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Abstract. We prove the existence of periodic tessellations of RN minimizing a general
nonlocal perimeter functional, defined as the interaction between a set and its complement
through a nonnegative kernel, which we assume to be either integrable at the origin, or sin-
gular, with a fractional type singularity. We reformulate the optimal partition problem as
an isoperimetric problem among fundamental domains associated with discrete subgroups
of RN , and we provide the existence of a solution by using suitable concentrated compact-
ness type arguments and compactness results for lattices. Finally, we discuss the possible
optimality of the hexagonal tessellation in the planar case.
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1. Introduction

An interesting class of problems in geometry and analysis concerns finding a tiling or tes-
sellation of RN , which is optimal for a given energy functional. A famous problem in this
direction, which is related to our work, is the so-called Kelvin problem, posed by Lord Kelvin
in 1887, see [25,26]: it consists in finding a partition of RN into cells of equal volume, so that
the total area of the surfaces separating them is as small as possible. A complete solution to
such problem is currently known only in dimension N = 2, thanks to the celebrated paper by
Hales [16] (see also [23]).

We recall that a tiling or tessellation of RN is a collection of measurable subsets {Ek}k∈I,
where I is either finite or countable, such that

(1) |Ek| > 0 for all k,
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(2) |Ek ∩ Ej | = 0 for all k 6= j,
(3) |RN \ ∪kEk| = 0.

In this paper we look for tessellations minimizing a general nonlocal perimeter functional,
and we restrict to the class of lattice tilings, that is, tessellations which are invariant with
respect to the action of a N -dimensional group of translations (i.e. a lattice) of RN .

Such problem can be restated in a completely equivalent way by using the terminology of
fundamental domains associated with a lattice. In particular, each fundamental domain D for
a lattice G is uniquely associated with a lattice tiling of RN , given by {D + g}g∈G.

Let now describe the criterium for optimality among all possible lattice tilings, or equiv-
alently among all fundamental domains. We consider a measurable kernel K on RN , that
we assume to be nonnegative and symmetric (i.e. satisfying K(x) = K(−x) ≥ 0 for every
x ∈ RN ), and we associate with K the nonlocal perimeter

(1) PerK(E) :=

∫
E

∫
RN\E

K(x− y)dxdy .

More specifically, we focus our attention on two relevant classes of kernels, respectively of
fractional and integrable type, i.e. satisfying one of the following assumptions

(2) min{1, |h|}K(h) ∈ L1(RN ) , K(h) ≥ C|h|−N−s for some C > 0 and s ∈ (0, 1);

(3) K ∈ L1(RN ) with ‖K‖1 > 0, and lim inf
z→0+

[
K(z)−K(z + x)

]
> 0 ∀x 6= 0.

The first tessellation problem we investigate is obtained by fixing a discrete group of trans-
lations. It can be stated precisely as follows: given a lattice G in RN , we consider the
isoperimetric problem

(4) inf
D∈DG

PerK(D) ,

where DG denotes the class of fundamental domains for G, see Definition 2.4 (notice in par-
ticular that all fundamental domains for G have the same volume).

We prove the following existence result:

Theorem 1.1. Let K be a nonnegative symmetric kernel on RN , satisfying one of the as-
sumptions (2)-(3). For any given lattice G in RN , problem (4) admits a solution, namely there
exists a fundamental domain D ∈ DG such that

PerK(D) = min
E∈DG

PerK(E).

This result is obtained by different methods depending on whether the interaction kernel is
singular at the origin or not.

In the first case, we exploit the lower semicontinuity and compactness properties of the
perimeter functional, along with a by now well-established version of the concentration-
compactness argument. For the local perimeter functional, this argument dates back to Alm-
gren (see the monograph [19]), and it has been already used to attack isoperimetric problems
in finite or infinite clusters, for local isotropic and anisotropic perimeters, see [8,9,24]. Let us
also mention that isoperimetric problems for the local perimeter in the class of fundamental
domains on compact Riemannian manifolds have been considered in the literature, see [11,21].

In the other case, when the interaction kernel is integrable at the origin, sets of bounded
perimeter do not enjoy anymore any compactness property (see [17]), so that we have to
adopt another strategy, which consists in relaxing the problem to L1 densities. In this relaxed
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framework, a concentration-compactness argument allows to prevent the complete loss of mass
at infinity of a minimizing sequence, so that we obtain the existence of an optimal density,
which minimizes a suitably relaxed perimeter functional. Then, we derive the optimality
conditions satisfied by such an optimal density, from which we deduce, by appropriate potential
type arguments, qualitative properties of an optimal fundamental density. In particular, from
the first variation, we deduce that an optimal fundamental density has bounded support. From
the second variation, using the second condition in (3), that is lim infz→0+

[
K(z)−K(z+x)

]
>

0 for x 6= 0, we conclude that the an optimal density is actually the characteristic function
of an optimal fundamental domain. Notice that, in general, if the interaction kernel is locally
constant around the origin, we can prove only the existence of an optimal fundamental density,
but we cannot expect it to be necessarily a characteristic function. Such arguments have been
already exploited in the study of isoperimetric problems for nonlocal perimeter with one or
two phases in [7, 10].

The second and more general isoperimetric problem we investigate is obtained by allowing
the group G to vary in the family Gm of lattices with volume m (see Definition 2.1), hence
admitting all possible lattice tilings of the space. More precisely, we consider the problem

(5) inf
G∈Gm

inf
E∈DG

PerK(E) .

Also for problem (5), we obtain the existence of a solution:

Theorem 1.2. Let K be a nonnegative symmetric kernel on RN , satisfying one of the as-
sumptions (2)-(3). For any given m > 0, problem (5) admits a solution, namely there exists
a lattice G ∈ Gm and a fundamental domain D ∈ DG such that

PerK(D) = min
G∈Gm, E∈DG

PerK(E).

This result is proved by combining the existence of isoperimetric fundamental domains
associated with a fixed group G, with a nondegeneracy property of a sequence of lattices
with fixed volume, and with an upper bound on the nonlocal perimeter of the associated
fundamental domains. The nondegeneracy property mentioned above is based on classical
compactness results for lattices, such as Mahler’s compactness Theorem and its generalizations
(see [13, 20]).

A natural question concerns the regularity of optimal fundamental domains in problems (4)
and (5). In this respect, the first observation is that every bounded fundamental domain has
at least one singular point, due to the fact that its translations tessellate the space (for details
we refer to Corollary 4.11 in [8]). In the case of integrable kernels, that is, when K satisfies
assumption (3), by potential theory arguments we obtain that every optimal fundamental
domain is bounded (see Remark 4.8), but we cannot show partial regularity of the boundary.
On the other hand, when K(h) = C|h|−N−s for some C > 0 and s ∈ (0, 1), by geometric
measure theory arguments, it is possible to show that every optimal fundamental domain D is
bounded and that ∂D is smooth outside a closed nonempty singular set Σ with HN−1(Σ) = 0
(discrete if N = 2). Such results for minimal lattice tilings in the fractional setting are detailed
in [8, Theorem 4.10] and are based on previous regularity results obtained for finite partitions
minimizing the fractional perimeter in [12].

Besides the existence and regularity of minimal tessellations, a further interesting question is
the description of the explicit structure of these partitions. This problem is quite hard, and, as
mentioned at the beginning of this Introduction, the explicit shape of an optimal fundamental
domain is known only in the planar case for local perimeters, see [16]. By analogy one expects
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that, also for nonlocal perimeters, the optimal tiling in the plane should be the tessellation
by regular hexagons. In the last section of the paper we give a partial result in this direction,
holding when the class of admissible fundamental domains is restricted to convex polygons.

The paper is organized as follows. Section 2 contains the main definitions and results about
lattices in RN we are going to use in the paper. Section 3 is devoted to the proofs of Theorems
1.1 and 1.2 in the case K is singular at the origin with fractional type singularity. Section 4
deals with the proofs of the same results, in the case K is integrable at the origin. Finally in
Section 5 we provide a partial result about the explicit shape of an optimal lattice tiling for
nonlocal perimeters in the planar case.

2. Lattices, fundamental domains and fundamental densities

We recall some standard definitions and basic properties of lattices in RN . For a general
introduction to the subject we refer to the monograph [13], and references therein.

Definition 2.1. A lattice is a discrete subgroup G of (RN ,+) of rank N . The elements of G
can be expressed as

∑N
i=1 kivi, for a given basis (v1, . . . , vN ) of RN , with coefficients ki ∈ Z.

Any two bases for a lattice G are related by a matrix with integer coefficients and determinant
equal to ±1.

Definition 2.2. The volume of a lattice G is the number d(G) ∈ (0,+∞) uniquely determined
as the absolute value of the determinant of the matrix of any set of generators (v1, . . . , vN ).
Equivalently, if the lattice is viewed as a discrete group of isometries of RN , d(G) coincides
with the volume of the quotient torus RN/G.

For a given m ∈ (0,+∞), we denote by Gm the family of lattices G with d(G) = m.

Definition 2.3. The minimum distance λ(G) > 0 in a lattice G is the length of the shortest
nonzero element of G. In particular, for every p, q ∈ G, there holds that |p− q| ≥ λ(G).

Definition 2.4. We say that D ⊂ RN is a fundamental domain for a lattice G if it contains
almost all representatives for the orbits of G and the set of points whose orbit has more than
one representative has measure zero, i.e.

|RN \
⋃
g∈G

(D + g)| = 0 and |D ∩ (D + g)| = 0 ∀g ∈ G \ {0} .

We denote by DG the set of all fundamental domains of RN for the group G.
Notice that |D| = d(G) for all D ∈ DG.

Example. (i) If (v1, . . . , vN ) is a set of generators of a lattice G as a Z-module, then the set
D = {x =

∑N
i=1 tivi, ti ∈ [0, 1)} is a fundamental domain for G.

(ii) The Voronoi cell VG of a lattice G is a fundamental domain for G. Recall that VG is a
the centrally symmetric convex polytope defined by

VG :=
{
x ∈ RN : |x| ≤ |x− g| ∀g ∈ G, g 6= 0

}
.

We now introduce a weaker version of the notion of fundamental domain, which will be
useful when dealing with functionals with integrable interaction kernels.

Definition 2.5. Given G ∈ Gm, we call fundamental density for the lattice G a function f in
the class

(6) AG :=
{
f ∈ L1(RN ; [0, 1]) :

∑
g∈G

f(x+ g) = 1 a.e.
}
.
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Remark 2.6. Notice that, when f = χD, D is a fundamental domain for G according to
Definition 2.4 if and only if f is a fundamental density for G according to Definition 2.5.

We now give a closer look at the properties of fundamental densities, specifically concerning
their mass. The next lemma establishes in particular that all fundamental densities for a
group G ∈ Gm have mass m (item (ii)); moreover, for functions of mass m, the equality in the
definition of fundamental density can be relaxed into an inequality (item (iii)).

Lemma 2.7. Given G ∈ Gm and f ∈ L1(RN ; [0, 1]), we have:
(i) If

∑
g∈G f(x+ g) ≤ 1 a.e., then

∫
RN f(x)dx ≤ m.

(ii) If
∑

g∈G f(x+ g) = 1 a.e., then
∫
RN f(x)dx = m.

(iii) If
∑

g∈G f(x+ g) ≤ 1 a.e. and
∫
RN f(x)dx = m, then

∑
g∈G f(x+ g) = 1 a.e.

Proof. (i) Let D be a fundamental domain for G. By monotone convergence theorem, we have∫
RN

f(x)dx =
∑
g∈G

∫
D−g

f(x)dx =
∑
g∈G

∫
D
f(x+g)dx =

∫
D

∑
g∈G

f(x+g)dx ≤
∫
D

1dx = |D| = m.

(ii) Just replace the inequality in the above line by an equality.
(iii) Assume by contradiction that there exist ε > 0 and a measurable set E with |E| > 0

such that
∑

g∈G f(x + g) < 1 − ε for a.e. x ∈ E. We may assume without loss of generality
that |E ∩ (E + g)| = 0 for all g ∈ G, g 6= 0: it is sufficient to substitute E with a subset
containing at most one representative for every orbit of G (that is E/G).

Consider the function f̃(x) := f(x)+εχE(x). It belongs to L1(RN ; [0, 1]), with
∫
RN f̃(x)dx =∫

RN f(x)dx+ ε|E| > m. Then, thanks to item (i), in order to get a contradiction it is enough
to show that the inequality

∑
g∈G f̃(x + g) ≤ 1 holds true a.e. This is readily checked by

construction. Indeed, for x 6∈ E, we have by definition that
∑

g∈G f̃(x+ g) =
∑

g∈G f(x+ g),
whereas, for x ∈ E, we have χE(x+ g) = 0 for all g ∈ G, g 6= 0, and hence

∑
g∈G f̃(x+ g) ≤∑

g∈G f(x+ g) + ε ≤ 1− ε+ ε = 1. �

We conclude this section by introducing a notion of convergence for lattices [6, 20], and
stating a compactness result for lattices of given volume.

Definition 2.8. A sequence of lattices Gh converges in the Kuratowski sense to G, if

G = {g ∈ RN : lim sup
h→+∞

d(g,Gh) = 0},

where d(·, Gh) denotes the Euclidean distance from Gh.

Remark 2.9. (i) The above definition is equivalent to the local Hausdorff convergence, namely
Gh → G in the Kuratowski sense if and only if, for every compact set K and for every ε > 0,
the following inclusions hold for h sufficiently large:

G ∩K ⊆ {x ∈ K : d(x,Gh) ≤ ε} and Gh ∩K ⊆ {x ∈ K : d(x,G) ≤ ε}.

(ii) The limit set G in the Definition 2.8 turns out to be a closed subgroup of (RN ,+).
(iii) The minimum distance functional λ(·) introduced in Definition 2.3 is continuous with
respect to the Kuratowski convergence of lattices (when the definition is extended also to
closed subgroups of (RN ,+), as the infimum of the length of their nonzero elements).
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Theorem 2.10. Let Gh be a sequence of lattices with d(Gh) = m > 0 for every h. Then, up
to subsequences, Gh → G in the Kuratowski sense, where G is either a lattice with d(G) = m
or a closed group which contains a line. In the second case, every sequence fh of fundamental
densities for Gh converges to 0 weakly∗ in L∞(RN ).

Proof. First of all, by local compactness of the Hausdorff metric, there exists a (not relabeled)
subsequence Gh and a closed group G such that Gh → G in the Kuratowski sense.

If there exists a positive constant δ > 0 such that λ(Gh) ≥ δ > 0 for every h, then by
the compactness theorem for lattices due to Mahler [20, Theorem 2], possibly passing to
a subsequence, we have that Gh → G, where G is a lattice with λ(G) ≥ δ. We recall from
[20, Theorem 1] that there exists a dimensional constant CN such that every lattice Gh admits
a set of generators vh1 , . . . , vhN with ΠN

i=1|vhi | ≤ CNm, and the same holds for G, with generators
v1, . . . , vN . We infer that the fundamental domains Dh = {x =

∑N
i=1 tiv

k
i , ti ∈ [0, 1)} for Gh

converges in L1(RN ) to the fundamental domain D = {x =
∑N

i=1 tivi, ti ∈ [0, 1)} for G, which
implies that d(G) = m.

If, on the other hand, lim suph λ(Gh) = 0, we claim that G contains a line. Indeed, in
this case, by Remark 2.9 (iii) we have that λ(G) = 0. Therefore, G cannot be discrete and
hence it contains a sequence gi converging to some g ∈ G, with gi 6= g for all i and such that
gi−g
|gi−g| → e, where e is a unitary vector of RN . Fix r ∈ R and, for every index i, let zi ∈ Z be
such that |zi|gi − g| − r| ≤ |gi − g|. Then we have

|zi(gi − g)− re| ≤ |gi − g|+ |r|
∣∣∣∣ gi − g|gi − g|

− e
∣∣∣∣ ,

so that the line Re lies in the closure of G.
Finally, let fh be a sequence of fundamental densities for Gh. Then, up to passing to a

subsequence, fh converges to f weakly∗ in L∞(RN ). It remains to show that f = 0. It is
sufficient to show that, still denoting by Re the line lying in the closure of G, it holds

(7)
k∑

n=1

f(x+ tne) ≤ 1 for a.e. x ∈ RN , ∀k ∈ N , ∀tn ∈ (0, 1) .

Indeed, by applying the above inequality to an infinitesimal sequence tn, and passing to the
limit as n → +∞, we obtain that kf(x) ≤ 1 for a.e. x ∈ RN and every k ∈ N, so that
f = 0 a.e. on RN . In order to prove (7), for every n we pick a sequence ghn ∈ Gh such that
ghn → tne as h→ +∞ (which exists by the Kuratowski convergence of Gh to G): since fh are
fundamental densities for Gh, we have

k∑
n=1

fh(x+ ghn) ≤ 1 for a.e. x ∈ RN , ∀k, n ∈ N ,

and (7) follows by passing to the weak∗ limit.
�

3. Proofs of Theorems 1.1 and 1.2 for fractional kernels

For fractional kernels satisfying (2), Theorem 1.1 has been proved in [8]. Below we give the
proof of Theorem 1.2. It is a straightforward consequence of the following lemma.
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Lemma 3.1 (Concentration compactness - fractional kernels). Assume that K satisfies (2).
Let Gh be a sequence of groups in Gm, and let Dh be a sequence of fundamental domains for
Gh, such that

(8) sup
h

PerK(Dh) < +∞ .

Then, up to passing to a subsequence, there exist a lattice G ∈ Gm, families gih ∈ Gh (i ∈
N, h ∈ N), with |gih − g

j
h| → +∞ as h → +∞ for i 6= j, and a collection (Di) of measurable

sets in RN , such that
(i) Gh converges in the Kuratowski sense to G;
(ii) for every i ∈ N, Dh − gih → Di locally in L1(RN ) as h→ +∞;
(iii)

∑
i |Di| = m, |Di ∩Dj | = 0 for i 6= j, and D := ∪iDi is a fundamental domain for G.

(iv) PerK(D) ≤
∑

i PerK(Di) ≤ lim infh PerK(Dh).

Proof. By Theorem 2.10, up to passing to a subsequence we can assume that Gh converges in
the Kuratowski sense either to a lattice G ∈ Gm, or to a closed group which contains a line.

By [8, Lemma 3.4], since Dh are measurable sets with fixed measure satisfying (8), up to
passing to a subsequence, there exist zih ∈ ZN (i ∈ N, h ∈ N), with |zih − zjh| → +∞ as
h → +∞ for i 6= j, and a family (Di) of measurable sets in RN such that Dh − zih → Di

in L1
loc(RN ) and

∑
i |Di| = m. This rules out the possibility that G is a closed group which

contains a line (otherwise Dh − zih would converge in L1
loc(RN ) to ∅ by Theorem 2.10), and

hence G belongs to Gm.
By Remark 2.9 (iii), we have that λ(Gh) → λ(G) > 0. Choosing δ > 0 such that

λ(G), λ(Gh) ≥ δ for every h, by [20, Theorem 1] there exists a set of generators vih of Gh
such that ΠN

i=1|vih| ≤ CNm and |vih| ≥ δ for all i. Therefore there holds |vih| ≤ CNmδ
1−N :=

R(m, δ) for every i and h. Now we observe that for every i, we may choose gih ∈ Gh, with
|gih− zih| ≤

√
NR(m,δ)

2 , so that |gih− g
j
h| → +∞ as h→ +∞, for i 6= j. Eventually passing to a

subsequence, we get that Dh − gih → Di in L1
loc(RN ).

If by contradiction |Di ∩ Dj | > 0 for some i 6= j, for h sufficiently large we would have
|(Dh − gih) ∩ (Dh − gjh)| > 0, against the fact that Dh are fundamental domains for Gh. In a
similar way, we obtain that

(9) |(Di + g) ∩Dj | = 0 ∀g ∈ G \ {0}, ∀i, j
(otherwise, writing g = limwh, for some wh ∈ Gh \ {0}, for h sufficiently large we would have
|(Dh − gih + wh) ∩ (Dh − gjh)| > 0).

Condition (9), together with the fact that |Di ∩ Dj | = 0 for i 6= j and with the equality∑
i |Di| = m, implies that D = ∪iDi is a fundamental domain for G (see [8, Lemma 2.2]).
The first inequality in (iv) follows from the submodularity property of fractional perimeter

(see [8, eq. (2)]); for the second inequality we refer to the proof of [8, Lemma 3.4], which
continues to work with the unique modification that the elements gih belong to Gh in place of
a fixed group G. �

Proof of Theorem 1.2 for fractional kernels. We consider a minimizing sequence of
lattices Gh ∈ Gm and of fundamental domains Dh for Gh, so that

lim
h→+∞

PerK(Dh) = inf
G∈Gm, E∈DG

PerK(E) .
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Since Dh satisfy condition (8), we infer that there exist gih ∈ Gh, measurable sets in Di ⊂ RN ,
and a lattice G ∈ Gm as in Lemma 3.1. By using statement (iv) in the same lemma, we infer
that the lattice G and its fundamental domain D = ∪iDi solve the isoperimetric problem (5).

�

4. Proofs of Theorems 1.1 and 1.2 for integrable kernels

In this section we prove Theorems 1.1 and 1.2 under the assumption (3).
As already mentioned in the Introduction, when dealing with integrable kernels sequences

of sets with uniformly bounded nonlocal perimeter are no longer precompact in L1
loc(RN ).

Therefore, we are led to relax the isoperimetric problems (4) and (5) by replacing funda-
mental domains by fundamental densities as introduced in Definition 2.5, and accordingly by
extending in a natural way the nonlocal perimeter.

In turn, we shall need to further enlarge the class of fundamental densities to a class of
functions where we are able to obtain a suitable version of the concentration-compacntess
principle.

4.1. Relaxed isoperimetric problems. Let us introduce the following relaxed versions of
the isoperimetric problems (4) and (5): for a fixed lattice G ∈ Gm, we consider

(10) inf
f∈AG

PK(f) ,

and then, we minimize among all lattices in Gm the previous energy

(11) inf
G∈Gm

inf
f∈AG

PK(f) ,

Here AG denotes the class of fundamental densites, according to Definition 2.5 and PK denotes
the natural extension of the nonlocal perimeter to L1 functions, as follows.

Definition 4.1. Given f ∈ L1(RN ; [0, 1]), we set

(12) PK(f) :=

∫
RN

∫
RN

f(x)[1− f(y)]K(x− y)dxdy

In view of Lemma 2.7, we are led to consider a larger class of relaxed fundamental densities,
which offers more stability under passage to the limit due to the weaker constraints.

Definition 4.2. Given G ∈ Gm, we call relaxed fundamental density for G a function f in the
class

(13) AG :=
{
f ∈ L1(RN ; [0, 1]) :

∑
g∈G

f(x+ g) ≤ 1 a.e.
}
,

A property of the class AG which will be useful to our purposes is stated in the next result.

Lemma 4.3. Given G ∈ Gm, for every f ∈ AG, there exists Ψ ∈ AG such that Ψ ≥ f a.e.

Proof. Let f ∈ AG \AG. By Lemma 2.7 (iii), necessarily it must be
∫
RN f(x) < m. Moreover

by Lemma 2.7 (ii), there exists a subset E ⊆ RN with |E| > 0 such that
∑

g∈G f(x + g) < 1

a.e. in E. By arguing as in the proof of Lemma 2.7 (iii), we get that there exists ψ ∈ AG with
ψ ≥ f and

∫
RN ψ(x) dx >

∫
RN f(x) dx. Then the set

F :=
{
ψ ∈ AG such that ψ ≥ f a.e. and

∫
RN

ψ(x) dx >

∫
RN

f(x) dx
}
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is nonemtpy. The set F is partially ordered (with respect to inequality a.e.), and it turns
out to contain an upper bound for every chain. Actually, if ψn ⊂ F is an increasing se-
quence, we have ψ = supn ψn ∈ F . Indeed, it is immediate that ψ ≥ f and, by monotone
convergence,

∫
RN ψ(x)dx ≤ m. Moreover, for every G′ ⊆ G finite, there holds

∑
g∈G′ ψ(x +

g) =
∑

g∈G′ limn ψn(x + g) = limn
∑

g∈G′ ψn(x + g) ≤ 1 a.e., so that
∑

g∈G ψ(x + g) =

supG′⊆G,G′finite
∑

g∈G′ ψ(x+ g) ≤ 1 a.e. By applying Zorn lemma, we infer that F contains a
maximal element Ψ, which necessarily satisfies

∫
RN Ψ(x)dx = m. �

Remark 4.4. Since K ∈ L1(RN ), setting

JK(f) =

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy ,

for every f ∈ L1(RN ; [0, 1]) there holds PK(f) = ‖f‖1‖K‖1 − JK(f), and hence for G ∈ Gm
there holds

inf
f∈AG

PK(f) = m‖K‖1 − sup
f∈AG

JK(f) .

Remark 4.5. Since K is nonnegative, the pointwise inequality Ψ ≥ f in Lemma 4.3 implies
that JK(Ψ) ≥ JK(f). It follows that, for every G ∈ Gm,

sup
f∈AG

JK(f) = sup
f∈AG

JK(f) ;

moreover, if the supremum of JK over AG is attained, the same holds true for the supremum
of JK over AG.

4.2. Existence of an optimal fundamental density.

Proposition 4.6. Let K satisfy (3). For every G ∈ Gm, the maximization problem

(14) sup
f∈AG

JK(f) .

admits a solution.

Proof. In view of Remark 4.5 it is sufficient to show that the maximization problem

sup
f∈AG

JK(f)

admits a solution.
Let {fh} be a maximizing sequence. Without loss of generality, by Lemma 4.3 and Remark

4.5, we may assume fh ∈ AG. Let Q be the Voronoi cell of G. For g ∈ G, denoting by
Qg := g +Q, we define

mh,g :=

∫
Qg

fh(x)dx .

Given ε > 0 small, we divide the family of cells Qg in two sub-families:

Iεh :=
{
g ∈ G : mh,g ≤ ε

}
, Aεh := ∪g∈IεhQ

g(15)

Jεh :=
{
g ∈ G : mh,g > ε

}
, Eεh := ∪g∈Jε

h
Qg.(16)

Observe that, due to the fact that
∫
RN fh(x)dx = m, we have #Jεh ≤

m
ε .

Given wih, w
l
h ∈ Jεh, up to subsequences we have |wih − wlh| → cil ∈ N ∪ {+∞} as h→ +∞.
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We fix i and consider the clusters defined by

(17) Qi,εh =
⋃{

Qwl : wl ∈ Jεh, cil < +∞
}
.

Note that the total number Hε of such clusters is at most m
ε .

By construction, we have

(18) dist(Qi,εh ,Q
l,ε
h )→ +∞ as h→ +∞ , for every i 6= l ,

and

(19) diam(Qi,εh ) ≤
∑

l∈{1,...Hε},cil<∞

(2cil + 2dG) ≤Mε,

where dG denotes the diameter of Q, and Mε does not depend on h.
Setting

f i,εh := fhχQi,ε
h

and choosing gi,εh ∈ G ∩ Q
i,ε
h so that the support of f i,εh (· + gi,εh ) is contained in B(0,Mε) for

every h, up to subsequences f i,εh (·+ gi,εh ) ⇀∗ f i,ε in L∞(RN ), with ‖f i,εh ‖1 → ‖f
i,ε‖1.

We now observe that the families ε 7→ Jεh are monotone in ε (with respect to inclusion),
and hence the same is true also for the clusters Qi,εh . This implies that we can assume that
the elements gi,εh are independent of ε, so that in the sequel we denote them by gih.

Now, also the functions f i,εh (·+ gih) are monotone in ε (with respect to a.e. inequality), and
the same property is inherited by their limits f i,ε. By monotone convergence we infer that,
as ε → 0, the sequence f i,ε converges to some function f i in L1(RN ). Let us check that the
function

f :=

H∑
i=1

f i , where H := lim
ε→0

Hε ∈ (0,+∞]

belongs to AG. From the inequality
∑Hε

i=1 f
i,ε
h ≤ fh, we infer that∑

g∈G

Hε∑
i=1

f i,εh (x+ g) ≤ 1 a.e.

The same inequality remains true also replacing f i,εh first by f i,εh (·+gi,εh ) (since gi,εh ∈ G), then
by f i,ε (by the weak* lower semicontinuity of the L∞-norm), and finally by their limits f i (by
L1 convergence). So, we conclude that f ∈ AG.

Let us prove that

JK(f) ≥
Hε∑
i=1

JK(f i) ≥ lim sup
h
JK(fh) .

Since K ∈ L1(RN ), also its symmetric decreasing rearrangement K? belongs to L1(RN ).
Hence we can choose R = R(ε) in such a way that

(20) lim
ε→0

R(ε) = +∞ and lim
ε→0

R(ε)N
∫
Bε

K?(y)dy = 0.

We claim that, with this choice of R, we have

(21)
∫
Aε

h

∫
RN

fh(x)fh(y)K(x− y)dxdy ≤ r(ε) with r(ε)→ 0 as ε→ 0, uniformly in h.
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Indeed, we have

(22)

∫
Aε

h

∫
RN

fh(x)fh(y)K(x− y)dxdy =
∑

w∈G,g∈Iεh,|g−w|≤R

∫
Qg

∫
Qw

fh(x)fh(y)K(x− y)dxdy+

∑
w∈G,g∈Iεh,|g−w|>R

∫
Qg

∫
Qw

fh(x)fh(y)K(x− y)dxdy .

For every w ∈ G and g ∈ Iεh, it holds

(23)
∫
Qg

∫
Qw

fh(x)fh(y)K(x− y)dxdy ≤
∫
Bmh,w

∫
Bmh,g

K?(x− y)dxdy

=

∫
Bmh,w

∫
Bmh,g

(x)
K?(y)dydx ≤ mh,w

∫
Bmh,g

K?(y)dy ≤ mh,w

∫
Bε

K?(y)dy,

where we have used in the order Riesz rearrangement inequality, a change of variable, the fact
that g ∈ Iεh, and the fact that K? is symmetrically decreasing. Hence, we have the following
bound for the first addendum in (22):∑

w∈G,g∈Iεh,|g−w|≤R

∫
Qg

∫
Qw

fh(x)fh(y)K(x− y)dxdy ≤
∑
w∈G

mh,w(2R)N
∫
Bε

K?(y)dy

≤ m (2R)N
∫
Bε

K?(y)dy.

On the other hand, the second addendum in (22) can be estimated as∑
w∈G,g∈Iεh,|g−w|>R

∫
Qg

∫
Qw

fh(x)fh(y)K(x− y)dxdy ≤
∑
g∈Iεh

mh,g

∫
|y|>R−2dG

K(y)dy

≤ m
∫
|y|>R−2dG

K(y)dy.

By combining the two above estimates, we obtain

(24)
∫
Aε

h

∫
RN

fh(x)fh(y)K(x− y)dxdy ≤ m(2R)N
∫
Bε

K?(y)dy +m

∫
|y|>R−2dG

K(y)dy,

so that (21) holds true thanks to the choice of R = R(ε).
Now, by using (21) we have

lim suph JK(fh) ≤ lim sup
h

∫
Eε

h

∫
Eε

h

fh(x)fh(y)K(x− y)dxdy + 2r(ε)

≤
Hε∑
i=1

lim sup
h

∫
RN

∫
RN

f i,εh (x+ gi,εh )f i,εh (y + gi,εh )K(x− y)dxdy + 2r(ε)

=

Hε∑
i=1

∫
RN

∫
RN

f i,ε(x)f i,ε(y)K(x− y)dxdy + 2r(ε) ,

where the last equality follows from the fact that JK is continuous with respect to the tight
convergence (see for instance [10]).
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Finally, we pass to the limit as ε→ 0. Thanks to the continuity of JK with respect to the
L1-convergence, we obtain

lim sup
h
JK(fh) ≤

H∑
i=1

∫
RN

∫
RN

f i(x)f i(y)K(x− y)dxdy ≤
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy .

�

4.3. Optimality conditions. In this section we derive first and second order optimality
conditions satisfied by an optimal fundamental density given by Proposition 4.6. They will
be exploited to prove that optimal fundamental densities are in fact characteristic functions
of optimal fundamental domains. First of all, we associate with any fixed function f ∈ AG,
with G ∈ Gm, the following potential

(25) V (x) :=

∫
RN

f(y)K(x− y)dy.

It turns out that
(i) V ∈ C(RN ) ∩ L1(RN ) ∩ L∞(RN ), with 0 < V ≤ ‖K‖L1 and ‖V ‖L1 = m‖K‖L1 .
(ii) lim|x|→+∞ V (x) = 0.
(iii)

∑
g∈G V (x+ g) = ‖K‖L1 for all x ∈ RN .

For items (i)-(ii), see [7, Proposition 5.2], while the last item is an immediate consequence of
condition

∑
g∈G f(x+ g) = 1.

Let us also denote by Q a bounded fundamental domain of G, by Q′ the set of Lebesgue
points of f in Q, and let us introduce the following sets:

(26) S = {x ∈ Q′ : f(x) = 1} , N = {x ∈ Q′ : f(x) = 0} , D = Q′ \ (S ∪N) .

We point out that, in view of the equality
∑

g∈G f(x+ g) = 1, we have

x ∈ D ⇒ ∃ g ∈ G , x+ g ∈ D .(27)
x ∈ S ⇒ ∀g ∈ G , x+ g ∈ N .(28)
x ∈ N ⇒ ∃ g ∈ G , x+ g 6∈ N .(29)

Lemma 4.7. Let f ∈ AG be an optimal fundamental density given by Proposition 4.6. Asso-
ciate with f the potential V as in (25), and the sets D, N , S as in (26).

(i) For every function ψ such that f + λψ ∈ AG for λ > 0 sufficiently small, it holds

(30)
∫
RN

ψ(y)V (y)dy ≤ 0 .

Consequently, the potential V satisfies

V (x) = V (x+ g) ∀x ∈ D , ∀g ∈ G : x+ g ∈ D ;(31)
V (x) ≥ V (x+ g) ∀x ∈ S , ∀g ∈ G ;(32)
V (x) ≤ V (x+ g) ∀x ∈ N , ∀g ∈ G : x+ g 6∈ N .(33)

(ii) For every function ψ such that f + λψ ∈ AG for λ ∈ (−1, 1), |λ| sufficiently small, it
holds

(34)
∫
R2N

K(x− y)ψ(x)ψ(y)dxdy ≤ 0 .
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Proof. By maximality of f , exploiting the symmetry of K and the definition of V , we get

(35) 0 ≥ JK(f + λψ)− JK(f) = 2λ

∫
RN

ψ(x)V (x)dx+ λ2
∫
R2N

K(x− y)ψ(x)ψ(y)dxdy.

which implies conditions (30) and (34).
To deduce the pointwise relations (31)-(32)-(33) from condition (30), we choose some par-

ticular functions ψ.
Let x ∈ D, and let g ∈ G be such that x + g ∈ D (which exists by (27)). Then, for

r > 0 sufficiently small, there exists a set Er(x) of positive measure with x ∈ Er(x) ⊂ Br(x),
such that the function ψ(y) := χEr(x) − χEr(x)+g satisfies the condition f + λψ ∈ AG for |λ|
sufficiently small. Writing the inequality (30) for ±ψ, we infer that∫

Er(x)
[V (y)− V (y + g)] dy = 0 ,

which implies (31) dividing by |Er(x)| and letting r → 0+.
Let x ∈ S, and let g ∈ G be arbitrary. Taking into account (28), for r > 0 sufficiently small

there exists a set Er(x) of positive measure with x ∈ Er(x) ⊂ Br(x), such that the function
ψ(y) = −χEr(x) + χEr(x)+g satisfies the condition f + λψ ∈ AG for λ > 0 sufficiently small.
Writing the inequality (30) for ψ, we infer that∫

Er(x)
[−V (y) + V (y + g)] dy ≤ 0 ,

which implies (32) dividing by |Er(x)| and letting r → 0+.
Let x ∈ N , and let g ∈ G be such that x + g 6∈ N (which exists by (29)). For r > 0

sufficiently small, there exists a set Er(x) of positive measure with x ∈ Er(x) ⊂ Br(x), such
that the function ψ(y) = χEr(x) − χEr(x)+g satisfies the condition f + λψ ∈ AG for λ > 0
sufficiently small. Writing the inequality (30) for ψ, we infer that∫

Er(x)
[V (y)− V (y + g)] dy ≤ 0 ,

which implies (33) dividing by |Er(x)| and letting r → 0+. �

4.4. Existence of an optimal fundamental domain. Using Proposition 4.6 and Lemma
4.7 we are ready to prove the existence of an optimal fundamental domain, among fundamental
domains for a fixed lattice G ∈ Gm.

Proof of Theorem 1.1. In view of Remark 4.4, it is enough to show that a solution f ∈ AG to
the maximization problem (14), which exists by Proposition 4.6, is necessarily the character-
istic function of a bounded set E.

We claim first of all that f is compactly supported. We argue by contradiction. If suppf is
not bounded, there exists a sequence xh of Lebesgue points for f , with |xh| → +∞, such that
f(xh) > 0. For every h, let gh ∈ G such that xh + gh ∈ Q′, where Q′ denotes as above the set
of Lebesgue points of f in a convex fundamental domain Q. Then, keeping the same notation
as in Lemma 4.7 we have that, for every h, either xh + gh ∈ D or xh + gh ∈ S.

In the first case, we get by (31) that V (xh) = V (xh + gh); in the second case, we get by
(32) that V (xh) ≥ V (xh + gh). In both cases, since xh + gh ∈ Q, it follows that V (xh) ≥ v :=
minx∈Q V (x) > 0. By the strict positivity of V , we have that v > 0. So V (xh) ≥ v > 0, but
this contradicts the fact that |xh| → +∞, since lim|x|→+∞ V (x) = 0.
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Next let us prove that f is the characteristic function of a set E. Assume by contradiction
that D 6= ∅. For x ∈ D, we proceed in a similar way as done in the proof of Lemma 4.7.
We select g ∈ G such that x + g ∈ D (which exists by (27)). Then, for r > 0 sufficiently
small, we consider a set Er(x) of positive measure, with x ∈ Er(x) ⊂ Br(x), such that the
function ψ(y) := χEr(x) − χEr(x)+g, satisfies the condition f + λψ ∈ AG for |λ| sufficiently
small. Writing the inequality (34) for such a function ψ, we obtain∫

Er(x)

∫
Er(x)

[K(t− y)−K(t− y + g)]dydt ≤ 0.

This contradicts the last condition on K appearing in (3). Indeed, such condition implies
that, for r > 0 sufficiently small, there exists ε > 0 such that, for every t, y ∈ Br(x), since
|t− y| ≤ 2r, it holds K(t− y)−K(t− y + g) > ε > 0. �

Remark 4.8. Note that the above proof shows in particular that, whenK satisfies assumption
(3), an optimal fundamental domain is necessarily bounded.

4.5. Nondegeneracy of lattices. In order to pass to the minimization problem (5), we
need the following result, which establishes that the possible degeneracy of a sequences of
lattices in Gm in the statement of Theorem 2.10 is ruled out whenever a sequence of associated
fundamental densities has Riesz energy uniformly bounded away from 0.

Lemma 4.9. Let Gh be a sequence of lattices in Gm. Assume that for every h there exists
fh ∈ AGh

such that

(36) inf
h
JK(fh) > 0.

Then, up to subsequences, Gh converges in the Kuratowski sense to a lattice in Gm.

Proof. By Theorem 2.10, up to subsequences Gh → G in the Kuratowski sense, where G is
either a lattice in Gm or a closed group which contains a line. Moreover, in order to exclude
the second possibility, it is enough to show that fh cannot converge to 0 weakly∗ in L∞(RN ).
We proceed in a similar way as in the proof of Proposition 4.6. In place of choosing Q as a
bounded fundamental domain associated with some lattice, we choose Q = [0, 1]N and, for
z ∈ ZN , we set

mh,z :=

∫
Q+z

fh(x)dx .

Then, given ε > 0 small, we define Iεh and Jεh as in (15) and (16), with ZN in place of the
lattice G, and we divide the family of cells Q + z in the two sub-families Aεh and Eεh, with
mh,z in place of mh,g. Again, due to the fact that

∫
RN fh(x)dx = m, we have #Jεh ≤ m/ε.

Then we proceed by defining the clusters Qi,εh as in (17). By construction, conditions (18)
and (19) hold. Setting

(37) f i,εh := fhχQi,ε
h

and choosing zi,εh ∈ G∩Q
i,ε
h so that the support of f i,εh (·+ zi,εh ) is contained into B(0,Mε) for

every h, up to subsequences, f i,εh (·+ zi,εh )
∗
⇀ f i,ε weakly∗ in L∞ and ‖f i,εh ‖1 → ‖f

i,ε‖1.
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By repeating the same estimates as in the proof of Proposition 4.6, we arrive at the in-
equality (21), which in turn implies

(38) JK(fh) ≤
∫
Eε

h

∫
Eε

h

fh(x)fh(y)K(x− y)dxdy + 2r(ε)

By combining (38) with assumption (36), we infer that, for ε > 0 sufficiently small,

inf
h

∫
Eε

h

∫
Eε

h

fh(x)fh(y)K(x− y)dxdy > 0 .

Hence, we have

inf
h

Hε∑
i=1

JK(f i,εh ) > inf
h

∫
Eε

h

∫
Eε

h

fh(x)fh(y)K(x− y)dxdy > 0 .

Finally, we invoke the continuity of JK with respect to the tight convergence, which implies
Hε∑
i=1

JK(f i,ε) = lim
h

Hε∑
i=1

JK(f i,εh ) > 0 .

We conclude that that exists at least one index i ∈ 1, . . . Hε such that JK(f i,ε) > 0. So, since
fh ≥ f i,εh , the sequence fh cannot converge to 0 weakly∗ in L∞(RN ). �

4.6. Existence of a minimal lattice tiling. We conclude this section providing the solution
to the minimization problem (5).

Proof of Theorem 1.2. By Remark 4.4, solving the minimization problem (5) is equivalent to
solving the maximization problem

sup
G∈Gm, f∈AG

JK(f).

We consider a maximizing sequence of lattices Gh ∈ Gm and of fundamental densities fh for
Gh, so that

lim
h→+∞

JK(fh) = sup
G∈Gm, f∈AG

JK(f) > 0.

This implies in particular that condition (36) holds. So, by Lemma 4.9, up to passing to a
subsequence, Gh converge in the Kuratowski sense to a lattice G ∈ Gm.

We proceed as in the proof of Proposition 4.6 and of Lemma 4.9. We fix Q = [0, 1]N and
we construct the clusters Qi,εh , we define f i,εh as in (37), and we choose zi,εh ∈ Q

i,ε
h ∩ ZN , such

that up to subsequences, f i,εh (·+ zi,εh )
∗
⇀ f i,ε weakly∗ in L∞(RN ), with ‖f i,εh ‖1 → ‖f

i,ε‖1.
By arguing as in the proof of Lemma 3.1, we can replace zi,εh by gi,εh ∈ Gh . Indeed, since

λ(Gh)→ λ(G) > 0, we can choose gi,εh ∈ Gh, with |g
i,ε
h − z

i,ε
h | uniformly bounded in h and ε,

so that |gi,εh − g
j,ε
h | → +∞ as h→ +∞, for i 6= j. So, f i,εh (·+ gi,εh )

∗
⇀ f i,ε weakly∗ in L∞(RN ).

Moreover, by arguing as in the proof of Proposition 4.6, we can pass to the limit also as
ε→ 0: for every i, the sequence f i,ε admits a limit f i in L1(RN ), and the function f :=

∑H
i=1 f

i

(with H := limε→0Hε ∈ (0,+∞]) turns out to belong to AG.
Arguing as in Proposition 4.6, we arrive at the inequality (21), which in turn implies

JK(fh) ≤
∫
Eε

h

∫
Eε

h

fh(x)fh(y)K(x− y)dxdy + 2r(ε).
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By using the continuity of JK with respect to the tight convergence, passing to the limit
as h→ +∞, we obtain

lim
h
JK(fh) ≤ lim

h

Hε∑
i=1

JK(f ε,ih ) + 2r(ε) =

Hε∑
i=1

JK(f ε,i) + 2r(ε).

By using the continuity of JK with respect to L1 convergence, as passing to the limit as ε→ 0,
we obtain

lim
h
JK(fh) ≤ JK(f)

and hence that f is a solution to the isoperimetric problem supf∈AG
JK(f).

Finally, the fact that f is the characteristic function of a (bounded) fundamental domain
D of G is obtained by the same proof as in Theorem 1.1. �

5. Optimal tilings in two dimensions

A natural question suggested by our existence results is whether is it possible to determine
explicitly the geometry of an optimal tiling, at least in dimension N = 2. In case the cost
is given by the classical perimeter, and in the more general framework of cells having merely
equal area but not necessarily identical shape, a celebrated theorem by Hales [16] states that
the optimal configuration is given by the tessellation with regular hexagons (see also [23]).
A similar behaviour has been recently established also in case of optimal partitions for the
Cheeger constant [1, 2] and for Robin eigenvalues [3].

By analogy, the tessellation with regular hexagons is a natural candidate to be an optimal
configuration also in the framework of nonlocal perimeters, at least for periodic foams with
equal cells. Below we give a partial results in this direction, restricting further the class of
admissible configurations. Specifically, we consider the following simplified variant of problem
(5):

(39) inf
G∈Gm

inf
{

PerK(E) : E ∈ DG, E convex polygon
}
.

Let us mention that the nonlocal isoperimetric problem in the class of polygons with a fixed
number of sides has been recently considered in [4, 5]. In particular, in [4] it is shown that
such problem is more delicate than expected, because, depending on the choice of the kernel,
the phenomenon of symmetry breaking (meant as the non optimality of the regular gon) may
occur for every even number of sides larger than or equal to 6.

However, in (39) we deal only with convex polygons which tessellate the plane by transla-
tions. Recall that a convex polygon which tessellates the plane by translations can only be
either a centrally symmetric hexagon or a parallelogram [14,22]. Hence, admissible polygons in
problem (39) are reduced to centrally symmetric convex hexagons, possibly degenerated into
a parallelogram, that is, possibly having two triples of vertices aligned. For such polygons,
the following simple symmetrization result holds:

Lemma 5.1. Let H be the class of centrally symmetric convex hexagons of unit area, possibly
degenerated into a parallelogram. Then:

(i) Every H ∈ H can be transformed by two Steiner symmetrizations into the regular
hexagon H∗ of unit area.
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(ii) For any nonnegative symmetric kernel K on R2, satisfying (2) or (3), there holds
minH∈H PerK(H) = PerK(H∗). Moreover, if K is strictly decreasing, then H∗ is the
unique minimizer.

Proof. Let H ∈ H and let us denote by A,B,C,D,E, F its vertices, ordered in counter-
clockwise sense. We apply to H a first Steiner symmetrization with respect of the axis of a
diagonal connecting the vertices of two consecutive edges, say AE. The triangle AEF be-
comes a isosceles triangle AEF ′, the edges AB and DE become edges AB′, ED′ parallel to
the symmetry axis, and finally the triangle BDC becomes the isosceles triangle B′D′C ′. In
particular, the pairs AB′ and ED′, AF ′ and F ′E and B′C ′ and C ′D′ are congruent, and
by symmetry with respect to the origin, also the pairs AF ′ and C ′D”, C ′B′ and EF ′ are
congruent. The polygon H∗ we obtained is again a hexagon, whose vertices are not aligned
three by three (see Figure 1). Now we repeat the same argument with respect to the axis
of the diagonal F ′D′, thus obtaining a hexagon with equal sides, which is symmetric with
respect to the origin and also with respect to the diagonals joining two opposite vertices, and
is not degenerated into a square. We conclude that that the new hexagon is the regular one.
Part (ii) of the statement follows from part (i) just proved, and from the known fact that the
nonlocal perimeter decreases under Steiner symmetrization: if E ⊆ R2 is a measurable set,
and E∗ its Steiner symmetrization with respect to a given axis, then PerK(E) ≥ PerK(E∗).
Moreover, if K is strictly decreasing, equality holds if and only if E is a translate of E∗. We
refer to [18, Corollary 3.2, Theorem 3.3 and Corollary 3.4]. � 
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Figure 1. The first symmetrization in the proof of of Lemma 5.1, in case of
a hexagon (left) and of a parallelogram (right).

As an immediate consequence of Lemma 5.1, we obtain:

Theorem 5.2. For any nonnegative symmetric kernel K on R2, satisfying (2) or (3), the
regular hexagon minimizes the nonlocal perimeter PerK among convex polygons of the same
area which tessellate R2 by translations.

It is an open and interesting question whether the above result still holds removing the
restriction to convex polygons.
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