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Abstract. We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We
prove existence and uniqueness of expanding self-similar solutions which are asymptotic to
a prescribed cone, and we characterize the long time behavior of solutions, after suitable
rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of
regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly
mean convex cones, with respect to perturbations vanishing at infinity. We also show the
stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature
flow.

Contents

1. Introduction 1
2. Preliminary definitions and results 3
3. Self-similar expanding solutions and convergence of the rescaled flow 6
4. Stability of self-similar solutions asymptotic to mean convex cones 11
5. Stability of hyperplanes 13
References 15

1. Introduction

We consider the evolution of sets t 7→ Et in RN+1 governed by the geometric law

(1.1) ∂tp · ν(p) = −ψ(ν(p))Hϕ(p,Et),

where ν(p) is the exterior normal at p ∈ ∂Et, ψ is a positive, continuous, 1-homogeneous
function representing the mobility, ϕ is a norm representing the surface tension, and Hϕ(p)
is the anisotropic mean curvature of ∂Et at p, associated with ϕ, see Definition 2.1. This
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evolution is an analogue of the classical (isotropic) mean curvature flow, which corresponds
to the case ϕ(x) = ψ(x) = |x| and it is studied as model of crystal growth, see [5, 6, 13, 14].
Existence and uniqueness of the level set flow associated to (1.1) have been obtained for general
mobilities ψ and purely crystalline norms ϕ in [13, 14], in the viscosity setting, whereas the
case of general norms ϕ with convex mobilities ψ has been treated in [5,6], in the distributional
setting.

In this paper we consider the evolution of subgraphs of entire Lipschitz functions, in the
case in which either ϕ is regular (see (2.2)) or ψ is a norm. In particular, we will assume
that there exists a Lipschitz continuous function u0 : RN → R such that the initial set E0

coincides with {(x, z) | z 6 u0(x)}. By monotonicity of the flow and invariance with respect
to translations, the evolution Et is defined for all times and is the subgraph of a Lipschitz
function, that is, Et = {(x, z) | z 6 u(x, t)}. In Section 2 we describe the main properties of
this flow.

Since the evolution is defined for all times, we are interested in the analysis of the long time
patterns of the evolution. We recall that evolution of entire Lipschitz graphs in the isotropic
setting has been considered in [9], see also [8], whereas the case of fractional mean curvature
flow has been considered recently by two of the authors in [4].

As in the isotropic case, the long time attractors of the flow starting from entire Lipschitz
graphs are self-similar expanding solutions, defined as follows:

Definition 1.1. An expanding homothetic solution is a solution to (1.1) such that Et = λ(t)E1

where λ(1) = 1 and λ′(t) > 0 for t > 1. This is equivalent to assume that E1 is a solution to

(1.2) c(p · ν(p)) = −ψ(ν(p))Hϕ(p,E1)

for some c > 0.

In Section 3 we characterize the graphical expanding solutions as evolutions issuing from
cones, that is, from Lipschitz graphs of positive 1-homogeneous functions, see Theorem 3.1
and Proposition 3.3. Moreover, in Theorem 3.4 we show that Lipschitz graphical evolutions
to (1.1) asymptotically approach self-similar expanding solutions, in an appropriate rescaled
setting, provided the initial graph is a sublinear perturbations of a cone. More precisely, we
introduce the following time rescaling:

(1.3) τ(t) :=
log(2t+ 1)

2
and Ẽτ :=

1√
2t+ 1

Et,

so that the evolution (1.1) of the rescaled flow is governed by the geometric law

(1.4) ∂τ p̃ · ν̃(p̃) = −p̃ · ν̃(p̃)− ψ(ν̃(p̃))Hϕ(p̃, Ẽτ )

and we show that Ẽτ converge locally in Hausdorff sense as τ → +∞ to a solution to (1.2),
with c = 1.

In the rest of the paper we analyze the long time behavior of the flow (1.1) without rescaling
in the case of regular anisotropies, see assumption (2.2) below. In order to rule out possible
oscillations in time, it is necessary to assume some decay condition of the initial data at infinity,
and in particular we will consider initial graphs which are asymptotically flat or asymptotically
approaching mean convex cones.

In Section 4 we consider self-similar expanding solutions starting from Lipschitz mean con-
vex cones. In Theorem 4.3, by constructing appropriate barriers, we show that such solutions
are stable with respect to perturbations vanishing at infinity.
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In Section 5 we prove that if the initial surface is asymptotically approaching a hyperplane,
then the evolution asymptotically flattens out in Hausdorff sense. This result is obtained by
comparison with large Wulff shapes, and by constructing appropriate 1-dimensional periodic
barriers to the evolution. This approach also provides a different proof for the same result in
the isotropic setting, which was obtained by integral estimates on the flow, see [8, 10].

2. Preliminary definitions and results

We recall some definitions for anisotropies and related geometric flows (see for instance [3]).

Definition 2.1. Let ϕ : RN+1 → [0,+∞) be a positively 1-homogeneous convex map, such
that ϕ(p) > 0 for all p 6= 0. We associate to the surface tension the anisotropy ϕ0 : RN+1 →
[0+∞) defined as ϕ0(q) := supϕ(p)61 p·q, which is again convex and positively 1-homogeneous.
The anisotropic mean curvature of a set E at a point p ∈ ∂E is defined as

Hϕ(p,E) = divτ (∇ϕ(ν(p))),

when ϕ is regular, where ν(p) is the exterior normal vector to ∂E at p, and divτ is the
tangential divergence, whereas in the general case it is defined using the subdifferential,

Hϕ(p,E) ∈ divτ (∂ϕ(ν(p))).

Definition 2.2 (Wϕ0-condition). We define the Wulff shape as the convex compact set

Wϕ0 := {q ∈ RN+1 |ϕ0(q) 6 1}.

We say that C ⊆ RN+1 satisfies the interior (resp. exterior) RWϕ0-condition at x ∈ ∂C if
there exists yx ∈ RN+1 such that RWϕ0 + yx ⊆ C and x ∈ ∂(RWϕ0 + yx) (resp. there exists
yx such that RWϕ0 + yx ⊆ RN+1 \ C and x ∈ ∂(RWϕ0 + yx)).

Remark 2.3. Observe that if ϕ ∈ C2(RN+1 \ {0}) and ϕ2 is uniformly convex, then also
ϕ0 ∈ C2(RN+1 \ {0}) and (ϕ0)2 is uniformly convex. In this case the Wϕ0-condition is
equivalent to the standard (interior or exterior) ball condition.

We consider the geometric evolution law (1.1) under the following assumptions on anisotropy
and mobility:
(2.1)

ψ : RN+1 → [0,+∞) is continuous, positively 1-homogeneous, and ψ(p) > 0 ∀p 6= 0

and

either ϕ ∈ C2(RN+1 \ {0}) and ϕ2 is uniformly convex(2.2)
or ψ is convex.(2.3)

Remark 2.4. By positive 1-homogeneity there holds that ∇ϕ(λp) = ∇ϕ(p) for every λ > 0
and p ∈ RN+1 and moreover that ∇ϕ(p) · p = ϕ(p).

We associate to the geometric flow (1.1) the following level set equation: Given a uniformly
continuous function U0 : RN+1 → R such that E0 = {p ∈ RN+1 : U0(p) 6 0} and ∂E0 = {p ∈
RN+1 : U0(p) = 0}, we consider the solution U(p, t) to the following quasi-linear parabolic
equation

(2.4)

{
Ut − ψ(∇U)div(∇ϕ(∇U)) = 0

U(p, 0) = U0(p).
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Remark 2.5. When ϕ is sufficiently regular, that is, (2.2) holds, the solution to (2.4) is
intended in the sense of viscosity solutions, see [2,12], whereas in the general case in which ϕ
is not smooth and ψ is a norm, the solution is intended as the level set distributional solution
defined in [5]. We recall also that the level set distributional solution is the locally uniform
limit of viscosity solutions to (2.4), when we approximate the anisotropy and the mobility
with regular ones, see [6].

We recall the following result about well posedness of the flow (1.1).

Theorem 2.6. There exists a unique continuous solution U to (2.4), to be intended in the
sense of viscosity solutions if (2.2) holds, and in the distributional level set sense if (2.3)
holds, that is, the level set flows defined as

E+
t := {p ∈ RN+1 : U(p, t) 6 0}

E−t := {p ∈ RN+1 : U(p, t) < 0}

provide a solution (in the appropriate sense) to (1.1).
Moreover, if U0, V0 are two uniformly continuous functions such that U0 6 V0, then U(p, t) 6

V (p, t) for all t > 0 and p ∈ RN+1.
Finally, if U0 is Lipschitz continuous with Lipschitz constant C, then

|U(p, t)− U(q, s)| 6 C|p− q|+ C ′
√
|t− s| ∀p, q ∈ RN+1, t, s > 0,

where the constant C ′ depends on C. In particular, if there exists a direction ω ∈ RN+1 such
that U0(p+ λω) > U0(p) for every λ > 0 and every p ∈ RN+1, then U(p+ λω, t) > U(p, t) for
every t > 0, λ > 0, p ∈ RN+1.

Proof. For the existence and uniqueness of solutions to (2.4), and the comparison principle,
in the case that (2.2) holds we refer to [2], whereas for the general case in which (2.3) holds
we refer to [5].

The last two properties are a consequence of the comparison principle and the fact that the
differential operator is invariant by translations. Indeed, if U0 is Lipschitz continuous, and C is
the Lipschitz constant of U0, then for every fixed h ∈ RN+1, then Uh(p, t) := U(p+h, t)±C|h|
is a solution to (2.4) with initial datum U0(p+ h)± C|h|. Since U0(p+ h)− C|h| 6 U0(p) 6
U0(p+h)+C|h|, by comparison there holds that U(p+h, t)−C|h| 6 U(p, t) 6 U(p+h, t)+C|h|,
which implies that

|U(p, t)− U(q, t)| 6 C|p− q| ∀p, q ∈ RN+1, t > 0.

A similar argument shows that, if U0(p + λω) > U0(p) for every λ > 0 then U(p + λω, t) >
U(p, t).

Finally, observe that if the initial datum is a cone, that is, V0(p) = C|p − p0|, for some
p0 ∈ RN+1, then by uniqueness, using the positive 1-homogeneity of the Euclidean norm and
the scaling properties of the operator, we get that the solution to (2.7) satisfies V (p− p0, t) =
1
rV (r(p− p0), r2t) for every r > 0 and t > 0, p ∈ RN+1. This implies in particular that

(2.5) V (0, t) =
√
tV (0, 1) for every t > 0.

Therefore, to prove the Hölder continuity of U , we proceed as follows. We fix p0 and
observe that U0(p) 6 C|p − p0| + U0(p0). Hence, by comparison and using (2.5), we get
that U(p0, t) 6

√
tV (0, 1) + U0(p0), where V (0, 1) is the solution to (2.4) with initial datum
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C|p− p0|. Therefore we get that U(p0, t)−U(p0, 0) 6 V (0, 1)
√
t. By translation invariance of

the operator, we conclude that for every s > 0,

U(p0, t+ s)− U(p0, s) 6 V (0, 1)
√
t.

The other inequality is obtained analogously, taking as initial datum −C|p− p0|. �

Remark 2.7. It is easy to check that the rescaled Wulff shape RWϕ0 , for R > 0, satisfies
Hϕ(RWϕ0) = N

R . Let ψ = minν∈SN ψ(ν) > 0, and ψ = maxν∈SN ψ(ν) > 0, and define

R(t) :=
√
R2 − 2ψNt and R(t) :=

√
R2 − 2ψNt, for t sufficiently small. Then R(t)Wϕ0 is

a subsolution to (1.1) with initial datum RWϕ0 , whereas R(t)Wϕ0 is a supersolution to (1.1)
with initial datum RWϕ0 . This implies that R(t)Wϕ0 ⊆ W−(t) ⊆ W+(t) ⊆ R(t)Wϕ0 , where
W±(t) is the level set solution to (1.1), with initial datum Wϕ0 as defined in Theorem 2.6.

In this paper we consider the case in which the initial datum E0 is the subgraph of an entire
Lipschitz function. Up to a rotation of coordinates, we may assume that

(2.6) ∃u0 : RN → R, Lipschitz continuous such that E0 = {(x, z) ∈ RN+1 | z 6 u0(x)}.
A direct application of Theorem 2.6 gives the following result on the evolution of Lipschitz
graphs.

Corollary 2.8. Assume that E0 satisfies (2.6). Then the level set flow satisfies E−t = E+
t =

{(x, z) ∈ RN+1 | z 6 u(x, t)}, where u(x, t) is a continuous function such that

|u(x, t)− u(y, s)| 6 ‖∇u0‖∞|x− y|+K
√
|t− s|

for some K > 0 depending only on the Lipschitz constant ‖∇u0‖∞ of u0.
When ϕ is regular, that is, (2.2) holds, then u is the viscosity solution to

(2.7)

{
ut + ψ(−∇u, 1)div(∇xϕ(−∇u, 1)) = 0

u(x, 0) = u0(x).

When ϕ is not regular and (2.3) holds, then the solution is intended in the distributional
sense as in [5], and coincides with the locally uniform limit of viscosity solutions to (2.7) when
ϕ,ψ are approximated by regular functions, see [6].

Eventually we recall the following regularity results for solutions to (2.7).

Proposition 2.9. Let u0 be a Lipschitz continuous function. Assume that ϕ satisfies (2.2),
and that ∇2ϕ, ψ belong to C0,β(RN+1 \ {0}) for some β ∈ (0, 1).

Then u(·, t) ∈ C2,α(RN ) and u(x, ·) ∈ C1,α
2 (0,+∞) for every (x, t) ∈ RN × (0,+∞) and for

some α ∈ (0, 1). Moreover for every t0 > 0 there exists a positive constant C, depending on
t0, ϕ, ψ and the Lipschitz constant of u0, such that

(2.8) ‖∇u(·, t)‖C1,α(RN ) + ‖ut(x, ·)‖C0, α2 (t0,+∞)
6 C,

for every (x, t) ∈ RN × (t0,+∞).

Proof. If the initial datum u0 belongs to C2,α(RN ), then by [1, Section 6] (see also [16,17]) there
exists a solution u : RN×(0, T )→ R for some T > 0 such that u(·, t) ∈ C2,α(RN ) and u(x, ·) ∈
C1,α

2 (0, T ) for every (x, t) ∈ RN × (0, T ). Then, by standard results for quasilinear parabolic
equations with Hölder continuous coefficients, see e.g. [1, Proposition 9.5, Proposition 9.6],
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we have that the norm of the solution u depends only on ψ,ϕ and the Lipschitz constant of
u0. It follows that T = +∞ and (2.8) holds.

If u0 is only Lipschitz continuous we approximate u0 with initial data in C2,α(RN ), and
then conclude by stability of solutions to (2.7) with respect to local uniform convergence.

�

Proposition 2.10. Let u0 ∈ C1,1(RN ) with ‖u0‖C1,1(RN ) 6 C and let (2.2) hold. Then the
viscosity solution u of (2.7) is uniformly of class C1,α(RN ), for any fixed t > 0 and for all
α ∈ (0, 1), with C1,α norm bounded independently of t > 0.

Proof. First of all let u(·, t) be the viscosity solution to (2.7). By Corollary 2.8, it is Lips-
chitz continuous with ‖∇u(x, t)‖∞ 6 ‖∇u0‖∞. Let C ′ := ‖ψ(−∇u0, 1)div(∇ϕ(−∇u0, 1))‖∞.
Note that u0(x)± C ′t are respectively a supersolution and a subsolution to (2.7), so that by
comparison principle, see Theorem 2.6, we get

u0(x)− C ′t 6 u(x, t) 6 u0(x) + C ′t for all t > 0.

Moreover for every t > τ > 0, the functions u(x, t)± supx |u(x, τ)− u0(x)| are respectively a
supersolution and a subsolution to (2.7) with initial datum u(x, τ), whence

|u(x, t+ τ)− u(x, t)| 6 sup
x
|u(x, τ)− u0(x)| 6 C ′τ.

This implies that u(x, ·) is Lipschitz continuous with |ut(x, t)| 6 C ′, which in turn gives,
recalling that ∇u is bounded, that

−C 6 div(∇ϕ(−∇u, 1)) 6 C for all x ∈ RN and t > 0.

By elliptic regularity theory for viscosity solutions (see [19]), this implies that for every t > 0,
u(·, t) ∈ C1,α(RN ) for every α < 1. �

3. Self-similar expanding solutions and convergence of the rescaled flow

We discuss the properties of solutions to (1.1) starting from Lipschitz cones, that is, sub-
graphs of Lipschitz continuous and positively 1-homogeneous functions ū:

(3.1) ∃C > 0 |ū(x)− ū(y)| 6 C|x− y| ū(rx) = rū(x) ∀r > 0, x, y ∈ RN .

Then we consider the long time behavior of solutions starting from sublinear perturbations of
Lipschitz cones.

Theorem 3.1. Let ū : RN → R be as in (3.1) and let Ē0 be the subgraph of ū. Then, for
every t > 0, the evolution Ēt of (1.1) with initial datum Ē0 satisfies for p ∈ ∂Ēt
(3.2) p · ν = −2t ψ(ν(p))Hϕ(p, Ēt),

that is, the flow starting from Ē0 is an expanding homothetic solution to (1.1). Writing Ēt as
subgraph of a function ū(·, t) we have that for all T > 0

lim
t→∞

ū(x, t+ T )− ū(x, t) = 0 locally uniformly in RN .

Finally, if either ū ∈ C1(RN \ {0}) or Ē0 satisfies the exterior and interior RxWϕ0−condition
at every x ∈ ∂Ē0 \ {0} (see Definition 2.2) with Rx possibly depending on x, then

lim
|x|→+∞

ū(x, t)− ū(x) = 0 for every t > 0.
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Proof. By (3.1) we get that for every r > 0, there holds rĒ0 = Ē0, and Hϕ(rp, rĒ0) =
r−1Hϕ(p, Ē0) for all r > 0 and all p ∈ ∂Ē0. Therefore, by uniqueness of solutions and by the
rescaling properties of the operator, we get that Ēt = rĒt/r2 for all t, r > 0. The previous
rescaling identity gives

ū(x, t) =
1

r
ū(rx, r2t), r, t > 0 x ∈ RN .

Letting r := t−
1
2 for t > 0, we get

(3.3) ū(x, t) = t
1
2 ū(xt−

1
2 , 1).

This implies that, if p ∈ ∂Ē1 then pt
1
2 ∈ ∂Ēt and

(3.4) Hϕ(pt
1
2 , Ēt) = t−

1
2Hϕ(p, Ē1).

Substituting in (1.1) we get that Ē1 solves (1.2) with c−1 = 2. The same argument holds
substituting t = 1 with another time t > 0.

We observe that, by rescaling property (3.3), and by the fact that ū(·, t) is Lipschitz con-
tinuous with the same Lipschitz constant as ū, for every T > 0 and t > 0 we have

|ū(x, t+ T )− ū(x, t)| = |(t+ T )
1
2 ū(x(t+ T )−

1
2 , 1)− t

1
2 ū(xt−

1
2 , 1)|

6 (t+ T )
1
2 |ū(x(t+ T )−

1
2 , 1)− ū(xt−

1
2 , 1)|

+|(t+ T )
1
2 − t

1
2 ||ū(xt−

1
2 , 1)|

6 C(t+ T )
1
2 |x||(t+ T )−

1
2 − t−

1
2 |+ C|(t+ T )

1
2 − t

1
2 ||x|t−

1
2

6 C|x|

((
1 +

T

t

) 1
2

−
(

1− T

t

) 1
2

)
6
CT |x|
t

.

Sending t→ +∞, we get the result.
We now show that, if Ē0 satisfies the exterior and interior Wϕ0−condition, the expanding

solution is asymptotic at infinity to the initial cone, by comparison with the shrinking Wulff
shapes constructed in Remark 2.7.

Note that by positive 1-homogeneity of the function ū, for every R > 0, there exists K > 0
such that Ē0 satisfies the exterior and interior RWϕ0−condition at every (x, ū(x)) ∈ ∂Ē0,
with |x| > K. Therefore we get⋃

|x|>K

(RWϕ0 + yx) ⊆ Ē0 ⊆ RN+1 \
⋃
|x|>K

(RWϕ0 + yx),

where yx, yx are introduced in Definition 2.2. By comparison (see Remark 2.7 and Theorem
2.6) we have that ⋃

|x|>K

(R(t)Wϕ0 + yx) ⊆ Ēt ⊆ RN+1 \
⋃
|x|>K

(R(t)Wϕ0 + yx)

where R(t) :=
√
R2 − 2Nψt is defined in Remark 2.7. From the previous inclusions, we

deduce that, for all |x| > K and t < R2

2Nψ
,

|ū(x, t)− ū(x)| 6 C(R−R(t)) 6 C
Nψt

R
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where C is a constant which depends on ϕ and on the Lipschitz constant of ū. This implies
the conclusion, sending R→ +∞.

A similar argument can be used to prove the same result when ū ∈ C1(RN \{0}). For it we
define vλ(x) := ū(λe + x) − ū(λe) where λ > 0 and e ∈ RN with |e| = 1. For every compact
set K, since ∇ū is continuous in RN \ {0}, we get that as λ→ +∞

∇vλ(x) = ∇ū(λe+ x) = ∇ū
(
e+

x

λ

)
→ ∇ū(e)

uniformly in x and e. Hence, letting fe(x) := ∇ū(e) · x we conclude that

lim
λ→∞

‖vλ − fe‖C1(K) = 0

uniformly in e, with |e| = 1.
This implies that there are functions α(r), ε(r) > 0, r > 0, with α(r) → ∞ and ε(r) → 0

as r →∞ so that for large |x|, there exist yx, yx ∈ RN+1 such that

d((x, ū(x)), α(|x|)Wϕ0 + yx), d((x, ū(x)), α(|x|)Wϕ0 + yx) 6 ε(|x|),
and eventually

(α(|x|)Wϕ0 + yx) ⊆ Ē0 ⊆ RN+1 \ (α(|x|)Wϕ0 + yx).

So, the thesis follows from the same argument as above. �

Remark 3.2. If we assume that ∇2ϕ,ψ belong to C0,β(RN+1 \ {0}) for some β ∈ (0, 1), then
there exists C > 0 such that

(3.5) sup
x∈RN

|div(∇xϕ(−∇ū(x, t), 1))| 6 Ct−
1
2 ∀t > 0.

Indeed due to (3.4) it is sufficient to check that there exists C > 0 such that

sup
x∈RN

|div(∇xϕ(−∇ū(x, 1), 1))| 6 C,

and this is a consequence of Proposition 2.9.
Moreover, if (3.5) is satisfied, then |ūt(x, t)| 6 C ′t−

1
2 , for some C ′ > 0 depending on C and

on the Lipschitz norm of u0. Integrating in t we get

|ū(x, t+ T )− ū(x, t)| 6 C ′(
√
t+ T −

√
t) for all T > 0,

hence, for every T > 0 we conclude that

lim
t→+∞

|ū(x, t+ T )− ū(x, t)| = 0 uniformly in RN .

On the other hand, every homothetically expanding solution Et to (1.1) which is the sub-
graph of a Lipschitz continuous function has a backward in time extension which starts from
a subgraph of a suitable Lipschitz and 1-homogeneous function.

Proposition 3.3. Assume that E1 is a solution to (1.2) for some c > 0, such that there exists
a Lipschitz continuous function u1 : RN → R for which E1 = {(x, z) | z 6 u1(x)}. Let u(x, t)
be the solution to (2.7) in RN × (1,+∞) with initial datum u(x, 1) = u1(x). Then we may
extend continuously u(x, t) in RN × (t0,+∞), where t0 = 1− 1

2c , and moreover it holds

lim
t→t+0

u(x, t) = ū(x) locally uniformly

where ū : RN → R satisfies (3.1).
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Proof. Since E1 solves (1.2), we have that

Et = λ(t)E1, where λ(t) := (2c(t− 1) + 1)
1
2 , t > 1.

Therefore the solution u to (2.7) in RN × (1,+∞) with initial datum u(x, 1) = u1(x) is given
by

(3.6) u(x, t) = λ(t)u1

(
x

λ(t)

)
, t > 1, x ∈ RN .

By definition λ(t) is well defined for every t > t0 = 1 − 1
2c , and so u can be extended to

a continuous function in RN × (t0,+∞), which is Lipschitz continuous in x, with the same
Lipschitz constant as u1. We compute now the limit as t→ t+0 , that is the limit as λ(t)→ 0+

in (3.6). For r ∈ (0, 1), we define

vr(x) := ru1

(x
r

)
.

Note that (vr)r are equi-Lipschitz and locally bounded so that, up to subsequences, there
exists the locally uniform limit of vr as r → 0+ by Arzelà-Ascoli Theorem.

In order to conclude, we need to show that such limit is unique, i.e., it does not depend
on the subsequence. If this is true, it is easy to check that ū(x) := limr→0+ ru1

(
x
r

)
satisfies

(3.1). To prove the whole convergence, we observe that by (3.6)

vr(x) = u(x, λ−1(r)) ∀r > 0.

Let rn → 0+ so that limn→∞ vrn(x) =: v̄(x) locally uniformly. We set

un(x, t) := u(x, t+ λ−1(rn)).

Then un is the solution to (2.7) in RN×(0,+∞) with initial datum un(x, 0) = u(x, λ−1(rn)) =
vrn(x). Recalling that vrn(x)→ v̄(x) locally uniformly, and that vrn and v̄ are equi-Lipschitz
functions, by Corollary 2.8, we get that, up to subsequences, un(x, t) → v̄(x, t) locally uni-
formly in (x, t), for some function v̄(x, t). By stability of solutions to (2.7) with respect to
uniform convergence, we get that v̄(x, t) is the solution to (2.7) in RN×(0,+∞) with initial da-
tum v̄(x, 0) = v̄(x). Now observe that by definition un(x, t) = u(x, t+λ−1(rn))→ u(x, t+ t0)
for every t > 0, therefore v̄(x, t) = u(x, t+ t0) for every t > 0. This implies that the limit v̄ is
independent of the subsequence rn. �

We now provide the locally uniform convergence to self-similar expanding solutions, in the
rescaled setting (1.3), if the initial Lipschitz graph is a sublinear perturbation of a cone. A
similar result has been obtained in [9] for the isotropic case, and in [4] for the fractional mean
curvature flow. Note that, if the flow Et is the subgraph of the solution u(x, t) to (2.7), then
the rescaled flow Ẽτ defined in (1.3) is the subgraph of the rescaled function

(3.7) ũ(y, τ) := e−τu

(
yeτ ,

e2τ − 1

2

)
.

Theorem 3.4. Let u0 be a Lipschitz continuous function, such that there exist ū which satisfies
(3.1), and constants K > 0, δ ∈ (0, 1) for which there holds

|u0(x)− ū(x)| 6 K(1 + |x|)1−δ.
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Let ũ(y, τ) be the rescaled function as defined in (3.7), where u is the solution to (2.7) with
initial data u0 and let ū(x, t) be the solution to (2.7) with initial datum ū. Then

lim
τ→+∞

ũ(y, τ) = ū

(
y,

1

2

)
locally uniformly.

Proof. We argue as in the proof of [4, Theorem 5.1]. Let χ : (0,+∞)→ (0,+∞) be a smooth
function such that χ(k) ≡ 0 if k < 1 and χ(k) ≡ 1 if k > 2. Define for r > 1

ur0(x) = ū(x) + χ

(
|x|
r

)
(u0(x)− ū(x)).

Then our assumption implies that

|u0(x)− ur0(x)| 6 K(1 + 2r)1−δ ∀x ∈ RN .
By the comparison principle we deduce that

ur(x, t)−K(1 + 2r)1−δ 6 u(x, t) 6 ur(x, t) +K(1 + 2r)1−δ ∀x ∈ RN , t > 0

where u, ur are the solutions to (2.7) respectively with initial data u0 and ur0. Then passing
to the rescaled functions ũ and ũr as defined in (3.7), we obtain

(3.8) ũr(y, τ)−K(1+2r)1−δe−τ 6 ũ(y, τ) 6 ũr(y, τ)+K(1+2r)1−δe−τ ∀y ∈ RN , τ > 0.

On the other hand,

ū(x)− 2K

rδ
|x| 6 ur0(x) 6 ū(x) +

2K

rδ
|x|.

Let ū±r be the solution to (2.7) with initial datum respectively ū(x)±2K
rδ
|x|. By the comparison

principle

(3.9) ū−r(x, t) 6 u
r(x, t) 6 ū+r(x, t) ∀x ∈ RN , t > 0.

Note that ū(x) ± 2K
rδ
|x| satisfy (3.1) with Lipschitz constant ‖Dū‖∞ + 2K

rδ
6 ‖Dū‖∞ + 2K.

By the rescaling properties of ū±r, see (3.3), we get that when we apply the rescaling (3.7) to
ū±r we obtain ū±r

(
y, 1−e−2τ

2

)
. Then, passing in (3.9) to the rescaled functions as defined in

(3.7) we get

ū−r

(
y,

1− e−2τ

2

)
6 ũr(y, τ) 6 ū+r

(
y,

1− e−2τ

2

)
.

Recalling that ū(x) ± 2K
rδ
|x| are Lipschitz functions with Lipschitz constant bounded by

‖Dū‖∞ + 2K, by Corollary 2.8 we get that there exists B depending only on ‖Dū‖∞ and
K such that

ū−r

(
y,

1

2

)
−Be−τ 6 ũr(y, τ) 6 ū+r

(
y,

1

2

)
+Be−τ .

Therefore by (3.8) we conclude that

ū−r

(
y,

1

2

)
− (B +K(1 + 2r)1−δ)e−τ 6 ũ(y, τ) 6 ū+r

(
y,

1

2

)
+ (B +K(1 + 2r)1−δ)e−τ ,

for all y ∈ RN , τ > 0 and r > 1.
Notice that ū±r

(
y, 1

2

)
→ ū

(
y, 1

2

)
as r → +∞, locally uniformly in y by stability of solu-

tions with respect to local uniform convergence, since ū(x)± 2K
rδ
|x| → ū(x) locally uniformly.

Therefore, taking r = eτ in the previous inequality and letting τ → +∞, we obtain the local
uniform convergence of ũ. �
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Remark 3.5. If u0−ū ∈ L∞(RN ), the convergence result in Theorem 3.4 can be strengthened
to uniform convergence. In the isotropic case, the uniform convergence has been obtained in
[9] under the assumptions of Theorem 3.4, by using maximum principle and integral estimates.

4. Stability of self-similar solutions asymptotic to mean convex cones

In this section we assume that the anisotropy is regular, that is, (2.2) holds, and we address
the issue of the stability with respect to perturbations vanishing at infinity in the case of mean
convex cones. The same problem has been considered in the isotropic setting in [8].

So we consider self-similar expanding solutions starting from initial data which satisfy the
following condition: ū is as in (3.1) and moreover

(4.1) ū ∈ C2(RN \ {0}), ū is nonlinear and div(∇xϕ(−∇ū, 1)) < 0 in the viscosity sense.

Note that the assumption in (4.1) implies that the epigraph of ū, that is, the set {(x, z) | z >
ū(x)} is a mean convex set.

We first show that mean convexity is preserved and that the homothetic solution ū(x, t)
always lies above ū.

Lemma 4.1. Let ū be as in (3.1) and (4.1) and let ū(x, t) be the solution to (2.7) with initial
datum ū. Then ū(x, t + s) > ū(x, t) for every t > 0 and s > 0, and moreover ū(0, t) =√
tū(0, 1) > 0 for t > 0.

Proof. Condition (4.1) implies that ū(x) is a stationary subsolution to (2.7), so by comparison
ū(x, t) > ū(x). Again by comparison and the semigroup property we get that for all s > 0,
there holds ū(x, t+ s) > ū(x, t).

In particular we get that ū(0, t) > ū(0) = 0, moreover by (3.3), ū(0, t) =
√
tū(0, 1). Observe

that since ū(0, 1) is a solution to (1.2) with c = 1/2, then div(∇xϕ(−∇ū, 1)) ∈ L∞loc and by
elliptic regularity theory [19], recalling (2.2), this implies that ū(·, 1) ∈ C1,α(RN ) for every
α < 1. It follows that ū(0, 1) > 0. �

Proposition 4.2. Let ū be as in (3.1) and (4.1) and let u0 : RN → R be a Lipschitz continuous
function such that

lim
|x|→+∞

u0(x)− ū(x) = 0.

Then for every δ > 0 there exists tδ > 0 such that

u(x, t) > ū(x)− δ, t > tδ

where u(x, t) is the viscosity solution to (2.7) with initial datum u0.

Proof. The proof is based on the construction of a barrier for the evolution. First of all observe
that by assumption, there exists m > 0 such that u0(x) > ū(x)−m for all x ∈ RN . Moreover,
for every δ > 0 there exists R(δ) > 0 such that u0(x) > ū(x)− δ for every |x| > R(δ).

Let χ : [0,+∞)→ [0, 1] be a smooth function such that χ(s) = 1 if s < 1, χ(s) = 0 if s > 2.
Then for every r > 0, we define br(x) := ū(x) − rχ(|x|). Then br ∈ C2(RN \ {0}), moreover
br(x) 6 ū(x) for all x, in particular br(x) = ū(x) if |x| > 2 and br(x) = ū(x) − r if |x| 6 1.
Finally we get

lim
r→0

max
|x|∈[1,2]

div(∇xϕ(−∇br(x), 1)) 6 max
|x|∈[1,2]

div(∇xϕ(−∇ū, 1)) = −c < 0.
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Choosing r sufficiently small, we get that div(∇xϕ(−∇br(x), 1)) < 0 in the viscosity sense for
all x. Now, let us fix r0, and br0 the corresponding function such that the previous condition
is satisfied. In particular br0 is a stationary subsolution to (2.7).

We claim that there exists λ > 0 such that

(4.2) u(x, t) > w(x, t) := sup
(
ū(x, t)−m,λbr0

(x
λ

)
− δ
)

where ū(x, t) is the solution to (2.7) with initial datum ū. Note that the function w(x, t) is a
subsolution to (2.7), since it is the supremum between two subsolutions. Therefore to check the
claim, it is sufficient to show that u(x, 0) = u0(x) > w(x, 0) = sup

(
ū(x)−m,λbr0

(
x
λ

)
− δ
)
.

First of all, by assumption we know that u0(x) > ū(x) − m for all x. On the other hand,
observe that if λ > max(R(δ),m/r0), by definition of χ and the positive 1-homogeneity of ū,
there holds that for |x| 6 R(δ) < λ,

λbr0

(x
λ

)
= ū(x)− λr0χ

(
|x|
λ

)
= ū(x)− λr0 6 ū(x)−m 6 u0(x).

On the other hand if |x| > R(δ), by assumption and our construction of br, u0(x) > ū(x)−δ >
λbr0

(
x
λ

)
− δ.

Therefore, by comparison, (4.2) holds for every λ > max(R(δ),m/r0). We fix λ0 which
satisfies this condition.

Now, observe that by Lipschitz continuity and Lemma 4.1, there holds ū(x, t) − m >√
tū(0, 1) − ‖∇ū‖∞|x| − m. Therefore there exists tδ such that ū(x, t) − m > ū(x), for all
|x| 6 2λ0 and for all t > tδ and then, in turn, by (4.2), we get that u(x, t) > ū(x) for
all t > tδ and |x| 6 2λ0. On the other hand, if |x| > 2λ0 there holds by definition that
λ0br0

(
x
λ0

)
−δ = ū(x)−δ and then again by (4.2), u(x, t) > ū(x)−δ for all t, for all |x| > 2λ0.

So, we get the conclusion. �

We conclude with the following stability result.

Theorem 4.3. Assume that (2.2) holds. Let u0 : RN → R be a Lipschitz continuous function
and ū a nonlinear function which satisfies (3.1), and (4.1) such that

lim
|x|→+∞

u0(x)− ū(x) = 0.

Then,
lim

t→+∞
u(x, t)− ū(x, t) = 0 locally uniformly in RN

where u(x, t), ū(x, t) are the solutions to (2.7) with initial datum u0, ū. If moreover ∇2ϕ,ψ
belong to C0,β(RN+1 \ {0}) for some β ∈ (0, 1), then the convergence is uniform in RN .

Proof. First of all we observe that by Proposition 4.2 and the comparison principle, there
holds that for all δ > 0 there exists tδ such that for all t > tδ,

(4.3) u(x, t) > ū(x, t− tδ)− δ.
We fix now ε > 0 and Rε > 0 such that u0(x) 6 ū(x) + ε for all |x| > Rε. Therefore, by

Lemma 4.1, we get that for all t > 0,

(4.4) u0(x) 6 ū(x) + ε 6 ū(x, t) + ε for all |x| > Rε.

Observe now that by (3.3) and Lipschitz continuity

ū(x, t) > ū(0, t)− ‖∇ū‖∞|x| =
√
tū(0, 1)− ‖∇ū‖∞|x|.
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Since ū(0, 1) > 0 by Lemma 4.1, there exists tε > 0 sufficiently large such that

(4.5) ū(x, t) > u0(x) for all |x| 6 Rε, t > tε.

Therefore, by (4.4), (4.5), and by comparison we get that for every t > 0

(4.6) u(x, t) 6 ū(x, t+ tε) + ε ∀t > 0, x ∈ RN .

By (4.6) and (4.3) we get that for ε > 0, δ > 0

ū(x, t− tδ)− ū(x, t)− δ 6 u(x, t)− ū(x, t) 6 ū(x, t+ tε)− ū(x, t) + ε.

We conclude sending t → +∞, and recalling Theorem 3.1. In case that ∇2ϕ,ψ are more
regular, we conclude recalling Remark 3.2. �

5. Stability of hyperplanes

In this section we show that hyperplanes are stable with respect to the flow (1.1), if the
anisotropy is regular, that is, (2.2) holds. In particular we show that if the initial datum is
flat at infinity, then the solution stabilizes to the hyperplane at which the initial datum is
asymptotic. The same result has been obtained in the isotropic case by integral estimates and
comparison with large balls in [8, 10], and by using the heat kernel, in dimension 2, in [18].
Here we provide a different proof based on construction of suitable periodic barriers.

We start with a preliminary lemma on 1-dimensional periodic barriers.

Lemma 5.1. Assume (2.2), and let f0 : R → R be a function of class C1,1(R) which is Z-
periodic and odd. Let u(x, t) be the solution to (2.7) with initial datum u0(x) := f0(x · e1).
Then

lim
t→+∞

u(x, t) = 0 uniformly in C(RN ).

Proof. By uniqueness we have that

u(x, t) = f(x · e1, t),

where f : R×[0,+∞)→ R satisfies f(r, 0) = f0(r), f(r, t) = −f(−r, t) and f(r+z, t) = f(r, t)
for every z ∈ Z. Notice also that

(5.1) |∇u(x, t)| 6 max
[0,1]

f ′0 for all (x, t) ∈ RN × (0,+∞).

Differentiating in time the anisotropic perimeter of the graph of u, for all t > 0 we get that∫
[0,1]N

ϕ(−∇u0(x), 1)dx >
∫

[0,1]N
ϕ(−∇u0(x), 1)dx−

∫
[0,1]N

ϕ(−∇u(x, t), 1)dx

= −
∫ t

0

∫
[0,1]N

ut div(∇ϕ((−∇u, 1)dxds

=

∫ t

0

∫
[0,1]N

u2
t

ψ(−∇u, 1)
dxds,

which implies that ∫ +∞

0

∫ 1

0
f2
t dxds =

∫ +∞

0

∫
[0,1]N

u2
t dxds 6 C,
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where the constant

C :=

(
max

|ξ|6max[0,1] f
′
0

ψ(ξ, 1)

)∫
[0,1]N

ϕ(−∇u0(x), 1)dx

depends only on the initial function f0. It follows that there exists a sequence of times
tn → +∞ such that ft(·, tn)→ 0 in L2([0, 1]) as n→ +∞. Recalling Proposition 2.10, up to
extracting a further subsequence we can also assume that u(·, tn)→ ū(x) uniformly in C1(RN )
as n→ +∞, where ū(x) = f̄(x · e1) with f̄ Z-periodic.

Evaluating now (2.7) at t = tn, after an integration by parts we get that∫
[0,1]N

ut(x, tn)

ψ(−∇u(x, tn), 1)
η(x · e1)dx =

∫
[0,1]N

∇ϕ(−∇u(x, tn), 1) · e1 η
′(x · e1)dx

for all η ∈ C1(R) Z-periodic. Passing to the limit as n→ +∞, we finally get that the function
ū satisfies ∫

[0,1]N
∇xϕ(−∇ū(x), 1) · e1 η

′(x · e1)dx = 0

for all η, that is, ū is a periodic, odd and smooth solution to the anisotropic minimal surface
equation

div(∇xϕ(−∇ū, 1)) = 0.

Recalling that we are assuming (2.2), we get that by the strong maximum principle, and the
periodicity of ū, we conclude that ū ≡ 0. �

Theorem 5.2. Let E0 ⊆ RN+1 such that ∂E0 is a Lipschitz surface and assume that there
exists a half-space H for which

lim
R→+∞

dH(E0 \B(0, R), H \B(0, R)) = 0

where dH(A,B) is the Hausdorff distance between the sets A,B. Then we have

lim
t→+∞

dH(Et, H) = 0.

Proof. We may assume without loss of generality that H = {(x, z) ∈ Rn × R | z 6 0}.
Moreover, by the assumption that limR→+∞ d(E0 \B(0, R), H \B(0, R)) = 0, there exist two
Lipschitz functions u0, v0 : RN → R such that lim|x|→+∞ u0(x) = 0 = lim|x|→+∞ v0(x) and
{(x, z) ∈ Rn × R | z 6 u0(x)} ⊆ E0 ⊆ {(x, z) ∈ Rn × R | z 6 v0(x)}. By comparison we
get that {(x, z) ∈ Rn × R | z 6 u(x, t)} ⊆ Et ⊆ {(x, z) ∈ Rn × R | z 6 v(x, t)}, where
u(x, t), v(x, t) are the solutions to (2.7) with initial datum u0, v0.

We claim that limt→+∞ u(x, t) = 0 = limt→+∞ v(x, t) uniformly. If the claim is true, then
the result follows.

It is sufficient to prove the claim only for u (since for v is completely analogous), moreover,
we restrict to the case in which u0 > 0 (or equivalenty u0 6 0). Indeed the general case
is easily obtained by using as barriers the solutions with initial data u+

0 = max(u0, 0) and
u−0 = min(u0, 0).

So, we prove the claim only for the case u0 > 0. Note that by comparison, since the
constants are stationary solutions, 0 6 u(x, t) 6 maxu0 for all x ∈ RN , t > 0.

First of all we prove that
inf
x
u(x, t) = 0
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for all t > 0, by comparison with shrinking Wulff shapes as constructed in Remark 2.7. Indeed
for every ε > 0, let us fix R > 0 such that u0(x) 6 ε for all |x| > R. Let Ẽ0 be the subgraph of
max(u0, ε). Note that for |x| > R, ∂Ẽ0 is a hyperplane, and then at every |x| > R, there exists
R|x| > 0, such that R|x| → +∞ as |x| → +∞ and that Ẽ0 satisfies at x the exterior R|x|Wϕ0

condition. So, arguing as in the proof of Theorem 3.1, we get that for every t > 0, there exists
K > 0 such that |u(x, t)| 6 2ε for |x| > K. This gives the desired property infx u(x, t) = 0.

Now we note that by comparison, M(t) = supx u(x, t) is decreasing. We define 0 6 M̄ :=
limt→+∞M(t) = inftM(t). Now we claim that

M̄ = 0.

If the claim holds, then we get the conclusion.
Assume by contradiction that M̄ > 0. We fix 0 < ε < M̄

2 and t̄ > 0 such thatM(t̄) 6 M̄+ε.
We fix also R = R(t̄) such that u(x, t̄) < M̄

2 for all |x| > R. Now we shall get a contradiction
by constructing a periodic barrier as in Lemma 5.1 (up to suitable vertical translations). We
fix a smooth even function f0 : [−2R, 2R] → R, such that f0(z) = M̄ + ε for z ∈ [−R,R],
f0(−2R) = f0(2R) = 3

4M̄ + ε
2 and f0(z) is increasing in (−2R,−R) and decreasing in (R, 2R).

Now we extend it to a function f0 : [−2R, 6R]→ R by putting

f0(z + 2R) = −f0(−z + 2R) +
3

2
M̄ + ε.

Note that f0(z + 2R)− 3
4M̄ −

ε
2 is an odd function. Finally, we extend it by periodicity to be

a 8RZ periodic function.
Let v0(x) := f0(x · e1), and note that by construction, u(x, t̄) 6 v0(x) for all x ∈ RN and

then by comparison

u(x, t+ t̄) 6 v(x, t), and in particular lim sup
t→+∞

u(x, t) 6 lim
t→+∞

v(x, t)

where v(x, t) is the solution to (2.7) with initial datum v0. Now by Lemma 5.1 we get that
limt→+∞ v(x, t) = 3

4M̄ + ε
2 uniformly. Since 3

4M̄ + ε
2 < M̄ , by our choice of ε, we get that

lim supt→+∞ u(x, t) < M̄ , in contradiction with the definition of M̄ . �
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