x0,
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using also (4.7) we get

u(x0, t)− u0(x0) 6 vC(0, t) = vC(0, 1)t
1
s+1 ∀x0 ∈ Rn.

By comparison this implies that

u(x0, t+ r)− u(x0, t) 6 vC(0, 1)r
1
s+1 ∀x0 ∈ Rn.

The other inequality is obtained with an analogous argument by considering −C|x− x0|. �

Remark 4.3. We observe that if ū is a convex function, then we may also prove that there
exists C > 0 such that

(4.5) sup
x∈Rn

|Hs(x, ū(x, t))| 6 Ct−
s
s+1 ∀t > 0.

We conjecture that this property is actually true also for nonconvex cones ū, as in the local
setting. Observe that due to (4.4) it is sufficient to show that that there exists C > 0 such
that

sup
x∈Rn

|Hs(x, ū(x, 1))| 6 C,

which is in turn equivalent to show that

sup
x∈Rn

|ū(x, 1)−Dū(x, 1) · x| 6 C

since ū(x, 1) is a stationary solution to (2.8).
Note that ū(x, 1) is a convex function, since convexity is preserved by the fractional flow

(1.1), see [8]. Moreover ū(x, 1) > ū(x) by comparison (since ū(x) is a stationary subsolution
to (2.4)). For λ > 0, and x ∈ Rn fixed, we define v(λ) = ū(λx, 1). Note that this function is
convex. By convexity we get that

ū(0, 1) = v(0) > v(1)− v′(1) = ū(x, 1)−Dū(x, 1) · x.
Recalling Proposition 4.2 we get that there exists K > 0 depending only on the Lipschitz
constant of ū(x) such that ū(λx) +K > ū(λx, 1) for every λ ∈ R. So using again convexity of
v we get for λ > 0,

λū(x)+K = ū(λx)+K > ū(λx, 1) = v(λ) > v(1)+v′(1)(λ−1) = ū(x, 1)+(λ−1)Dū(x, 1) ·x.
This implies, sending λ→ +∞, that ū(x) > Dū(x, 1) · x and so in turn

ū(x, 1)−Dū(x, 1) · x > ū(x, 1)− ū(x) > 0.

So, we proved that
0 6 ū(x, 1)−Dū(x, 1) · x 6 ū(0, 1)

which gives the result.

Remark 4.4. Observe that if (4.5) is satisfied, then we may strengthened the convergence
result in Theorem 4.1, that is for every T > 0 it holds that

lim
t→+∞

|ū(x, t+ T )− ū(x, t)| = 0 uniformly in Rn.

Indeed substituting in the equation (2.4) and recalling that ū(x, t) is uniformly Lipschitz, we
get that |ut(x, t)| 6 C ′t−

s
s+1 , for some C ′ > 0 depending on C and on the Lipschitz norm of

u0. So, integrating we get, for all T > 0

|u(x, t+ T )− u(x, t)| 6 C
(

(t+ T )
1
s+1 − t

1
s+1

)
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and so for every T > 0,

lim
t→+∞

|ū(x, t+ T )− ū(x, t)| = 0 uniformly in Rn.

On the other hand, every homothetically expanding graphical solution to (1.1) is obtained
as in Theorem 4.1.

Proposition 4.5. Assume that E1 is a solution to (1.2) and that is the subgraph of a Lipschitz
continuous function u1 : Rn → R.

Then the solution u(x, t) to (2.4) with initial datum u(x, 1) = u1(x) is defined in Rn ×
(t0,+∞) where t0 = 1− 1

c(s+1) and satisfies

(4.6) lim
t→t+0

u(x, t) = ū(x) locally uniformly in x,

where ū : Rn → Rn is Lipschitz continuous and 1-homogeneous as in (4.1).

Proof. According to Definition 1.1,

Et = [c(s+ 1)(t− 1) + 1]
1
s+1 E1 = λ(t)E1

is a solution to (1.1), which means in particular that the solution u to (2.4) with initial datum
u(x, 1) = u1(x) can be obtained as

(4.7) u(x, t) := λ(t)u1(xλ1−(t)) = [c(s+ 1)(t− 1) + 1]
1
s+1 u1

(
x [c(s+ 1)(t− 1) + 1]−

1
s+1

)
.

This implies immediately that u is well defined in Rn × (t0,+∞), where t0 = 1− 1
c(s+1) .

Since u1 is Lipschitz continuous, we get that vr(x) = ru1(x/r) are equilipschitz, and
moreover |vr(x)| 6 r|u1(0)| + ‖Du1‖∞|x|. Then, by Ascoli Arzelà theorem, up to sub-
sequences there exist the limits limrn→0+ vrn(x), locally uniformly in x. We claim that
actually the limit is unique, that is ū(x) := limr→0+ ru1(x/r) locally uniformly in x. If
the claim is true, then it is easy to check that ū(x) satisfies (4.1) and moreover by (4.7),
limt→t+0

u(x, t) = limt→t+0
λ(t)u1(xλ−1(t)x) = limr→0+ ru1(x/r) = ū(x).

To prove the claim we observe that by (4.7) vr(x) = u1(x/r) = u(x, λ−1(r)) for every r > 0.
Let rn → 0 such that limrn→0 vrn(x) = v̄(x). Then un(x, t) := u(x, t+λ−1(rn)) is the viscosity
solution to (2.4) with un(x, 0) = vrn(x). By stability of viscosity solutions with respect to
uniform convergence, since vrn → v̄, we get that un(x, t) → v̄(x, t) locally uniformly, where
v̄(x, t) is the solution to (2.4) with initial datum v̄. But actually v̄(x, t) = u(x, t+ t0) for every
t > 0, and then the limit v̄ is unique and independent of the subsequence. �

5. Convergence to self-similar solutions

We show that homotetically expanding solutions are the long-time attractors for the flow
of Lipschitz graphs, when the initial data is a sublinear perturbation of a 1-homogeneous
function.

We now generalize to the fractional curvature flows the result obtained in [12] for the mean
curvature flow, under the assumption that the initial datum u0 is Lipschitz continuous and is
straight at infinity in the following sense: There exists K > 0 and δ > 0 such that

|u0(x)−Du0(x) · x| 6 K(1 + |x|)1−δ ∀x ∈ Rn.
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This condition is equivalent to the following one, that we are going to assume: There exist a
function ū which satisfies (4.1) and constants K > 0, δ > 0 such that

(5.1) |u0(x)− ū(x)| 6 K(1 + |x|)1−δ.

Note that, if we define φ(r, x) := ru0

(
x
r

)
for all x ∈ Rn, then the straight at infinity

condition reads, for r 6 1,∣∣∣∣ ∂∂rφ(r, x)

∣∣∣∣ =
∣∣∣u0

(x
r

)
− x

r
·Du0

(x
r

)∣∣∣ 6 K(r + |x|)1−δrδ−1 6 K(1 + |x|)1−δrδ−1.

Then, for all 0 < r1 < r2 6 1 we get∣∣∣∣r2u0

(
x

r2

)
− r1u0

(
x

r1

)∣∣∣∣ =

∣∣∣∣∫ r2

r1

∂

∂r
φ(r, x)dr

∣∣∣∣ 6 K

δ
(1 + |x|)1−δ(rδ2 − rδ1).

Observe that, since u0 is Lipschitz continuous, up to a subsequence there exists the limit
limr→0+ ru0

(
x
r

)
, which is locally uniform in x. By the previous inequality, we conclude that

the limit is unique, so that the limit is a function ū which satisfies (4.1) and finally∣∣∣∣∫ 1

0

∂

∂r
φ(r, x)dr

∣∣∣∣ = |u0(x)− ū(x)| 6 K

δ
(1 + |x|)1−δ.

Actually, the convergence result proved in [12] is stronger than ours, since they provide
exponential in time convergence of the flows.

Theorem 5.1. Let u0 be a Lipschitz continuous function, such that there exist ū which satisfies
(4.1), and constants K > 0, δ ∈ (0, 1) for which (5.1) holds. Let u and ũ be respectively the
solutions to (2.4) and (2.8) with initial datum u0, and ū(x, t) be the solution to (2.4) with
initial datum ū(x). Then

lim
τ→+∞

ũ(y, τ) = ū

(
y,

1

s+ 1

)
locally uniformly in C1(Rn).

In particular, the rescaled flow

(5.2)
1

[(s+ 1)t+ 1]1/(s+1)
Et

where Et the subgraph of u(·, t), converges as τ → +∞ to a graphical hypersurface Ẽ which
satisfies (1.2) (with c = 1).

Proof. Let ψ : (0,+∞) → (0,+∞) be a smooth function such that ψ(k) ≡ 0 if k < 1 and
ψ(k) ≡ 1 if k > 2. Define for r > 1

ur0(x) = ū(x) + ψ

(
|x|
r

)
(u0(x)− ū(x)).

Then our assumption implies that

|u0(x)− ur0(x)| 6 K(1 + 2r)1−δ ∀x ∈ Rn.
By the comparison principle we get that, if ũ and ũr are respectively the solutions to (2.8)
with initial datum u0 and ur0,

(5.3) ũr(y, τ)−K(1 + 2r)1−δe−τ 6 ũ(y, τ) 6 ũr(y, τ) +K(1 + 2r)1−δe−τ ∀y ∈ Rn, τ > 0.

On the other hand,

ū(x)− 2K

rδ
|x| 6 ur0(x) 6 ū(x) +

2K

rδ
|x|.
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Let ū±r the solution to (2.4) with initial datum respectively ū(x)± 2K
rδ
|x|. Note that ū(x)±

2K
rδ
|x| satisfy (4.1) with Lipschitz constant ‖Dū‖∞ + 2K

rδ
6 ‖Dū‖∞ + 2K. By rescaling

properties of ū(x) ± 2K
rδ
|x|, see 4.3, and by formula (2.7), we get that ū±r

(
y, 1−e−(s+1)τ

s+1

)
is

the solution to (2.8) with initial datum ū(x)± 2K
rδ
|x|. Then by comparison principle

ū−r

(
y,

1− e−(s+1)τ

s+ 1

)
6 ũr(y, τ) 6 ū+r

(
y,

1− e−(s+1)τ

s+ 1

)
.

By Proposition 4.2, recalling that ū(x)± 2K
rδ
|x| are Lipschitz functions with Lipschitz constant

less than ‖Dū‖∞ + 2K, we get that there exists B depending only on ‖Dū‖∞ and K such
that

ū−r

(
y,

1

s+ 1

)
−Be−τ 6 ũr(y, τ) 6 ū+r

(
y,

1

s+ 1

)
+Be−τ .

Therefore by (5.3) we conclude that for all y ∈ Rn, τ > 0, and all r >> 1,

ū−r

(
y,

1

s+ 1

)
−(B+K(1+2r)1−δ)e−τ 6 ũ(y, τ) 6 ū+r

(
y,

1

s+ 1

)
+(B+K(1+2r)1−δ)e−τ .

Note that as r → +∞, ū±r
(
y, 1

s+1

)
→ ūC

(
y, 1

s+1

)
locally uniformly in y by stability of

viscosity solutions, since ū(x) ± 2K
rδ
|x| → ū(x) locally uniformly. So taking r = eτ in the

previous inequality and sending τ → +∞, we get the local uniform convergence of ũ. Finally,
since by Proposition 3.1, ũ has uniform C1,α norm in Rn × [t0,+∞), for every t > 0, we
conclude that the locally uniform convergence holds in C1,α sense. �

Remark 5.2. If condition (5.1) is violated, then in general we cannot expect the asymptotic
convergence result proved in Theorem 5.1. Indeed, observe that if ũ is the solution to (2.8)
with initial datum u0, then reasoning as in Proposition 4.2 we get that

|ũ(y, τ)− e−τu0(yeτ )| 6 K

(
1− e−(s+1)τ

s+ 1

) 1
s+1

6 K

(
1

s+ 1

) 1
s+1

=: K ′.

In particular, if the convergence takes place, then for every compact set B ⊂ Rn there exists
τB > 0 such that

|e−τ1u0(yeτ1)− e−τ2u0(yeτ2)| 6 3K ′ for all τ1, τ2 > τB.

For instance, this condition is not satisfied by initial data oscillating at infinity between dif-
ferent positively homogeneous functions. We refer to [12, Proposition 6.1] for an explicit
example.

6. Convergence of the unrescaled flow

In this section we will consider some cases in which convergence of the unrescaled flow holds.
To get stability without rescaling, we have to impose some decay or periodicity condition of
the initial datum.
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6.1. Stability of hyperplanes. We show that hyperplanes are stable with respect to the
flow (1.1), that is, if the initial datum is flat at infinity (resp. periodic), then the solution
stabilizes to the hyperplane at which the initial datum is (resp. stabilizes to a constant).

We remark that the behavior of the solution to (2.4) for these families of initial data is
analogous to the behaviour of solutions to the fractional heat equation ut + (−∆)

s+1
2 u = 0,

with the same initial data. Analogous results for the local mean curvature flow of graphs have
been obtained in [11,13,18], with different approaches: either comparison with large balls as in
our case (even if in the local case the argument is more involved), or reduction to stabilization
of solutions to the heat equation.

We start with a result about periodic initial data, showing that the solution stabilizes to
a constant. For a particular class of periodic initial datum we may show that actually this
constant is given by the mean value of the initial datum.

Proposition 6.1. Let u0 : Rn → R be a Lipschitz function which is Zn periodic. Then, there
exists a constant c ∈ (minu0,maxu0) such that the solution u to (2.4) with initial datum u0

satisfies

lim
t→+∞

u(x, t) = c uniformly in C1(Rn).

If moreover u0 has also the property that

(6.1) there exists v ∈ Rn such that for all x ∈ Rn, u0(x+ v) = −u0(x)

then

lim
t→+∞

u(x, t) = 0 =

∫
[0,1]n

u0(x)dx uniformly in C1(Rn).

Proof. We observe that by uniqueness the solution u(x, t) is Zn periodic in the x variable.
We define M(t) = maxx u(x, t) and m(t) = minx u(x, t). Note that by Proposition 4.2,
M(t) and m(t) are Hölder continuous functions, and moreover by comparison, we have that
minx u0(x) 6 m(t) 6M(t) 6 maxx u0(x), and that M(t) is decreasing and m(t) is increasing.
Therefore M(t) and m(t) are differentiable a.e. We want to prove that limt→+∞M(t) −
m(t) = 0. If this holds, then the result follows, recalling that M(t) is decreasing and m(t)
is increasing. The C1 convergence is a consequence of the uniform estimates in Proposition
3.1. Assume by contradiction that limt→+∞M(t) − m(t) = C̄ > 0. We fix t > 0 and
xM ∈ argmax u(·, t) ∩ [0, 1]n and xm ∈ argmin u(·, t) ∩ [0, 1]n. Let C(t) = M(t)−m(t) > C̄.
We recall that u(·, t) is Lipschitz continuous with Lipschitz constant less than ‖Du0‖∞ and
we fix δ > 0 such that δ‖Du0‖∞ 6 C̄

2 . It is immediate to check that

u(xM , t)− u(x, t) > u(xM , t)− u(xm, t)− δ‖Du0‖∞ = C(t)− C̄

2
>
C(t)

2
∀x ∈ B(xm, δ),

and analogously

u(x, t)− u(xm, t) >
C(t)

2
∀x ∈ B(xM , δ).

Then, at every point of differentiability t, the functions M,m satisfy

M ′(t) = ut(xM , t), m
′(t) = ut(xm, t), for all xM ∈ argmax u(·, t), xm ∈ argmin u(·, t).
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Using the equation we get

M ′(t) = ut(xM , t) = −Hs(xm, u(xM , t)) 6
(
1 + ‖Du0‖2∞

)−n+s+1
2

∫
Rn

u(y, t)− u(xM , t)

|y − xM |n+s+1
dz

6 −
(
1 + ‖Du0‖2∞

)−n+s+1
2

C(t)

2

∫
B(xm,δ)

1

|y − xM |n+s+1
dz

= −
(
1 + ‖Du0‖2∞

)−n+s+1
2

C(t)

2

ωnδ
n

(δ + 1)n+s+1
< 0

and

m′(t) = ut(xm, t) = −Hs(xm, u(xm, t)) >
(
1 + ‖Du0‖2∞

)−n+s+1
2

∫
Rn

u(y, t)− u(xm, t)

|y − xm|n+s+1
dz

>
(
1 + ‖Du0‖2∞

)−n+s+1
2

C(t)

2

ωnδ
n

(δ + 1)n+s+1
> 0.

These two inequalities imply that M(t) is strictly decreasing, m(t) is strictly increasing
and C ′(t) 6 −KC(t) for a constant K depending only on C̄ and ‖Du0‖∞. Therefore
limt→+∞C(t) = 0, which is in contradiction with our assumption.

Finally, observe that if u0 satisfies (6.1), then by uniqueness, −u(x, t) = u(x + v, t). This
implies that necessarily limt→+∞ u(x, t) = − limt→+∞ u(x, t) and then the limit is 0. �

We first of all prove stability of constant functions in Rn.

Theorem 6.2. Let u0 : Rn → R be a Lipschitz function such that

lim
|x|→+∞

u0(x) = 0.

Then, the solution u to (2.4) with initial datum u0 satisfies

lim
t→+∞

u(x, t) = 0 uniformly in C1(Rn).

Proof. First of all we observe that it is sufficient to prove the result for initial data which are
nonnegative everywhere or nonpositive everywhere. Indeed the general case is easily obtained
by using as barriers the solutions with initial data u+

0 = max(u0, 0) and u−0 = min(u0, 0).
So, we prove the result only for the case u0 > 0, since the other case u0(x) 6 0 is completely

analogous. Note that by comparison, since the constant are stationary solutions to (2.4),
0 6 u(x, t) 6 maxy u0(y) for all x ∈ Rn, t > 0.

We claim now that all t > 0,

inf
x
u(x, t) = 0 and that M(t) := max

x
u(x, t) is decreasing in t.

Indeed for every ε > 0, let us fix R > 0 such that |u0(x)| 6 ε for all |x| > R. For every
|x| > R, fix K = |x| −R > 0 and observe that the ball B((x,K + ε),K) of center (x,K + ε)
and radius K, is contained in Rn+1 \ E0. By monotoniciy of the flow (1.1). with respect to
inclusions, see [7], there holds that

B((x,K + ε),K(t)) ⊆ Rn+1 \ Et,
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where K(t) = (Ks+1 − (s + 1)c̄t)
1
s+1 , and c̄ is the fractional mean curvature of the unit ball

in Rn+1. Therefore, we get that and t 6 T 6 Ks+1

2(s+1)c̄

u(x, t) 6 ε+K −K(t) 6 ε−K ′(T )t = ε+
c̄

(Ks+1 − (s+ 1)c̄T )
s
s+1

t 6 ε+
c̄2

s
s+1

Ks
t.

This implies that for all ε > 0, there exists R > 0 such that for |x| > R,

(6.2) 0 6 u(x, t) 6 ε+
c̄2

s
s+1

(|x| −R)s
t for all t 6

(|x| −R)s+1

2(s+ 1)c̄
.

This implies that infx u(x, t) = 0 for all t > 0 and moreover that supx u(x, t) = maxx u(x, t).
The fact that maxx u(x, t) is decreasing in t is a consequence of comparison with stationary
solutions.

Now, since M(t) is decreasing, let M̄ = limt→+∞M(t) = inftM(t). We claim that M̄ = 0.
If the claim holds, then we get the conclusion. The C1 convergence is a consequence of the
uniform estimates in Proposition 3.1.

Assume by contradiction that M̄ > 0. We fix 0 < ε < M̄
2 and t̄ > 0 such thatM(t̄) 6 M̄+ε.

We fix also R = R(t̄) such that u(x, t̄) < M̄
2 for all |x| > R.

Now we aim to get a contradiction by constructing a periodic barrier which satisfies (up to
suitable vertical translation) a condition like (6.1). We fix a Lipschitz continuous function φ :

[−R, 2R]→ R, such that φ is non increasing, φ(z) = M̄ + ε for z ∈ [−R,R], and φ(2R) = M̄
2 .

Now we extend it to a function φ : [−R, 5R]→ R by putting φ(z) = 3
2M̄ + ε− φ(z − 3R) for

all 2R 6 z 6 5R. Finally, we extend it by periodicity to be a 6RZ periodic function. Then
the function v0(x) = φ(x · e1), is a 6RZn periodic function, which is Lipschitz continuous, and
satisfies v0(x+ 3Re1) = 3

2M̄ + ε− v0(x).
Note that by construction, u(x, t̄) 6 v0(x) for all x ∈ Rn and then by comparison

u(x, t+ t̄) 6 v(x, t), and in particular lim sup
t→+∞

u(x, t) 6 lim
t→+∞

v(x, t)

where v(x, t) is the solution to (2.4) with initial datum v0. Now by Proposition 6.1 we get
that limt→+∞ v(x, t) = c uniformly in C1, and moreover, since v0(x+3Re1) = 3

2M̄ +ε−v0(x)

there holds that c = 3
2M̄ + ε− c, and so c = 3

4M̄ + ε
2 < M̄ , recalling our choice of ε. But then

we get that lim supt→+∞ u(x, t) < M̄ , in contradiction with the definition of M̄ . �

Remark 6.3. Let uλ0 be a family of Lipschitz continuous functions which fulfills uniformly in
λ the condition in Theorem 6.2, in the sense that

sup
λ

sup
|x|>R

|uλ0(x)| → 0 as R→ +∞.

Then it is easy to check that the convergence is uniform in λ in the sense that

sup
λ
‖uλ(x, t)‖C1 → 0 as t→ +∞

where uλ is the solution to (2.4) starting from uλ0 .

Finally we give the general result about stability of hyperplanes. We denote with d(A,B)
the Hausdorff distance between the sets A,B.
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Corollary 6.4. Let E0 ⊆ Rn+1 be a set such that ∂E0 is a Lipschitz surface and that there
exists a half-space H for which

lim
R→+∞

d(E0 \B(0, R), H \B(0, R)) = 0.

Then the outer and inner level set flows E+(t), E−(t) defined in (2.3) satisfy

lim
t→+∞

d(E+(t), H) = 0 = lim
t→+∞

d(E−(t), H).

Proof. Since the fractional mean curvature is invariant by rotations and translations, we may
assume without loss of generality that H = {(x, z) ∈ Rn × R | z 6 0}. Moreover, by
the assumption that limR→+∞ d(E0 \ B(0, R), H \ B(0, R)) = 0, there exist two Lipschitz
functions u0, v0 : Rn → R such that lim|x|→+∞ u0(x) = 0 = lim|x|→+∞ v0(x) and {(x, z) ∈
Rn × R | z 6 u0(x)} ⊆ E0 ⊆ {(x, z) ∈ Rn × R | z 6 v0(x)}. By comparison we get
that {(x, z) ∈ Rn × R | z 6 u(x, t)} ⊆ E−t ⊆ E+

t ⊆ {(x, z) ∈ Rn × R | z 6 v(x, t)},
where u(x, t), v(x, t) are the solutions to (2.4) with initial datum u0, v0. By Theorem 6.2
limt→+∞ u(x, t) = limt→+∞ v(x, t) = 0 uniformly in Rn, and this gives the conclusion. �

6.2. Stability of convex cones. In this section we provide the convergence of the unrescaled
flow in the case the initial data is decaying at infinity to a Hs-mean convex cone, staying
above it. The result can be strenghtened if the initial cone is convex, by using the stability of
hyperplanes.

Proposition 6.5. Let u0 : Rn → R be a Lipschitz continuous function. Assume there exists
a non linear function ū which satisfies (4.1), and

(6.3) Hs(x, ū(x)) 6 0 in the viscosity sense,

such that
u0(x) > ū(x) and lim

|x|→+∞
u0(x)− ū(x) = 0.

Then, if u the solution to (2.4) with initial datum u0, it holds

lim
t→+∞

u(x, t)− ū(x, t) = 0 locally uniformly in C1(Rn).

Proof. Observe that by (6.3), ū(x) is a stationary viscosity subsolution to (2.4), therefore
ū(x, t) > ū(x) and so in particular ū(0, t) > ū(0). Observe that, if ū is a homogeneous
Lipschitz function, then either it is linear or it is singular at 0, in the sense that the curvature
in a neighborhood of x = 0 is not bounded. Therefore, since we assumed that ū is non linear,
then ū(0, t) > 0 since ū is smooth by Theorem 4.1. Again by comparison, we get that also
ū(x, t+ r) > ū(x, t) for all t > 0, r > 0, x ∈ Rn.

Fix ε > 0 and R > 0 such that u0(x) 6 ū(x) + ε for all |x| > R. Therefore we get that for
all T > 0,

(6.4) u0(x) 6 ū(x, T ) + ε for all |x| > R.

Observe now that by (4.3) and Lipschitz continuity

ū(x, t) > ū(0, t)− C|x| = t
1
s+1 ū(0, 1)− C|x|.

Since ū(0, 1) > 0 there exists T > 0 sufficiently large such that

(6.5) ū(x, T ) > T
1
s+1 ū(0, 1)− C|x| > u0(x) for all |x| 6 R.
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Therefore, by (6.4), (6.5), and by comparison we get that for some T > 0 sufficiently large

u(x, t) 6 ū(x, T + t) + ε ∀t > 0, x ∈ Rn.

Note that since u0 > ū, by comparison u(x, t) > ū(x, t) for all x, t. Then we get, for ε > 0
and T > 0 fixed (and depending on ε),

0 6 u(x, t)− ū(x, t) 6 ū(x, T + t)− ū(x, t) + ε.

We conclude by letting t→ +∞ and recalling that, by Theorem 4.1, ū(x, T + t)− ū(x, t)→ 0
as t→ +∞ uniformly in x, for all fixed T . �

Theorem 6.6. Let u0 : Rn → R be a Lipschitz continuous function. Assume there exists a
convex function ū which satisfies (4.1) and such that

lim
|x|→+∞

u0(x)− ū(x) = 0.

Then, if u the solution to (2.4) with initial datum u0,

lim
t→+∞

u(x, t)− ū(x, t) = 0 uniformly in C1(Rn).

Proof. We divide the proof in several steps.
Step 1: for every ε > 0 there exists T = T (ε) such that

(6.6) u(x, t) 6 ū(x, T (ε) + t) + ε ∀t > 0, x ∈ Rn.

Since ū is convex, then it also satisfies (6.3). We proceed as in Proposition 6.5. So for every
ε > 0, there exists R = R(ε) > 0 such that u0(x) 6 ū(x) + ε 6 ū(x, t) + ε for all |x| > R and
moreover, arguing as in the proof of (6.5), we get that there exists T > 0 sufficiently large
such that

ū(x, T ) > u0(x) for all |x| 6 R.
Therefore, since u0(x) 6 ū(x, T ) + ε, we conclude by comparison.
Step 2: for every δ > 0 there exist T (δ) > 0 such that

(6.7) u(x, t) > ū(x)− δ ∀t > T (δ).

Since ū is convex and is positively 1-homogeneous, we get that for all ν ∈ Sn there exists
pν ∈ Rn, such that ū(x) > pν · x, with equality at every x = λν with λ > 0.

We define the family of functions uν0(x) = inf(u0(x), pν ·x) and observe that by the assump-
tion there holds that

lim
R→+∞

sup
ν∈Sn

sup
|x|>R

uν0(x)− pν · x = 0.

So, by Corollary 6.4, and arguing as in Remark 6.3, we get that

lim
t→+∞

sup
ν∈Sn

d(Eνt , H
ν) = 0

whereHν is the halfspace with normal (−pν , 1). This in particular implies that limt→+∞ u
ν(x, t)−

pν ·x = 0 uniformly in ν, which in turns gives that lim inft→+∞ u(x, t)−pν ·x > limt→+∞ u
ν(x, t)−

pν · x = 0 uniformly in ν, and so in particular lim inft→+∞ u(x, t) > ū(x). This permits to
conclude.
Step 3: conclusion.
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Observe that by Step 2, and comparison principle, for δ > 0 fixed, there holds that u(x, t+
T (δ)) > ū(x, t) − δ. So, for every ε > 0 and t > T (δ), we get by Step 1 and the previous
observation that

ū(x, t− T (δ))− ū(x, t)− δ 6 u(x, t)− ū(x, t) 6 ū(x, t+ T (ε))− ū(x, t) + ε.

Now we conclude by arbitrariness of ε, δ and by Remark 4.4, letting t→ +∞.
�

7. Ancient and homothetically shrinking solutions

Finally we consider homothetically shrinking solutions in the graphical case, and we show
that they are necessarily hyperplanes.

Definition 7.1. An ancient solution to (1.1) is a solution to (1.1) defined for all t ∈ (−∞, 0).

We recall the following Liouville theorem for ancient solutions of parabolic fractional equa-
tions with rough kernels, proved in [20, Theorem 3.1]. We state it in the setting we are going
to apply it.

Theorem 7.2. [20, Theorem 3.1] Let I be a translation invariant operator, elliptic with frac-
tional order 1+s, with I(0) = 0 and u ∈ C(Rn×(−∞, 0]) be a viscosity solution to ut−I(u) = 0
in Rn × (−∞, 0]. Assume there exists C > 0 such that for all R > 1 there holds

sup
|x|6R,−R1+s6t60

|u(x, t)| 6 CR.

Then there exists a ∈ Rn, b ∈ R such that u(x, t) = a · x+ b.

Theorem 7.3. The only graphical Lipschitz solutions to (1.3) are hyperplanes (with c = 0).
Moreover the only graphical uniformly Lipschitz ancient solutions to (1.1) are hyperplanes.

Proof. The result is a consequence of Theorem 7.2.
Let E be a graphical Lipschitz solution to (1.3), that is let u1 : Rn → R be a Lipschitz

continuous function such that E = {(x, z) |z 6 u1(x)} is a solution to (1.3). Then arguing
as in Proposition 4.5 we may connstruct a solution to (2.4) in (−∞, 0) with u1(x, t) = u1(x).
Indeed let

Et := [−c(s+ 1)t+ 1]
1
s+1 E = λ(t)E for t < 0.

It is easy to check, using the fact that E is a solution to (1.3), that Et is a solution to (1.1).
Therefore the function

(7.1) u1(x, t) := λ(t)u1(xλ1−(t)) = [−c(s+ 1)t+ 1]
1
s+1 u1

(
x [−c(s+ 1)t+ 1]−

1
s+1

)
is a solution to (2.4) in (−∞, 0) and satisfies u1(x, 0) = u1(x). Since u1 is Lipschitz continuous
we get that

|u1(x, t)| 6 λ(t)|u1(0)|+ ‖Du1‖∞|x|.
This implies that there exists K > 0 depending on c, s, ‖Du1‖∞, u1(0), such that for all R > 1,

max
|x|6R,t∈[−Rs+1,0]

|u1(x, t)| 6 KR.

Recalling the formula for Hs (2.11), we get that u1 is a viscosity solution to

ut − I(u) = 0, t ∈ (−∞, 0),
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where I is a translation invariant operator, elliptic with fractional order s+ 1, and I(0) = 0.
Then, by Theorem 7.2 we conclude that there exist a ∈ Rn and b ∈ R such that u1(x, t) =
a · x+ b for all t 6 0 and x ∈ Rn. This implies that E is a hyperplane and c = 0.

Finally, if Et is a graphical uniformly Lipschitz and ancient solution to (1.1), then u(x, t)
is a continuous viscosity solution to ut − I(u) = 0 for t ∈ (−∞, 0) and moreover, since
|Du(x, t)| 6 C, arguing as in Proposition 4.2 we obtain that there exists a constant K only
depending on C such that |u(x, t) − u(x, t + h)| 6 K|h|

1
1+s . So, again by Theorem 7.2 we

conclude that u is affine and does not depend on t. �

Remark 7.4. In the case of classical mean curvature flow, see for instance [14] and references
therein, there are translating, hence eternal, solutions which are smooth but not Lipschitz.
We expect that such solutions, with polynomial growth depending on s, exist also for the
graphical fractional mean curvature flow (2.4).
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