Numerical solution of Markov chains and queueing problems

Beatrice Meini

Dipartimento di Matematica, Università di Pisa, Italy

Computational science day, Coimbra, July 23, 2004
Outline

1 Introduction to Markov chains
2 Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3 Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4 Quasi-Birth-Death processes
5 Tree-like stochastic processes
 - Introduction
 - Algorithms
Outline

1. Introduction to Markov chains
 - Introduction
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms

Beatrice Meini
Numerical solution of Markov chains and queueing problems
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Motivations in Markov chains

- Markov chains: valid tool for modeling problems of the real world (applied probability, queueing models, performance analysis, communication networks, population growth, economic growth, etc.)
- Source of interesting theoretical and computational problems in Numerical Linear Algebra involving either finite or infinite matrices
- Source of very nice structured matrices: almost block Toeplitz, generalized block Hessenberg, multilevel structures.
- People from numerical linear algebra can provide useful tools to the community of applied probabilists and engineers for solving related problems
Bibliography

Announcement

The Fifth International Conference on Matrix Analytic Methods on Stochastic Models (MAM5)
Pisa (Italy), June 21–24, 2005
www.dm.unipi.it/~mam5
Deadline for paper submission: October 2004
Introduction to Markov chains

Definition (Stochastic process)

A stochastic process is a family \(\{X_t \in E : t \in T\} \) where

- \(X_t \): random variables
- \(E \): state space (denumerable) (e.g. \(E = \mathbb{N} \))
- \(T \): time space (denumerable) (e.g. \(T = \mathbb{N} \))

Definition (Markov chain)

A Markov chain is a stochastic process \(\{X_n\}_{n \in \mathbb{T}} \) such that

\[
P[X_{n+1} = i | X_0 = j_0, X_1 = j_1, \ldots, X_n = j_n] = P[X_{n+1} = i | X_n = j_n]
\]
Introduction to Markov chains

Definition (Stochastic process)
A stochastic process is a family \(\{X_t \in E : t \in T\} \) where
- \(X_t \): random variables
- \(E \): state space (denumerable) (e.g. \(E = \mathbb{N} \))
- \(T \): time space (denumerable) (e.g. \(T = \mathbb{N} \))

Definition (Markov chain)
A Markov chain is a stochastic process \(\{X_n\}_{n \in T} \) such that
\[
P[X_{n+1} = i | X_0 = j_0, X_1 = j_1, \ldots, X_n = j_n] = \\
P[X_{n+1} = i | X_n = j_n]
\]
The state X_{n+1} of the system at time $n + 1$ depends only on the state X_n at time n. It does not depend on the past history of the system.

- **Homogeneity assumption:**
 \[P[X_{n+1} = i | X_n = j] = P[X_1 = i | X_0 = j] \quad \forall \ n \]

- **Transition matrix of the Markov chain**
 \[P = (p_{i,j})_{i,j \in T}, \quad p_{i,j} = P[X_1 = j | X_0 = i]. \]

- P is row-stochastic: $p_{i,j} \geq 0$, $\sum_{j \in T} p_{i,j} = 1$.

Beatrice Meini

Numerical solution of Markov chains and queueing problems
The state X_{n+1} of the system at time $n + 1$ depends only on the state X_n at time n. It does not depend on the past history of the system.

Homogeneity assumption:

$$P[X_{n+1} = i | X_n = j] = P[X_1 = i | X_0 = j] \quad \forall \ n$$

Transition matrix of the Markov chain

$$P = (p_{i,j})_{i,j \in T}, \quad p_{i,j} = P[X_1 = j | X_0 = i].$$

P is row-stochastic: $p_{i,j} \geq 0$, $\sum_{j \in T} p_{i,j} = 1$.
The state X_{n+1} of the system at time $n + 1$ depends only on the state X_n at time n. It does not depend on the past history of the system.

Homogeneity assumption:

$$P[X_{n+1} = i|X_n = j] = P[X_1 = i|X_0 = j] \quad \forall \ n$$

Transition matrix of the Markov chain

$$P = (p_{i,j})_{i,j \in T}, \quad p_{i,j} = P[X_1 = j|X_0 = i].$$

P is row-stochastic: $p_{i,j} \geq 0, \sum_{j \in T} p_{i,j} = 1.$
The state X_{n+1} of the system at time $n + 1$ depends only on the state X_n at time n. It does not depend on the past history of the system.

Homogeneity assumption:

$$P[X_{n+1} = i | X_n = j] = P[X_1 = i | X_0 = j] \quad \forall \quad n$$

Transition matrix of the Markov chain

$$P = (p_{i,j})_{i,j \in \mathcal{I}}, \quad p_{i,j} = P[X_1 = j | X_0 = i].$$

P is row-stochastic: $p_{i,j} \geq 0$, $\sum_{j \in \mathcal{I}} p_{i,j} = 1$.
Status of the system

- Let \(x^{(n)} = (x_i^{(n)}) \), where
 \[x_i^{(n)} = P[X_n = i], \quad i = 0, 1, 2, \ldots. \]
 \(x^{(n)} \) describes the status of the system at time \(n \) (say, probability that at time \(n \) there are \(n \) customers in the queue).

- From the composition lows of probability it follows that
 \[x_i^{(n)} \geq 0 \]
 \[\| x^{(n)} \|_1 = \sum_{i=0}^{\infty} x_i^{(n)} = 1 \]
 \[x^{(n+1)T} = x^{(n)T} P \]

- Great interest for \(\pi = \lim_n x^{(n)} \) (if it exists): \(\pi \) represents the asymptotic behaviour of the system as the time grows.
Let \(x^{(n)} = (x_i^{(n)}) \), where

\[x_i^{(n)} = P[X_n = i], \quad i = 0, 1, 2, \ldots \]

\(x^{(n)} \) describes the status of the system at time \(n \) (say, probability that at time \(n \) there are \(n \) customers in the queue).

From the composition laws of probability it follows that

\[x_i^{(n)} \geq 0 \]

\[\|x^{(n)}\|_1 = \sum_{i=0}^{\infty} x_i^{(n)} = 1 \]

\[x^{(n+1)T} = x^{(n)T}P \]

Great interest for \(\pi = \lim_n x^{(n)} \) (if it exists): \(\pi \) represents the asymptotic behaviour of the system as the time grows.
Status of the system

- Let $x^{(n)} = (x_i^{(n)})$, where
 \[x_i^{(n)} = P[X_n = i], \quad i = 0, 1, 2, \ldots. \]

 $x^{(n)}$ describes the status of the system at time n (say, probability that at time n there are n customers in the queue).

- From the composition lows of probability it follows that
 \[x_i^{(n)} \geq 0 \]
 \[\|x^{(n)}\|_1 = \sum_{i=0}^{\infty} x_i^{(n)} = 1 \]
 \[x^{(n+1)T} = x^{(n)T}P \]

- Great interest for $\pi = \lim_n x^{(n)}$ (if it exists): π represents the asymptotic behaviour of the system as the time grows.
A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.

- A state i is **positive recurrent** if the expected return time to state i is finite;
- it is **null recurrent** if the expected return time is infinite.

A state i is called **transient** if it is not recurrent.

- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.

- A state i is **positive recurrent** if the expected return time to state i is finite;
- it is **null recurrent** if the expected return time is infinite.

- A state i is called **transient** if it is not recurrent.
- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
Classification of the states

- A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.
 - A state i is **positive recurrent** if the expected return time to state i is finite;
 - it is **null recurrent** if the expected return time is infinite.
- A state i is called **transient** if it is not recurrent.
- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.

- A state i is **positive recurrent** if the expected return time to state i is finite;
- it is **null recurrent** if the expected return time is infinite.

A state i is called **transient** if it is not recurrent.

- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
Classification of the states

- A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.
 - A state i is **positive recurrent** if the expected return time to state i is finite;
 - it is **null recurrent** if the expected return time is infinite.

- A state i is called **transient** if it is not recurrent.

- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
Classification of the states

- A state i is called **recurrent** if, once the Markov chain has visited state i, it will return to it over and over again.
 - A state i is **positive recurrent** if the expected return time to state i is finite;
 - It is **null recurrent** if the expected return time is infinite.

- A state i is called **transient** if it is not recurrent.

- A state i has **periodicity** $\delta > 1$ if $P[X_n = i|X_0 = i] > 0$ only if $n = 0 \mod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.
Positive recurrence

Theorem

Assume that the Markov chain is irreducible. The states are positive recurrent if and only if there exists a strictly positive invariant probability vector, that is, a vector $\pi = (\pi_i)$ such that $\pi_i > 0$ for all i, with

$$\pi^T P = \pi^T \quad \text{and} \quad \sum_i \pi_i = 1.$$

In that case, if the Markov chain is non-periodic, then

$$\lim_{n \to +\infty} P[X_n = j | X_0 = i] = \pi_j \quad \text{for all } j, \text{ independently of } i, \text{ and } \pi$$

is called *steady state vector*.
The finite case

For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$, $a_{i,j} \geq 0$ and irreducible then

- $\rho(A) > 0$.
- $\rho(A) > 0$ is a simple eigenvalue.
- If A is non-periodic, then any other eigenvalue λ of A is such that $|\lambda| < \rho(A)$.
- There exist unique (up to scaling) positive vectors $x, y \in \mathbb{R}^n$ such that $Ax = \rho(A)x$, $y^T A = \rho(A)y^T$.

Therefore a finite irreducible Markov chain is positive recurrent.
The finite case

For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If \(A = (a_{i,j}) \in \mathbb{R}^{n \times n}, a_{i,j} \geq 0 \) and irreducible then

- \(\rho(A) > 0 \).
- \(\rho(A) > 0 \) is a simple eigenvalue.
- If \(A \) is non-periodic, then any other eigenvalue \(\lambda \) of \(A \) is such that \(|\lambda| < \rho(A) \).
- There exist unique (up to scaling) positive vectors \(x, y \in \mathbb{R}^n \) such that \(Ax = \rho(A)x, y^T A = \rho(A)y^T \).

Therefore a finite irreducible Markov chain is positive recurrent.
For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$, $a_{i,j} \geq 0$ and irreducible then

- $\rho(A) > 0$.
- $\rho(A) > 0$ is a simple eigenvalue.
- If A is non-periodic, then any other eigenvalue λ of A is such that $|\lambda| < \rho(A)$.
- There exist unique (up to scaling) positive vectors $x, y \in \mathbb{R}^n$ such that $Ax = \rho(A)x$, $y^T A = \rho(A)y^T$.

Therefore a finite irreducible Markov chain is positive recurrent.
The infinite case

Let us assume that \(P = (p_{i,j})_{i,j \in \mathbb{N}} \) is semi-infinite. If \(P \) is stochastic, the irreducibility of \(P \) does not guarantee the existence of a vector \(\pi > 0 \) such that

\[
\pi^T = \pi^T P, \quad \|\pi\|_1 = 1.
\]

Example

For the stochastic irreducible matrix

\[
P = \begin{bmatrix}
0 & 1 & & & \\
1/2 & 0 & 1/2 & & \\
1/2 & 0 & 1/2 & & \\
& & & \ddots \\
0 & \cdots & \cdots & \cdots & \ddots
\end{bmatrix}
\]

one has \(\pi^T = \pi^T P \) with \(\pi^T = (1/2, 1, 1, 1, \ldots) \)
Outline

1. **Introduction to Markov chains**
2. **Markov chains of M/G/1-type**
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. **Algorithms for solving the power series matrix equation**
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. **Quasi-Birth-Death processes**
5. **Tree-like stochastic processes**
 - Introduction
 - Algorithms
A simple queueing problem

- One server which attends to one customer at a time, in order of their arrivals.
- Time is discretized into intervals of fixed length.
- A random number of customers joins the system during each interval.
- Customers are indefinitely patient!
A simple queueing problem

- Define:
 - α_n: the number of new arrivals in $(n - 1, n)$;
 - X_n: the number of customers in the system at time n.

- Then

$$X_{n+1} = \begin{cases} X_n + \alpha_{n+1} - 1 & \text{if } X_n + \alpha_{n+1} \geq 1 \\ 0 & \text{if } X_n + \alpha_{n+1} = 0 \end{cases}$$

- If $\{\alpha_n\}$ are independent random variables, then $\{X_n\}$ is a Markov chain with space state \mathbb{N}.
- If in addition the α_n’s are identically distributed, then $\{X_n\}$ is homogeneous.
A simple queueing problem

- Define:
 - α_n: the number of new arrivals in $(n-1, n)$;
 - X_n: the number of customers in the system at time n.

- Then

 $$X_{n+1} = \begin{cases}
 X_n + \alpha_{n+1} - 1 & \text{if } X_n + \alpha_{n+1} \geq 1 \\
 0 & \text{if } X_n + \alpha_{n+1} = 0.
 \end{cases}$$

- If $\{\alpha_n\}$ are independent random variables, then $\{X_n\}$ is a Markov chain with space state \mathbb{N}.

- If in addition the α_n’s are identically distributed, then $\{X_n\}$ is homogeneous.
A simple queueing problem

- Define:
 - α_n: the number of new arrivals in $(n-1, n)$;
 - X_n: the number of customers in the system at time n.

- Then
 \[
 X_{n+1} = \begin{cases}
 X_n + \alpha_{n+1} - 1 & \text{if } X_n + \alpha_{n+1} \geq 1 \\
 0 & \text{if } X_n + \alpha_{n+1} = 0.
 \end{cases}
 \]

- If $\{\alpha_n\}$ are independent random variables, then $\{X_n\}$ is a Markov chain with space state \mathbb{N}.

- If in addition the α_n's are identically distributed, then $\{X_n\}$ is homogeneous.
A simple queueing problem

The transition matrix $P = (p_{i,j})_{i,j \in \mathbb{N}}$, such that

$$p_{i,j} = P[X_1 = j | X_0 = i], \quad \text{for all } i, j \in \mathbb{N}.$$

is

$$P = \begin{bmatrix}
q_0 + q_1 & q_2 & q_3 & \ldots \\
q_0 & q_1 & q_2 & \ddots \\
q_0 & q_1 & \ddots & \ddots \\
0 & 0 & \ddots & \ddots \\
\end{bmatrix}$$

where q_i is the probability that i new customers join the queue during a unit time interval.
Important families of Markov chains

- **M/G/1-type:** P is in upper block Hessenberg form, and almost block Toeplitz

- **G/M/1-type:** P is in lower block Hessenberg form, and almost block Toeplitz

- **QBD (Quasi-Birth-Death):** P is block tridiagonal, and almost block Toeplitz

- **NSF (Non-Skip-Free):** P is in generalized block Hessenberg form, and almost block Toeplitz

- **Tree-like stochastic process:** P has a “recursive structure”
Important families of Markov chains

- **M/G/1-type**: P is in upper block Hessenberg form, and almost block Toeplitz.
- **G/M/1-type**: P is in lower block Hessenberg form, and almost block Toeplitz.
- **QBD (Quasi-Birth-Death)**: P is block tridiagonal, and almost block Toeplitz.
- **NSF (Non-Skip-Free)**: P is in generalized block Hessenberg form, and almost block Toeplitz.
- **Tree-like stochastic process**: P has a “recursive structure.”
Important families of Markov chains

- **M/G/1-type:** P is in upper block Hessenberg form, and almost block Toeplitz
- **G/M/1-type:** P is in lower block Hessenberg form, and almost block Toeplitz
- **QBD (Quasi-Birth-Death):** P is block tridiagonal, and almost block Toeplitz
- **NSF (Non-Skip-Free):** P is in generalized block Hessenberg form, and almost block Toeplitz
- **Tree-like stochastic process:** P has a “recursive structure”
Important families of Markov chains

- **M/G/1-type**: P is in upper block Hessenberg form, and almost block Toeplitz.
- **G/M/1-type**: P is in lower block Hessenberg form, and almost block Toeplitz.
- **QBD (Quasi-Birth-Death)**: P is block tridiagonal, and almost block Toeplitz.
- **NSF (Non-Skip-Free)**: P is in generalized block Hessenberg form, and almost block Toeplitz.
- **Tree-like stochastic process**: P has a “recursive structure.”
Important families of Markov chains

- **M/G/1-type**: P is in upper block Hessenberg form, and almost block Toeplitz
- **G/M/1-type**: P is in lower block Hessenberg form, and almost block Toeplitz
- **QBD (Quasi-Birth-Death)**: P is block tridiagonal, and almost block Toeplitz
- **NSF (Non-Skip-Free)**: P is in generalized block Hessenberg form, and almost block Toeplitz
- **Tree-like stochastic process**: P has a “recursive structure”
M/G/1-type Markov chains

- Introduced by M. F. Neuts in the 80’s, they model a large variety of queueing problems.
- The transition matrix is

\[
P = \begin{bmatrix}
 B_0 & B_1 & B_2 & B_3 & \ldots \\
 A_{-1} & A_0 & A_1 & A_2 & \ldots \\
 & A_{-1} & A_0 & A_1 & \ddots \\
 & & A_{-1} & A_0 & \ddots \\
 0 & & & & \ddots
\end{bmatrix}
\]

where \(A_{i-1}, B_i \in \mathbb{R}^{m \times m} \), for \(i \geq 0 \), are nonnegative such that \(\sum_{i=0}^{+\infty} A_i, \sum_{i=0}^{+\infty} B_i \), are stochastic.

\(P \) is upper block Hessenberg and is block Toeplitz except for its first block row.
Positive recurrence (informal)

Intuitively, positive recurrence means that the global probability that the state changes into a “forward” state is less than the global probability of a change into a “backward” state. In this way, the probabilities π_i of the stationary probability vector get smaller and smaller as long as i grows.

Example (Positive recurrent Markov chain)

Let P be the transition matrix:

$$
P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 3/4 & 0 & 1/4 \\
3/4 & 0 & 1/4 & 0 \\
0 & \cdots & \cdots & \cdots
\end{bmatrix},
$$

and the stationary probability vector π^T be:

$$
\pi^T = \begin{bmatrix}
1/2, & 2/3, & 2/9, & 2/27, & \cdots
\end{bmatrix} \in L^1
$$
Transient (informal)

Intuitively, transient means that the global probability that the state changes into a “backward” state is less than the global probability of a change into a “forward” state.

Example (Transient Markov chain)

\[
P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 \\ 1/4 & 0 & 3/4 & \vdots \\ 0 & \ddots & \ddots & \ddots \end{bmatrix},
\]

\[
\pi^T = [1, 4, 12, 16, \ldots] \notin L^\infty
\]
Null recurrence (informal)

Intuitively, null recurrence means that the global probability that the state changes into a “backward” state is equal to the global probability of a change into a “forward” state.

Example (Null recurrence)

\[
P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1/2 & 0 & 1/2 & 0 \\
1/2 & 0 & 1/2 & 0 \\
0 & \cdots & \cdots & \cdots \\
\end{bmatrix},
\]

\[
\pi^T = [1/2, 1, 1, \ldots] \notin L^1
\]
Positive recurrence

For M/G/1-type Markov chains positive recurrence is equivalent to

\[b^T a < 1, \]

where

\[b^T = 1^T \sum_{i=1}^{\infty} iA_{i-1}, \quad 1^T = (1, 1, \ldots, 1), \]

\[a^T = a^T \sum_{i=-1}^{\infty} A_i, \quad a^T 1 = 1 \]

Throughout we assume that the Markov chain is irreducible and positive recurrent, therefore there exists the steady state vector \(\pi > 0. \)
Positive recurrence

For M/G/1-type Markov chains positive recurrence is equivalent to

\[b^T a < 1, \]

where

\[b^T = 1^T \sum_{i=1}^{\infty} iA_{i-1}, \quad 1^T = (1, 1, \ldots, 1), \]

\[a^T = a^T \sum_{i=-1}^{\infty} A_i, \quad a^T 1 = 1 \]

Throughout we assume that the Markov chain is irreducible and positive recurrent, therefore there exists the steady state vector \(\pi > 0. \)
A power series matrix equation

Theorem (Neuts ’98)

The matrix equation

\[X = A_{-1} + A_0 X + A_1 X^2 + A_2 X^3 + \cdots \]

has a minimal component-wise solution \(G \), among the nonnegative solutions.
Some properties of G

Let $S(z) = zI - \sum_{i=-1}^{+\infty} z^{i+1}A_i$.

If the M/G/1-type Markov chain is positive recurrent, then:

- G is row stochastic.
- $\det S(z)$ has exactly m zeros in the closed unit disk.
- The eigenvalues of G are the zeros of $\det S(z)$ in the closed unit disk.

Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman '82)
Some properties of G

Let $S(z) = zI - \sum_{i=-1}^{+\infty} z^{i+1}A_i$.

If the M/G/1-type Markov chain is positive recurrent, then:

- G is row stochastic.
- $\det S(z)$ has exactly m zeros in the closed unit disk.
- The eigenvalues of G are the zeros of $\det S(z)$ in the closed unit disk.

Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman ’82)
Some properties of $S(z)$

- The power series $S(z) = zI - \sum_{i=-1}^{+\infty} z^{i+1}A_i$ belongs to the Wiener algebra \mathcal{W}, therefore it is analytic for $|z| < 1$, continuous for $|z| = 1$.

- Under some mild additional assumptions $S(z)$ is analytic for $|z| < r$, where $r > 1$, and there exists a smallest modulus zero ξ of $\det S(z)$ such that $1 < |\xi| < r$.
Theorem

The function \(\phi(z) = I - \sum_{i=-1}^{+\infty} z^i A_i \) has a weak canonical factorization in \(\mathcal{W} \)

\[
\phi(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i \right) \left(I - z^{-1} G \right), \quad |z| = 1,
\]

where:

- \(U(z) = I - \sum_{i=0}^{+\infty} z^i U_i \) is analytic for \(|z| < 1\), \(\det U(z) \neq 0 \) for \(|z| \leq 1\);
- \(L(z) = I - z^{-1} G \) is analytic for \(|z| > 1\), \(\det L(z) \neq 0 \) for \(|z| > 1\), \(\det L(1) = 0 \).
Theorem

The function \(\phi(z) = I - \sum_{i=-1}^{+\infty} z^i A_i \) has a weak canonical factorization in \(\mathcal{W} \)

\[
\phi(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i \right) \left(I - z^{-1} G \right), \quad |z| = 1,
\]

where:

- \(U(z) = I - \sum_{i=0}^{+\infty} z^i U_i \) is analytic for \(|z| < 1\), \(\det U(z) \neq 0 \) for \(|z| \leq 1\);

- \(L(z) = I - z^{-1} G \) is analytic for \(|z| > 1\), \(\det L(z) \neq 0 \) for \(|z| > 1\), \(\det L(1) = 0 \).
Theorem

The function \(\phi(z) = I - \sum_{i=-1}^{\infty} z^i A_i \) has a weak canonical factorization in \(\mathcal{W} \)

\[
\phi(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i \right) (I - z^{-1} G), \quad |z| = 1,
\]

where:

- \(U(z) = I - \sum_{i=0}^{+\infty} z^i U_i \) is analytic for \(|z| < 1 \), \(\det U(z) \neq 0 \) for \(|z| \leq 1 \);
- \(L(z) = I - z^{-1} G \) is analytic for \(|z| > 1 \), \(\det L(z) \neq 0 \) for \(|z| > 1 \), \(\det L(1) = 0 \).
Matrix interpretation

\[H = \begin{bmatrix}
 I - A_0 & -A_1 & A_2 & \cdots \\
 -A_1 & I - A_0 & -A_1 & \ddots \\
 -A_1 & I - A_0 & \ddots & \ddots \\
 0 & \ddots & \ddots & \ddots
\end{bmatrix} = U L \]

where

\[U = \begin{bmatrix}
 U_0 & U_1 & U_2 & \cdots \\
 U_0 & U_1 & \ddots & \ddots \\
 0 & \ddots & \ddots & \ddots
\end{bmatrix}, \quad L = \begin{bmatrix}
 I & & & 0 \\
 -G & I & & \\
 0 & -G & I & \\
 \vdots & \vdots & \ddots & \ddots
\end{bmatrix} \]
Consider the problem of computing \(\pi = (\pi_i)_{i \in \mathbb{N}}, \pi_i \in \mathbb{R}^m \), such that \(\pi^T (I - P) = 0 \). i.e.,

\[
\begin{bmatrix}
\pi_0^T, \pi_1^T, \pi_2^T, \ldots
\end{bmatrix}
\begin{bmatrix}
I - B_0 & -B_1 & -B_2 & -B_3 & \cdots \\
-A_{-1} & I - A_0 & -A_1 & -A_2 & \cdots \\
0 & -A_{-1} & I - A_0 & -A_1 & \cdots \\
& & & \ddots & \ddots
\end{bmatrix} = 0
\]
Computing π

Then,

$$0 = \begin{bmatrix} \pi_0^T, \pi_1^T, \pi_2^T, \ldots \end{bmatrix}$$

is equivalent to

$$0 = \begin{bmatrix} \pi_0^T, \pi_1^T, \pi_2^T, \ldots \end{bmatrix}$$

where

$$[B_1^*, B_2^*, \ldots] = [B_1, B_1, \ldots]L^{-1}$$
Computing π

Then,

$$0 = \left[\pi_0^T, \pi_1^T, \pi_2^T, \ldots \right] \begin{bmatrix} I - B_0 & -B_1 & -B_2 & \ldots \\ -A_{-1} & 0 & & \\ \vdots & & & \end{bmatrix} \begin{bmatrix} I - B_0 \\ -B_1 \\ -B_2 \\ \vdots \end{bmatrix} - A_{-1} \begin{bmatrix} U \\ L \end{bmatrix}$$

is equivalent to

$$0 = \left[\pi_0^T, \pi_1^T, \pi_2^T, \ldots \right] \begin{bmatrix} I - B_0 & -B_1^* & -B_2^* & \ldots \\ -A_{-1} & 0 & & \\ \vdots & & & \end{bmatrix} \begin{bmatrix} I - B_0 \\ -B_1^* \\ -B_2^* \\ \vdots \end{bmatrix} - A_{-1} \begin{bmatrix} U \\ L^{-1} \end{bmatrix}$$

where

$$[B_1^*, B_2^*, \ldots] = [B_1, B_1, \ldots] L^{-1}$$
Computing π

$$0 = [\pi_0^T, \pi_1^T, \pi_2^T, \ldots] \begin{bmatrix} I - B_0 & -B_1^* & -B_2^* & -B_3^* & \cdots \\ -A_{-1} & U_0 & U_1 & U_2 & \cdots \\ 0 & 0 & U_0 & U_1 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \end{bmatrix}$$

The first two equations yield

$$0 = [\pi_0^T, \pi_1^T] \begin{bmatrix} I - B_0 & -B_1^* \\ -A_{-1} & U_0 \end{bmatrix}$$

whence we get

$$\pi_0^T (I - B_0 - B_1^* U_0^{-1} A_{-1}) = 0$$
Computing π

$$0 = \begin{bmatrix} \pi_0^T, \pi_1^T, \pi_2^T, \ldots \end{bmatrix} \begin{bmatrix} I - B_0 & -B_1^* & -B_2^* & -B_3^* & \cdots \\ -A_{-1} & U_0 & U_1 & U_2 & \cdots \\ 0 & 0 & U_0 & U_1 & \cdots \\ & & & & \ddots \end{bmatrix}$$

From the remaining equations we obtain the block triangular block Toeplitz system

$$\begin{bmatrix} \pi_1^T, \pi_2^T, \ldots \end{bmatrix} \begin{bmatrix} U_0 & U_1 & U_2 & \cdots \\ U_0 & U_1 & \cdots \\ 0 & \cdots & \cdots \end{bmatrix} = \pi_0^T [B_1^*, B_2^*, \ldots]$$

which can be solved either by means of forward substitution or by FFT-based algorithms.
Ramaswami’s formula (’89)

Summing up:

Ramaswami’s formula

\[
\begin{aligned}
\pi_T^0 (I - B_0 - B_1^* U_0^{-1} A_{-1}) &= 0 \\
\pi_1^T &= \pi_0^T B_1^* U_0^{-1} \\
\pi_2^T &= (\pi_0^T B_2^* - \pi_1^T U_1) U_0^{-1} \\
\pi_i^T &= (\pi_0^T B_i^* - \pi_1^T U_{i-1} - \cdots - \pi_{i-1}^T U_1) U_0^{-1}
\end{aligned}
\]

where

\[
B_i^* = \sum_{j=i}^{+\infty} B_j G^{j-i}, \quad i = 0, 1, 2, \ldots
\]

\[
U_0^* = I - \sum_{j=0}^{+\infty} A_j G^j, \quad U_i = \sum_{j=i}^{+\infty} A_j G^{j-i}, \quad i = 1, 2, 3, \ldots
\]
Computational issues

For the stochasticity of P we have $\lim_i B_i = \lim_i A_i = 0$, so that in floating point computation $B_i \approx 0$ for $i > N$ and the infinite summations turn into finite summations

$$B_i^* = \sum_{j=i}^{\infty} B_j G^{j-i} \approx \sum_{j=i}^{N} B_j G^{j-i}, \quad i = 0, 1, \ldots, N$$

- Compute G.
- Compute $B_i^*, U_i, i = 0, 1, 2, \ldots$ by means of back substitution (Horner’s rule) ($O(Nm^3)$ ops)
- Compute the dominant left eigenvector π_0 of an $m \times m$ matrix ($O(m^3)$ ops)
- Computing π_i for $i = 1, 2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O(m^3 q \log q)$ ops)
Computational issues

For the stochasticity of P we have $\lim_i B_i = \lim_i A_i = 0$, so that in floating point computation $B_i \approx 0$ for $i > N$ and the infinite summations turn into finite summations

$$B_i^* = \sum_{j=i}^{\infty} B_j G^{j-i} \approx \sum_{j=i}^{N} B_j G^{j-i}, \quad i = 0, 1, \ldots, N$$

- Compute G.
- Compute $B_i^*, U_i, i = 0, 1, 2, \ldots$ by means of back substitution (Horner’s rule) ($O(Nm^3)$ ops)
- Compute the dominant left eigenvector π_0 of an $m \times m$ matrix ($O(m^3)$ ops)
- Computing π_i for $i = 1, 2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O(m^3q \log q)$ ops)
Computational issues

For the stochasticity of P we have $\lim_i B_i = \lim_i A_i = 0$, so that in floating point computation $B_i \approx 0$ for $i > N$ and the infinite summations turn into finite summations

$$B_i^* = \sum_{j=i}^{\infty} B_j G^{j-i} \approx \sum_{j=i}^{N} B_j G^{j-i}, \quad i = 0, 1, \ldots, N$$

- Compute G.
- Compute $B_i^*, U_i, i = 0, 1, 2, \ldots$ by means of back substitution (Horner’s rule) ($O(Nm^3)$ ops)
- Compute the dominant left eigenvector π_0 of an $m \times m$ matrix ($O(m^3)$ ops)
- Computing π_i for $i = 1, 2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O(m^3 q \log q)$ ops)
Computational issues

For the stochasticity of P we have $\lim_i B_i = \lim_i A_i = 0$, so that in floating point computation $B_i \approx 0$ for $i > N$ and the infinite summations turn into finite summations

$$B_i^* = \sum_{j=i}^{\infty} B_j G^{j-i} \approx \sum_{j=i}^{N} B_j G^{j-i}, \quad i = 0, 1, \ldots, N$$

- Compute G.
- Compute $B_i^*, U_i, i = 0, 1, 2, \ldots$ by means of back substitution (Horner’s rule) ($O(Nm^3)$ ops)
- Compute the dominant left eigenvector π_0 of an $m \times m$ matrix ($O(m^3)$ ops)
- Computing π_i for $i = 1, 2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O(m^3 q \log q)$ ops)
Computational issues

For the stochasticity of P we have $\lim_i B_i = \lim_i A_i = 0$, so that in floating point computation $B_i \approx 0$ for $i > N$ and the infinite summations turn into finite summations

$$B_i^* = \sum_{j=i}^{\infty} B_j G^{j-i} \approx \sum_{j=i}^{N} B_j G^{j-i}, \quad i = 0, 1, \ldots, N$$

- Compute G.
- Compute $B_i^*, U_i, i = 0, 1, 2, \ldots$ by means of back substitution (Horner’s rule) ($O(Nm^3)$ ops)
- Compute the dominant left eigenvector π_0 of an $m \times m$ matrix ($O(m^3)$ ops)
- Computing π_i for $i = 1, 2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O(m^3 q \log q)$ ops)
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Functional iterations

Natural iteration

\[
\begin{align*}
X_{n+1} &= \sum_{i=-1}^{+\infty} A_i X_{n+i}, \quad n \geq 0 \\
X_0 &= 0
\end{align*}
\]

History
Several variants proposed by Neuts ('81, '89), Ramaswami ('88), Latouche ('93), Bai ('97).

Convergence
Convergence analysis performed by Meini ('97), Guo ('99). Convergence is linear, and for some problems it may be extremely slow.
Some fixed point iterations

Natural iteration

\[X_{n+1} = \sum_{i=-1}^{+\infty} A_i X_{n+1}^i, \quad n \geq 0 \]

Traditional iteration

\[X_{n+1} = (I - A_0)^{-1} \left(A_{-1} + \sum_{i=1}^{+\infty} A_i X_{n+1}^i \right), \quad n \geq 0 \]

Iteration “based on the matrix \(U \)”

\[X_{n+1} = \left(I - \sum_{i=0}^{+\infty} A_i X_n^i \right)^{-1} A_{-1}, \quad n \geq 0 \]
Some fixed point iterations

Natural iteration

\[X_{n+1} = \sum_{i=-1}^{+\infty} A_i X_{n+1}^i, \quad n \geq 0 \]

Traditional iteration

\[X_{n+1} = (I - A_0)^{-1} \left(A_{-1} + \sum_{i=1}^{+\infty} A_i X_{n+1}^i \right), \quad n \geq 0 \]

Iteration “based on the matrix \(U \)"

\[X_{n+1} = \left(I - \sum_{i=0}^{+\infty} A_i X_n^i \right)^{-1} A_{-1}, \quad n \geq 0 \]
Some fixed point iterations

Natural iteration

\[X_{n+1} = \sum_{i=-1}^{+\infty} A_i X_{n+1}^i, \quad n \geq 0 \]

Traditional iteration

\[X_{n+1} = (I - A_0)^{-1} \left(A_{-1} + \sum_{i=1}^{+\infty} A_i X_{n+1}^i \right), \quad n \geq 0 \]

Iteration “based on the matrix \(U \)’’

\[X_{n+1} = \left(I - \sum_{i=0}^{+\infty} A_i X_n^i \right)^{-1} A_{-1}, \quad n \geq 0 \]
Theorem (Latouche '91)

If $X_0 = 0$ then the sequences $\{X_n^{(N)}\}_{n \geq 0}$, $\{X_n^{(T)}\}_{n \geq 0}$, $\{X_n^{(U)}\}_{n \geq 0}$ converge monotonically to the matrix G, that is $X_{n+1} - X_n \geq 0$ for X_n being any of $X_n^{(N)}$, $X_n^{(T)}$, $X_n^{(U)}$. Moreover, for any $n \geq 0$, it holds

$$X_n^{(N)} \leq X_n^{(T)} \leq X_n^{(U)}.$$

Therefore the sequence $\{X_n^{(U)}\}_{n \geq 0}$ provides the best approximation.

Has it the fastest convergence?
Convergence analysis: case $X_0 = 0$

Theorem (Latouche ’91)

If $X_0 = 0$ then the sequences $\{X_n^{(N)}\}_{n \geq 0}$, $\{X_n^{(T)}\}_{n \geq 0}$, $\{X_n^{(U)}\}_{n \geq 0}$ converge monotonically to the matrix G, that is $X_{n+1} - X_n \geq 0$ for X_n being any of $X_n^{(N)}$, $X_n^{(T)}$, $X_n^{(U)}$. Moreover, for any $n \geq 0$, it holds

$$X_n^{(N)} \leq X_n^{(T)} \leq X_n^{(U)}.$$

Therefore the sequence $\{X_n^{(U)}\}_{n \geq 0}$ provides the best approximation.

Has it the fastest convergence?
Convergence analysis: case $X_0 = 0$

Consider for simplicity the natural iteration.
Define $E_n = G - X_n$ the error at step n.

Theorem

1. $0 \leq E_{n+1} \leq E_n$ for any $n \geq 0$.
2. $E_{n+1}1 = R_n E_n 1$ where $R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j X_{n-i}$.
3. $\|E_n\|_\infty = \left\| \prod_{i=0}^{n-1} R_i \right\|_\infty$.

Denoting $r = \lim_n \sqrt[2]{\|E_n\|}$, one has $r = \rho(R)$, where

$$R = \lim_n R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j G^{j-i}.$$
Consider for simplicity the natural iteration. Define $E_n = G - X_n$ the error at step n.

Theorem

1. $0 \leq E_{n+1} \leq E_n$ for any $n \geq 0$.
2. $E_{n+1}1 = R_nE_n1$ where $R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j X_{n-i}$.
3. $\|E_n\|_\infty = \left\| \prod_{i=0}^{n-1} R_i \right\|_\infty$.

Denoting $r = \lim_n \sqrt[n]{\|E_n\|}$, one has $r = \rho(R)$, where

$$R = \lim_n R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j G^{j-i}.$$
Convergence analysis: case $X_0 = 0$

Consider for simplicity the natural iteration. Define $E_n = G - X_n$ the error at step n.

Theorem

1. $0 \leq E_{n+1} \leq E_n$ for any $n \geq 0$.
2. $E_{n+1} \mathbf{1} = R_n E_n \mathbf{1}$ where $R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j X_n^{j-i}$.
3. $\|E_n\|_\infty = \left\| \prod_{i=0}^{n-1} R_i \right\|_\infty$.

Denoting $r = \lim_n \sqrt[n]{\|E_n\|}$, one has $r = \rho(R)$, where

$$R = \lim_n R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j G^{j-i}.$$
Consider for simplicity the natural iteration. Define $E_n = G - X_n$ the error at step n.

Theorem

1. $0 \leq E_{n+1} \leq E_n$ for any $n \geq 0$.
2. $E_{n+1} \mathbf{1} = R_n E_n \mathbf{1}$ where $R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j X_n^{j-i}$.
3. $\|E_n\|_\infty = \|\prod_{i=0}^{n-1} R_i\|_\infty$.

Denoting $r = \lim_n \sqrt[n]{\|E_n\|}$, one has $r = \rho(R)$, where

$$R = \lim_n R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j G^{j-i}.$$
Convergence analysis: case $X_0 = 0$

Consider for simplicity the natural iteration. Define $E_n = G - X_n$ the error at step n.

Theorem

1. $0 \leq E_{n+1} \leq E_n$ for any $n \geq 0$.
2. $E_{n+1}1 = R_n E_n 1$ where $R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j X_n^{j-i}$.
3. $\|E_n\|_\infty = \left\| \prod_{i=0}^{n-1} R_i \right\|_\infty$.

Denoting $r = \lim_n \sqrt[n]{\|E_n\|}$, one has $r = \rho(R)$, where

$$R = \lim_n R_n = \sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_j G^{j-i}.$$
Comparison among the 3 iterations

Theorem

One has $r_N = \rho(R^{(N)})$, $r_T = \rho(R^{(T)})$, $r_U = \rho(R^{(U)})$, where

$$R^{(N)} = \sum_{i=0}^{+\infty} A_i^*,$$

$$R^{(T)} = (I - A_0)^{-1}\left(\sum_{i=0}^{+\infty} A_i^* - A_0\right),$$

$$R^{(U)} = (I - A_0^*)^{-1}\sum_{i=1}^{+\infty} A_i^*.$$

and

$$0 \leq R^{(U)} \leq R^{(T)} \leq R^{(N)}$$
Consider for simplicity the natural iteration.

Theorem

Under mild irreducibility assumptions, for the convergence rate

\[r = \lim_{n} \sqrt[n]{\| E_n \|} \]

of the sequences obtained with \(X_0 = I \), we have

\[r_N = \rho_2(R^{(N)}), \quad r_T = \rho_2(R^{(T)}), \quad r_U = \rho_2(R^{(U)}), \]

where \(\rho_2 \) denotes the second largest modulus eigenvalue.

Starting with \(X_0 = I \) the convergence is faster.
Convergence for $X_0 = 0$ and $X_0 = I$
Linearization of the matrix equation

\[
\begin{bmatrix}
 I - A_0 & -A_1 & -A_2 & \cdots \\
 -A_{-1} & I - A_0 & -A_1 & \ddots \\
 -A_{-1} & I - A_0 & \ddots & \ddots \\
 0 & \ddots & \ddots & \ddots \\
\end{bmatrix}
\begin{bmatrix}
 G \\
 G^2 \\
 G^3 \\
 \vdots
\end{bmatrix}
=
\begin{bmatrix}
 A_{-1} \\
 0 \\
 0 \\
 \vdots
\end{bmatrix}.
\]

G can be interpreted by means of the solution of an infinite block Hessenberg, block Toeplitz system.
Cyclic reduction: history

- Introduced in the late ’60s by Buzbee, Golub and Nielson for solving block tridiagonal systems in the context of elliptic equations.
- Stability and convergence properties: Amodio and Mazzia (’94), Yalamov (’95), Yalamov and Pavlov (’96), etc.
- Rediscovered by Latouche and Ramaswami (Logarithmic reduction) in the context of Markov chains (’93);
- Extended to infinite block Hessenberg, block Toeplitz systems by Bini and Meini (starting from ’96).
The cyclic reduction algorithm

Original system:

\[
\begin{bmatrix}
I - A_0 & -A_1 & -A_2 & \cdots \\
-A_{-1} & I - A_0 & -A_1 & \cdots \\
-A_{-1} & I - A_0 & \cdots \\
0 & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
G \\
G^2 \\
G^3 \\
\vdots \\
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots \\
\end{bmatrix}
\]
The cyclic reduction algorithm

Block even-odd permutation:

\[
\begin{bmatrix}
I - A_0 & -A_2 & \cdots & -A_{-1} & -A_1 & \cdots \\
- A_0 & \ddots & & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots \\
- A_1 & - A_3 & \cdots & I - A_0 & -A_2 & \cdots \\
- A_{-1} & -A_1 & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots \\
\end{bmatrix}
\begin{bmatrix}
G^2 \\
G^4 \\
\vdots \\
G \\
G^3 \\
\vdots \\
A_{-1}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
\vdots \\
\vdots \\
\end{bmatrix}
\]

In compact form:

\[
\begin{bmatrix}
I - H_1 & -H_2 \\
-H_3 & I - H_4
\end{bmatrix}
\begin{bmatrix}
g_- \\
g_+
\end{bmatrix}
=
\begin{bmatrix}
0 \\
b
\end{bmatrix}
\]
The cyclic reduction algorithm

Structure of the matrix:

\[
\begin{bmatrix}
I - H_1 & -H_2 \\
-H_3 & I - H_4
\end{bmatrix}
\]

Schur complementation:

\[
I - H_4 - H_3(I - H_1)^{-1}H_2
\]

Upper block Hessenberg matrix, block Toeplitz except for its first block row

Beatrice Meini

Numerical solution of Markov chains and queueing problems
The cyclic reduction algorithm

Resulting system:

\[
\begin{bmatrix}
I - \hat{A}_0^{(1)} & -\hat{A}_1^{(1)} & -\hat{A}_2^{(1)} & \cdots \\
-\hat{A}_0^{(1)} & I - A_0^{(1)} & -A_1^{(1)} & \cdots \\
-\hat{A}_0^{(1)} & -A_1^{(1)} & I - A_0^{(1)} & \cdots \\
0 & -A_1^{(1)} & 0 & \cdots \\
& & & \vdots \\
& & & & \vdots
\end{bmatrix}
\begin{bmatrix}
G \\
G^3 \\
G^5 \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]
The cyclic reduction algorithm

One more step of the same procedure:

\[
\begin{bmatrix}
I - \hat{A}_0^{(2)} & -\hat{A}_1^{(2)} & -\hat{A}_2^{(2)} & \ldots \\
-\hat{A}_0^{(2)} & I - A_0^{(2)} & -\hat{A}_1^{(2)} & \ldots \\
-\hat{A}_0^{(2)} & -\hat{A}_1^{(2)} & I - A_0^{(2)} & \ldots \\
0 & \cdots & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
G \\
G^5 \\
G^9 \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]
At the n-th step:

\[
\begin{bmatrix}
I - \hat{A}_0^{(n)} & -\hat{A}_1^{(n)} & -\hat{A}_2^{(n)} & \cdots \\
-\hat{A}_1^{(n)} & I - A_0^{(n)} & -\hat{A}_1^{(n)} & \cdots \\
-\hat{A}_1^{(n)} & -\hat{A}_1^{(n)} & I - A_0^{(n)} & \cdots \\
0 & \cdots & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
G \\
G^{2n+1} \\
G^{2.2^n+1} \\
\vdots \\
\vdots \\
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots \\
\vdots \\
\end{bmatrix}
\]
The cyclic reduction algorithm

At the limit as \(n \to \infty \):

\[
\begin{bmatrix}
I - \hat{A}_0^{(\infty)} & 0 \\
-A_1^{(\infty)} & I - A_0^{(\infty)} \\
0 & -A_1^{(\infty)} & I - A_0^{(\infty)} \\
& & & \ddots & \ddots
\end{bmatrix}
\begin{bmatrix}
G \\
G^* \\
G^* \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]

where \(G^* = \lim_{n} G^n \).

Therefore \(G = (I - \hat{A}_0^{(\infty)})^{-1} A_{-1} \).
The cyclic reduction algorithm

Functional interpretation

\[
A^{(n+1)}(z) = zA^{(n)}_{\text{odd}}(z) + A^{(n)}_{\text{even}}(z)(I - A^{(n)}_{\text{odd}}(z))^{-1}A^{(n)}_{\text{even}}(z)
\]

\[
\hat{A}^{(n+1)}(z) = \hat{A}^{(n)}_{\text{even}}(z) + \hat{A}^{(n)}_{\text{odd}}(z)(I - A^{(n)}_{\text{odd}}(z))^{-1}A^{(n)}_{\text{even}}(z)
\]

where

\[
\hat{A}^{(n)}(z) = \sum_{i=0}^{+\infty} z^i \hat{A}^{(n)}_i, \quad A^{(n)}(z) = \sum_{i=-1}^{+\infty} z^{i+1} A^{(n)}_i
\]
Applicability of CR: the role of Wiener algebra

Theorem

For any $n \geq 0$ one has:

1. $A^{(n)}(z)$ and $\hat{A}^{(n)}(z)$ belong to \mathcal{W}_+.
2. $I - A^{(n)}_{\text{odd}}(z)$ is invertible for $|z| \leq 1$ and its inverse belongs to \mathcal{W}_+.
3. $\phi^{(n)}(z) = I - z^{-1}A^{(n)}(z)$ has a weak canonical factorization

\[
\phi^{(n)}(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i^{(n)} \right) \left(I - z^{-1}G^{2n} \right), \quad |z| = 1.
\]
Theorem

Let ξ be the zero of smallest modulus of $\det S(z)$ such that $|\xi| > 1$. Then:

1. $\{A^{(n)}(z)\}_n \longrightarrow A^{(\infty)}_{-1} + z A^{(\infty)}_0$ uniformly over any compact subset of $\{z \in \mathbb{C} : |z| < \xi\}$.

2. $\|A^{(n)}_i\| \leq \gamma |\xi|^{-i \cdot 2^n}$ and $\|\hat{A}^{(n)}_i\| \leq \gamma |\xi|^{-i \cdot 2^n}$, for any $i \geq 1$, $n \geq 0$.

3. $\|\hat{A}^{(n)}_0 - \hat{A}^{(\infty)}_0\| \leq \gamma |\xi|^{-2^n}$ for any $n \geq 0$.

4. $\rho(\hat{A}^{(\infty)}_0) \leq \rho(A^{(\infty)}_0) < 1$.

5. $\|G - G^{(n)}\| \leq \gamma |\xi|^{-2^n}$, where $G^{(n)} = (I - \hat{A}^{(n)}_0)^{-1} A_{-1}$.
The matrix power series $A^{(n)}(z)$, $\hat{A}^{(n)}(z)$ are approximated by matrix polynomials of degree at most d_n.

The computation of such matrix polynomials by means of evaluation/interpolation at the roots of unity can be performed in

$$O(m^3 d_n + m^2 d_n \log d_n)$$

arithmetic operations
Doubling method

History Introduced by W.J. Stewart (’95) to solve general block Hessenberg systems, applied by Latouche and Stewart (’95) for computing G, improved by Bini and Meini (’98) by exploiting the Toeplitz structure of the block Hessenberg matrices.

Idea Successively solve finite block Hessenberg systems of block size which doubles at each iterative step.
Doubling method

Truncation at block size n of the infinite system:

$$
\begin{bmatrix}
I - A_0 & -A_1 & -A_2 & \cdots & -A_{n-1} \\
-A_{-1} & I - A_0 & -A_1 & \cdots & \vdots \\
-A_{-1} & I - A_0 & \vdots & -A_2 & \vdots \\
0 & \ddots & \ddots & \ddots & \ddots \\
& & \ddots & \ddots & -A_1 \\
& & & -A_{-1} & I - A_0
\end{bmatrix}
\begin{bmatrix}
X_1^{(n)} \\
X_2^{(n)} \\
\vdots \\
X_n^{(n)}
\end{bmatrix} =
\begin{bmatrix}
A_{-1} \\
0 \\
\vdots \\
0
\end{bmatrix}.
$$
Theorem

For any $n \geq 1$ one has:

- $0 \leq X_1^{(n)} \leq X_1^{(n+1)} \leq G$.
- $X_i^{(n)} \leq G^i$ for $i = 1, \ldots, n$.
- For any $\epsilon > 0$ there exist positive constants γ and σ such that
 \[\| G - X_1^{(n)} \|_\infty \leq \gamma (|\xi| - \epsilon)^{-n}, \]
 where ξ is the zero of smallest modulus of $\det S(z)$ such that $|\xi| > 1$.
Doubling method: algorithm

The algorithm consists in successively solving systems of block size 2, 4, 8, 16, . . .

- Size doubling at each step \implies Quadratic convergence
- Use of FFT and Toeplitz structure \implies The $2^n \times 2^n$ block system can be solved in $O(m^3 2^n + m^2 n 2^n)$ arithmetic operations.
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
If $A_i = 0$ for $i > 1$ the M/G/1-type Markov chain is called a Quasi-Birth-Death process (QBD).

Problem

Computation of the minimal component-wise solution G, among the nonnegative solutions, of

$$X = A_{-1} + A_0 X + A_1 X^2$$
Linearization of the matrix equation

\[
\begin{bmatrix}
I - A_0 & -A_1 & 0 \\
-A_1 & I - A_0 & -A_1 \\
& -A_1 & I - A_0 \\
0 & & \\
\end{bmatrix}
\begin{bmatrix}
G \\
G^2 \\
G^3 \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]

\(G\) can be interpreted by means of the solution of an infinite block triangular, block Toeplitz system.
Cyclic reduction for QBD’s

At the n-th step

$$\begin{bmatrix}
I - \hat{A}_0^{(n)} & -A_1^{(n)} & & 0 \\
-A_1^{(n)} & I - A_0^{(n)} & -A_1^{(n)} & \\
& -A_1^{(n)} & I - A_0^{(n)} & \\
0 & & & \\
\end{bmatrix}
\begin{bmatrix}
G \\
G^{2n+1} \\
G^{2\cdot2^n+1} \\
\vdots \\
\vdots \\
\end{bmatrix}
= \begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots \\
\vdots \\
\end{bmatrix}.$$
Cyclic reduction for QBD’s

At the limit as $n \to \infty$:

$$
\begin{bmatrix}
I - \hat{A}_0^{(\infty)} & 0 & & \\
-\hat{A}_0^{(\infty)} & I - \hat{A}_0^{(\infty)} & & \\
-\hat{A}_1^{(\infty)} & -\hat{A}_1^{(\infty)} & I - \hat{A}_0^{(\infty)} & \\
0 & \cdots & \cdots & \\
\end{bmatrix}
\begin{bmatrix}
G \\
G^* \\
G^* \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
A_{-1} \\
0 \\
0 \\
\vdots
\end{bmatrix}
$$

where $G^* = \lim_{n} G^n$.

Therefore $G = (I - \hat{A}_0^{(\infty)})^{-1} A_{-1}$
Cyclic reduction

Recursive (algebraic) relations

\[
\begin{align*}
A_{n+1} &= A_{n} K(n) A_{n}, \\
A_{0}^{(n+1)} &= A_{0}^{(n)} + A_{-1}^{(n)} K(n) A_{1}^{(n)} + A_{1}^{(n)} K(n) A_{-1}^{(n)}, \\
A_{1}^{(n+1)} &= A_{1}^{(n)} K(n) A_{1}^{(n)}, \\
\hat{A}_{0}^{(n+1)} &= \hat{A}_{0}^{(n)} + A_{1}^{(n)} K(n) A_{-1}^{(n)}, \quad n \geq 0
\end{align*}
\]

where \(K(n) = (I - A_{0}^{(n)})^{-1} \).
Outline

1. Introduction to Markov chains
2. Markov chains of M/G/1-type
 - Introduction
 - A power series matrix equation
 - The steady state vector
3. Algorithms for solving the power series matrix equation
 - Functional iterations
 - Cyclic reduction
 - Doubling method
4. Quasi-Birth-Death processes
5. Tree-like stochastic processes
 - Introduction
 - Algorithms
Motivation

Tree-Like processes are used to model certain queueing problems: single server queues with LIFO service discipline, medium access control protocol with an underlying stack structure, etc. (Latouche, Ramaswami '99)

Assumptions

B, A_i and D_i, $i = 1, \ldots, d$, nonnegative $m \times m$ matrices, such that B is sub-stochastic and $B + D_i + A_1 + \cdots + A_d$, $i = 1, \ldots, d$, are stochastic. We set $C = I - B$.
The generator matrix has the form

\[
Q = \begin{bmatrix}
C_0 & \Lambda_1 & \Lambda_2 & \ldots & \Lambda_d \\
V_1 & W & 0 & \ldots & 0 \\
V_2 & 0 & W & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
V_d & 0 & \ldots & 0 & W
\end{bmatrix},
\]

where \(C_0 \) is an \(m \times m \) matrix,

\[
\Lambda_i = \begin{bmatrix} A_i & 0 & 0 & \ldots \end{bmatrix}, \quad V_i = \begin{bmatrix} D_i \\
0 \\
0 \\
\vdots \end{bmatrix}, \quad \text{for } 1 \leq i \leq d
\]
Tree-like processes

The infinite matrix W is recursively defined by

$$W = \begin{bmatrix}
C & \Lambda_1 & \Lambda_2 & \ldots & \Lambda_d \\
V_1 & W & 0 & \ldots & 0 \\
V_2 & 0 & W & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
V_d & 0 & \ldots & 0 & W
\end{bmatrix}.$$
Tree-like processes

Theorem

The matrix W can be factorized as $W = UL$, where

$$U = \begin{bmatrix}
S & \Lambda_1 & \Lambda_2 & \cdots & \Lambda_d \\
0 & U & 0 & \cdots & 0 \\
0 & 0 & U & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & U
\end{bmatrix}, \quad L = \begin{bmatrix}
I & 0 & 0 & \cdots & 0 \\
Y_1 & L & 0 & \cdots & 0 \\
Y_2 & 0 & L & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
Y_d & 0 & \cdots & 0 & L
\end{bmatrix}$$

and S is the minimal solution of $X + \sum_{i=1}^{d} A_i X^{-1} D_i = C$.

Consequence: Once the matrix S is known, the stationary probability vector can be computed by using the UL factorization of W.

Beatrice Meini
Numerical solution of Markov chains and queueing problems
Theorem

The matrix W can be factorized as $W = UL$, where

$$
U = \begin{bmatrix}
S & \Lambda_1 & \Lambda_2 & \ldots & \Lambda_d \\
0 & U & 0 & \ldots & 0 \\
0 & 0 & U & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & 0 & U
\end{bmatrix}, \quad L = \begin{bmatrix}
I & 0 & 0 & \ldots & 0 \\
Y_1 & L & 0 & \ldots & 0 \\
Y_2 & 0 & L & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
Y_d & 0 & \ldots & 0 & L
\end{bmatrix}
$$

and S is the minimal solution of $X + \sum_{i=1}^{d} A_i X^{-1} D_i = C$.

Consequence: Once the matrix S is known, the stationary probability vector can be computed by using the UL factorization of W.
Natural fixed point iteration

The sequences

\[
\begin{cases}
S_n = C + \sum_{1 \leq i \leq d} A_i G_{i,n}, \\
G_{i,n+1} = (-S_n)^{-1} D_i, \quad \text{for } 1 \leq i \leq d, \quad n \geq 0,
\end{cases}
\]

with \(G_{1,0} = \ldots = G_{d,0} = 0 \), monotonically converge to \(S \) and \(G_i = (-S)^{-1} D_i, \ i = 1, \ldots, d \), respectively (Latouche and Ramaswami '99)
Cyclic reduction + fixed point iteration

- Multiply

\[S + \sum_{j=1}^{d} A_j S^{-1} D_j = C \]

by \(S^{-1} D_i \), for \(i = 1, \ldots, d \).

- Observe that \(G_i = (-S)^{-1} D_i, i = 1, \ldots, d \), is a solution

\[D_i + (C + \sum_{\begin{array}{c} 1 \leq j \leq d \\ j \neq i \end{array}} A_j G_j)X + A_i X^2 = 0. \]

- We may prove that \(G_i \) is the minimal solvent.
Cyclic reduction + fixed point iteration

- Multiply

\[S + \sum_{j=1}^{d} A_j S^{-1} D_j = C \]

by \(S^{-1} D_i \), for \(i = 1, \ldots, d \).
- Observe that \(G_i = (-S)^{-1} D_i, i = 1, \ldots, d \), is a solution

\[D_i + (C + \sum_{1 \leq j \leq d \atop j \neq i} A_j G_j)X + A_i X^2 = 0. \]

- We may prove that \(G_i \) is the minimal solvent.
Cyclic reduction + fixed point iteration

- Multiply

\[S + \sum_{j=1}^{d} A_j S^{-1} D_j = C \]

by \(S^{-1} D_i \), for \(i = 1, \ldots, d \).

- Observe that \(G_i = (-S)^{-1} D_i, \ i = 1, \ldots, d \), is a solution

\[D_i + (C + \sum_{\substack{1 \leq j \leq d \\text{j} \neq i}} A_j G_j)X + A_i X^2 = 0. \]

- We may prove that \(G_i \) is the minimal solvent.
Cyclic reduction + fixed point iteration

- Set $G_{1,0} = G_{2,0} = \cdots = G_{d,0} = 0$
- For $n = 0, 1, 2, \ldots$
 - For $i = 1, \ldots, d$
 1. define
 \[
 F_{i,n} = C_i + \sum_{1 \leq j \leq i-1} A_j G_{j,n} + \sum_{i+1 \leq j \leq d} A_j G_{j,n-1}.
 \]
 2. compute, by means of cyclic reduction, the minimal solvent $G_{i,n}$ of
 \[
 D_i + F_{i,n}X + A_i X^2 = 0.
 \]

The sequences $\{G_{i,n} : n \geq 0\}$ monotonically converge to G_i, for $1 \leq i \leq d$.
Cyclic reduction + fixed point iteration

- Set \(G_{1,0} = G_{2,0} = \cdots = G_{d,0} = 0 \)
- For \(n = 0, 1, 2, \ldots \)
 - For \(i = 1, \ldots, d \):
 1. define
 \[
 F_{i,n} = C + \sum_{1 \leq j \leq i-1} A_j G_{j,n} + \sum_{i+1 \leq j \leq d} A_j G_{j,n-1}.
 \]
 2. compute, by means of cyclic reduction, the minimal solvent \(G_{i,n} \) of
 \[
 D_i + F_{i,n}X + A_i X^2 = 0,
 \]

The sequences \(\{G_{i,n} : n \geq 0\} \) monotonically converge to \(G_i \), for \(1 \leq i \leq d \).
Cyclic reduction + fixed point iteration

1. Set $G_{1,0} = G_{2,0} = \cdots = G_{d,0} = 0$
2. For $n = 0, 1, 2, \ldots$
 1. For $i = 1, \ldots, d$:
 1. Define
 $$F_{i,n} = C + \sum_{1 \leq j \leq i-1} A_j G_{j,n} + \sum_{i+1 \leq j \leq d} A_j G_{j,n-1}.$$
 2. Compute, by means of cyclic reduction, the minimal solvent $G_{i,n}$ of
 $$D_i + F_{i,n} X + A_i X^2 = 0,$$
3. The sequences $\{G_{i,n} : n \geq 0\}$ monotonically converge to G_i, for $1 \leq i \leq d$.
Newton’s iteration

- Set $S_0 = C$
- For $n = 0, 1, 2, \ldots$
 1. Compute $L_n = S_n - C + \sum_{i=1}^{d} A_i S_n^{-1} D_i$.
 2. Compute the solution Y_n of
 \[X - \sum_{i=1}^{d} A_i S_n^{-1} X S_n^{-1} D_i = L_n \] (1)
 3. Set $S_{n+1} = S_n - Y_n$

The sequence $\{S_n\}_n$ converges quadratically to S.

Open issues: efficient computation of the solution of (1).
Newton’s iteration

- Set $S_0 = C$
- For $n = 0, 1, 2, \ldots$
 1. Compute $L_n = S_n - C + \sum_{i=1}^{d} A_i S_n^{-1} D_i$.
 2. Compute the solution Y_n of

 $X - \sum_{i=1}^{d} A_i S_n^{-1} X S_n^{-1} D_i = L_n$ \hspace{1cm} (1)

 3. Set $S_{n+1} = S_n - Y_n$

The sequence $\{S_n\}_n$ converges quadratically to S.

Open issues: efficient computation of the solution of (1).
Newton’s iteration

- Set $S_0 = C$
- For $n = 0, 1, 2, \ldots$
 1. Compute $L_n = S_n - C + \sum_{i=1}^{d} A_i S_n^{-1} D_i$.
 2. Compute the solution Y_n of

$$X - \sum_{i=1}^{d} A_i S_n^{-1} XS_n^{-1} D_i = L_n \quad (1)$$

 3. Set $S_{n+1} = S_n - Y_n$

The sequence $\{S_n\}_n$ converges quadratically to S.

Open issues: efficient computation of the solution of (1).
Wiener algebra

Definition

The Wiener algebra \mathcal{W} is the set of complex $m \times m$ matrix valued functions $A(z) = \sum_{i=-\infty}^{+\infty} z^i A_i$ such that $\sum_{i=-\infty}^{+\infty} |A_i|$ is finite.

Definition

The set \mathcal{W}_+ is the subalgebra of \mathcal{W} made up by power series of the kind $\sum_{i=0}^{+\infty} z^i A_i$.
M/G/1 Markov chain

\[P = \begin{bmatrix}
B_0 & B_1 & B_2 & B_3 & \ldots \\
A_{-1} & A_0 & A_1 & A_2 & \ldots \\
A_{-1} & A_0 & A_1 & \ddots \\
o & \ddots & \ddots & \ddots
\end{bmatrix} \]

\[A_i, B_{i+1} \in \mathbb{R}^{m \times m}, \quad i = -1, 0, 1, \ldots \]
G/M/1 Markov chain

\[P = \begin{bmatrix}
B_0 & A_1 & 0 \\
B_{-1} & A_0 & A_1 \\
B_{-2} & A_{-1} & A_0 & A_1 \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{bmatrix} \]
QBD Stochastic processes

\[P = \begin{bmatrix}
B_0 & B_1 & & & 0 \\
B_{-1} & A_0 & A_1 & & \\
A_{-1} & A_0 & A_1 & & \\
0 & \ddots & \ddots & \ddots & \ddots
\end{bmatrix} \]
Non-Skip-Free Stochastic processes

\[P = \begin{bmatrix}
B_{0,1} & B_{0,1} & B_{0,2} & B_{0,3} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
B_{k-1,0} & B_{k-1,1} & B_{k-1,2} & B_{k-1,3} & \cdots & \cdots \\
A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \cdots & \cdots \\
A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \cdots & \cdots \\
A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \cdots & \cdots \\
O & & & & & \ddots
\end{bmatrix} \]