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CHAPTER 1

Preliminaries

We state here some basic notions of topology and analysis that we will use
in this book. The proofs of some theorems are omitted and can be found in
many excellent sources.

1.1. General topology

1.1.1. Topological spaces. A topological space is a pair (X, T) where X
is a set and 7 is a collection of subsets of X called open subsets, satisfying
the following axioms:

e & and X are open subsets;
e the arbitrary union of open subsets is an open subset;
e the finite intersection of open subsets is an open subset.

If this holds we say that 7 is a topology for the set X. The complement
X\ U of an open subset U € T is by definition a closed subset. Of course the
open subsets determine the closed subsets and viceversa.

Every set X has many different topologies. At the two extremes we have
the following:

e the trivial topology T = {X, @}, and
e the discrete topology where T consists of all subsets of X.

Informally, in the trivial topology all points are undistinguishable, while in
the discrete topology all the points are neatly separated from each other. The
topologies that are of interest for us in are of neither of these extremal types
and lie somehow in the middle.

When we denote a topological space, we often write X instead of (X, T)
for simplicity.

1.1.2. Continuous maps. A map f: X — Y between topological spaces
is continuous if the inverse image of every open subset of Y is an open subset
of X. The map f is a homeomorphism if it has an inverse f~1: Y — X which
is also continuous.

Two topological spaces X and Y are homeomorphic if there is a homeo-
morphism f: X — Y relating them. Being homeomorphic is clearly an equiv-
alence relation. Informally, two homeomorphic spaces have the same kind of
topological structure and should share the same topological properties.

5



6 1. PRELIMINARIES

A neighbourhood of a point x € X is any subset N C X containing an
open set U that contains x, that is x € U C N C X. Here is an equivalent
notion of continuity that is closer to the one introduced in analysis.

Exercise 1.1.1. A function f: X — Y is continuous if and only if for
every x € X the inverse image f~!(N) of any neighbourhood N of f(x) is a
neighbourhood of x.

1.1.3. Examples. There are many ways to construct topological spaces
and we summarise them here very briefly.

Metric spaces. Every metric space (X, d) is also naturally a topological
space: by definition, a subset U C X is open <= for every xg € U there is an
r > 0 such that the open ball

B(xo.r) = {x e X ’ d(x,x0) < r}

is entirely contained in U.
In particular R" is a topological space, whose topology is induced by the
euclidean distance between points:

Exercise 1.1.2. Every open ball B(xp, r) € R" is homeomorphic to R”
itself. More generally, the open convex subsets of R” are all homeomorphic.

Product topology. The cartesian product X = H,E, X, of two or more
topological spaces is a topological space: by definition, a subset U C X is
open <= it is a (possibly infinite) union of products ], U; of open subsets
U; C X;, where U; # X; only for finitely many /.

Exercise 1.1.3. This is the coarsest topology (that is, the topology with the
fewest open sets) on X such that the projections X — X; are all continuous.

Subspace topology. Every subset S C X of a topological space X is also
naturally a topological space: by definition a subset U C S is open <= there
is an open subset V C X such that U =V NS.

Exercise 1.1.4. This is the coarsest topology on S such that the inclusion
i: S < X is continuous.

In particular every subset S C R” is naturally a topological space. It is
quite remarkable that a topological structure on a set X induces one on any
subset S C X, with no requirement on S.
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Quotient topology. Let f: X — Y be a surjective map. A topology on
X induces one on Y as follows: by definition a set U C Y is open <= its
counterimage f~1(U) is open in X.

Exercise 1.1.5. This is the finest topology (that is, the one with the most
open subsets) on Y such that the map f: X — Y is continuous.

A typical situation is when Y is the quotient space Y = X/. for some
equivalence relation ~ on X, and X — Y is the induced projection.

1.1.4. Connected spaces. A topological space X is connected if it is not
the disjoint union X = X7 LI X5 of two non-empty open subsets X7, X5.

Exercise 1.1.6. The space R is connected. A product of connected spaces
is connected. Hence R” is also connected.

Exercise 1.1.7. Every topological space X is partitioned canonically into
maximal connected subsets, called connected components.

Given the canonical decomposition into connected components, it is typi-
cally harmless to restrict our attention to connected spaces.

Exercise 1.1.8. Let f: X — Y be a continuous map between topological
spaces. If X is connected, then also f(X) is.

A slightly stronger notion is that of path-connectedness. A space X is
path-connected if for every x,y € X there is a path connecting them, that
is a continuous map «: [0,1] — X with a(0) = x and a(1) = y. Every
path-connected space is connected, and the converse is also true if the space
fulfills some reasonable requirement. A space is locally path-connected if every
point has a path-connected neighbourhood. Every topological space we will
encounter in this book will be locally path-connected.

Exercise 1.1.9. A locally path-connected topological space X is connected
<= it is path-connected.

Exercise 1.1.10. The Euclidean space R" is path-connected. Products and
quotients of path-connected spaces are path-connected.

1.1.5. Compact spaces. Let X be a topological space. An open cover
for X is a collection {U,};c; of open sets whose union is X. A subcover is
any subcollection of U;'s that still form a cover. An open cover is finite if it
consists of finitely many open sets.

Definition 1.1.11. A topological space X is compact if every open cover
for X contains a finite subcover.

We are not merely requiring that X has a finite open cover, since every
X has one, with X itself as a unique open set. The definition is more subtle
and says that every open cover, no matter how complicated, should contain a
finite one.
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Exercise 1.1.12. The closed segment [0, 1] is compact.

On metric spaces the notion of compactness may be expressed in a differ-
ent, and maybe more familiar, analytic way.

Exercise 1.1.13. A metric space X is compact <= the following holds:
every sequence of points in X contains a converging subsequence.

On R" there is a still more familiar formulation.
Exercise 1.1.14. A subspace of R" is compact <= it is closed and bounded.

We already know that continuous maps send connected spaces to con-
nected spaces, and they do the same with compact spaces.

Exercise 1.1.15. Let f: X — Y be a continuous map between topological
spaces. If X is compact, then f(X) also is.

Finally, compactness is preserved under some operations.

Exercise 1.1.16. Products and quotients of compact spaces are compact.
A closed subspace in a compact space is also compact.

1.1.6. Reasonable assumptions. A topological space can be very wild,
but most of the spaces encountered in this book will satisfy some reasonable
assumptions, that we now list.

Hausdorff. A topological space X is Hausdorff if every two distinct points
x,y € X have disjoint open neighbourhoods Uy and Uy, that is U, N U, = @.

Proposition 1.1.17. Every metric space has a Hausdorff topology.

Proof. Two distinct points x, y € X are at some strictly positive distance
d = d(x,y) > 0. The balls B(x,d/2) and B(y, d/2) are disjoint thanks to
the triangular inequality. O

In particular the euclidean space R" is Hausdorff.

Exercise 1.1.18. Products and subspaces of Hausdorff spaces are also
Hausdorff. The quotient of a Hausdorff space needs not to be Hausdorff!

Countable base. A base for a topological space X is a set of open subsets
{U;} such that every open set in X is a union of these. Here are some examples:

e On a metric space X, pick all the balls B(x, r) with varying x € X
and r > 0. These form a base.

e If B and B’ are bases for X and X’ respectively, the products U x U’
as U € B and U’ € B vary form a base for X x X'.

At some point we will only consider spaces that have a countable basis.
This amounts informally to requiring that X be not too large. For instance,
the euclidean space R" has a countable base: we can take all the open balls
B(x, r) where x has rational coordinates and r > 0 is a rational number.
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Exercise 1.1.19. Countable products and subspaces of spaces with a count-
able basis also have a countable basis.

Locally compact. A topological space X is locally compact if every point
x € X has a compact neighbourhood. The euclidean space R" is locally
compact.

1.1.7. Reasonable consequences. The reasonable assumptions listed in
the previous section have some nice and reasonable consequences.

Countable base with compact closure. \We first note the following.

Proposition 1.1.20. If a topological space X is Hausdorff and locally com-
pact, every x € X has an open neighbourhood U(x) with compact closure.

Proof. Every x € X has a compact neighbourhood V/(x), that is closed
since X is Hausdorff. The neighbourhood V/(x) contains an open neighbour-
hood U(x) of x, whose closure is contained in V(x) and hence compact. [

Proposition 1.1.21. Every locally compact Hausdorff space X with a count-
able base has a countable base made of open sets with compact closure.

Proof. Let {U;} be a countable base. For every open set U C X and
x € U, there is an open neighbourhood U(x) C U of x with compact closure,
which contains a U, that contains x. Therefore the U; with compact closure
suffice as a base for X. O

Exhaustion by compact sets. Let X be a topological space. An exhaus-
tion by compact subsets is a countable family K7, K5, ... of compact subsets
such that K; C int(Kjy1) for all i and U;K; = X.

The standard example is the exhaustion of R” by closed balls

Ki=B(0,i)={xeR"| x| <i}.

Proposition 1.1.22. Every locally compact Hausdorff space X with a count-
able base has an exhaustion by compact subsets.

Proof. The space X has a countable base Uj, Us, ... of open sets with
compact closures. Define K; = U; and

Kisi=U1U...UUk

where k is the smallest natural number such that K; C uleuj. O

Paracompactness. An open cover for a topological space X is a set {U;}
of open sets whose union is the whole of X. An open cover {U;} is locally
finite if every point in X has a neighbourhood that intersects only finitely many
Ui. A refinement of an open cover {U;} is another open cover {V;} such that
every V; is contained in some U;.
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(D

Figure 1.1. A locally compact Hausdorff space with countable base is
paracompact: how to construct a locally finite refinement using an ex-
haustion by compact subsets.

Definition 1.1.23. A topological space X is paracompact if every open
cover {U;} has a locally finite refinement {V;}.

Of course a compact space is paracompact, but the class of paracompact
spaces is much larger.

Proposition 1.1.24. Every locally compact Hausdorff space X with count-
able base is paracompact.

Proof. Let {U;} be an open covering: we now prove that there is a locally
finite refinement. We know that X has an exhaustion by compact subsets
{K;}, and we set Ko = K_1 = @. For every i,/ we define Vj; = (int(Kj;+1) \
Kj,z) NU; as in Figure 1.1. The family {Vj;} is an open cover and a refinement
of {U;}, but it may not be locally finite.

For every fixed j = 1,2, ... only finitely many Vj; suffice to cover the com-
pact set K\ int(Kj_1), so we remove all the others. The resulting refinement
{Vi;} is now locally finite. O

In particular the Euclidean space R” is paracompact, and more generally
every subspace X C R" is paracompact. The reason for being interested
in paracompactness may probably sound obscure at this point, and it will be
unveiled in the next chapters.

1.1.8. Topological manifolds. Recall that the open unit ball in R" is
B"={xeR"||x|]| < 1}.

A topological manifold of dimension n is a reasonable topological space
locally modelled on B".

Definition 1.1.25. A topological manifold of dimension n (shortly, a topo-
logical n-manifold) is a Hausdorff topological space M with countable base
such that every point x has an open neighbourhood U, homeomorphic to B".

In other words, a Hausdorff topological space M with countable base is a
manifold <= it has an open covering {U;} such that each U, is homeomorphic
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‘4@»‘

Y vV v

Figure 1.2. A topological manifold is covered by open subsets, each
homeomorphic to B". Here the manifold is a circle, and is covered by four
open arcs, each homeomorphic to the open interval B?.

to B". A schematic picture in Figure 1.2 shows that the circle is a topological
1-manifold: a more rigorous proof will be given in the next chapters.

Example 1.1.26. Every open subset of R" is a topological n-manifold.
In general, any open subset of a topological n-manifold is a topological n-
manifold.

1.1.9. Pathologies. The two reasonability hypothesis in Definition 1.1.25
are there only to discard some spaces that are usually considered as patholog-
ical. Here are two examples. The impressionable reader may skip this section.

Exercise 1.1.27 (The double point). Consider two parallel lines Y = {y =
+1} C R? and their quotient X = Y/ where (x,y) ~ (X', y’) <= x = x’ and
(y =y’ or x # 0). Prove that every point in X has an open neighbourhood
homeomorphic to B!, but X is not Hausdorff.

The following is particularly crazy.

Exercise 1.1.28 (The long ray). Let o be an ordinal, and consider X =
a %[0, 1) with the lexicographic order. Remove from X the first element (0, 0),
and give X the order topology, having the intervals (a, b) = {a < x < b} as a
base. If a is countable, then X is homeomorphic to R. If @ = wy is the first
non countable ordinal, then X is the long ray: every point in X has an open
neighbourhood homeomorphic to B!, but X is not separable (it contains no
countable dense subset) and hence does not have a countable base. However,
the long ray X is path-connected!

1.1.10. Homotopy. Let X and Y be two topological spaces. A homotopy
between two continuous maps f, g: X — Y is another continuous map F: X x
[0,1] — Y such that F(-,0) = f and F(-,1) = g. Two maps f and g are
homotopic if there is a homotopy between them, and we may write f ~ g.

Two topological spaces X and Y are homotopically equivalent if there are
two continuous maps f: X — Y and g: Y — X such that f o g ~ idy and
gof ~idx.
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Two homeomorphic spaces are homotopically equivalent, but the converse
may not hold. For instance, the euclidean space R" is homotopically equivalent
to a point for every n. A topological space that is homotopically equivalent to
a point is called contractible.

1.2. Algebraic topology

1.2.1. Fundamental group. Let X be a topological space and xg € X a
base point. The fundamental group of the pair (X, xg) is a group

m1(X, x0)

defined by taking all loops, that is all paths starting and ending at xg, considered
up to homotopies with fixed endpoints. Loops may be concatenated, and this
operation gives a group structure to m1(X, Xxp).

If x1 is another base point, every arc from xp to x; defines an isomorphism
between 71 (X, Xp) and m1(X, x1). Therefore if X is path-connected the fun-
damental group is base point independent, at least up to isomorphisms, and
we write it as 71 (X). If m1(X) is trivial we say that X is simply connected.

Every continuous map f: X — Y between topological spaces induces a
homomorphism

fo: m(X, x0) — m1(Y, f(x0)).

The transformation from f to f, is a functor from the category of pointed
topological spaces to that of groups. This means that (f o g), = fi 0 g« and
(idx)« = idg (x5 It implies in particular that homeomorphic spaces have
isomorphic fundamental groups.

Exercise 1.2.1. Every topological connected manifold M has a countable
fundamental group.

Hint. Since M has a countable base, we may find an open covering of
M that consists of countably many open sets homeomorphic to open balls
called islands. Every pair of such sets intersect in an open set that has at
most countably many connected components called bridges. Every loop in
m1(M, xo) may be determined by a (non unique!) finite sequence of symbols
saying which islands and bridges it crosses. There are only countably many
sequences. O

Two maps f,g: (X, x0) — (Y, ) that are homotopic, via a homotopy
that sends xg to yg at each time, induce the same homomorphisms f, =
g« on fundamental groups. This implies that homotopically equivalent path-
connected spaces have isomorphic fundamental groups, so in particular every
contractible topological space is simply connected.

There are simply connected manifolds that are not contractible, as we will
discover in the next chapters.
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1.2.2. Coverings. Let X and X be two path-connected topological spaces.
A continuous surjective map p: X — X is a covering map if every x € X has
an open neighbourhood U such that

pHU) = |_| Ui
iel
where U; is open and ply,: U; — U is a homeomorphism for all j € /.

A local homeomorphism is a continuous map f: X — Y where every x € X
has an open neighbourhood U such that f(U) is open and f|y: U — f(U) is a
homeomorphism. A covering map is always a local homeomorphism, but the
converse may not hold.

The degree of a covering p: X — X is the cardinality of a fibre p~t(x) of
a point x, a number which does not depend on x.

Two coverings p: X — X and p': X’ — X of the same space X are
isomorphic if there is a homeomorphism f: X — X' such that p=pof.

1.2.3. Coverings and fundamental group. One of the most beautiful
aspects of algebraic topology is the exceptionally strong connection between
fundamental groups and covering maps.

Let p: X = X be a covering map. We fix a basepoint xp € X and a lift
Xo € p~1(xg) in the fibre of xp. The induced homomorphism

pe: (X, Ko) — T (X, x0)

is always injective. If we modify Xg in the fibre of xp, the image subgroup Im p,
changes only by a conjugation inside m1(X, xp). The degree of p equals the
index of Im p, in 1 (X, Xp).

A topological space Y is locally contractible if every point y € Y has a
contractible neighbourhood. This is again a very reasonable assumption: every
topological space considered in this book will be of this kind.

We now consider a connected and locally contractible topological space X
and fix a base-point xp € X.

Theorem 1.2.2. By sending p to Im p, we get a bijective correspondence

coverings p: X — X subgroups of 1 (X, xp)
up to isomorphism up to conjugacy

The covering corresponding to the trivial subgroup is called the univer-
sal covering. In other words, a covering X — X is universal if X is simply
connected, and we have just discovered that this covering is unique up to
isomorphism.

Exercise 1.2.3. Let p: X — X be a covering map. If X is a topological
manifold, then X also is.

Hint. To lift a countable base from X to X, use that 7m1(X) is countable
by Exercise 1.2.1 and hence p has countable degree. O
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1.2.4. Deck transformations. Let p: X — X be a covering map. A deck
transformation or automorphism for p is a homeomorphism f: X — X such
that pof = p. The deck transformations form a group Aut(p) called the deck
transformation group of p.

If Imps is a normal subgroup, the covering map is called regular. For
instance, the universal cover is regular. Regular covering maps behave nicely
in many aspects: for instance we have a natural isomorphism

Aut(p) = 7r1(X)/7r1(;<).

To be more specific, we need to recall some basic notions on group actions.

1.2.5. Group actions. An action of a group G on a set X is a group
homomorphism

p: G — S(X)

where S(X) is the group of all the bijections X — X. We denote p(g) simply
by g, and hence write g(x) instead of p(g)(x). We note that

g(h(x)) = (gh)(x),  e(x) =x

for every g, h € G and x € X. In particular if g(x) = y then g~ 1(y) = x.
The stabiliser of a point x € X is the subgroup Gy, < G consisting of all
the elements g such that g(x) = x. The orbit of a point x € X is the subset

O(x) = {g(x) ’ geE G} C X.

Exercise 1.2.4. We have x € O(x). Two orbits O(x) and O(y) either
coincide or are disjoint. They coincide <= Jg € G such that g(x) = y.

Therefore the set X is partitioned into orbits. The action is:

e transitive if for every x,y € X there is a g € G such that g(x) = y;

e faithful if p is injective;

o free if the stabiliser of every point is trivial, that is g(x) # x for every
x € X and every non-trivial g € G.

Exercise 1.2.5. The stabilisers Gy and G, of two points X, y lying in the
same orbit are conjugate subgroups of G.

Exercise 1.2.6. There is a natural bijection between the left cosets of G
in G and the elements of O(x). In particular the cardinality of O(x) equals
the index [G : G4] of Gx in G.

The space of all the orbits is denoted by X/s. We have a natural projection
m: X = X/g.
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1.2.6. Topological actions. If X is a topological space, a topological
action of a group G on X is a homomorphism

G — Homeo(X)

where Homeo(X) is the group of all the self-homeomorphisms of X. We have
a natural projection m: X — X/ and we equip the quotient set X/s with the
quotient topology. The action is:

e properly discontinuous if any two points x,y € X have neighbour-
hoods Uy and U, such that the set

{9€G | gU)NU, 2}
is finite.

Example 1.2.7. The action of a finite group G is always properly discon-
tinuous.

This definition is relevant mainly because of the following remarkable fact.

Proposition 1.2.8. Let G act on a Hausdorff path-connected space X. The
following are equivalent:

(1) G acts freely and properly discontinuously;
(2) the quotient X /¢ is Hausdorff and X — X/ is a regular covering.

Every regular covering between HausdorfF path-connected spaces arises in this
way.

Concerning the last sentence: if X — X is a regular covering, the deck
transformation group G acts transitively on each fibre, and we get X = )~</G.
This does not hold for non-regular coverings.

We have here a formidable and universal tool to construct plenty of regular
coverings and of topological spaces: it suffices to have X and a group G acting
freely and properly discontinously on it.

Since every universal cover is regular, we also get the following.

Corollary 1.2.9. Every path-connected locally contractible Hausdorff topo-
logical space X is the quotient X /g of its universal cover by the action of
some group G acting freely and properly discontinuously.

Note that the group G is isomorphic to 71 (X). There are plenty of exam-
ples of this phenomenon, but in this introductory chapter we limit ourselves to
a very basic one. More will come later.

Example 1.2.10. Let G = Z act on X = R as translations, that is g(v) =
v+ ¢g. The action is free and properly discontinuous; hence we get a covering
R — R/z. The quotient R/z is in fact homeomorphic to S (exercise).
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In principle, one could now think of classifying all the (locally contractible,
path-connected, Hausdorff) topological spaces by looking only at the simply
connected ones and then studying the groups acting freely and properly dis-
continuously on them. It is of course impossible to carry on this too ambitious
strategy in this wide generality, but the task becomes more reasonable if one
restricts the attention to spaces of some particular kind like — as we will see —
the riemannian manifolds having constant curvature.

Recall that a continuous map f: X — Y is proper if f~1(K) is compact
for every compact K C Y.

Exercise 1.2.11. Let a group G act on a locally compact space X. Assign
to G the discrete topology. The following are equivalent:

e the action is properly discontinuous;
e for every compact K C X, the set {g | g(K) N K # @} is finite;
e the map G x X — X x X that sends (g, x) to (g(x), x) is proper.

1.3. Multivariable analysis

It will be important in this book to use superscripts and subscripts in a
globally coherent way, and to obey this rule (to be explained later on) we will
employ superscripts x!, ..., x" to indicate the coordinates of a vector x € R".
At some points we will break this rule and use subscripts xi, ..., Xp only to
avoid cumbersome formulas.

1.3.1. Smooth maps. A map f: U — V between two open sets U C R"
and V C R™ is C* or smooth if it has partial derivatives of any order. All the
maps considered in this book will be smooth.

In particular, for every p € U we have a differential

dfp: R" — R™
which is the linear map that best approximates f near p, that is we get
F(x) = (p) + dfp(x — p) + o(|lx — pl]).

If we see df, as a m x n matrix, it is called the Jacobian and we get

on .. 0f

] of  of ot o
dp_<axlmaxn>_ of, .. of,
oxI T axn

A fundamental property of differentials is the chain rule: if we are given two
smooth functions

then for every p € U we have

d(gof)p=dgrp o dfy.
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1.3.2. Taylor Theorem. A multi-index is a vector o« = (a1, ..., ap) of
non-negative integers a; > 0. We set

la| = a1 +...+ ap, al =oaq!---apl, X = xgh Xy

Let f: U — R be a smooth map defined on some open set U C R". For every

multi-index o we define the corresponding combination of partial derivatives:
olelf

Df = ————=-

Oxyt e 0xy"

We recall Taylor's Theorem:

Theorem 1.3.1. Let f: U — R be a smooth map defined on some open
convex set U C R". For every point xg € U and integer k > 0 we have

=3 PTG ot 3 haox - w0

la|<k ' lo|l=k+1
where hy: U — R is a smooth map that depends on a.

1.3.3. Diffeomorphisms. A smooth map f: U — V between two open
sets U C R" and V C R™ is a diffeomorphism if it is invertible and its inverse
f~1:V — U is also smooth.

Proposition 1.3.2. If f is a diffeomorphism, then df, is invertible for every
p € U. In particular we get n = m.

Proof. The chain rule gives

idro = d(idy)p = d(f ™1 o £), = dfy ) o dfy,

idgn = d(idy)r(p) = d(f o 1) r(p) = dfy 0 dfy .
Therefore the linear map df, is invertible. U

We now show that a weak converse of this statement holds.

1.3.4. Local diffeomorphisms. We say that a smooth map f: U — V
is a local diffeomorphism at a point p € U if there is an open neighbourhood
U' C U of psuch that f(U") is open and f|y: U — f(U') is a diffeomorphism.

Here is an important theorem, that we will use frequently.

Theorem 1.3.3 (Inverse Function Theorem). A smooth map f: U — V is
a local diffeomorphism at p € U <= its differential df, is invertible.

We say that a smooth map f: U — V is a local diffeomorphism if it is so
at every point p € U. A diffeomorphism is always a local diffeomorphism, but
the converse does not hold as the following example shows.
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Figure 1.3. A smooth bump function f: R> = R.

Example 1.3.4. The smooth map f: R? — R? given by
(x> <eX cosy>
) = (.
y eXsiny

df _ (€Xcosy —efsiny
x) 7\ eXsiny  eXcosy

has Jacobian

with determinant e2* and hence everywhere invertible. By the Inverse Function
Theorem, the map f is a local diffeomorphism. The map f is however not
injective, hence it is not a diffeomorphism.

1.3.5. Bump functions. A smooth bump function is a smooth function
p: R"” — R that has compact support (the support is the closure of the set of
points x € R where p(x) # 0). See Figure 1.3.

The existence of bump functions is a peculiar feature of the smooth envi-
ronment that has many important consequences in differential topology. The
main tool is the smooth function

1

Tt ift>0
hty=¢ € ° TE=2
(t) { 0 Ift<Lo0.

We may use it to build a bump function p: R" — R as follows:

p(x) = h(1 — [Ix]]?).

The support of p is the closed unit disc ||x|| < 1, and it has a unique maximum
at the origin x = 0.

Note that a bump function is never analytic (unless it is constantly zero).
Sometimes it is useful to have a bump function that looks like a plateau, for
instance consider n: R” — R defined as follows:

h(1 - |Ix|1?)
(L —Ix12) + h(lx[Z = 3

Here n(x) = 1 for all ||x|| < 3 and n(x) = 0 for all ||x|| > 1, while n(x) € (0, 1)
for all % < |Ix|I < 1.

n(x) =
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Figure 1.4. A smooth transition function W.

1.3.6. Transition function. Another important smooth non-analytic func-
tions is the transition function V: R — R defined as

h(x)
(x) + h(1 —x)
where h(x) is the function defined above. The function W is smooth and non-

decreasing, and we have W(x) = 0 for all x < 0 and W(x) =1 for all x > 1.
See Figure 1.4.

V(x) = p

1.3.7. Cauchy—Lipschitz Theorem. The Cauchy—Lipschitz Theorem cer-
tifies the existence and uniqueness of solutions of a system of first-order dif-
ferential equations, and also the smooth dependence on its initial values, when
the given equations are smooth.

Let f: | x R" — R” be a smooth map, with / C R some interval.

Theorem 1.3.5. The Cauchy problem

{X’(t) = f(t, x(1)),
x(0) = xo

has a unique solution x(t), defined on some maximal open interval J C I. The
point x(t) depends smoothly on both t and xp € R".

If we have a higher order differential equation
xXM(t) = £(t, X (t), x"(t), ..., x"" (1))

we can reduce it to a system of first-order equations as above, with variables
X1 = X,X2,...,Xp and equations x/(t) = x;41(t) and x}, = f(t,x1,..., Xn).
Therefore we have again a unique smooth solution x(t) for any arbitrarily
fixed initial values of x(0), x'(0), ..., x(1=1)(0).

If the solution x(t) is defined on some maximal interval J = (a, b) and
b < +o0, then x(t) must diverge (that is, exit from any compact set) as
t — b, otherwise (one can prove that) the solution could be prolonged on
some bigger open interval and J would not be maximal.
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1.3.8. Integration. A Borel set V C R" is any subset constructed from
the open and closed sets by countable unions and intersections.

If V. C R"is a Borel set and f: V — R is a non-negative measurable
function, we may consider its Lebesgue integral

|

If o: U — V is a diffeomorphism between two open subsets of R”, then we
get the following changes of variables formula

/ f=[ |detde|foyp
! U/

for any Borel subsets U’ C U and V' = ¢(U').

Remark 1.3.6. A diffeomorphism of course does not preserve the measure
of Borel sets, but it sends zero-measure sets to zero-measure sets.

1.3.9. The Sard Lemma. Let f: U — R” be a smooth map defined
on some open subset U C R™. We say that a point p € U is regular if
the differential dfy, is surjective, and singular otherwise. A value g € R" is
a regular value if all its counterimages p € f~!(q) are regular points, and
singular otherwise.

Here is an important fact on smooth maps.

Lemma 1.3.7 (Sard's Lemma). The singular values of f form a zero-
measure subset of R".

Corollary 1.3.8. If m < n, the image of f is a zero-measure subset.

Recall that a Peano curve is a continuous surjection R — R2. Maps of
this kind are forbidden in the smooth world.

1.3.10. Complex analysis. Let U,V C C be open subsets. Recall that a
function f: U — V is holomorphic if for every z5 € U the limit
) — i )= F(20)
z—20 Z— 2
exists. The limit f'(zy) is a complex number called the complex derivative of
f at 20.

Quite surprisingly, a homolorphic function satisfies a wealth of very good
properties: if we identify C with R? in the usual way, we may interpret f as
a function between open sets of R?, and it turns out that f is smooth (and
even analytic) and its Jacobian at Zz; is such that

det(dfy,) = |'(20)|%.

It is indeed a remarkable fact that the presence of the complex derivative alone
guarantees the existence of partial derivatives of any order.
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1.4. Projective geometry

1.4.1. Projective spaces. Let K be any field: we will be essentially inter-
ested in the cases K =R or C. Let V be a finite-dimensional vector space on
K. The projective space of V is

P(V) = (V\{0})/~
where v ~ w <= v = Aw for some X\ # 0. In particular we write
KP" = P(K"1).

Every non-zero vector v = (xg,...,x,) € K" determines a point in KP"
which we denote as

[x0, ..., Xn].
These are the homogeneous coordinates of the point. Of course not all the
x; are zero, and [x, . .., xn] = [Mxo, . . ., Axp] for all X # 0.

1.4.2. Topology. When K = R or C, the space KP" inherits the quotient
topology from K"*1 and is a Hausdorff compact connected topological space.
A convenient way to see this is to consider the projections

m: S" — RP", m: §2Hl  CP”
obtained by restricting the projections from R"\ {0} and C"\ {0}. Note that
sl ={zeC™ ||z +... +|z))* = 1}.

Exercise 1.4.1. Show that the projections are surjective and deduce that
the projective spaces are connected and compact.

Exercise 1.4.2. We have the following homeomorphisms
RP'~S',  CP'=S2

The fundamental group of RP" is Z when n = 1 and Z/,z when n > 1.
On the other hand the complex projective space CP" is simply connected for
every n.






CHAPTER 2

Tensors

2.1. Multilinear algebra

2.1.1. The dual space. In this book we will be concerned mostly with real
finite-dimensional vector spaces. Given two such spaces V, W of dimension
m, n, we denote by Hom(V, W) the set of all the linear maps V. — W. The
set Hom(V, W) is itself naturally a vector space of dimension mn.

A space that will be quite relevant here is the dual space V* = Hom(V, R),
that consists of all the linear functionals V' — R, also called covectors. The
spaces V and V* have the same dimension, but there is no canonical way to
choose an isomorphism V' — V* between them: this fact will have important
consequences in this book.

A basis B = {vi1,...,v,} for V induces a dual basis B* = {v, ..., v"} for
V* by requiring that v/(\/j) = 0jj. (Recall that the Kronecker delta §;; equals
1if i = and O otherwise.) We can construct an isomorphism V' — V* by
sending v; to v/, but it heavily depends on the chosen basis B.

On the other hand, a canonical isomorphism V — V** exists between V
and its bidual space V** = (V*)*. The isomorphism is the following:

vi— (Vv v(v)).
Exercise 2.1.1. This is indeed an isomorphism. If V had infinite dimension,

it would be injective and not surjective.

For that reason, the bidual space V** will play no role here and will always
be identified with V. In fact, it is useful to think of V and V* as related by a
bilinear pairing

VxV*—R

that sends (v, v*) to v*(v). Not only the vectors in V* act on V, but also the
vectors in V act on V*.

Every linear map L: V — W induces an adjoint linear map L*: W* — V*
that sends f to f o L. Of course we get L™ = L.

2.1.2. Multilinear maps. Given some vector spaces V4, . . ., Vi, W, amap
F-Viyx--xV,—W

is multilinear if it is linear on each component.

23
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Let Bi={vi1,..., Vi.m,} be a basis of V; and C = {wy, ..., wp} a basis of
W. The coefficients of F with respect to these basis are the numbers
J
Fjl ----- Jk

with 1 < j; < mjand 1 < < nsuch that

Exercise 2.1.2. Every multilinear F is determined by its coefficients, and
every choice of coefficients determines a multilinear F.

We denote by Mult(W, ..., Vi; W) the space of all the multilinear maps
Vi X -+ x Ve — W. This is naturally a vector space.

Corollary 2.1.3. We have
dimMult(Wg, .. ., Vi W) =dimVg -« -dim Vj dim W.

When W = R we omit it from the notation and write Mult(\, . . ., Vi).
In that case of course we have

dimMult(V4, ..., V&) = dim V4 - - - dim V.

In fact, every space Mult(W, ..., Vi; W) may be transformed canonically into
a similar one where the target vector space is R, thanks to the following:

Exercise 2.1.4. There is a canonical isomorphism

Hint. The spaces have the same dimension and the map is injective. [

2.1.3. Sum and product of spaces. We now introduce a couple of opera-
tions @ and ® on vector spaces. Let W4, ..., Vi be some real finite-dimensional
vector spaces.

Sum. The sumVi®---®V, is just the cartesian product with componen-
twise vector space operations. That is:

Vl@‘--@Vk:{(vl ..... Vk)}Vle\/l ..... VkEVk}
and the vector space operations are

(v,..., ve) + (we, ..., wg) = (vi +wy,..., Vi + W),
>\(V1 ..... Vk) = (>\V1 ..... >\Vk).
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Exercise 2.1.5. A basis for Vf & --- @ Vi is

We deduce that
dm(Vi & --- @ Vi) =dimV4 + ... +dim V4.

Tensor product. The tensor product V} @ --- ® Vj is defined (a bit more
obscurely. ..) as the space of all the multilinear maps Vj* x --- x V[ = R, i.e.
Vi®- @ Ve =Mult(V, ..., Vi),

We already know that
dim\Vi ® --- ® V) = dim V4 - - - dim V.
Any k vectors vi € V4, ..., Vi € V| determine an element
V1®"‘®Vk€\/1®"‘®vk
which is by definition the multilinear map
(o) — i () - v ().

As opposite to the sum operation, it is important to note that not all the

elements of V4 ® - -+ ® Vj are of the form v; ® - -+ ® vi. The elements of this

type (sometimes called pure or simple) can however generate the space, as

the next proposition shows. Let B; = {vj1,..., Vim, } be a basis of Vj for all
1< <k

Proposition 2.1.6. A basis for the tensor product Vi ® -+ ® Vj Is
{vijg ® - @ vt
where 1 < j; < mj varies foreachi =1, ..., k.

Proof. This is a consequence of Exercise 2.1.2. If we use the dual basis
for V*, the element v; j; ® -+ - ® vy j, corresponds to the multilinear map whose
coefficients F,} _____ i, equal 1 if (i,..., i) = U1, -, Jk) and 0 otherwise. O

Example 2.1.7. A basis for R ® R? is given by the elements

0)20) @e0) ()=k) G)=06)

0 0/’ 0 1) 1 0/’ 1 1

Exercise 2.1.8. The following relations hold in V & W:

v+V)eow=veaw+Vv ew, va(w+w)=veaw+vew,
Alveaw)=Av)ew=ve (Aw),
vAw=0<+<=v=0o0r w=0.

Exercise 2.1.9. Let v,v/ € V and w, w’ € W be non-zero vectors. If v
and V' are independent, then v ® w and v/ ® w' also are.
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Exercise 2.1.10. Let v, v/ € V and w, w’ € W be two pairs of independent
vectors. Show that

vaw+veow eveWw

is not a pure element.

2.1.4. Canonical isomorphisms. We now introduce some canonical iso-
morphisms, that may look quite abstract at a first sight, but that will help us
a lot to simplify many situations: two spaces that are canonically isomorphic
may be harmlessly considered as the same space.

We start with the following easy:

Proposition 2.1.11. The map v — v ® 1 defines a canonical isomorphism
V —VoR.

Proof. The spaces have the same dimension and the map is linear and
injective by Exercise 2.1.8. O

Let 4, ..., Vi, Z be any vector spaces.
Proposition 2.1.12. The linear map
HomW ® -+ ® Vi, Z) — Mult(W, ..., Vi: Z)
that sends F to F' via F'(v1, ..., vk) = F(v1 ® - ® vk) Is an isomorphism.

Proof. The spaces have the same dimension and the map is injective (ex-
ercise: use Proposition 2.1.6). (]

This canonical isomorphism is called the universal property of ® and one
can also show that it characterises the tensor product uniquely. This is typically
stated by drawing a commutative diagram like this:

(1) X XxV—WV® -V
\ F

F' v

Z

Given a multilinear F’ there is a unique linear F so that the diagram commutes.
The universal property is very useful to construct maps. For instance, we may
use it to construct more canonical isomorphisms:

Proposition 2.1.13. There are canonical isomorphisms
Vew=waV, (Vew)aZ=zveWaeZ=2Vae (Wea 2),
VeaWwW=2weV, Vaw)eZ2VeaWeZ2Ve (W 2),
VaWaZ)Z(VeW)ae (Ve 2),
Ma--—-dV)=2Vfae--a V), MR- V) 2V o V.
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Proof. The isomorphisms in the first line are
(v, w) = (w,v), (v,w,z) — ((v,w), z), (v,w,z) = (v, (w, 2)).
Those in the second line are uniquely determined by the conditions
VRW I WR WV, vIWRz— (VRW)®Z, VRWRZ— vR(W® Z)

thanks to the universal property of the tensor products. Analogously the iso-
morphism of the third line is determined by
v (w,z)— (v w,v® z).

Concerning the last line, the first isomorphism is straightforward. For the
second, we have

V@ - V)" =Hom(\L®---® VL, R) = Mult(W, ..., Vi)=V®- - V.
More concretely, every element vl @ --- @ vk € VIF®@ -+ @V is naturally an
element of (V4 ® --- ® V,)* as follows:

(Ve v (m @ - @w) = vi(w) - vK(we).
The proof is complete. O

There are yet more canonical isomorphisms to discover! The following is
a consequence of Exercise 2.1.4 and is particularly useful.

Corollary 2.1.14. There is a canonical isomorphism
Hom(V, W) = V* @ W.

In particular we have End(V) = V* @ V = Mult(V, V*). In this canonical
isomorphism, the identity endomorphism idy, corresponds to the bilinear map
V x V* — R that sends (v, v*) to v*(v).

Exercise 2.1.15. Given v* € V* and w € W, the element v* ® w corre-
sponds via the canonical isomorphism Hom(V,W) = V* ® W to the homo-
morphism v — v*(v)w. Deduce that the pure elements in V* @ W correspond
precisely to the homomorphisms V' — W of rank < 1.

2.1.5. The Segre embedding. We briefly show a geometric application
of the algebra introduced in this section. Let U,V be vector spaces. The
natural map U x V — U ® V induces an injective map on projective spaces

P(U) x P(V) — P(U® V)

called the Segre embedding. The map is injective thanks to Exercise 2.1.9.

We have just discovered a simple method for embedding a product of
projective spaces in a bigger projective space. If U =R and V = R™! we
have an isomorphism U @ V = R(M+1D("+1) and we get an embedding

RP™ x RP" «— RP™TM+0
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Example 2.1.16. When m = n = 1 we get RP! x RP* — RP3. Note that
RP! x RP! is topologically a torus. The Segre map is

(bo.xal. o, yal) =— Kff) N @1))]

and the right member equals

1 ® 1 n 1 ® 0 n 0 ® 1 n 0 ® 0
Xo0Y0 0 0 Xoy1 0 1 X1¥0 1 0 X1y1 1 1/
In coordinates with respect to the canonical basis the Segre embedding is

([Xo,Xl]y [)/o,h]) = [XoYo, Xo¥1, X1Y0, X1y1].

It is now an exercise to show that the image is precisely the quadric zpzz3 = 212
in RP3. We recover the well-known fact that such a quadric is a torus.

2.1.6. Infinite-dimensional spaces. In very few points in this book we
will be concerned with infinite dimensional real vector spaces. We summarise
briefly how to extend some of the operations introduced above to an infinite-
dimensional context.

The dual V* of a vector space V is always the space of all functionals
V — R. There is a canonical injective map V < V** which is surjective if and
only if V' has finite dimension.

Let V4, V5, ... be vector spaces. The direct product and the direct sum

IIv. v
i i

are respectively the space of all sequences (v1, vo,...) with v; € Vj, and the
subspace consisting of sequences with only finitely many non-zero elements.
In the latter case, when the spaces V; are clearly distinct, one may write every
sequence simply as a sum

vp +... v,

of the non-zero elements in the sequence. There is a canonical isomorphism
(@V)" =1LV

The tensor product V ® W of two vector spaces of arbitrary dimension may
be defined as the unique vector space that satisfies the universal property
(1). Uniqueness is easy to prove, but existence is more involved: the space
Mult(V*, W*) does not work here, it is too big because V # V**. Instead we
may define V ® W as a quotient

VoW =F(V xW)/.

where F(S) is the free vector space generated by the set S, that is the abstract
vector space with basis S, and ~ is the equivalence relation generated by
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equivalences of this type:

(vi, w) + (v2, w) ~ (v1 + v2, w),
(viwy) + (v, wn) ~ (v, wy + wp),
(Av, w) ~ X(v,w) ~ (v, Aw).

The equivalence class of (v, w) is indicated as v ® w. More concretely, if {v;}
and {w;} are basis of V and W, then {v; ® w;} is a basis of V ® W, and this
is the most important thing to keep in mind.

The tensor product is distributive with respect to direct sum, that is there
are canonical isomorphisms

Ve (e W) =Ze(Vew)

but the tensor product is not distributive with respect to the direct product in
generall We need dimV < oo for that:

Exercise 2.1.17. If V has finite dimension, there is a canonical isomorphism

V® (H,-W,‘) = H/(\/ & VV/)

Dimostrare?

2.2. Tensors

We have defined the operations @, ®, * in full generality, and we now apply
them to a single finite-dimensional real vector space V.

2.2.1. Definition. Let V be a real vector space of dimension nand h, k >
0 some integers. A tensor of type (h, k) is an element T of the vector space

TEV) =V - aVaV'e V"
h k

In other words T is a multilinear map

T: V% - - xV*xVx---xV —R.
h K

This elegant definition gathers many well-known notions in a single word:

a tensor of type (0, 0) is by convention an element of R, a scalar;

a tensor of type (1,0) is an element of V, a vector;

a tensor of type (0, 1) is an element of V*, a covector;

a tensor of type (0, 2) is a bilinear form V x V — R;

a tensor of type (1,1) is an element of V ® V* and hence may be
interpreted as an endomorphism V' — V/, by Corollary 2.1.14;

More generally, every tensor T of type (h, k) may be interpreted as a
multilinear map

T ' Vx--xV-—>V®---V
K h
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by writing
T'(vi,ooovi)(vy o ) =T (v Ve v, k).
In particular a tensor of type (1, k) can be interpreted as a multilinear map
T: Vx...xV—V
k
Example 2.2.1. The euclidean scalar product in R" is defined as
(x, ..., x") - (vt vy = xtyt Xy
It is a bilinear map R” x R” — R and hence a tensor of type (0, 2).
Example 2.2.2. The cross product in R3 is defined as
(v, 2) NX Yy 2= (yZ — zy', zx' — xZ', xy' — yX).
It is a bilinear map R3 x R3 — R3 and hence a tensor of type (1,2).

Example 2.2.3. The determinant may be interpreted as a multilinear map

R?x---xR" — R
—_——
n

that sends (vq, ..., Vp) to det(vy -+ v,). As such, it is a tensor of type (0, n).

2.2.2. Coordinates. Every abstract and ethereal object in linear algebra
transforms into a more reassuring multidimensional array of numbers, called
coordinates, as soon as we choose a basis.

Let B={wvq,..., vn} be a basis of V, and B* = {v!, ..., v} be the dual
basis of V*. A basis of the tensor space 777k(V) consists of all the vectors

Vi @@V, @V @ @ vk

h+k

wherel <, ..., Ih 1, oo Jx < n. Overall, this basis consists of n vectors.

Every tensor T of type (h, k) can be written uniquely as

(2) T:lell ......... : -I:Vﬁ®"'®Vih®vj1®"'®vjk-

We are using here the Einstein summation convention: every index that is re-
peated at least twice should be summed over the values of the index. Therefore
in (2) we sum over all the indices i1, ..., in, j1, ..., Jk. 1he following proposition
shows how to compute the coordinates of T directly.

Proposition 2.2.4. The coordinates of T are

yedy i1 ih . .
T ST (v ).

Proof. Apply both members of (2) to (v, ..., v vy, ..., V). O

Example 2.2.5. The coordinates of the Euclidean scalar product g on R”
with respect to an orthonormal basis are g;; = §;;.
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Figure 2.1. The coordinates of the cross product tensor with respect
to the canonical basis of R® (or any positive orthonormal basis) form the
Levi-Civita symbol €ij.

Example 2.2.6. The coordinates of id € Hom(V, V) =V ®V™ with respect
to any basis are idJ’» = 61’-. This is again the Kronecker delta, written as 6J’. for
convenience.

Exercise 2.2.7. The coordinates of the cross product tensor in R3 with
respect to any positive orthonormal basis are

_ +1 if(i,j,k)is(1,2,3),(2,3,1), or (3,1,2),
Tj’k =¢€j=1< —1 if(i,jk)is(3,21),(1,3,2), or (2,1,3),
0 ifi=j, orj=k, ork=1.
The three-dimensional array ¢;j is called the Levi-Civita symbol and is shown
in Figure 2.1.

Exercise 2.2.8. The determinant in R3 may be interpreted as a tensor of
type (0, 3). Show that its coordinates with respect to any positive orthonormal
basis are also €.

2.2.3. Coordinates manipulation. The coordinates and the Einstein con-
vention are powerful tools that enable us to describe complicated tensor ma-
nipulations in a very concise way, and the reader should familiarise with them.
We start by exhibiting some simple examples. We fix a basis B = {vi,..., vy}
for V and consider coordinates with respect to this basis. We write the coor-
dinates of a generic vector v as v/, that is we have

v=1v'y.

Note that v/ is a number while v; is a vector. If v € V is a vector and
T:V — Vis an endomorphism, that is T € T;1(V), we may write w = T(v)
directly in coordinates as follows:

wi =T/
1
where v/, W/, T,.j are the coordinates of v, w, T. The trace of T is simply

T

!
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If v, w € V are vectors and g: V xV — Riis a bilinear form, that is g € T2(V),
it has coordinates g;; and we may write the scalar g(v, w) as follows:
v'g,jwf.

The expressions w! = T/v’ and v'g;jw’ are just the usual products matrix-
times-vector(s) that describe endomorphisms and bilinear forms in coordinates:
we are only rewriting them using the Einstein convention.

Let T be the tensor of type (1,2) that describes the cross product in R3.
The equality z = v A w can be written in coordinates as

7' = "fjikvjwk.

Note that in all the cases described so far the Einstein convention is applied to
pairs of indices where one is a superscript and the other is a subscript. This is
in fact a general phenomenon: all the notation is designed to get this in any
possible situation, with the purpose of limiting considerably the possibilities of
errors and the amount of information that one has to remember by heart.

Example 2.2.9. We prove the well-known equalities
(vAw)-z=v-(WAz)=det(vwz)
using coordinates. The three members may be written as
vf7_J-’k Wkg,,z’, v’g,,wfﬂikzk, det;jx vind Z
Now we take an orthonormal basis B, so that g;; = §;; and Tfk = €k = detjjk.

The three members simplify as

k k

€jjrv/ w2, e,-jkv’wfzk, €jjkV' Wz

and they represent the same number thanks to the symmetries of €.

Remark 2.2.10. In accordance with the previous discussion, the coordinates
of a vector x € R with respect to the canonical basis should be indicated with
superscripts x1,...,x", and we will try to stick to this convention as much
as possible; at few points we will break this rule and use subscripts to avoid
cumbersome formulas like (x1)?/(x?)?.

2.2.4. Change of basis. If C = {wy, ..., wp} is another basis of V then
W = Aj Vi

for some invertible n x n matrix A of coefficients. Here “invertible” means of
course that there is a n X n matrix B, called the inverse of A, such that

| ok ' i Ak
where (5} is the Kronecker delta.
Proposition 2.2.11. The dual basis changes as follows:

w' = Bjv/.
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Proof. We check that the proposed w' form the dual basis of w;:
w'(w) = (Biv ) (Alv)) = BLAVK(v) = BLA[SS = BLAK = §).

It is a useful exercise to fully understand each of the previous equalities! In
the fourth one we removed the Kronecker delta and set k = /. O

~ Let T be a tensor as in (2). We now want to determine the coordinates
7A‘.’1""'J.’: of T in the new basis C, in terms of the coordinates TJ’I1 """"""" ; ’: in the old
basis B and of the matrices A and B.

Proposition 2.2.12. We have
Sy i ] ..l
(3) Tl =B BRAT A T,

This complicated-looking equation may be memorised by noting that we
need one A for every lower index of T, and one B for every upper index.

Proof. By Proposition 2.2.4 we have

_]111 ''''''''' J I: = T(Wh’ Wi, Wir - ij)
- T(B/"l1 v B,’: vl Aﬂ” Vimgs - - Ajnqu mG)
=Bl BPAT AT (Vv i Vi)
= 5;11 .. B;ZAT . Aj’fk Trl'%i---‘/lhmk.
The proof is complete. O

The reader should appreciate the generality of the formula (3): it describes
in a single equality the coordinate changes of vectors, covectors, endomor-
phisms, bilinear forms, the cross product in R3, the determinant, and some
more complicate tensors that we will encounter in this book. We write some
of them:

ol il I~ m i iamTl ~ m an

The formula (3) contains many indices and may look complicated at a first
glance, but in fact it only says that the lower indices ji, ..., jkx change through
the matrix A, while the upper indices i, ..., Ip change via the inverse matrix
B. For that reason, the lower and upper indices are also called respectively
covariant and contravariant.

Remark 2.2.13. In some physics and engineering text books, the formula
(3) is used as a definition of tensor: a tensor is simply a multi-dimensional
array, that changes as prescribed by that formula if one modifies the basis of
the vector space.

We now introduce some operations with tensors.
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2.2.5. Tensor product. It follows from the definitions that
T (V) @ Ta(V) = Todha (V).

In particular, given two tensors S € TX(V) and T € T7,2(V), their product
S®T is an element of 777’jr+n'1’(V). In coordinates with respect to some basis
B, it may be written as

PP A A R A,
(SO T e e = Sy Tl e

2.2.6. The tensor algebra. The tensor algebra of V is

TV)= P TFV)

h,k>0

The product ® is defined on every pair of tensors, and it extends distributively
on the whole of 7(V). With this operation T (V) is an associative algebra and
an infinite-dimensional vector space (if V is not trivial). Recall that

TTV)=R  T(V)=V. T3(V)=V"

Exercise 2.2.14. If dimV > 2 the algebra is not commutative: if v, w € V
are independent vectors, then v @ w # w Q® v.

We denote for simplicity
T(V)=To (V).  TKV) =T (V).

The vector spaces

V)= TVv). TV =TV

h>0 k>0

are both subalgebras of 7(V) and are sometimes called the contravariant and
covariant tensor algebras, respectively.

Exercise 2.2.15. The algebras 7.(R) and R[x] are isomorphic.

Remark 2.2.16. Let B = {vy,..., Vp} be a basis of V. The elements
Vi, e, vy € T1(V) generate T.(V) as a free algebra. This means that every
element of 7.(V) may be written as a polynomial in the variables vy, .. ., Vp in
a unique way up to permuting its addenda. Note that ® is not commutative,
hence the ordering in each monomial is important. As an example:

34+vi—Twva+Vvi®Vvo —3vr ® vy.
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2.2.7. Contractions. We now introduce a general important operation
on tensors called contraction that generalises the trace of endomorphisms.

The trace is an operation that picks as an input an endomorphism, that is
a (1, 1)-tensor, and produces as an output a number, that is a (0, 0)-tensor.
More generally, a contraction is an operation that transforms a (h, k)-tensor
into a (h— 1, k — 1)-tensor, and is defined for all h, k > 1. It depends on the
choice of two integers 1 < a< hand 1 < b < k and results in a linear map

C: T (V) — T HWV).
The contraction is defined as follows. Recall that

TEV)=V@ - aVaV'e V"

h k

The indices a and b indicate which factors V and V* need to be “contracted”.
After a canonical isomorphism we may put these factors at the end and write

V)=V -eVeV'e -aVeVeV =T (V) VeV
h—1 k—1

The contraction is the linear map
C: T V)eVe Vv — TEHV)
determined by the condition
Cwavev)=vi(vw.

Recall that C is well-defined because (w, v, v*) — v*(v)w is multilinear and
hence the universal property applies.

Example 2.2.17. The contraction of a pure tensor is
C® - veavie -a@vk=
vb(va)vl®---®@@---®Vh®v1®---®ﬁ®---®vk
where W indicates that the factor w is omitted.

2.2.8. In coordinates. The definition of a contraction may look abstruse,
but we now see that everything is pretty simple in coordinates. Let B =
{vi,...,vp} be a basis for V.

Proposition 2.2.18. If T has coordinates TJ’11 """ ’: then C(T) has

PR Y Sy B
C(T)jl ----- jk—1_7}1 ----- lodk—1

where | is inserted at the positions a above and b below.
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Proof. We write the coordinates of T as TJ’11 ''''''' 'J-' _______ ’J-’::ll for convenience,

where / and j occupy the places a and b. We have

C(T):C(lell """""" J’ """"""" J I::llvil®"'®Vi®"'®Vih,1®VJ‘1®"'®VJ®"'®VJ’“1)
— T Ih*léjl:vil®"'®Vih,1®VJ‘1®“'®VJk71

Jiveedsedk—1

_ Nyeee, /..., "hfl - (e
_Th ..... I Jk—1 Vil®"'®V/h71®vjl®"'®vjk t

The proof is complete. O

This shows in particular that, as promised, the contraction of an endomor-
phism whose coordinates are T} is indeed its trace T/

Contractions are handled very easily in coordinates. As an example, a
tensor T of type (1,2) has coordinates Tjk and can be contracted in two
ways, producing two (typically distinct) covectors v and v/ with coordinates

i / i
ke = T Vi =Tj;.

It is important to remember that the coordinates depend on the choice of a
basis B, but the covectors v and v/ obtained by contracting T do not depend
on B. Likewise, a tensor of type T/g/ has four types of contractions, producing
four (possibly distinct) tensors of type (1,1), that is endomorphisms.

It is convenient to manipulate a tensor using its coordinates as we just did:
remember however that we must always contract a covariant index together
with a contravariant one! The “contraction” of two covariant (or contravari-
ant) indices makes no sense because it is not basis-independent. This should
not be surprising: the trace T,’ of an endomorphism is basis-independent, but
the trace g;; of a bilinear form is notoriously not. Said with other words:
there is a canonical homomorphism V ® V* — R, but there is no canonical
homomorphism V @ V — R.

Exercise 2.2.19. The tensor T that expresses the cross product in R3 has
two contractions. Prove that they both give rise to the null covector.

Hint. This can be done by calculation, or abstractly: since T is invariant
under orientation-preserving isometries, its contractions also are. O

Example 2.2.20. Let T, det, g be the tensors in R3 that represent the cross
product, the determinant, and the Euclidean scalar product. They are of type
(1,2), (0,3), and (0, 2) respectively. The tensor T ® g is of type (1,4) and
may be written in coordinates as T,f—g/m. It has four contractions C(T ® g),
that are all of type (0, 3). These are

Thgm  Thm.  Tigkm  Tha.

The first two are null by the previous exercise. The last two, expressed on a
orthonormal basis, become €;;, and €;j;. Therefore for these two contractions
we get C(T ® g) = det.
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Every time we sum over a pair of covariant and contravariant indices, we
are doing a contraction. So for instance each of the operations

w/ =TV, vigiw/
described in Section 2.2.3 may be interpreted as two-steps operations, where

we first multiply some tensors and then we contract the result. Contractions
and tensor products are everywhere.

2.3. Scalar products

We now study vector spaces V' equipped with a scalar product g. We
investigate in particular the effects of g on the tensor algebra 7(V). We start
by recalling some basic facts on scalar products.

2.3.1. Definition. A scalar product on V is a symmetric bilinear form g
that is not degenerate, that is

glv,w)=0VveV < w=0.

Recall that the scalar product is

e positive definite if g(v,v) >0 Vv # 0,

e negative definite if g(v,v) <0 Vv # 0,

e indefinite in the other cases.
Every scalar product g has a signature (p, m) where p (respectively, m) is the
maximum dimension of a subspace W C V such that the restriction g|y is
positive definite (respectively, negative definite). We have p+m =n=dimV.
The scalar product is positive definite (respectively, negative definite) < its
signature is (n, 0) (respectively, (0, n)).

A scalar product g is a tensor of type (0, 2) and its coordinates with respect
to some basis B = {v, ..., Vn} are written as gj;. The basis B is orthonormal
if gjj = £0;; for all /,/. In particular g;; = %1, and the sign +1 and —1 occur
p and m times as / varies. Every scalar product has an orthonormal basis.

We are mostly interested in positive definite scalar products, but indefinite
scalar product also arise in some interesting contexts — notably in Einstein’s
general relativity.

2.3.2. Isometries. Let V and W be equipped with some scalar products
g and h. A linear map T:V — W is an isometry if g(u, v) = h(T (u), T(v))
for all u, v € V. This condition can be expressed in coordinates as

u/g,jvj = ui7',khk/7}’vj
and since it must be verified for all u, v we get
9ij = T,-khk/Tj/-

The isometries from V' to itself form a group that we denote by O(V).
After fixing a basis, the group O(V) can be represented as the subgroup of
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GL(n,R) formed by the matrices A such that "AgA = g. In particular Binet's
formula yields det A = £1. Therefore every isometry f € O(V) has det f = +1
and the positive isometries (that is, those with det = 1) form an index-two
normal subgroup SO(V) < O(V).

When g is positive-definite and the basis is orthonormal we get the usual
orthogonal group O(n) < GL(n,R) formed by all the matrices A such that
YAA = |. More generally, if g has signature (p, m) we can find an orthonormal
basis vy, ..., vp where gjj = —1 for i = 1,..., mand gi; =1 fori = m+
1,..., n and in this basis O(V) can be represented as the subgroup

O(p,m)={Ae€GL(nR) | AJA=J}, J= (‘O’m /O> .

2.3.3. The identification of V and V*. Let V be equipped with a scalar
product g. Our aim is now to show that g enriches the tensor algebra 7 (V)
with some new interesting structures.

We first discover that g induces an isomorphism

vV — V¥

that sends v € V to the functional v* € V* defined by v*(w) = g(v, w).
(This is an isomorphism because g is non-degenerate!) This is an important
point: as we know, the spaces V and V* are not canonically identified, but we
can identify them once we have fixed a scalar product g.

Exercise 2.3.1. The isomorphism V — V* sends a vector with coordinates

v' to the covector with coordinates
v =gv'.

The scalar product g induces a scalar product on V*, that we lazily still

name g, as follows:
g(v*, w*) = g(v,w)

where v*, w* € V* are the images of v, w € V along the isomorphism V' — V*
defined above. The scalar product g on V* is a tensor of type (2,0) and its
coordinates are denoted by g¥.

Proposition 2.3.2. The matrix g" is the inverse of gj;.

Proof. Note that gj; is invertible because g is non-degenerate. The equality
defining g” may be rewritten in coordinates as

Vigikgklglej = ngk/W/ = Vigij'l/'/j-
Since this holds for every v, w € V we get
9ikg"' 91 = 9.

Read as a matrices multiplication, thisis GHG = G that implies GH = HG =/
because G is invertible and hence H = G™1. The proof is complete. O
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Note that the proposition holds for every choice of a basis B.

2.3.4. Raising and lowering indices. \We may use the scalar product g
on V to “raise” and “lower” the indices of any tensor at our pleasure. That is,
the isomorphism V' — V* induces an isomorphism

To (V) — Thek(V)
for all h, k > 0. In coordinates, the isomorphism sends a tensor lell """ h to

Lvedpdloedk — Toeidb gh1 |, lkdk
U - 7—/1 ..... Ik g g )

We can use g” to raise the indices of a tensor, and in the opposite direction
we can use g;; to lower them. This operation may be encoded efficiently
and unambiguously by assigning different indices to distinct columns in the
notation. So for instance we start with a tensor like

J
Tiki
and then we may raise or lower some indices to produce a new tensor that we

may lazily indicate with the same letter; for instance we can move the indices
I and j and get a new tensor

ki
If gij = &;j, then g” = §Y and the coordinates of the two different tensors are
just the same, that is TI»Jk, = T"J-k, for every 1, J, k, I. In general we have

i _ T b ai,
TjkI_Ta k19 9bj-

2.3.5. Scalar product on the tensor spaces. A scalar product g on V
induces a scalar product on each vector space 777"(V), still boringly denoted by
g. This is done as follows: if S, T € TX(V), then g(S, T) is the scalar

Mol o imy L JkMk chydy
7}1 J gll/l glh/hg] gJ 5m1 my

This number is clearly basis-independent because it is obtained by multiple
contractions of a product of tensors.

Exercise 2.3.3. If B={wv1, ..., Vn} is an orthonormal basis of V/, then
(Vi @@V, oV © - @ vk}
is an orthonormal basis of 777"(V). If g is positive-definite on V' then it is so
also on T (V).

More generally, the following holds. We denote the scalar product as (, ).

Exercise 2.3.4. For any choice of v;, w; € V and vk, w! € V* we have

h k
(@ vp@VIR Vv Mm@ Wl @ ewk) = H(v,-, w;) H(Vj- w!).
i=1 j=1
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2.4. The symmetric and exterior algebras

Symmetric and antisymmetric matrices play an important role in linear
algebra: both concepts can be generalised to tensors.

2.4.1. Symmetric and antisymmetric tensors. \We now introduce two
special types of covariant tensors.

Definition 2.4.1. A tensor T € T*(V) is symmetric if

(4) T(ul,...,uk) = T(uo(l),...,ug(k))

for every vectors uq, ..., ux € V and every permutation o € Si. On the other
hand T is antisymmetric if

T(u1, ..., k) =sgn(0)T (Up(). - - - Uo(k))

for every vectors uq, . . ., ux € V and every permutation o € Si. Heresgn(o) =
41 is the sign of the permutation o.

Both conditions are very easily expressed in coordinates. As usual we fix

any basis B = {vi, ..., vy} on V and consider the coordinates of T with respect
to B.
Proposition 2.4.2. A tensor T € TK(V) is
e symmetric <= T; . = ng(l) ,,,,, ol Vi, ..., ik, Yo,
e antisymmetric <= T, = sgn(a)T,-a(l) _____ oy V10 - ooy Ik, VO

Proof. We prove the first sentence, the second is analogous. Recall that

,..., jk:T(Vl-ly---,Vl-k).

Therefore we must prove that (4) holds for all vectors <= it holds for the
vectors in the basis B. This is left as an exercise. O

For instance a tensor T;; is symmetric if T;; = T;; and antisymmetric if
Tij=—Tj, forall 1</, <n.

Example 2.4.3. Every scalar product on V is a symmetric tensor g €
T2(V). The determinant is an antisymmetric tensor det € 7"(R").

Remark 2.4.4. If T is antisymmetric and the indices /1, ..., ik are not all
distinct, then T;

2.4.2. Symmetrisation and antisymmetrisation of tensors. If a ten-
sor T is not (anti-)symmetric, we can transform it by brute force into an
(anti-)symmetric one.

Let T € TX(V) be a covariant tensor. The symmetrisation of T is the
tensor S(T) € T*(V) defined by averaging T on permutations as follows:

S(T)(Vl, e, Vk) = % Z T(Vg(l), A Va(k))-

oESK
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Analogously, the antisymmetrisation of T is the tensor
1
A(T)(ve, ..., Vi) = 7 Z sgn(o)T (Vo1). - - - Vo(k))-
ogESK

Exercise 2.4.5. The tensors S(T) and A(T) are indeed symmetric and
antisymmetric, respectively. We have S(T) = T <= T is symmetric and
A(T) =T <= T is antisymmetric.

In coordinates with respect to some basis we have

1
S(T)/l ..... Kk — ﬂ Z 7—/5,(1) ..... /a(k)’

’ oESK
The members on the right can be written more concisely as

The round or square brackets indicate that we symmetrise or antisymmetrise
by summing along all permutations on the indices (and dividing by k!).

2.4.3. The symmetric and antisymmetric algebras. \We now introduce
two more algebras associated to V. For every k > 0 we denote by

SKV), AKV)

the vector subspace of 7%(V) consisting of all the symmetric or antisymmetric
tensors, respectively. We now define

S*(vV) =P skv). N (V) = P N(V).
k>0 k>0

These are both vector subspaces of the covariant tensor algebra 7*(V). These
are not subalgebras of 7*(V), because they are not closed under ®. Note that

SV)=A (V) =TH (V) =V*
but S?(V) and A?(V) are strictly smaller than 72(V) if dimV > 2, because

of the following:

Exercise 2.4.6. If v*, w* € V* are independent, then v* ® w* is neither
symmetric nor antisymmetric. Moreover

1 1
S(vfew*) = 5(v*®w*+w*®v*), Alvi@w") = 5(v*®w*— w*®@v™).

The spaces S*(V') and A*(V) are actually algebras, but with some products
different from ®, that we now define. The symmetrised product of some
covariant tensors Tt € TK(V), ..., Tme Thkn(V)is

kol km!

Tho- - oTm= S(T'®--&T™)
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while their antisymmetrised product

(ki + -+ km)
Kyl k!

|
TN AT = AT - @T™).

For instance if v*, w* € V* then

vViow  =viowt+wte v, ViAw F =vieow —wte v,
Note that
viow' =w* o v, VAW = —wt AV
More generally, if vi, . .., v € V* then
V1®"'®Vm: Z VG(1)®...®VU(m)’
OESH
Vl A A VITI — Z Sgn(o-)va(l) R R VU(m).
OESH

Using coordinates with respect to some basis B of V we can write

(p+q)!

(T@U)il ,,,,, Ip+q — qu! T(/1 ..... /,,Uip+1 ..... iptq)
(p+q)!

(TAU),..., e = " pigt o Ur el

Proposition 2.4.7. The vector spaces S*(V') and N*(V') form two associa-
tive algebras with the products @ and A respectively.

Proof. Everything is immediate except associativity. We prove it for A,
the other is analogous. Pick S € AP, T € A9, and U € A". In coordinates

U

Loedpta Dt dptgtr]

G Ip Tip+1 ----- ip+q] Uip+q+1 ----- Iptq+r]

~ (p+9)plg!r!
1
B plq'r! 7_/P+1 ----- Ip+q Uip+q+1 ----- Ip+q+r]

2(5/\7_/\U),'1

li1.mip

----- Ipt+atr

The third equality follows from the fact that the same permutation in the
symmetric group Spq+r IS obtained (p+ q)! times. Analogously we can prove
that SA(T AU) =S AT AU. The proof is complete. O

The two algebras S*(V) and A*(V) are called the covariant symmetric
algebra and the covariant exterior algebra. The products ® and A are called
the symmetric and exterior product.
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2.4.4. Dimensions. \We now construct some standard basis for S¥(V/)
and A¥(V) and calculate their dimensions. Let B = {vi, ..., Vp} be a basis for
V and B* = {vi, ..., v} the dual basis of V*.

Proposition 2.4.8. A basis for SK(V) is
{v’i@-”@vik

. < ik < nvary. A basis for NK(V) is
{viA- AV}

where 1 < < ..
where 1 < iy < ... < < nvary.
Proof. This is a consequence of Propositions 2.4.2 and Remark 2.4.4. [

Example 2.4.9. Let e1, e; be the canonical basis for R? and el, e® be the
dual basis. The following is a basis for S?(R?):

etoel, eloe? eoe’
The following is a basis for A%(R3):
etne?, etned, ePAéd.

Corollary 2.4.10. We have

dim S¥(V) = (”Jrf_l),
n .

dim AK(V) = < K ) tk<n,
0 ifk>n

Corollary 2.4.11. The algebra S*(V') is commutative, while N*(V) is anti-
commutative, that is
TAU=(—1)PIUUAT
for every T € NP(V) and U € N9(V).

Proof. We prove anticommutativity. It suffices to prove this when T, U
are basis elements, that is we must show that

(VEA - AVEYA(VEA - AVIT) = (=1)PI(VEA - AVII) A (VEA - A VP,
This equality follows from applying pg times the simple equality
VIA WS = —wF AV
The proof is complete. O
Corollary 2.4.12. If T € N*(V) with odd k then T AT = 0.
Corollary 2.4.13. We have dim S*(V) = oo and dim A* (V) = 2".
Exercise 2.4.14. The algebras S*(V) and R[xy, ..., Xp] are isomorphic.

In the rest of this section we will focus mostly on the exterior algebra
A*(V), that will be a fundamental tool in this book.
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2.4.5. The determinant line. One of the most important aspect of the
theory, that will have important applications in the next chapters, is the fol-
lowing — apparently innocuous — fact:

dimA"(V) = 1.
The space A"(V) is called the determinant line. If vi, ..., v is a basis of V*,
then a generator for A"(V) is the tensor
VEA AV

In fact, we already know that there is only one alternating n-linear form in V
up to rescaling — this is exactly where the determinant comes from. When
V =R", we get
det=elA---ne"

where et, ..., e is the canonical basis of (R")* = R"”. Note however that
A"(V) has no canonical generator unless we make some choice, like for instance
a basis of V.

Let now v, ..., v and w!,..., w" be two basis of V* and let A the
change of basis matrix, so that v/ = A}WJ.

Proposition 2.4.15. The following equality holds:
VIA- AV =detA-wl A AW
Proof. We have
vl/\--'/\V”:A}l---Aj’lWh/\'--/\Wf"

oES,

= Z sgn(a)Aé(l) e Ag(n)w1 A Aw'
oESH
=detA-wiA--- AW
The proof is complete. O
We have discovered here another important fact: the equality looks like

the formula in the change of variables in multiple integrals, see Section 1.3.8.
This will allow us to connect alternating tensors with integration and volume.

2.4.6. Contractions. Let v € V be a fixed vector. By contracting with
v we may define a linear map

Lo NS(V) — ALV,

The linear map sends T € AX(V) to the antisymmetric tensor ¢, (T) that acts
on vectors as follows:

()i, ovie1) = T(vove, oo vir).

It is immediate to check that ¢, (T) is indeed antisymmetric.
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Exercise 2.4.16. The following hold:
Lyoty, =0, Ly Oly = —Ly OLy.
2.4.7. Totally decomposable antisymmetric tensors. An antisymmetric
tensor T € AK(V) is totally decomposable if it may be written as
T=wlA---Awk

for some covectors wl, ..., wk € V*. This notion is similar to that of a pure
tensor, only with the product A instead of ®.

Exercise 2.4.17. The element T = w! A --- A w¥ is non-zero <= the
covectors wl, ..., wk are linearly independent.

As with pure tensors, not all the antisymmetric tensors are totally decom-
posable:

Exercise 2.4.18. If vy, v, v3, v4 € V* are linearly independent then
Vi AVo+ V3 A vy
is not totally decomposable.
Hint. If w is totally decomposable, then w A w = 0. [l

2.4.8. Contravariant versions. We have established the theory of sym-
metric and antisymmetric covariant tensors, but actually everything we said
also holds verbatim for the contravariant tensors: we can therefore denote by

Sk(V),  A(V)

the subspaces of 7x(V) consisting of all the symmetric or antisymmetric ten-
sors, and define

S«(V) =P Su(v), A(V) = P Me(V).
k>0 k>0
These form two algebras, called the contravariant symmetric algebra and con-
travariant exterior algebra.

2.4.9. Linear maps. Every linear map L: V — W between vector spaces
induces some algebra homomorphisms

Li: (V) — T.(W), L*: T*(W) — T*(V),

Li: Su(V) — S.(W), L*: S* (W) — S*(V),

Li: A(V) — A(W), L*: N*(W) — A" (V).
The passing from L to L, or L* is functorial, that is

(L'oL)y=L,olL,, id, = id,
(L'oL)*=L*o (L"), id* = id.

From this we deduce that if L is an isomorphism then L, is an isomorphism.
More than that:
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e if L is injective then L, is injective and L* is surjective,

e if L is surjective then L, is surjective and L* injective.
This holds because if L is injective (surjective) thereis a linear map L": W — V
such that L’oL =idy, (LoL’ = idy,), as one proves with standard linear algebra.

Remark 2.4.19. The terms covariance and its opposite contravariance are
used for similar objects in two quite different contexts, and this is a perma-
nent source of confusion. In general, a mathematical entity is “covariant”
if it changes “in the same way” as some other preferred entity when some
modification is made. But which modifications are we considering here?

Physicists are interested in changes of frame, that is of basis, and they note
that if we change a basis with a matrix A the coordinates of a vector change
with B = A~!, that is contravariantly. On the other hand, mathematicians
are mostly interested in functoriality, and note that a map L: V — W induces
maps L.: To(V) = To(W) and L*: T*(W) — T*(V) on tensors, and they
would tend to call contravariant the second types of tensors because arrows
are reversed. Unfortunately, the physicist and mathematicians conventions do
not match.

We have chosen here the physicist convention, but we try to use the terms
covariant and contravariant as little as possible. The reader can ignore all these
matters — in fact, these issues start to annoy you only when you decide to write
a textbook, and you are forced to choose a notation that is both reasonable
and consistent.

2.4.10. Non-degenerate bilinear pairing. Let V' have dimension n.

Exercise 2.4.20. Given a non-zero a € AK(V), there is a B € A" K(V)
with a AB # 0 in A7(V).

Recall that A"(V') is isomorphic to R. From this exercise we deduce easily
that the bilinear pairing
A(V) x A=K (V) — A"(V)
(o, B) — aAB
is non-degenerate; that is, the induced map
AK(V) — Hom (A"=K(V), A"(V))
ar— (B—aAB)

is an isomorphism. Note that A”(V) is isomorphic to R, but not canonically:
to fix an isomorphism we need to equip V with some additional structure, as
we will soon see.

2.4.11. The rescaled scalar product on the exterior algebra. Let V
have dimension n and be equipped with a scalar product g. This induces a
scalar product g on each tensor space 7*(V) and hence on A"(V).
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Exercise 2.4.21. Let vi, ... vk, wl, ..., wk € V* be covectors. We have
g(Vr A AVE WA A WR) = Kkl det(v!, w).

Hint. Use Exercise 2.3.4. O

The k! factor in the formula is slightly annoying, so it is customary to
replace g with the rescaled scalar product

(@.6) = ;9(c.5).
Now we get the simpler formula
(WEA - AVE WA AWE) = det(v, W),
In particular, if v1,..., v is an orthonormal basis of covectors the elements
VA A

with i; < --- < i, form an orthonormal basis for AK(V).

2.5. Orientation

We now introduce and discuss the notion of orientation on a real vector
space V and its consequences on the tensor spaces, and in particular on the
exterior algebra.

2.5.1. Definition. Let us say that two basis of V' are cooriented if the
change of basis matrix relating them has positive determinant. Being coori-
ented is an equivalence relation on the set of all the basis in V/, and one checks
immediately that we get precisely two equivalence classes of basis.

Definition 2.5.1. An orientation on V is the choice of one of these two
equivalence classes.

If V is oriented, the bases belonging to the preferred equivalence class
are called positive, and the other negative. Of course V has two distinct
orientations. The space R" has a canonical orientation given by the canonical
basis, but a space V may not have a canonical orientation in general.

Exercise 2.5.2. If V = U®W, then an orientation on any two of the spaces
U, V, W induces an orientation on the third, by requiring that, for every positive
basis uq, ..., ux of U and wy, ..., w, of W, the basis uq, ..., Uy, wq, ..., wp of
V is also positive.
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2.5.2. Via the determinant line. An orientation on V induces one on V*
and vice-versa, as follows: we require a basis on V to be positive <= its dual
basis on V* is positive.

Proposition 2.4.15 in turn shows that an orientation on V* induces one
on A"(V) and vice-versa: a basis v!, ..., v" is positive in V* <= the element
vi A~ A v is a positive basis for the line A"(V).

Summing everything up, we could define an orientation on V' to be an
orientation on the determinant line A"(V).

2.5.3. Scalar product. If V is equipped with both an orientation and a
scalar product g, then we get for free a canonical generator w for the deter-
minant line A"(V) by taking

w=vIA- AV

where v+, ..., v is any positive orthonormal basis of V*. The generator w
does not depend on the basis, because any two such basis are related by a
matrix A with det A = 1 and hence Proposition 2.4.15 applies. The element
w is also determined by requiring that

w(vi,...,vp) =1

on every positive orthonormal basis vy, ..., v, of V.

2.5.4. The Hodge star operator. Let VV be equipped with both an ori-
entation and a scalar product of some signature (p, m). This induces a scalar
product (,) on each AK(V), rescaled as in Section 2.4.11. Let w be the canon-

ical generator of A"(V). Note that (w,w) = (—1)".
The Hodge star operator is the linear map

w1 N(V) — ATK(V)
that sends B8 € AK(V) to the unique 3 € A"~%(V) such that
a(x0) = (o, Blw

for all a € A*(V). The map is well-defined because the bilinear pairing A is
non-degenerate, see Section 2.4.10.

Exercise 2.5.3. The following hold:
(1) If v, ..., v"is a positive orthonormal basis for \/*, then
f(VEA - AV = (1) VR A A"

where m’ is the number of vectors in vI, ..., vk with (v/ v/) = —1.
(2) The map * is an isomorphism. If m is even the map * is an isometry.
(3) For every B € AK(V) we have % x 8 = (—1)k(n=k)+mg,
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If n = 2k the Hodge star operator *: AK(V) — AX(V) is an automorphism.

If moreover k is even (so n is divisible by four) and m is also even (for instance,

if the scalar product is positive definite), the exercise says that * is an isometric

involution. Since %2 = id, the vector space /\k(V) splits into its +1 eigenspaces
ANV = A(V) @ AR (V)

where o € N§ (V) <= *a = La. The elements in A% (V) and AL(V) are
called respectively self-dual and anti-self-dual.

Exercise 2.5.4. If dimV = 4, the scalar product g is positive definite, and

vl v2, v3, v* is a positive orthonormal basis for V*, then a basis for A2 (V) is

vl/\v2+v3/\v4, vl/\v3—i—v4/\v2, vl/\v4+v2/\v3.
A basis for A% (V) is
vl/\v2—v3/\v4, vl/\v3—v4/\v2, vl/\v4—v2/\v3.
2.6. Grassmannians

After many pages of algebra, we now would like to see some geometric
applications of the structures that we have just introduced. Here is one.

2.6.1. Definition. Let V be a real vector space of dimension n. Remem-
ber that the projective space P(V') is the set of all the vector lines in V. More
generally, fix 0 < k < n=dimV.

Definition 2.6.1. The Grassmannian Grg(V) is the set consisting of all the
k-dimensional vector subspaces W C V.

Recall that every W C V determines a subspace W° C V* consisting of all
the functionals that vanish on W. We have dimW?° = n — dimW. The sets
Gri(V) and Gr,—x(V*) may thus be identified canonically. In particular

Gl’l(\/) = IP)(V), Gl’nfl(\/) = IP)(\/*)
The simplest new interesting set to investigate is the Grassmannian Gra(R*)

of vector planes in R*. How can we study such an object?

2.6.2. The Pliicker embedding. A generic Grassmannian is not a pro-
jective space in any sense, but we now show that it can be embedded in some
(bigger) projective space. We do this using the exterior algebra.

For every k-dimensional subspace W C V of V we have the inclusion map
L: W — V which induces an injective linear map

/\k(W) — /\k(\/)

Since dim Ag(W) = 1, the image of this map is a line in A,(V) that depends
only on W. By sending W to this line we get a map

Grk(V) — P(/\k(\/))
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called the Pliicker embedding. Concretely, the map sends W C V to
[wi A A wg]
where wy, ..., Wy is any basis of W.
Proposition 2.6.2. The Pliicker embedding is injective.

Proof. Consider W # W', Let wy, ..., wi and wy, ..., w, be any basis of
W and W’. Pick any vector w € W\ W’. By Exercise 2.4.17 we have

wi A Awg Aw =0, Wi A Awp Aw # 0.
Therefore the tensors wy A--- Awj and wy A--- Awj, are not proportional. [

For instance, we get the Pliicker embedding
4
Gra(R*) — P(Ay(R%)) = IP(R( 2 )) — RPS.
This map is clearly not surjective because of Exercise 2.4.18.

2.6.3. The Veronese embedding. Here is another geometric application.
Fix k > 0 and consider the natural map V — Sk(V) defined as

Ve VvEO---OV.
—_————
k

This map is not linear in general, however it is injective (exercise) and it also
induces an injective map between projective spaces

P(V) < P(S*(V))
called the Veronese embedding. This map is not a projective map in general.

Exercise 2.6.3. If V = R™! and we use the canonical basis, we get

P" s PN
where N = ("1*) — 1. The map sends [xo, . . ., Xn] to [, x5 1xq, .. ] where
the square brackets contain all the possible degree-k monomials in the variables
X0y - s Xp. For instance for k = n =2 we get

P? — P°

given by
[x,vy,z] — [x2,y2, 22,Xy,yz, zx].
For n =1 we get
P! — PX
given by
[x, y] — x5, x5y, . xy "ty
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2.7. Exercises

Exercise 2.7.1. Let U, V,W be finite-dimensional vector spaces. Show that there
is a canonical isomorphism

Mult(U, V; W) — Hom(U, Hom(V, W)).

Exercise 2.7.2. Let V be a finite-dimensional vector space. Show that every
tensor T of type (0,2) may be written uniquely as a sum of a symmetric and an
antisymmetric tensor. Show that this is not true for tensors of type (0, n) with n > 3.

Exercise 2.7.3. Let V be a finite-dimensional vector space. Let T be a tensor of
type (0, k). Prove the following equivalences:
e T is antisymmetric <= T(vy,..., vk) = 0 if two of the v;'s coincide.
e S(M=0<=T(v,..., v) =0 for every v € V.
Note that the two conditions are stronger than simply requiring that (in some coor-
dinates) Tj,....i. = 0 whenever two or all the indices coincide (respectively).

Exercise 2.7.4. Let V be a vector space of dimension n and v € V a fixed
vector. Show that the contraction ¢, may be characterised as the unique linear map
Ly N* — AF1 that satisfies these axioms for all k:

(1) for k =1 we have ¢, (w*) = w*(v);
(2) for every T € AK(V) and U € A*(V) we get

L(TAU) =0, (T) AU+ (=1DXT A, (U).

Exercise 2.7.5. Let V be equipped with both an orientation and a scalar product
of some signature (p, m).

(1) For a (not necessarily orthonormal) basis v?, ..., v of V we get
\/ | detg| ) ) .
(5) « (VEA--- AV = mgljl . ..gkjkeﬁmjnvml A A
Here €;,...;, is the Levi-Civita symbol, which is O if the indices ji, ..., Jn are

not distinct, and equals the sign of the permutation (jy, ..., Jn) if they are
distinct. In coordinates we get

V/|detg| . y
(*T)jk+1 ,,,,, Jn = k! gllﬂ T glkjkejl'"jnT/
If we use g to raise indices (as usual) we may write this simply as

V| detg| o
(*T)jk+1 = EJ'1'~jnTJ1 """ e

----- Jn T k!
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Differential topology






CHAPTER 3

Smooth manifolds

3.1. Smooth manifolds

We introduce here the notion of smooth manifold, the main protagonist
of the book.

3.1.1. Definition. The definition of topological manifold that we have
proposed in Section 1.1.8 is simple but also very poor, and it is quite hard to
employ it concretely: for instance, it is already non obvious to answer such a
natural question as whether R” and R are homeomorphic when n #= m. To
make life easier, we enrich the definition by adding a smooth structure that
exploits the power of differential calculus.

Let M be a topological n-manifold. A chart is a homeomorphism ¢: U —
V from some open set U C M onto an open set V C R”. The inverse map
@~V — Uis called a parametrisation. An atlas on M is a set {¢;} of charts
@;: U — Vi that cover M, that is such that UU; = M.

Let {¢;} be an atlas on M. Whenever U; N U; # @, we define a transition
map

wij: pi(UinU;) — ¢;(Uiny))
by setting ¢;; = (pjo<pl.*1. The reader should visualise this definition by looking
at Figure 3.1. Note that both the domain and codomain of ;; are open sets of
R", and hence it makes perfectly sense to ask whether the transition functions
p;j are smooth. We say that the atlas is smooth if all the transition functions
p;j are smooth. Here is the most important definition of the book:

Definition 3.1.1. A smooth n-manifold is a topological n-manifold equipped
with a smooth atlas.

To be more precise, we allow the same smooth manifold to be described by
different atlases, as follows: we say that two smooth atlases {¢;} and {¢}} are
compatible if their union is again a smooth atlas; compatibility is an equivalent
relation and we define a smooth structure on a topological manifold M to be
an equivalence class of smooth atlases on M. The rigorous definition of a
smooth manifold is a topological manifold M with a smooth structure on it.

Remark 3.1.2. The union of all the smooth atlases in M compatible with
a given one is again a compatible smooth atlas, called a maximal atlas. The
maximal atlas is uniquely determined by the smooth structure: hence one can

55
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Figure 3.1. Two overlapping charts ¢; and ¢; induce a transition func-
tion @;; = ;0 ;.

Figure 3.2. An atlas on a compact manifold..

also define a smooth manifold to be a topological manifold equipped with a

maximal atlas, without using equivalence classes.

As a first example, every open subset U C R” is naturally a smooth mani-
fold, with an atlas that consists of a unique chart: the identity map U — U.

The open subsets of R” can be pretty complicated, but they are never
compact. To construct some compact smooth manifolds we now build some

atlases as in Figure 3.2.

3.1.2. Spheres. Recall that the unit sphere is
S"={xeR™ | |x|| =1}.

This is the prototypical example of a compact smooth manifold. To build a

smooth atlas on S”, we may consider the hemispheres

Uf ={xes"| x>0}, U~ ={xes"|x <0}
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Figure 3.3. The stereographic projection sends a point x € S"\ {N} to
the point ¢(x) obtained by intersecting the line / containing N and x with
the horizontal hyperplane x™* = —1.

fori=1,..., n—+1 and define a chart (p,i: U,-“—L — B" by forgetting x', that is
et XY = (A X XD,
Proposition 3.1.3. These charts define a smooth atlas on S".

Proof. The inverse ()71 is

Ghy e (TSR Yy

+

The transition functions are compositions <p?E ) ((pj )~ and are smooth. O

We have equipped S with the structure of a smooth manifold. As we said,
the same smooth structure on S” can be built via a different atlas: for instance
we describe one now that contains only two charts. Consider the north pole
N=(0,..., 0,1) in S" and the stereographic projection @y : S"\ {N} — R”",

on(xt . X = ﬁ(xl, oax).
The geometric interpretation of the stereographic projection is illustrated in
Figure 3.3. The map ¢p is a homeomorphism, so in particular S\ {N} is
homeomorphic to R”. We can analogously define a stereographic projection
s via the south pole S = (0,...,0,—1), and deduce that S" \ {S} is also
homeomorphic to R”.

Exercise 3.1.4. The two charts {ps, @y} form a smooth atlas for S”,
compatible with the one defined above.

The atlases {(p,i} and {¢s, oy} define the same smooth structure on S”.

Remark 3.1.5. The circle ST is quite special: we can identify C with R? and
write ST = {e'® | @ € R}. The universal covering R — S1, 8+ e/ is of course
not injective, but it furnishes an atlas of natural charts when restricted to the
open segments (a, b) with b — a < 2. The transition maps are translations.
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Figure 3.4. The torus S* x S' embedded in R®. Every point (e, ™)
S' x S! of the torus may be interpreted on the figure as a point with (blue)
longitude 6 and (red) latitude . Note that the latitude and longitude
behave very nicely on the torus, as opposite to the sphere where longitude
is ambiguous at the poles. Cartographers would enjoy to live on a torus-
shaped planet.

3.1.3. Projective spaces. \We now consider the real projective space RP”.
Recall the every point in RP" has some homogeneous coordinates [xg, . . ., Xa].

For i = 0,...,n we set U, C RP” to be the open subset defined by the
inequality x’ # 0. We define a chart ¢;: U; — R" by setting

X0 Xi—1 Xi+1 Xn
(p/([XOv"-vXn]) - (7,,,7’,7’,,;’> .

The inverse parametrisation <p,_1: R" — U; may be written simply as

O 0 Yn) = Vi L Vit Vil

The open subsets Uy, ..., U, cover RP" and the transition functions ¢;; are
clearly smooth: hence the atlas {¢;} defines a smooth structure on RP".

We have discovered that RIP” is naturally a smooth n-manifold. The same
construction works for the complex projective space CP” which is hence a
smooth 2n-manifold: it suffices to identify C"*1 with R?"*2 in the usual way.

Recall that RP” and CP" are connected and compact, see Exercise 1.4.1.

3.1.4. Products. The product M x N of two smooth manifolds M, N of
dimension m, n is naturally a smooth (m + n)-manifold. Indeed, two smooth
atlases {;}, {%,;} on M, N induce a smooth atlas {¢; x 9;} on M x N.

For instance the torus S' x S! is a smooth manifold of dimension two.
We take this opportunity to mention that a 2-manifold is usually called a
surface. We will soon prove that the torus may be conveniently embedded
as a submanifold of R3 as in Figure 3.4: to do so we will need to define the
notion of embedding and of submanifold.

3.1.5. No prior topology. \We now make a useful observation. We note
that it is not strictly necessary to priorly have a topology to define a smooth
manifold structure: we can also proceed directly with atlases as follows.
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Let X be any set. We define a smooth atlas on X to be a collection
of subsets U; covering X and of bijections ¢;: U; — V; onto open subsets
of R”, such that ¢;(U; N U;) is open for every /,j, and the transition maps
Yij = @jo <p,-_1 are smooth wherever they are defined.

Exercise 3.1.6. There is a unique topology on X such that every U; is open
and every @;: Ui — V; is a homeomorphism. In this topology, a subset U C X
is open <= the sets @;(U N U;) are open for every i.

Therefore a smooth atlas on a set X defines a compatible topology. If
this topology is Hausdorff and second-countable, this gives a smooth manifold
structure on X.

3.1.6. Grassmannians. \We apply the “no prior topology” philosophy to
define a smooth manifold structure on the Grassmannian.

Remember from Section 2.6 that the Grassmannian Gry(V) is the set of
all k-dimensional vector subspaces W C V. We now define a smooth manifold
structure on Grk (V) by assigning it a smooth atlas A.

For every basis B ={v1, ..., vy} of V, we define the subspaces

W =Span(vy,..., ), Z=5Span(Vki1,...,Vp).
Of course V=W @ Z. Now we consider the set
Ug={WcVv|v=waoZz}.
The set Up is a subset of Gri (V) that contains W. We now define a map
fg: Zx---x2Z— Up

k
(z1,...,2¢) — Span(vy + z1, ..., vk + 2k).

It is a linear algebra exercise to show that fg is a bijection. The given basis
VKdls -« o s v, allows us to identify Z with R"%, so we get a bijection

fz: Rk Ug.

The atlas A for Gry(V) is formed by all the maps f;': Us — RUKk a5
B varies among all the basis of V. It is now an exercise to show that the
transition maps are defined on open sets and smooth. So we have given
Gri(V) the structure of a smooth manifold of dimension (n — k)k.

3.2. Smooth maps

Every honest category of objects has its morphisms. We have defined the
smooth manifolds, and we now introduce the right kind of maps between them.

We will henceforth use the following convention: if M is a given smooth
manifold, we just call a chart on M any chart ¢: U — V compatible with the
smooth structure on M.
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3.2.1. Definition. We say that a map f: M — N between two smooth
manifolds is smooth if it is so when read along some charts. This means that
for every x € M there are some charts ¢: U — V and ¢: W — Z of M and
N, with x € U and f(U) C W, such that the map

Yofop iV —2Z

is smooth. Note that the manifolds M and N may have different dimensions.
It may be useful to visualise this definition via a commutative diagram:

U—sw

of s

V——7
F
Here F =) o f o ¢! should be thought as “the map f read on charts”.

Remark 3.2.1. If f: M — N is smooth then 9o f oo~ 1 is also smooth for
any charts ¢ and 1 as above. This s a typical situation: if something is smooth
on some charts that cover M, it is so on all charts, because the transition
functions are smooth and the composition of smooth maps is smooth.

A curve in M is a smooth map v: | — M defined on some open interval
| C R, that may be bounded or unbounded. Curves play an important role in
differential topology and geometry.

Exercise 3.2.2. The inclusion S” < R"*1 is a smooth map.

The space of all the smooth maps M — N is usually denoted by C*°(M, N).
We will often encounter the space C*°(M,R), written as C>°(M) for short.
We note that C°°(M) is a real commutative algebra.

3.2.2. Diffeomorphisms. A smooth map f: M — N is a diffeomorphism
if it is a bijection and its inverse f~': N — M is also smooth. Of course a
diffeomorphism is also a homeomorphism, but the converse is often not true.

Example 3.2.3. The map f: B" — R" defined as

X
f(x) = ——
1—|Ix]

is a diffeomorphism. Its inverse is
X

9(x) = 7T||X||2

Two manifolds M, N are diffeomorphic if there is a diffeomorphism f: M —
N. Being diffeomorphic is clearly an equivalence relation. The open ball of
radius r > 0 centred at xg € R” is by definition

B(xo,r) ={x €R"| |Ix — xoll < r}.
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Exercise 3.2.4. Any two open balls in R” are diffeomorphic.
As a consequence, every open ball in R” is diffeomorphic to R” itself.

Exercise 3.2.5. The antipodal map ¢: S” — S", 1(x) = —x is a diffeomor-
phism.

Example 3.2.6. The following diffeomorphisms hold:
RP' = S!,  CP'=S°
These are obtained as compositions
RP! — RU {o0} — St

CP! — CU {0} — S
where the first map sends [xg, X1] to x1/xp, and the second is the stereographic
projection. All the maps are clearly 1-1 and we only need to check that the
composition is smooth, and with smooth inverse. Everything is obvious except
near the point [0,1]. In the complex case, if we take the parametrisation
z + [z,1], by calculating we find (exercise) that the map is

[z,1] — (4Rz, 43z, 1 — 4)z?) .

1
1+ 4|z|?

So it is smooth and has smooth inverse.

3.3. Partitions of unity

We now introduce a powerful tool that may look quite technical at a
first reading, but which will have spectacular consequences in the next pages.
The general idea is that smooth functions are flexible enough to be patched
altogether: one can use bump functions (see Section 1.3.5) to extend smooth
maps from local to global, to approximate continuous maps with smooth maps,
and to do much more in the next chapters.

3.3.1. Adequate atlas. Let M be a smooth manifold. We now introduce
a type of atlas that is very convenient to prove theorems.

Definition 3.3.1. An atlas {@,: U; — R"} for M is adequate if

(1) the open sets {U;} form a locally finite covering of M,
(2) the open subsets V; = Lp,-‘l(B”) also form a covering of M.

We should visualise an adequate atlas as in Figure 3.5: a locally finite set
of patches U; diffeomorphic to R”, each containing a V; = B", such that the
Vi's cover M.

We already know that M is paracompact by Proposition 1.1.24, so every
open covering has a locally finite refinement. We reprove here this fact in a
stronger and more useful form.
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&

U,

U

Us

Figure 3.5. An adequate atlas.

Figure 3.6. A partition of unity on S* (the endpoints should be identified).

Proposition 3.3.2. Let {U;} be an open covering of M. There is an ade-
quate atlas {@y: Wi — R"} such that {W} refines {U;}.

Proof. We readapt the proof of Proposition 1.1.24. We know that M has
an exhaustion by compact subsets {K|}, and we set Ko = K_1 = @.

We construct the atlas inductively on j = 1,2... For every p € K;\
int(Kj_1) there is an open set U; containing p. We fix a chart ¢,: W, — R”
with p € Wp C (int(KjH) \ KJ'_Q) N U;.

The open sets ¢, 1(B") cover the compact set K; \ int(K;_1) as p varies
there, and finitely many of them suffice to cover it. By taking only these
finitely many ¢, for every j = 1,2, ... we get an adequate covering. O

3.3.2. Partition of unity. Let {U;} be an open covering of M.

Definition 3.3.3. A partition of unity subordinate to the open covering
{U;} is a family {p;: M — R} of smooth functions with values in [0, 1], such
that the following hold:

(1) the support of p; is contained in U; for all /,
(2) every x € M has a neighbourhood where all but finitely many of the
pi vanish, and Y _; pi(x) = 1.

See an example in Figure 3.6. What is important for us, is that partitions
of unity exist.

Proposition 3.3.4. For every open covering {U;} of M there is a partition
of unity subordinate to {U;}.

Proof. Fix a smooth bump function A: R” — R with values in [0, 1] such
that A(x) = 1if ||x]| <1 and A(x) =0 if ||x|| > 2, see Section 1.3.5.
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Pick an adequate atlas {¢,: Wi — R"} such that {W} refines {U;}.
Define the function px: M — R as pk(p) = A(wk(p)) if p € W) and zero
otherwise. The family {px} is almost a partition of unity subordinate to {Wk},
except that ZJ p;(p) may be any strictly positive number (note that it is not
zero because the atlas is adequate). To fix this it suffices to set

P (p)

px(p) S 5(0)
The family {px} is a partition of unity subordinate to {Wj}. To get one {n;}
subordinate to {U;} we fix a function i(k) such that Wy C Uj for every k
and we define

ni(p) = Y_ px(p).

i(k)=i

The proof is complete. O

3.3.3. Extension of smooth maps. We show an application of the par-
titions of unity. Let M and N be two smooth manifolds. The fact that we
prove here is already interesting and non-trivial when M is R™ or some open
set in it. We first need to define a notion of smooth map for arbitrary (not
necessarily open) domains.

Definition 3.3.5. Let S C M be any subset. Amap f: S — N is smooth if
it is locally the restriction of smooth functions. That is, for every p € S there
are an open neighbourhood U C M of p and a smooth map g: U — N such

that gluns = fluns.

One may wonder whether the existence of local extensions implies that of
a global one. This is true if the domain is closed and the codomain is R".

Proposition 3.3.6. IfS C M is a closed subset, every smooth map f: S —
R" is the restriction of a smooth map F: M — R”".

Proof. By definition for every p € S there are an open neighbourhood
U(p) and a local extension g,: U(p) — R" of f. Consider the open covering

{U(P)} pes UM\ S}

of M, and pick a partition of unity {p,} U {p} subordinate to it. For every
x € M we define

F() =Y pp(x)gp(x)
where the sum is taken over the finitely many p € M such that p,(x) # 0.

The function F: M — R" is locally a finite sum of smooth functions and is
hence smooth. If x € S we have

FO) =D 0p(x)gp(x) = D op()F (x) = F(x) Y pp(x) = F(x).

Therefore F: M — R" is a smooth global extension of f. O
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Remark 3.3.7. Smooth (not even continuous) extensions cannot exist for
every S C M for obvious reasons. Take for instance M = R and S = R* =
R\ {0} and f: S — R with f(x) =1onx>0and f(x) =0o0n x<0.

Remark 3.3.8. In the proof, the extension F vanishes outside UpesU(p).
In the construction we may take the U(p) to be arbitrarily small: hence we
may require F to vanish outside of an arbitrary open neighbourhood of S.

3.3.4. Approximation of continuous maps. Here is another application
of the partition of unity. Let M be a smooth manifold.

Proposition 3.3.9. Let f: M — R" be a continuous map, whose restriction
fls to some (possibly empty) closed subset S C M is smooth. For every
continuous positive function €: M — R~q there is a smooth map g: M — R"
with f(x) = g(x) for all x € S and ||f(x) — g(x)|| < e(x) for all x € M.

Proof. The map g is easily constructed locally: for every p € M there are
an open neighbourhood U(p) C M and a smooth map g,: U(p) — R" such
that f(x) = gp(x) for all x € U(p) N'S and |[f(x) — gp(x)|| < e(x) for all
x € U(p). (This is proved as follows: if p € S, let g, be an extension of f,
while if p & S simply set g,(x) = f(p) constantly. The second condition is
then achieved by restricting U(p).)

We now paste the g, to a global map by taking a partition of unity {p,}
subordinated to {U(p)} and defining

9(x) = 3" pp(x)gp(x).

The sum is taken over the finitely many p € M. such that p,(x) # 0. The
map g: M — R" is smooth and f(x) = g(x) for all x € S. Moreover

1760 = 90l = || 2 pa(x)F(x) = 3 pp(x)95()|
<D o[ F) = go ()| < D pp(x)e(x) = &(x).
The proof is complete. O

We have proved in particular that every continuous map f: M — R"” may
be approximated by smooth functions.

3.3.5. Smooth exhaustions. Here is another application. A smooth ex-
haustion on a manifold M is a smooth positive function f: M — R~q such
that £=1[0, T] is compact for every T.

Proposition 3.3.10. Every manifold M has a smooth exhaustion.

Proof. Pick a locally finite covering {U;} where U; is compact for every i,
and a subordinated partition of unity p;. The function

f(p)=>_Jpi(p)
j=1
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Figure 3.7. The tangent space T,M is the set of all curves =y passing
through p up to some equivalence relation.

is easily seen to be a smooth exhaustion. O

3.4. Tangent space

Let M be a smooth n-manifold. We now define for every point p € M a
n-dimensional real vector space T,M called the tangent space of M at p.

Heuristically, the tangent space T, M should generalise the intuitive notions
of tangent line to a curve in R? or R3, or of a tangent plane to a surface in
R3, as in Figure 3.7. There is however a problem here in trying to formalise
this idea: our manifold M is an abstract object and is not embedded in some
bigger space like the surface in R3 depicted in the figure! For that reason
we need to define T,M intrinsically, using only the points that are contained
inside M and not outside — since there is no outside at all. We start to do
this by considering all the curves passing through p: as suggested in Figure
3.7, every such curve vy should define somehow a tangent vector v € T,M.
Afterwards we introduce a second more sophisticated definition where every
tangent vector is introduced as a derivation.

3.4.1. Definition via curves. Here is a definition of the tangent space
T,M at p € M. We fix a point p € M and consider all the curves y: [ — M
with 0 € / and y(0) = p. (The open interval / may vary.) We want to define
a notion of tangency of such curves at p. Let ~y1, > be two such curves.

If M = R", the derivative «/(t) makes sense and we say as usual that
71 and <2 are tangent at p if v1(0) = ¥5(0). On a more general M, we
pick a chart ¢: U — V and we say that «y; and -, are tangent at p if the
compositions ¢ oy; and ¢ o7y, are tangent at (p(p).1

This definition is chart-independent, that is it is not influenced by the
choice of @, because a transition map between two different charts transports
tangent curves to tangent curves.

170 be precise, we may need to priorly restrict y; and/or 2 to a smaller interval I’ C /
in order for their images to lie in U.
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The tangency at p is an equivalence relation on the set of all curves y: | —
M with v(0) = p. We are ready to define T,M.

Definition 3.4.1. The tangent space T,M at p € M is the set of all curves
v: 1 — M with 0 € | and (0) = p, considered up to tangency at p.

When M = R", the space T,R" is naturally identified with R" itself, by
transforming every curve =y into its derivative v/(0). We will always write

TR =R".
This holds also for open subsets M C R".

3.4.2. Definition via derivations. \We now propose a more abstract and
quite different definition of the tangent space at a point. It is always good to
understand different equivalent definitions of the same mathematical object:
the reader may choose the one she prefers, but we advise her to try to under-
stand and remember both because, depending on the context, one definition
may be more suitable than the other — for instance to prove theorems.

Let M be a smooth manifold and p € M be a point. A derivation v
at p is an operation that assigns a number v(f) to every smooth function
f: U — R defined in some open neighbourhood U of p, that fulfils the following
requirements:

(1) if f and g agree on a neighbourhood of p, then v(f) = v(g);

(2) vislinear, that is v(Af +ung) = Av(f)+uv(g) for all numbers X, u;

(3) v(fg) = v(fg(p) + f(p)v(9).
In (2) and (3) we suppose that f and g are defined on the same open neigh-
bourhood U. The term “derivation” is used here because the third requirement
looks very much like the Leibniz rule. Here is a fresh new definition of the
tangent space at a point:

Definition 3.4.2. The tangent space T,M is the set of all derivations at p.

A linear combination Av + X'v/ of two derivations v, v/ with A\, \ € R is
again a derivation: therefore the tangent space T,M has a natural structure
of real vector space.

We study the model case M = R". Here every vector v € R" determines
the directional derivative 0, along v, defined as usual as

" of
o f = . VI@'
=1

which fulfils all the requirement (1-3) and is hence a derivation. Conversely:

Proposition 3.4.3. If M = R" every derivation is a directional derivative 0,
along some vector v € R".
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Proof. We set p = 0 for simplicity. By the Taylor formula every smooth
function f can be written near 0 as

of - .
f(x)=f(0)+ Z,: W(O)XI + ,ZJ: hij(x)x'x!
for some smooth functions h;;. If v is a derivation, by applying it to f we get

() = FOVD) + 3 2 Ov() + 3 wlhye')),

The first and third term vanish because of the Leibniz rule (exercise: use
that v(1) = v(1-1)). Therefore v is the partial derivative along the vector

(v(x1), ..., v(x")). O

We have discovered that when M = R" the tangent space T, M is naturally
identified with R". This works also if M C R" is an open subset.

We have shown in particular that the two definitions — via curves and via
derivations — of T,M are equivalent at least for the open subsets M C R". On
a general M, here is a direct way to pass from one definition to the other: for
every curve v: | — M with «(0) = p, we may define a derivation v by setting

v(f) = (f 27)(0).

This gives indeed a 1-1 correspondence between curves up to tangency and
derivations, as one can immediately deduce by taking one chart.

Summing up, we have two equivalent definitions: the one via curves may
look more concrete, but derivations have the advantage of giving T,M a natural
structure of a n-dimensional real vector space.

It is important to note that T,M is a vector space and nothing more than
that: for instance there is no canonical norm or scalar product on T,M, so
it does not make any sense to talk about the lengths of tangent vectors —
tangent vectors have no lengths. We are lucky enough to have a well-defined
vector space and we are content with that. To define lengths we need an
additional structure called metric tensor, that we will introduce later on in the
subsequent chapters.

3.4.3. Differential of a map. We now introduce some kind of derivative
of a smooth map, called differential. The differential is neither a number, nor
a matrix of numbers in any sense: it is “only” a linear function between tangent
spaces that approximates the smooth map at every point.

Let f: M — N be a smooth map between smooth manifolds. The differ-
ential of f at a point p € M is the map

dfy: ToM — Tr(pN

that sends a curve vy with y(0) = p to the curve f o7y.
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The map df, is well-defined, because smooth maps send tangent curves to
tangent curves, as one sees by taking charts. Alternatively, we may use deriva-
tions: the map df,, sends a derivation v € T,M to the derivation df,(v) = v/
that acts as v/(g) = v(go f).

Exercise 3.4.4. The function v/ is indeed a derivation. The two definitions
of df, are equivalent; using the second one we see that dfj, is linear.

The definition of df, is clearly functorial, that is we have

d(gof)p:dgf(p)Odfp, d(id/\/])pzidTp/w.

This implies in particular that the differential df, of a diffeomorphism f: M —
N is invertible at every point p € M.

When M C R™ and N C R" are open subsets, the differential df, of a
smooth map f: M — N is a linear map

df,: R™ — R”

because we have the natural identifications T,M = R™ and T¢,)N =R". Itis
an exercise to check that df, is just the ordinary differential of Section 1.3.1.

3.4.4. On charts. A constant refrain in differential topology and geome-
try is that an abstract highly non-numerical definition becomes a more concrete
numerical object when read on charts. If ¢: U — V and ¢¥: W — Z are charts
of M and N with f(U) C W, then we may consider the commutative diagram

U—ow

wl iw

V7
F

where F =1 ofo1isthe map f read on charts. By taking differentials we
find for every p € U another commutative diagram of linear maps

df,
TpM e Tf(p)/\/

dwpl ldﬂ'f(p)
R™ R"

dFy(p)

and dFy ) should be thought as “the differential df, read on charts”. Com-
mutative diagrams are useful because they contain a lot of information in a
single picture. The vertical arrows are isomorphisms, so one can fully recover
df, by looking at dF,,y. In particular dF,(,) has the same rank of df,, and
is injective/surjective <= df, is.

It is convenient to look at df,) because it is a rather familiar object:
being the differential of a smooth map F: V — Z between open sets V C R™
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and Z C R", the differential dF,(,) is a quite reassuring Jacobian nx m matrix
whose entries vary smoothly with respect to the point p(p) € V.

Example 3.4.5. The Veronese embedding f: RP! — RP? is
f([x0, x1]) = [X§, xox1, x5,

see Exercise 2.6.3. The map sends the open subset Ug = {xp # 0} C RP! into
Wo = {xo # 0} C RP?. We use the coordinate charts ¢: Uy — R, [1, t]
t and ¥: Wy — R? [1,t,u] — (t,u). Read on these charts the map f
transforms into a map F =9 ofop 1: R — R?, thatis

F(t) = (t, t2).

Its differential is (1, 2t), so in particular it is injective. Analogously the chart
Ur = {x1 # 0} C RP! injects into W = {x» # 0} C RP? like t + (t°,t). We
have discovered that df, is injective for every p € RP*.

Exercise 3.4.6. For every k, n and every p € RP”, show that the differential
df, of the Veronese embedding f: P" — PN of Exercise 2.6.3 is injective.

3.4.5. Products. Let M x N be a product of smooth manifolds of dimen-
sions m and n. For every (p, q) € M x N there is a natural identification

T(p.q)(M X N) =Tp,M x TyN.

This identification is immediate using the definition of tangent spaces via
curves, since a curve in M x N is the union of two curves in M and N.

Exercise 3.4.7. The Segre embedding f: RP! x RP! < RP3 is

([Xo,X1]v [YO,yl]) — [XoY¥0, Xoy1, X1Y0, X1y1].

See Section 2.1.5. Prove that for every (p, q) € RP! x RP! the differential
df(p.q) Is injective.

3.4.6. Velocity of a curve. If v: | — M is a curve, for every t € | we
get a differential dvy;: TR — T, )M. Since TR = R we may simply write
dvi: R — TynM and it makes sense to define the velocity of -y at the time
t as the tangent vector

v (t) = dv(1) € TyeyM.

If we use the description of T,M via curves, the definition of the velocity is
rather tautological: the velocity of a curve at a point is the curve itself. Recall
as we said above that there is no norm in T, )M, hence there is no way to
quantify the “speed” of «/(t) as a number — except when it is zero.
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3.4.7. Inverse Function Theorem. The Inverse Function Theorem 1.3.3
applies to this context. We say that f: M — N is a local diffeomorphism at
p € M if there is an open neighbourhood U C M of p such that f(U) C N is
open and f|y: U — f(U) is a diffeomorphism.

Theorem 3.4.8. A smooth map f: M — N is a local diffefomorphism at
p € M <= its differential df, is invertible.

Proof. Apply Theorem 1.3.3 to 9 o f o ¢~ ! for some charts ¢, . O

Exercise 3.4.9. Consider the map S” — RP” that sends x to [x]. Prove
that it is a local diffeomorphism.

3.5. Smooth coverings

In the smooth manifolds setting it is natural to consider topological cover-
ings that are also compatible with the smooth structures, and these are called
smooth coverings.

3.5.1. Definition. Let M and N be two smooth manifolds of the same
dimension.

Definition 3.5.1. A smooth covering is a local diffeomorphism f: M — N
between smooth manifolds that is also a topological covering.

For instance, the map R — S!, t — et is a smooth covering of infinite
degree, and the map S” — RP" of Exercise 3.4.9 is a smooth covering of
degree two. To construct a local diffeomorphism that is not covering, pick any
covering M — N (for instance, a diffeomorphism) and remove some random
closed subset from the domain.

3.5.2. Surfaces. As an example, one may use a bit of complex analysis
to construct many non-trivial smooth coverings between open subsets of C.

Exercise 3.5.2. Let p(z) € C[z] be a complex polynomial of some degree
d > 1. Consider theset S = {z € C | p/(z) = 0}, that has cardinality at most
d — 1. The restriction

p: C\p~H(p(S)) — C\ p(S)
is a smooth covering of degree d.

For instance, the map f(z) = z" is a degree-n smooth covering f: C* —
C* where we indicate C* = C \ {0}.
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3.5.3. From topological to smooth coverings. Let M — M be a cov-
ering of topological spaces. If M has a smooth manifold structure, we already
know from Exercise 1.2.3 that M is a topological manifold; more than that:

Proposition 3.5.3. There is a unique smooth structure on M such that
p: M — M is a smooth covering.

Proof. For every chart ¢: U — V of M and every open subset Ocm
such that p|L~,: U= Uis a homeomorphism, we assign the chart ¢ o p|g to
M. These charts form a smooth atlas on M and p is a smooth covering.
Conversely, since p is a local diffeomorphism the smooth structure of M is
uniquely determined (exercise). O

As a consequence, much of the machinery on topological coverings sum-
marised in Section 1.2.2 apply also to smooth coverings. For instance, if
M is a connected smooth manifold, there is a bijective correspondence be-
tween the conjugacy classes of subgroups of m1(M) and the smooth cov-
erings M — M considered up to isomorphism, where two smooth cover-
ings p: M — M, o M — M are isomorphic if there is a diffeomorphism
f:M— M suchthat p=p'of.

3.5.4. Smooth actions. We keep adapting the topological definitions of
Section 1.2.6 to this smooth setting. A smooth action of a group G on a
smooth manifold M is a group homomorphism

G — Diffeo(M)

where Diffeo(M) is the group of all the self-diffeomorphisms M — M. All the
results stated there apply to this smooth setting. In particular we have the
following.

Proposition 3.5.4. Let G act smoothly, freely, and properly discontinuously
on a smooth manifold M. The quotient M/G has a unique smooth structure
such that p: M — M/G is a smooth regular covering.

Moreover, every smooth regular covering between smooth manifolds arises
in this way.

Proof. We already know that p is a covering and M/G is a topological
manifold. The smooth structure is constructed as follows: for every chart
U — V on M such that p|y is injective, we add the chart @ o p~1: p(U) = V
to M/G. We get a smooth atlas on M/G because G acts smoothly. O

For instance, if M is a smooth manifold and ¢: M — M a fixed-point free
involution (a diffeomorphism ¢ such that +? = id and ¢(p) # p for all p), then
M/t = M/G where G = (1) has order two is a smooth manifold and M — M/¢
a degree-two covering. This applies for instance to

RP" = S"/u
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where ¢ is the antipodal map. Every degree-two covering in fact arises in
this way, because every degree-two covering is regular (since every index-two
subgroup is normal).

3.5.5. The n-dimensional torus. Here is one example. Let G = Z" act
on R" by translations, that is g(v) = v + g. The action is free and properly
discontinuous, hence the quotient 7" = R"/Z" is a smooth manifold called
the n-dimensional torus. The manifold is in fact diffeomorphic to the product

Slx...x St
—_————
via the map

The map f is defined on R” but it descends to the quotient T", and is invertible
there. The n-torus T" is compact and its fundamental group is Z".

3.5.6. Lens spaces. Let p > 1 and g > 1 be two coprime integers and
define the complex number w = e2™/P. We identify R* with C2 and see the
three-dimensional sphere S3 as

SP={(z.w) €C? | |z + |w|* = 1}.
The map
f(z,w) = (wz,ww)
is a linear isomorphism of C? that consists geometrically of two simultaneous
order-p rotations on the real planes w = 0 and z = 0. The map f preserves
S3, it has order p and none of its iterates f, f2, ..., fP~1 has a fixed point in

S3. Therefore the group G = (f) generated by f acts freely on S3, and also
properly discontinuously because it is finite. The quotient

L(p.q)=S°/G
is therefore a smooth manifold covered by S3 called /ens space. Its fundamental

group is isomorphic to the cyclic group G = Z/pZ. Note that the manifold
depends on both p and gq.

3.5.7. The Klein bottle. Let G be the group of affine isometries of R?
generated by the maps
fix,y)=(x+1,y), gx,y)=(1—-xy+1).
The first map is a horizontal translation, and the second is a glide reflection
with axis x = 1/2. We note that gT1fg*! = f~! and hence fg*! = g*1f1.
This implies easily that every element of G is of the form

fhgk(xly):{ (L=x+hy+k) if his odd,

(x,y +k) if his even.
The group G acts freely and properly discontinuously. The quotient surface
R?/G is called the Klein bottle.
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0,1) - (1,1) 0,1) 4 (1,1)

0,0 1,00 00 (1,0

Figure 3.8. Some fundamental domains for the torus, the Klein bottle,
and the projective plane. The surface is obtained from the domain by
identifying the boundary curves with the same colours, respecting arrows.

3.5.8. Fundamental domains. Let G be a group acting smoothly, freely,
and properly discontinuously on a manifold M. Sometimes we can visualise
the quotient manifold M/G by drawing a fundamental domain for the action.

A fundamental domain is a closed subset D C M such that:

e every orbit intersects D in at least one point;
e cvery orbit intersects int(D) in at most one point.

For instance, Figure 3.8 shows some fundamental domains for:

e the action of Z? to R? via translations, yielding the torus T = R?/Z?;
e the action of G on R? yielding the Klein bottle K = R?/G;
e the action of the antipodal map ¢ on S? yielding RP? = S2/..

The topology of the manifold M/G can be obtained directly from D by
identifying the points that lie in the same orbit. In Figure 3.8 this consists of
identifying the boundary sides or curves with the same colours as suggested
by the arrows.

3.6. Orientation

Some (but not all) manifolds can be equipped with an additional structure
called an orientation. An orientation is a way of distinguishing your left hand
from your right hand, through a fixed convention that holds coherently in the
whole universe you are living in.

3.6.1. Oriented manifolds. Let M be a smooth manifold. We say that
a compatible atlas on M is oriented if all the transition functions ¢;; have
orientation-preserving differentials. That is, for every p in the domain of ¢;;
the differential d(¢j;), has positive determinant, for all /,j. Note that this
determinant varies smoothly on p and never vanishes because ;; is a diffeo-
morphism: hence if the domain is connected and the determinant is positive
at one point p, it is so at every point of the domain by continuity.

Definition 3.6.1. An orientation on M is an equivalence class of oriented
atlases (compatible with the smooth structure of M), where two oriented
atlases are considered as equivalent if their union is also oriented.



74 3. SMOOTH MANIFOLDS

There are two important issues about orientations: the first is that a
manifold M may have no orientation at all (see Exercise 3.6.7 below), and the
second is that an orientation for M is never unique, as the following shows.

Exercise 3.6.2. If A = {¢,} is an oriented atlas for M, then A" = {rop;}
is also an oriented atlas, where r: R” — R" is a fixed reflection along some
hyperplane H C R". The two oriented atlases are not orientably compatible.

We say that the orientations on M induced by A and A’ are opposite. If
M admits some orientation, we say that M is orientable.

Exercise 3.6.3. The sphere S" is orientable.
Exercise 3.6.4. If M and N are orientable, then M x N also is.

3.6.2. Tangent spaces. We now exhibit an equivalent definition of orien-
tation that involves tangent spaces. Recall the notion of orientation for vector
spaces from Section 2.5.1.

Let M be a smooth manifold. Suppose that we assign an orientation to
the vector space T,M for every p € M. We say that this assignment is locally
coherent if the following holds: for every p € M there is a chart ¢: U — V
with p € U whose differential dpg: TgM — Ty,R" = R" is orientation-
preserving (that is, it sends a positive basis of T,M to a positive one of R"),
for all g € U.

Here is a new definition of orientation on M.

Definition 3.6.5. An orientation for M is a locally coherent assignment of
orientations on all the tangent spaces T,M.

We have two distinct notions of orientation on M, and we now show that
they are equivalent. We see immediately how to pass from the first to the
second: for every p € M there is some chart ¢: U — V in the oriented atlas
with p € U and we assign an orientation to T,M by saying that a basis in
T,M is positive <= its image in R" along dy,, is. The orientation of T,M is
well-defined because it is chart-independent: every other chart of the oriented
atlas differs by composition with a ¢;; with positive differentials. We leave to
the reader as an exercise to discover how to go back from the second definition
to the first.

Proposition 3.6.6. A connected smooth manifold M has either two orien-
tations or none.

Proof. Let A be an oriented atlas, and A’ its opposite. Suppose that we
have a third oriented atlas A”. We get a partition M = SUS’" where S (§) is
the set of points p € M where the orientation induced by A" on T,M coincides
with that of A (A’). Both sets S, S’ are open, so either M =S or M = 5,
and hence A” is compatible with either A or A’ O
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Figure 3.9. The Mébius strip is a non-orientable surface.

Exercise 3.6.7. The Mobbius strip shown in Figure 3.9 is non-orientable.
(A rigorous definition and proof will be exhibited soon, but it is instructive to
guess why that surface is not orientable only by looking at the picture.)

3.6.3. Orientation-preserving maps. Let f: M — N be a local dif-
feomorphism between two oriented manifolds M and N. We say that f is
orientation-preserving if the differential df,: T,M — TN is an orientation-
preserving isomorphism for every p € M. That is, we mean that it sends pos-
itive bases to positive bases. Analogously, the map f is orientation-reversing
if dfy is so for every p € M, that is it sends positive bases to negative bases.

Exercise 3.6.8. If M is connected, every local diffeomorphism f: M — N
between oriented manifolds is either orientation-preserving or reversing.

As a consequence, if M is connected, to understand whether f: M — N
is orientation-preserving or reversing it suffices to examine df, at any single
point p € M.

Exercise 3.6.9. The orthogonal reflection 7 along a linear hyperplane H C
R+ restricts to an orientation-reversing diffeomorphism of S”

Hint. Suppose H = {x! = 0}, pick p = (0,...,0,1), examine dp. O

Corollary 3.6.10. The antipodal map v: S" — S" s orientation-preserving
<= nis odd.

Proof. The map ¢ is a composition of n+1 reflections along the coordinate
hyperplanes. O

Let M be connected and oriented and f: M — M be a diffeomorphism.
The condition of f being orientation-preserving or reversing is independent
of the chosen orientation for M (exercise). A manifold M that admits an
orientation-reversing diffeomorphism M — M is called mirrorable. For in-
stance, the sphere S” is mirrorable. Not all the orientable manifolds are mir-
rorable! This phenomenon is sometimes called chirality.
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3.6.4. Orientability of projective spaces. \We now determine whether
RP” is orientable or not, as a corollary of the following general fact.

Proposition 3.6.11. Let w: M — M be a regular smooth covering of man-
ifolds. The manifold M is orientable <=- M s orientable and all the deck
transformations are orientation-preserving.

Proof. If M is orientable, there is a locally coherent way to orient all the
tangent spaces T, M, which lifts to a locally coherent orientation of the tangent
spaces T5/\7I, by requiring dms to be orientation-preserving Vp € M. Every
deck transformation 7 turns out to be orientation preserving because woT =T
implies dm,(5 o d75 = dmps, both isomorphisms dm. 5 and dms preserve
orientations and hence d7s also does.

Conversely, suppose that M is orientable and all the deck transformations
are orientation-preserving. We can assign an orientation on T,M by requiring
that dms be orientation-preserving for some lift p of p: the definition is well-
posed, because if we pick another lift p’ there is an orientation-preserving deck
transformation 7 that sends p to 3’ and we get dmr(5) © dTp = dmp. [l

Corollary 3.6.12. The real projective space RP" is orientable <= n is odd.

Proof. We have RP" = S"/. and the deck transformation ¢ is orientation-
preserving <= n is odd. ([l

Exercise 3.6.13. The projective plane RP? contains an open subset diffeo-
morphic to the Mobius strip.

On the other hand, the n-torus and the lens spaces are orientable, be-
cause they are obtained by quotienting an orientable manifold (R” or S3) via
a group of orientation-preserving diffeomorphisms acting freely and properly
discontinuously.

3.6.5. Non-orientable surfaces. Here are two famous non-orientable sur-
faces. We have defined the Klein bottle in Section 3.5.7 as R?/G with G
generated by

fy)=(x+1y),  glxy)=[1-xy+1).

Since g is orientation-reversing, the Klein bottle is not orientable. The Mébius
strip is defined analogously as R?/(g), and is also not orientable. Note that
the Klein bottle is compact, while the Mobius strip is not. The Klein bottle
has infinite fundamental group, so it is not homeomorphic to RP?.

As opposite to the Mobius strip, the Klein bottle cannot be embedded in
R3, and the best that we can do is to immerse it in R3 non-injectively as shown
in Figure 3.10. The notions of immersion and embedding will be introduced in
Section 3.8.
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Figure 3.10. The Klein bottle immersed elegantly but non-injectively in R3.

Exercise 3.6.14. Convince yourself that by glueing the opposite sides of
the central square in Figure 3.8 you get a surface homeomorphic to the one
shown in Figure 3.10.

3.6.6. Orientable double cover. Non-orientable manifolds are fascinat-
ing objects, but we will see in the next chapters that it is often useful to assume
that a manifold is orientable, just to make life easier. So, if you ordered an
orientable manifold and you received a non-orientable one by mistake, what
can you do? The best that you can do is to transform it into an orientable
one by substituting it with an appropriate double cover. We now describe this
operation.

We say that a manifold N is doubly covered by another manifold N if there
is a covering N — N of degree two.

Proposition 3.6.15. Every non-orientable connected manifold M is canon-
ically doubly covered by an orientable connected manifold M.

Proof. We define M as the set of all pairs (p, 0) where p € M and o is an
orientation for T,M. By sending (p, 0) to p we get a 2-1 map 7: M — M. We
now assign to the set M a structure of smooth connected orientable manifold
and prove that 7 is a smooth covering.

For every chart ¢;: U; — V; on M we consider the set U,- C M of all pairs
(p, 0) where p € U; and o is the orientation induced by transferring back that
of R" via dypp,. We also consider the map ¢;: Ui — V., ¢; = p; om. We now
show that the maps 3

®j: Ui —V
constructed in this way form an oriented smooth atlas for the set M, recall
the definition in Section 3.1.5.

To prove that this is an oriented smooth atlas, we first note that the sets
U; cover M and every @; is a bijection. Then, we must show that for every
i, j the images of U; N UJ- along @; and @, are open subsets (if not empty) and
the transition map ¢;; is orientation-preservingly smooth.

We consider a point (p, 0) € Ui n Uj. The charts ¢; and ¢; both send
o to the canonical orientation of R”, therefore the transition map ¢;; has
positive determinant in @;(p) and hence in the whole connected component
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Figure 3.11. A smooth submanifold S C M looks locally like a linear
subspace L C R™.

W of ¢;(U; N U;) containing ¢;(p). This implies that (Z),-(U,- N Uj) contains the
open set W. Moreover ¢;; is orientation-preserving on W.

Now that M is a smooth manifold, we check that 7 is a smooth covering:
for every p € M we pick any chart ¢;: U; — V; with p € U; and note that
@) = rog;is also a chart for any reflection r of R”; the two charts define two
open subsets U,-, U{ of M, each projected diffeomorphically to U, via 7.

Actually, it still remains to prove that M is connected: if it were not, it
would split into two components, each diffeomorphic to M via m, but this is
excluded because M is orientable and M is not. [l

For instance: the Klein bottle is covered by the torus, the projective spaces
are covered by spheres, and the M&bius strip is covered by R x St, with degree
two in all the cases.

Corollary 3.6.16. Every simply connected manifold is orientable.
Proof. A simply connected manifold has no non-trivial covering! O
Corollary 3.6.17. The complex projective spaces CP" are all orientable.

Remark 3.6.18. The orientability of CP" can be checked also by noting
that C" has a natural orientation and that the transition maps between the
coordinate charts are holomorphic and hence orientation-preserving.

3.7. Submanifolds

One of the fundamental aspects of smooth manifolds is that they contain
plenty of manifolds of smaller dimension, called submanifolds.

3.7.1. Definition. Let M be a smooth m-manifold.

Definition 3.7.1. A subset S C M is a n-dimensional smooth submanifold
(shortly, a n-submanifold) if for every p € S there is a chart ¢: U — R™ with
p € U that sends U N S onto some linear n-subspace L C R™.

That is, the subset S looks locally like a vector n-subspace in R, on some
chart. Of course we must have n < m. See Figure 3.11.
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A smooth n-submanifold S C M s itself a smooth n-manifold: an atlas
for S is obtained by restricting all the diffeomorphisms U — R as above to
UN'S, composed with any linear isomorphism L — R". The transition maps
are restrictions of smooth functions to linear subspaces and are hence smooth.

If we use the definition of tangent spaces via curves, we see immediately
that for every p € S there is a canonical inclusion i: T,S < T,M. Via
derivations, the inclusion is i(v)(f) = v(f|s). We will see T,S as a linear
n-subspace of T,M.

When m = n, a submanifold N C M is just an open subset of M.

Example 3.7.2. Every linear subspace L C R" is a submanifold.

Example 3.7.3. The graph S of a smooth function f: R” — R" is a n-
submanifold of R” x R™ diffeomorphic to R”. The map R” x R™ — R"” x R™
that sends (x, y) to (x,y + f(x)) is a diffeomorphism that sends the linear
space L ={y =0} to S.

As a consequence, a subset S C R” that is locally the graph of some
smooth function is a submanifold. For instance, the sphere S” C R"*! can be
seen locally at every point (up to permuting the coordinates) as the graph of
the smooth function x + /1 — ||x||2 and is hence a n-submanifold in R"*1.

If S C R" is a k-submanifold, the tangent space T,S at a point p € S
may be represented very concretely as a k-dimensional vector subspace of
TpR" =R".

Exercise 3.7.4. For every p € 5" we have

where pt indicates the vector space orthogonal to p. (We will soon deduce
this exercise from a general theorem.)

Example 3.7.5. A projective k-dimensional subspace S of RP” or CP"
is the zero set of n — k independent homogeneous linear equations. It is
a smooth submanifold, because read on each coordinate chart it becomes a
linear k-subspace in R” or C". It is diffeomorphic to RPX or CPP¥.

Exercise 3.7.6. Let M, N be smooth manifolds. For every p € M the
subset {p} x N is a submanifold of M x N diffeomorphic to N.

3.8. Immersions, embeddings, and submersions

We now study some particular kinds of nice maps called immersions, em-
beddings, and submersions.
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3.8.1. Immersions. A smooth map f: M — N between smooth mani-
folds of dimension m and n is an immersion at a point p € M if the differential

dfpi Tp/\/l — Tf(p)/\/

is injective. This implies in particular that m < n.

It is a remarkable fact that every immersion may be described locally in a
very simple form, on appropriate charts. This is the content of the following
proposition.

Proposition 3.8.1. Let f: M — N be an immersion at p € M. There are
charts p: U - R™ and - W — R" withp € U C M and f(U) CW C N
such that o fop t(xt, .. ., x™) = (x%, ..., xm 0,..., 0).

The proposition can be memorised via the following commutative diagram:

(6) Uu—sw

of

R™ —— R"

where F(x!, ..., x™) = (x%, ..., Xm0, ..., 0). Read on some charts, every
immersion looks like F.

Proof. We can replace M and N with any open neighbourhoods of p and
f(p), in particular by taking charts we may suppose that M C R™ and N C R”
are some open subsets.

We know that df,: R™ — R" is injective. Therefore its image L has
dimension m. Choose an injective linear map g: R~ — R" whose image is
in direct sum with L and define

G:MxR"™™ —R"

by setting G(x,y) = f(x)+g(y). Its differential at (p, 0) is dG(p 0y = (dfp, 9)
and it is an isomorphism. By the Implicit Function Theorem the map G is
a local diffeomorphism at (p,0). Therefore there are open neighbourhoods
Ui, Us, W of p,0, f(p) such that

G|U1><U2Z Uy xU—>W
is a diffeomorphism, and we call 9 its inverse. Now for every x € U; we get

Y(f(x)) = ¥(G(x,0)) = (x,0).
Therefore we get the commutative diagram

U — w

|s

U14I__>U1XU2
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S I

Figure 3.12. A non-injective immersion S* — R? (left) and an injective
immersion R — R? that is not an embedding (right).

with F(x) = (x,0) as required. To conclude, we may take neighbourhoods
U1, Us diffeomorphic to R™, R"=™ and the diagram transforms into (6). [

A map f: M — Nis an immersion if it is so at every p € M. An immersion
is locally injective because of Proposition 3.8.1, but it may not be so globally:
see for instance Figure 3.12-(left).

3.8.2. Embeddings. We have discovered that an immersion has a partic-
ularly nice local behaviour. We now introduce some special type of immersions
that also behave nicely globally.

Definition 3.8.2. A smooth map f: M — N is an embedding if it is an
immersion and a homeomorphism onto its image.

The latter condition means that f: M — f(M) is a homeomorphism, so
in particular f is injective. We note that f may be an injective immersion while
not being a homeomorphism onto its image! An example is shown in Figure
3.12-(right). We really need the "homeomorphism onto its image” condition
here, injectivity is not enough for our purposes.

The importance of embeddings relies in the following.

Proposition 3.8.3. If f: M — N is an embedding, then f(M) C N is a
smooth submanifold and f : M — f(M) a diffeomorphism.

Proof. For every p € M there are open neighbourhoods U C M, V C N
of p, f(p) such that f|y: U — V N f(M) is a homeomorphism.

By Proposition 3.8.1, after taking a smaller V there is a chart that sends
(V,V N f(M)) to (R", L) for some linear subspace L. Therefore f(M) is a
smooth submanifold, and f is a diffeomorphism onto f(M). O

Figure 3.12-(right) shows that the image of an injective immersion needs
not to be a submanifold. Conversely:

Exercise 3.8.4. If S C N is a smooth submanifold, then the inclusion map
i:S < N is an embedding.

We now look for a simple embedding criterion. Recall that a map f: X —
Y is proper if C C 'Y compact implies f~1(C) C X compact.

Exercise 3.8.5. A proper injective immersion f: M — N is an embedding.
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Figure 3.13. A knot is an embedding S* < R®. This is a torus knot:
what are the parameters p and g here?

In particular, if M is compact then f is certainly proper, and we can con-
clude that every injective immersion of M is an embedding. This is certainly a
fairly simple embedding criterion.

Example 3.8.6. Fix two positive numbers 0 < a < b and consider the map
f: ST x ST — R3 given by

f(e e¥) = ((acosf + b)cosp, (acosb + b)singp, asinb).
Using the coordinates 6 and ¢, the differential is

—asinfcosyp —(acos@ + b)sinyp
—asin@sing (acosf + b) cosp
acosf 0

and it has rank two for all 8, . Therefore f is an injective immersion and
hence an embedding since S x S' is compact. The image of f is the standard
torus in space already shown in Figure 3.4.

Example 3.8.7. Let p, g be two coprime integers. The map g: St —
S x St given by
g(eie) — (eipG’ eiqe)

is injective (exercise) and its differential in the angle coordinates is (p, q) #
(0,0). Therefore g is an embedding.

The composition f o g: S' — R3 with the map f of Example 3.8.6 is also
an embedding, and its image is called a torus knot: see Figure 3.13. More
generally, a knot is an embedding S! < RR3.



3.8. IMMERSIONS, EMBEDDINGS, AND SUBMERSIONS 83

Exercise 3.8.8. Let p, g be two real numbers with irrational ratio p/q. The
map h: R — St x ST defined by

h(t) = (e’pt, e’qt)

is an injective immersion but is not an embedding. Its image is in fact a dense
subset of the torus.

Exercise 3.8.9. If M is compact and N is connected, and dim M = dim N,
every embedding M — N is a diffeomorphism.

3.8.3. Submersions. \We now describe some maps that are somehow dual
to immersions. A smooth map f: M — N is a submersion at a point p € M
if the differential df, is surjective. This implies that m > n. Again, every such
map has a simple local form.

Proposition 3.8.10. Let f: M — N be a submersion at p € M. There are
charts p: U — R™ and .- W — R" withp € U C M and f(U) CW C N
such that o f o (p_l(xl ..... xM) = (X1 ..... xM).

The proposition can be memorised via the following commutative diagram:

Uu—"sw

of

RM™ —— R"

where F(x!, ..., x™) = (xt, ..., x™). Read on some charts, every submersion
looks like F.

Proof. The proof is very similar to that of Proposition 3.8.1. We can
replace M and N with any open neighbourhoods of p and f(p), in particular
by taking charts we suppose that M C R™ and N C R" are open subsets.

We know that df,: T,M — Tg,)N is surjective, hence its kernel K has
dimension m — n. Choose a linear map g: R™ — R™~" that is injective on K
and define

G:M— NxR""

by setting G(x) = (f(x),g(x)). Its differential at p is dG, = (df,, g) and
is an isomorphism. By the Implicit Function Theorem the map G is a local
diffeomorphism at p.

Therefore there are open neighbourhoods U, W4, W» of p, f(p), 0 such that
G(U) =Wy x W5 and G|y is a diffeomorphism. Now f(G™(x,y)) = x and
we conclude similarly as in the proof of Proposition 3.8.1. U

A smooth map f: M — N is a submersion if it is so at every p € M.
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3.8.4. Regular values. We have proved that the image of an embedding
is a submanifold, and now we show that (somehow dually) the preimage of a
submersion is also a submanifold. In fact, one does not really need the map
to be a submersion: some weaker hypothesis suffices, that we now introduce.

Let f: M — N be a smooth map between manifolds of dimension m > n
respectively. A point p € M is regular if the differential df, is surjective (that
is if £ is a submersion at p), and critical otherwise.

Proposition 3.8.11. The regular points form an open subset of M.

Proof. Read on charts, the differential df, becomes a n x m matrix that
depends smoothly on the point p. The matrices with maximum rank m form
an open subset in the set of all n x m matrices. O

A point g € N is a regular value if the counterimage f~1(q) consists en-
tirely of regular points, and it is singular otherwise. The map f is a submersion
<= all the points in the codomain are regular values.

Proposition 3.8.12. If g € N is a regular value, then S = f=1(q) is either
empty or a smooth (m — n)-submanifold. Moreover for every p € S we have

TpS = ker dfp.

Proof. Thanks to Proposition 3.8.10 there are charts at p and f(p) that
transform f locally into a projection : R™ — R”. On these charts f~1(q) is
the linear subspace ker, hence a (m — n)-submanifold. The tangent space
at pis ker m = ker dfp. O

Using this proposition we can re-prove that the sphere S" is a submanifold
of R™1: pick the smooth map f(x) = ||x||?> and note that S” = f~1(1). The
gradient dfy is (2x,...,2x"), hence every non-zero point x € R"*1 is regular
for f, and therefore every non-zero point y € R is a regular value: in particular
1 is regular and the proposition applies.

We can also deduce Exercise 3.7.4 quite easily: for every x € S we get

T, S" = ker dfy = ker(2x!, ..., 2x") = x.
3.9. Examples

Some familiar spaces are actually smooth manifolds in a natural way. We
list some of them and state a few results that will be useful in the sequel.

3.9.1. Matrix spaces. Every finite-dimensional real vector space V is nat-
urally a smooth manifold diffeomorphic to R": as a smooth atlas, pick all the
isomorphisms V — R". Since V is also a vector space, the tangent space at
every point p € V is naturally identified with V itself.

The vector space M(m, n) of all m x n matrices is hence diffeomorphic to
R™1 The subset consisting of all the matrices with maximal rank is open, and
is hence also a smooth manifold.
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In particular, the set M(n) of all the square n x n matrices is a smooth
manifold, and the open subset GL(n, R) of all the invertible n x n matrices is
a smooth manifold, both of dimension n?. For every A € M(n) we identify
TaM(n) = M(n), and also ToGL(n,R) = M(n) for every A € GL(n, R).

The subspaces S(n) and A(n) of all the symmetric and antisymmetric
matrices are submanifolds of dimension (n+1)n/2 and (n—1)n/2 respectively.

A less trivial example is the set of n x n matrices with unit determinant:

SL(n,R) ={A€ M(n) | detA=1}.

Proposition 3.9.1. The set SL(n, R) is a submanifold of M(n) of codimen-
sion 1. We have

T;SL(n,R) = {A € M(n) | trA=0}.

Proof. The determinant is a smooth map det: M(n) — R. We show that
1 € R is a regular value. For every A € SL(n,R) and B € M(n) we easily get

det(A+ tB) = det(/ + tBA™Y) =1+ ttr(BA™1) + o(t).

Therefore d deta(B) = tr(BA™1) and by taking B = A we deduce that d detx
is surjective. Hence 1 is a regular value, so by Proposition 3.8.12 the preimage
SL(n, R) is a smooth submanifold and T;SL(n, R) = ker d det, is as stated. [J

3.9.2. Orthogonal matrices. Another important example is the set of all
the orthogonal matrices

O(n)={A€ M(n) | "AA=1}.

Proposition 3.9.2. The set O(n) is a submanifold of M(n) of dimension
(n—1)n/2. We have
T,0(n) = A(n).

Proof. Consider the smooth map

f: M(n) — S(n),
A— TAA.

Note that O(n) = f~1(/). We now show that / € S(n) is a regular value. For
every A € O(n) we have

f(A+tB) = A+ tB)(A+tB)="AA+t('BA+'AB) + t*'BB
=1+ t("BA+"AB) + o(t).
and hence
dfa(B) = 'BA+ 'AB.

For every symmetric matrix S € S(n) there is a B such that 'BA+AB =S
(exercise). Then dfa is surjective for all A€ O(n) and / is a regular value.
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We deduce from Proposition 3.8.12 that O(n) = f~1(/) is a smooth
manifold of dimension dim M(n) —dim S(n) = (n— 1)n/2. Moreover

T,0(n) = kerdf, = {B | "B+ B =0} = A(n).
The proof is complete. O

3.9.3. Fixed rank. We now exhibit some natural submanifolds in the
space M(m, n) of all m x n matrices. For every 0 < k < min{m, n}, we
define Mx(m, n) € M(m, n) to be the subset consisting of all the matrices
having rank k.

Proposition 3.9.3. The subspace M(m, n) is a submanifold in M(m, n) of
codimension (m — k)(n — k).

Proof. Consider a matrix Py € My(m,n). Up to permuting rows and
columns, we may suppose that Py = (ég gg) where Ag € GL(k, R).

On an open neighbourhood of Py every matrix P is also of this type P =
(25) with A € GL(k,R) and if we set Q = (%, 7 P) € GL(n,R) we find

In—k

PQ = <ci\k—1 D — COA—18> '
Since rkP = rkPQ, we deduce that
kP =k < D =CA'B.
Therefore My(m, n) is a manifold parametrised locally by (A, B, C), of codi-
mension (m — k)(n — k). O

3.9.4. Squareroots. Let ST (n) C S(n) be the open subset of all positive-
definite symmetric matrices. We will neeed the following.

Proposition 3.9.4. Every S € S*(n) has a unique square root /S € S*(n),
that depends smoothly on S.

Proof. The existence and uniqueness of v/S are consequences of the spec-
tral theorem. Smoothness may be proved by showing that the map 7: S*(n) —
S*(n), A+ A?is a submersion: being a 1-1 correspondence, it is then a dif-
feomorphism.

To show that f is a submersion, up to conjugacy we may suppose that D
is diagonal, and write

f(D+ tM) = (D + tM)? = D? + t(DM + MD) + o(t).
We have
(DM + /\//D),'J' = D;iM;j + M;j;Dj; = (Djj + DJ'J')MU'.

Since D;; > 0 for all /, if M £ 0 then DM 4+ MD # 0, so dfp is injective and
hence invertible. O
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3.9.5. Some matrix decompositions. It is often useful to decompose a
matrix into a product of matrices of some special types. Let T(n) be the set
of all upper triangular matrices with positive entries on the diagonal.

Proposition 3.9.5. For every A € GL(n, R) there are unique O € O(n) and
T € T(n) such that A= OT. Both O and T depend smoothly on A.

Proof. Write A= (v!...v") and orthonormalise its columns via the Gram—
Schmidt algorithm to get O = (w!...w"). The algorithm may in fact be in-
terpreted as a right multiplication by some triangular T. Conversely, if A= OT
then O is uniquely determined: the vector w'*! must be the unit vector or-
thogonal to Span(v?, ..., v') lying on the same side as v/*1, [l

Corollary 3.9.6. We have the diffeomorphisms

GL(n,R) = O(n) x T(n) = O(n) x R""1)/2,

In particular there is a smooth strong deformation retraction of GL(n, R)
onto the compact subset O(n). We also deduce a similar result for SL(n, R).
Let ST(n) C T(n) be the submanifold of all upper triangular matrices with
positive entries on the diagonal and unit determinant.

Corollary 3.9.7. We have the diffeomorphisms

SL(n, R) = SO(n) x ST(n) = SO(n) x RA(n+1)/2=1

The decomposition M = OT is nice, but we will later need one that is

“more invariant”.

Proposition 3.9.8. For every A € GL(n, R) there are unique O € O(n) and
S € ST™(n) such that A= OS. Both O and S depend smoothly on A.

Proof. Pick S = /TAA. Write O = AS~! and note that O is orthogonal:
‘00 ='s71'AAs = 57152571 = .
Conversely, if A= OS then "AA = 'STOOS = 52 O

The decomposition A = OS is also known as the polar decomposition and
is "more invariant” than A = OT because it satisfies the following property:

Proposition 3.9.9. If A” = PAQ for some orthogonal matrices P,Q €
O(n), then A’ = O'S" with O' = POQ and S' = Q~15Q.

Proof. By multiplying we indeed get A’ = S'O’. O

3.9.6. Connected components. Recall that every A € O(n) has det A=
+1. We define
SO(n)={A€O(n) | detA=1}

Proposition 3.9.10. The manifold O(n) has two connected components,
one of which is SO(n).
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Proof. We first prove that SO(n) is path-connected. Let Ry be the 6-
rotation 2 x 2 matrix. The real Jordan theorem implies that every real square
matrix has either an invariant line or plane. By applying this fact iteratively we
deduced that every A € SO(n) is similar A = M~1BM via a matrix M € SO(n)
to a B € SO(n) of type

R
Re, 0 o 0 0
B=1: : or B= O - R: O
A Om
0 Rom 0o ... 0 1
depending on whether n =2m or n =2m+1, for some angles 64, .. ., Om. By

sending continuously the angles to zero we get a path connecting B to /,, and
by conjugating everything with M we get one connecting A to /,.

Finally, two matrices in O(n) with determinant 1 and —1 cannot be path-
connected because the determinant is a continuous function. O

Corollary 3.9.11. The manifold GL(n,R) has two connected components,
consisting of matrices with positive and negative determinant, respectively.

Corollary 3.9.12. The manifold SL(n, R) is connected.

3.10. Homotopy and isotopy

There are plenty of smooth maps M — N between two given smooth man-
ifolds, and in some cases it is natural to consider them up to some equivalence
relation. We introduce here a quite mild relation called smooth homotopy and
a stronger one, that works only for embeddings, called isotopy.

3.10.1. Smooth homotopy. We introduce the following notion.

Definition 3.10.1. A smooth homotopy between two given smooth maps
f,.g: M — N is a smooth map F: M x R — N such that F(x,0) = f(x) and
F(x,1) = g(x) for all x € M.

In general topology, a homotopy is just a continuous map F: Xx[0,1] = Y
where X,Y are topological spaces. In this smooth setting we must (a bit
reluctantly) substitute [0, 1] with R because we need the domain to be a
smooth manifold. Anyway, the behaviour of F(x,t) when t ¢ [0, 1] is of no
interest for us, and we may require F(x, -) to be constant outside that interval:

Proposition 3.10.2. If F is a smooth homotopy between f and g, then
there is another smooth homotopy F' such that F'(x,t) equals f(x) for all
t <0 andg(x) forall t > 1.

Proof. Take a smooth transition function ¥: R — R as in Section 1.3.6,
such that W(t) = 0 for all t < 0 and W(t) = 1 for all t > 1. Define
F'(x,t) = F(x,W(t)). O
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Two smooth maps f,g: M — N are smoothly homotopic if there is a
smooth homotopy between them.

Proposition 3.10.3. Being smoothly homotopic is an equivalence relation.

Proof. The only non-trivial part is the transitive property. Let F be a
smooth homotopy between f and g, and G be a smooth homotopy between g
and h. We must glue them to an isotopy H between f and g.

To do this smoothly, we first modify F and G as in the proof of Proposition
3.10.2, taking a transition function W such that W(x) = 0 for all x < % and
W(x) =1 forall x > 2. Now F(x,-) and G(x,-) are constant outside [3, 2]
and can be glued by writing

F(x,2t)  fort <3,
H(x, t) =
G(x,2t—1) fort> %
The map H is smooth and the proof is complete. O

Example 3.10.4. Let M be a smooth manifold. Any two maps f,g: M —
R" are smoothly homotopic: indeed, every f: M — R" is smoothly homotopic
to the constant map c(x) = 0, simply by taking

F(x,t) = tf(x).

3.10.2. Isotopy. We now introduce an enhanced version of smooth ho-
motopy, called isotopy, that is nicely tailored to work with embeddings.

Definition 3.10.5. An jsotopy between two embeddings f,g: M — N is a
smooth homotopy F: M x R — N between them, such that Fi(x) = F(x, t)
is an embedding Fr: M — N for all t € [0, 1].

We can prove as above that the isotopy between embeddings is an equiv-
alence relation. Being isotopic is much stronger than being homotopic: for
instance two embeddings f,g: M — R” are always smoothly homotopic, but
they may not be isotopic in many interesting cases.

As an example, two knots f, g: ST < R3 may not be isotopic. The knot
theory is an area of topology that studies precisely this phenomenon: its main
(and still unachieved) goal would be to classify all knots up to isotopy in a
satisfactory way.

Another interesting challenge is to study the set of all self-diffeomorphisms
M — M of one fixed manifold M up to isotopy. Note that if M is compact and
connected, every level F; in one such isotopy is a diffeomorphism by Exercise
3.8.9. This is already a fundamental and non-trivial problem when M = S" is
a sphere; the one-dimensional case is the only one that can be solved easily:

Proposition 3.10.6. Every self-diffeomorphism ¢: St — S is isotopic ei-
ther to the identity or to a reflection z — Z, depending on whether @ is
orientation-preserving or not.
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Proof. Suppose that ¢: ST — S is orientation-preserving. We lift ¢ to
a map ¢: R — R between universal covers, and note that @'(x) > 0 for all
x € R. Consider the map

Fi(x) = t@(x) + (1 — t)x.

Since Fi(x + 2km) = /:_t(>~<) + 2km the map descends to a map F;: St — St
When t € [0, 1] we get F/(x) = t@'(x) + (1 — t) > 0, hence each F; is an
embedding. Therefore F; is an isotopy between id and . O

Here is another interesting question, that we will be able to solve in the
positive in the next chapters.

Question 3.10.7. Let M be a connected n-manifold. Are two orientation-
preserving embeddings f, g: R" — M always isotopic?

3.11. The Whitney embedding

We now show that every manifold may be embedded in some Euclidean
space. This result was proved by Whitney in the 1930s.

3.11.1. Borel and zero-measure subsets. We start with some prelimi-
naries that are of independent interest.

Let M be a smooth n-manifold. As in every topological space, a Borel
subset of M is any subspace S C M that can be constructed from the open
sets through the operations of relative complement, countable unions and
intersections.

Exercise 3.11.1. A subset S C M is Borel <= its image along any chart
is a Borel subset of R”.

Let S C M be a Borel set. Although there is no notion of measure for
S, we may still say that S has measure zero if the image p(U N S) along any
chart ¢: U — V has measure zero, with respect to the Lebesgue measure in
R". Note that any diffeomorphism sends zero-measure sets to zero-measure
sets (Remark 1.3.6), so it suffices to check this for a set of charts covering S.

Proposition 3.11.2. Let f: M — N be a smooth map between manifolds
of dimensions m, n. If m < n, the image of f is a zero-measure set.

Proof. This holds on charts by Corollary 1.3.8. [l
In particular, the image of f has empty interior.

3.11.2. The compact case. We now prove that every compact manifold
embeds in some Euclidean space. Not only the statement seems very strong,
but its proof is actually relatively easy.

Theorem 3.11.3. Every compact smooth manifold M embeds in some R".
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Proof. Since M is compact, it has a finite adequate atlas {(p,': U — Rm}
that consists of some k charts. The open subsets V; = (pfl(Bm) cover M.
Let A: R™ — R be a bump function with A(x) = 1if [|x|| <1, 0 < A(x) < 1
if 1 <||x]] <2, and A(x) =0 if ||x|| > 2, see Section 1.3.5.

Forevery i =1,..., k we define the smooth map \j: M — R by setting
Xi(p) = X(wi(p)) if p € U; and zero otherwise. Note that A;(p) = 1 if and only
if p € Vj, so the function A; detects whether a point belongs to V;. Analogously
we define the smooth map ;: M — R™ by setting ¥;(p) = X\i(p)p,(p) when
p € U; and zero otherwise. Note that the functions 1, and ¢, coincide on V;.

Let n=k(m+1). We define F: M — R" by setting

F(p) = (¥1(p). ... k(P). A1(p). . .. Xk(P)).

The codomainisindeed R x ... xR xR x ... xR =R". We now show that
F is an injective immersion, and hence an embedding since M is compact.

Every point p € M belongs to some V;, and on this open set ¥, = ; is a
local diffeomorphism; therefore the differential d(+;), has rank m, and hence
also dFp has the maximum rank m. We deduce that F is an immersion.

We prove that F is injective. Suppose that F(p) = F(q). The point p
belongs to some V;, so \i(p) = Aj(q) = 1, which implies that also g belongs
to Vi. Now 1; = ; is injective on Vj, and therefore p = q. ([l

We now want to improve the theorem in two directions: we remove the
compactness hypothesis, and we prove that the dimension n = 2m+1 suffices.

3.11.3. Immersions. Let M be a manifold of dimension m, not necessarily
compact. We know from Proposition 3.3.9 that every continuous map f: M —
R" into a Euclidean space can be perturbed to a smooth map. We now show
that if n > 2m the map can be perturbed to an immersion.

Theorem 3.11.4. Let f: M — R" be a continuous map, and n > 2m. For
every e > 0 there is an immersion F: M — R" with ||F(p)—f(p)|| < eVp € M.

Proof. By Proposition 3.3.9, we may suppose that f is smooth.

Let {¢;: Ui — R™} be an adequate atlas, with countably many indices
i=1,2,... The open subsets V; = <pl-’1(Bm) also form a covering of M. Let
PY;i: M — R™ be defined as in the proof of Theorem 3.11.3, so that ¥, = ¢;
on V; and ¥; = 0 outside U;. We set

M=V
j=1

and note that {M;} is a covering of M with compact subsets.
We define a sequence F°, F!, ... of maps F': M — R” such that:

(1) [|Fi(p) — f(p)ll <& for all p € M,
(2) F' = F'~! outside of U,



92 3. SMOOTH MANIFOLDS

&

U
Us

Figure 3.14. We pass from F'~! to F' by modifying the function only
in U;, with the purpose to get an immersion on V.

(3) dF} is injective for all p € M;.
See Figure 3.14. Since {U;} is locally finite, the maps F' stabilise on every

compact set and converge to an immersion F: M — R" as required.
We define F' inductively on /i as follows. We set F® = f and

Fl=F~t+ A,
for some appropriate matrix A = A; € M(n, m) that we now choose accurately
so that the conditions (1-3) will be satisfied.

We note that F' satisfies (2). Condition (1) is also fine as long as || A||
is sufficiently small. To get (3) we need a bit of work. By the inductive
hypothesis dF}~1 is injective for all p € M;_1, and it will keep being so if || Al
is sufficiently small. It remains to consider the points p € M; \ M;_;.

At every p € Vi we have ¢, = ; and

dF) = dF) ™ + Ad())p.
Therefore dFFQ is not injective if and only if
A=B—d(F o0y

for some matrix B € M(n, m) of rank k < m.
By Proposition 3.9.3, the space My(m, n) of all rank-k matrices is a man-
ifold of dimension mn — (m — k)(n — k). For every k < m consider the map

V: B x My(n, m) — M(n, m)
(x,B) — B—d(F'"topt),.
The dimensions of the domain and codomain are
m+mn—(m—k)(n— k), mn.
Since n > 2m and kK < m—1 we have
m—(m—-—k)(in—k)y<m—-1-(n—m+1)=2m—-n—-1<0.

By Proposition 3.11.2 the image of W has zero measure for all k. Therefore it
suffices to pick A with small ||A|| and away from these zero-measure sets. [J
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Figure 3.15. Can you perturb this continuous map f: S — R to an
immersion? Probably not... At every horizontal level except the poles, the
map is as in Figure 3.16 below. The map f is an immersion everywhere
except at the poles, but it seems hard to eliminate the singular points at
the poles just by perturbing f. If we are allowed to raise the dimension of
the target, then f can certainly be perturbed to an immersion S? — R*
and to an embedding S? — R® by Whitney's Theorems 3.11.4 and 3.11.7,
although both perturbations may be hard to see...

In particular, every continuous map R — R? or ST — R? can be perturbed
to an immersion. If S is a surface, every continuous map S — R* can be
perturbed to an immersion.

We cannot remove the condition n > 2m in general. For instance, no map
S! — R can be perturbed to an immersion, because there are no immersions
S! — R at all. The dimensions m = 2 and n = 3 seem also problematic:
as a challenging example, consider the continuous map f: S2 — R3 drawn in
Figure 3.15. Can you perturb f to an immersion?

Remark 3.11.5. The proof of Theorem 3.11.4, especially in the choice of
the matrix A, suggests that any “generic” smooth perturbation of f should be
an immersion. This suggestion can be made precise by endowing the space of
all maps M — R” with the appropriate topology: we do not pursue this here.

Corollary 3.11.6. Every m-manifold M immerses in R?™.
Proof. Pick a constant map f: M — R?™ and apply Theorem 3.11.4. O

3.11.4. Injective immersions. Can we perturb an immersion M — R”
to an injective immersion? This may not be possible in some cases, see Figure
3.16. In fact, Figure 3.17 suggests that we could achieve injectivity just by
adding one dimension to the codomain: the immersion can be perturbed to be
injective in R3, not in R2. We now show that this is a general principle.

Theorem 3.11.7. Let f: M — R" be an immersion, and n > 2m+ 1. For
every € > 0 there is an injective immersion F: M — R" with ||[F(p) — f(p)| <
eVpe M.

Proof. We adapt the proof of Theorem 3.11.4 to this context. By Propo-
sition 3.8.1 the map f is locally injective, so by Proposition 3.3.2 we can find
an adequate atlas {(p,-: Ui — Rm} such that f|y, is injective for all /.
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QH

Figure 3.16. This immersion S' — R? cannot be perturbed to an embedding.

QH

Figure 3.17. It suffices to raise the dimension of the target by one, and
the immersion can now be perturbed to an injective immersion.

We define again V; = (pfl(Bm) and M; = Uj<;V;. Let \;: M — R bea
bump function with A; =1 on V; and \; = 0 outside U,.
We now construct a sequence FO, F1 ... of immersions F': M — R”,
that satisfy the following conditions:
(1) [IF'(p) = f(p)Il <€ forall pe M,
(2) F''= F=1 outside of U;,
(3) F’|Uj is injective for all J,
(4) F'is injective on M;.
Again, we conclude that F’ converge to some F, that is an injective immersion.
We set FO = f. Given F'~1, we define

Fi = Fi_l + >\,'V,'
where v = v; € R" is some vector that we now determine. If ||v|| is sufficiently

small, then F' is an immersion and (1) is satisfied. Moreover (2) is automatic.
Now let U C M x M be the open subset

U={(p.q) € Mx M| X(p) # X(a)}.
We define W: U — R" by setting
F(p) — F"*(a)
Ai(p) = Xi(4)

We deduce that F/(p) = F'(q) if and only if one of the following holds:

(@) (p,q) € Uand v=V(p,q), or

(b) (p.q) & U and F'=(p) = F'"*(q).
Since dimU = 2m, the image W(U) form a zero-measure subset and we may
require that v be disjoint from it. This excludes (a) and therefore F' is injective
where F'~1 is injective: we get (3).

To show (4), suppose that F'(p) = F'(q) for some p, g € M;. We must

have X\;(p) = Xi(g) and F'~*(p) = F'~*(q). If Xi(p) = O, then p,q € M;_,

V(p,q) = —
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and we get p = g by the induction hypothesis. If X\j(p) > 0, then p,q € U;
and we get p = g by the induction hypothesis again. [l

3.11.5. Embeddings. We now want to make one step further, and pro-
mote injective immersions to embeddings. The following result is the main
achievement of this section.

Theorem 3.11.8 (Whitney embedding Theorem). For every smooth m-
manifold M there is a proper embedding M —s R2M+1.

Proof. Pick a smooth exhaustion g: M — R<g from Proposition 3.3.10
and consider the proper map f: M — R2™1 f(p) = (g(p),0,..., 0). By
applying Theorems 3.11.4 and 3.11.7 with any fixed € > 0 we can perturb f
to an injective immersion, that is easily seen to be still proper. Being proper,
it is an embedding by Exercise 3.8.5. [l

Concerning properness, we note the following.

Exercise 3.11.9. An embedding i: M — R" is proper <= /(M) is a closed
subset of R".

Corollary 3.11.10. Every m-manifold M is diffeomorphic to a closed sub-
manifold of R>™+1,

For instance, every surface embeds properly in R°.

3.12. Exercises

Exercise 3.12.1. Construct two smooth atlases in R that are not compatible.
Show that the two resulting smooth manifolds are diffeomorphic.

Remark 3.12.2. Every topological manifold of dimension n < 3 has in fact a
unique (up to diffeomorphisms) smooth structure. Things become more complicated
in dimension n > 4 where a given topological manifold can have no smooth structure
at all, or can have many pairwise non-diffeomorphic smooth structures.

Exercise 3.12.3. Let M, N be two topological manifolds and f: M — N a local
homeomorphism. Given a smooth structure on M, show that there is precisely one
smooth structure on N such that f becomes a local diffeomorphism.

G
Exercise 3.12.4. Consider the group G of affine isometries of R3 generated by:
fx.y,z)=(x+1y.2), gxyz)=(xy+12),

hix,y,z) =(—x,—y,z+1).

Show that G acts freely and properly discontinuously and that the 3-manifold R3/G
is compact and orientable, but not homeomorphic to the 3-torus St x S x S1. Show
that this 3-manifold is doubly covered by the 3-torus.
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Exercise 3.12.5. Let G be the group of affine transformations of R? generated by
f(x.y) = (2x, 3¥).
Show that G acts freely but not properly discontinuously on the manifold M = R2\{0}.

Show that the resulting map M — M/G is a covering map, but the quotient M/G is
not Hausdorff.

Exercise 3.12.6. Let M and N be manifolds. Show that M x N is orientable if
and only if both M and N are.

Exercise 3.12.7. Let N be a manifold, M C N a smooth submanifold, and S C M
a smooth submanifold. Show that S C N is a smooth submanifold.

Exercise 3.12.8. Let f: M — N be a smooth map between smooth manifolds.
Show that the following map is an embedding:
itM< MxN, p—(p,f(p))
Exercise 3.12.9. Every immersion f: M — N between manifolds of the same

dimension is an open map. If M is compact and N is connected, it is a smooth
covering of finite degree.

Exercise 3.12.10. Every injective immersion f: M — N between manifolds of
the same dimension is an embedding. If M is compact and N is connected, it is a
diffeomorphism.

Exercise 3.12.11. Prove that a submersion is an open map. Deduce that if M is
compact there is no submersion M — R".

Exercise 3.12.12. Prove that the following map f: RP? — R* is an embedding:
(x2 —y?, xy,xz,yz)
X2 +y?+ 22
Exercise 3.12.13. Construct for all n an embedding
Stx ... x St R

n

f(lx.y. 2]) =

Exercise 3.12.14. Prove that the Pliicker embedding defined in Section 2.6.2 is
indeed an embedding.



CHAPTER 4

Bundles

We introduce here a notion that is ubiquitous in modern geometry, that
of a bundle. We start with the more general concept of fibre bundle, and then
we turn to vector bundles.

4.1. Fibre bundles

In the previous chapter we have introduced the immersions M — N, and
we have proved that they behave nicely near each point p € M of the domain.
After that, we have discussed the enhanced notion of embedding that is also
nice at every point g € N of the codomain.

Here we do a similar thing with submersions. These are maps that behave
nicely at every point p € M of the domain, and we would like to enhance the
definition of submersion by requiring it to be nice also at every point g € N of
the codomain. This leads to the notion of fibre bundle.

4.1.1. Definition. \We work as usual in the smooth manifolds context.

Definition 4.1.1. Let F be a smooth manifold. A smooth fibre bundle with

fibre F is a smooth map
. E— B

between two smooth manifolds E, B called the total space and the base space,
that satisfies the following local triviality condition. Every p € B has an open
trivialising neighbourhood U C B whose counterimage m~1(U) is diffeomorphic
to a product U x F, via a map @: 7 (U) — U x F such that the following
diagram commute:

YU) L= UxF
W\L /
!
U
where m1: U X F — U is the projection onto the first factor.

The definition might look slightly technical, but on the contrary is indeed
very natural: in a fibre bundle E — B, every fibre is diffeomorphic to F, and
locally the fibration looks like a product U x F projecting onto the first factor.

Example 4.1.2. The trivial bundle is the product E = B x F, with the
projection m: E — B onto the first factor.

97
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Figure 4.1. The Mébius strip is the total space of a fibre bundle with
base a circle and fibre R. Although it is locally trivial (as every fibre bundle),
it is globally non-trivial: the fibre R makes a “twist” when transported all
through the base circle.

immersion H submersion H local diffeomorphism H smooth homotopy

embedding H fibre bundle H smooth covering H isotopy

Table 4.1. We summarise here some of the most important definitions
in differential topology. Every notion in the second row is an improvement
of the one above.

The prototype of a non-trivial fibre bundle is the Mdbius strip shown in
Figure 4.1, which is the total space of a fibre bundle with F = R and B = S!.

If the fibre F is diffeomorphic to the line R, the circle S, the sphere S”,
the torus T, etc. we say correspondingly that E is a line, circle, sphere, or
torus bundle over B. For instance, the Mdbius strip is a line bundle over St.

Two fibre bundles w: E — B and 7’: E/ — B are isomorphic if there is a
diffeomorphism 4 : E — E’ such that m = 7’ o 4. We say that a fibre bundle
is trivial if it is isomorphic to the trivial bundle.

Remark 4.1.3. Every fibre bundle is a submersion, but not every submer-
sion is a fibre bundle. Table 4.1 summarises some important definitions that
we have introduced up to now. Recall that immersions and submersions are
somehow dual notions, and every concept in the second row is an improvement
of the one lying above.

Example 4.1.4. Both the torus T and the Klein bottle K are total spaces of
fibre bundles over St with fibre S1. A fibration on the torus is (e?, e/®) s e/
and is clearly trivial. A fibration on the Klein bottle is suggested in Figure 4.2:
this fibration is certainly not trivial, because K is not diffeomorphic to S* x S?.
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Figure 4.2. The torus and the Klein bottles are both total spaces of
circle fibrations over the circle. The first is trivial, the second is not.

Note that in general two fibre bundles over the same B that are isomorphic
must have diffeomorphic total spaces, but the converse is not necessarily true.

Example 4.1.5. A smooth covering between manifolds is precisely the same
thing as a fibre bundle with zero-dimensional fibre F.

4.1.2. Sections. A section of a fibre bundle E — B is a smooth map
s: B— E such that mos =idg.

Example 4.1.6. On a trivial fibre bundle Bx F — B everymap f: B — F
determines a section s(p) = (p, f(p)), and every section is obtained in this
way, so sections and maps B — F are roughly the same thing.

On non-trivial bundles sections are more subtle: there are fibre bundles
that have no sections at all, for instance non-trivial smooth coverings. We will
often confuse a section s with its image s(B); we can do this unambiguously
since s(B) determines s.

Exercise 4.1.7. Show that any two sections on the Mobius strip bundle
intersect. This also implies that the bundle is non-trivial.

4.2. Vector bundles

A vector bundle is a particular fibre bundle where every fibre has a structure
of finite-dimensional real vector space. This is an extremely useful concept in
differential topology and geometry.

4.2.1. Definition. A smooth vector bundle is a smooth fibre bundle E —
M where the fibre E, = 7~ 1(p) of every point p € M has an additional
structure of a real vector space of some dimension k, compatible with the
smooth structure in the following way: every p € M must have a trivialising
open neighbourhood U such that the following diagram commutes

7 U) 2= U x R¥
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via a diffeomorphism ¢ that sends every fibre E, to {p} x R¥ isomorphically
as vector spaces. Note that the dimensions k and n of the fibre and of M may
be arbitrary.

The simplest example of a vector bundle over M is the trivial one M x RX,
In general, the natural number k > 0 is the rank of the vector bundle. A
vector bundle with rank k = 1 is called a line bundle. Vector bundles arise
quite naturally in various contexts, as we will soon see.

Exercise 4.2.1. Recall that RP" may be interpreted as the space of all the
vector lines /| C R"™1. Consider the space

E={(v)eRP"xR"™ | vel}.

This is a smooth (n+1)-submanifold of RP"” x R"*! and the map 7: E — RP"
that sends (/,v) to [ is a smooth line bundle with fibre F = R, called the
tautological line bundle. Here w=1(/) is naturally identified to / itself and is
hence a vector line.

4.2.2. Morphisms. A morphism between two vector bundles £ — M and
E’" — M’ is a commutative diagram

E—f.F

1

M—— M
f‘

where F and f are smooth maps, and F is a linear map on each fibre (that is
Fle,: Ep — E’f(p) is linear for each p € M).

Note that the dimensions of the manifolds M, M’ and of their fibres are
arbitrary, so this is a quite general notion. As usual, we say that a morphism
is an isomorphism if it is invertible on both sides: this is in fact equivalent to
requiring that both maps f and F be diffeomorphisms.

In some cases we might prefer to consider vector bundles on a fixed base
manifold M, and in that setting it is natural to consider only morphisms where
f is the identity map on M.

4.2.3. The zero-section. As opposite to more general fibre bundles, every
vector bundle E — M has a canonical section s: M — E, called the zero-
section, defined as s(p) = 0 where 0 is the zero in the vector space E,, for all
p € M. It is convenient to identify the image s(M) of the zero-section with
M itself. We will always consider the base space M embedded canonically in
E through its zero-section.

4.2.4. Manipulations of vector bundles. Roughly speaking, every oper-
ation on vector spaces translates into one on vector bundles over a fixed base
manifold M. For instance, given two vector bundles £ — M and £/ — M we
may define:



4.2. VECTOR BUNDLES 101

e their sum E® E' — M,
e the dual E* — M,
e their tensor product E @ E/ — M.

To do so we simply need to perform these operations fibrewise. If Ep, El’) are
the fibres over p in E, E’, then the fibre of £ & E’ is by definition E, © Ej,, so

EoE = || E,dE).
pEM

Of course, to complete the construction we need to build a natural smooth
structure on E @ E’, and this is done as follows: if U x R¥ and U x R" are
local trivialisations of £ and E’, then U x (R @ R") is a local trivialisation for
E & E’ and we equip it with the obvious product smooth structure.

The dual and tensor product bundles are defined analogously. More vector
bundles may be constructed by combining these operations.

Example 4.2.2. The vector bundle Hom(E, E’) — M is by definition the
vector bundle E*®E’ — M. The fiber over p € M is Hom(E, E}) = E;®E},,
see Corollary 2.1.14.

4.2.5. Subbundle and quotient bundle. The notion of vector subspace
translates into that of subbundle. Given a vector bundle w: E — M, a subset
E" C E is a h-subbundle if it fulfills the following requirement: every p € M
has a trivialising neighbourhood U C M with a diffeomorphism

p: T HU) — UxRF =UxR"x RFH

with @ (E' N =1(U)) = U x R" x {0}. Shortly: a subbundle E’ C E looks
locally like U x R x {0} € U x R" x RK=" above U C M.

If follows readily from the definition that £/ C E is a submanifold and the
restriction 7|g . E' — M is a rank-h bundle, where the fiber E,’J at every point
p € M is a h-subspace of Ep.

Example 4.2.3. The line bundle of Exercise 4.2.1 is a subbundle of the
trivial bundle RP" x R"*1 over RP".

If E’ is a subbundle of E, we can define the quotient bundle E/E" — M,
whose fibre over p € M is the quotient vector space EP/E;). The smooth struc-
ture is obtained from the diffeomorphisms ¢ considered above by identifying
RX /R with R“=" in the obvious way. The resulting maps

E'—>E——>E/E

are bundle morphisms.
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4.2.6. Restriction and pull-back. So far we have only described some
manipulations of vector bundles on a fixed base manifold M. Some interesting
operations arise also by varying the base manifold.

For instance we can change the base while keeping the fibres fixed: if
N C M is a submanifold, then every vector bundle E — M restricts to a
vector bundle E|y — N with the same fibres E,, in the obvious way. We call
this operation the restriction to a submanifold. We get a bundle morphism

Eln——E
Ne—— M

More generally, let f: N — M be any smooth map and E — M be a vector
bundle. The pull-back of f is a new vector bundle f*E — N constructed as
follows: the total space is

f*E={(p.v) e Nx E | f(p)=m(v)} CNxE.

The map 7: f*E — N is w(p,v) = p. The fibre (f*E), over p is naturally
identified with E¢(,) and is hence a vector space.

Proposition 4.2.4. The total space f*E is a smooth submanifold of N x E
and f*E — N is a vector bundle.

Proof. By restricting to a trivialising neighbourhood for E it suffices to
consider the case where N = R”, M =R™, and E = R” x R¥. We get

f*E={(x,y,z) e R" x R™ x R¥ ‘ f(x) =y}
Everything now follows from Example 3.7.3. [l

We draw the commutative diagram

f*E > E
|7
N
N———-M
f

The dotted arrows indicate the maps that are induced by pulling-back 7 along
f. The restriction is a particular kind of pull-back where N C M is a subman-
ifold and f is the inclusion map.

Exercise 4.2.5. If f is constant, then f*E is trivial.

4.2.7. Homotopy invariance of pull-backs. The pull-back of a bundle
along a map is in fact invariant up to homotopy.

Theorem 4.2.6. The pull-backs f*E, g*E of a vector bundle E — M along
two homotopic maps f,g: N — M are always isomorphic.
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The proof of this theorem will be quite straightforward after that we in-
troduce connections, so we defer it to the next chapters.

Corollary 4.2.7. Every vector bundle on a contractible manifold is trivial.

Proof. Let E — M be a vector bundle on a contractible M. The identity
id: M — M is homotopic to a constant map ¢c: M — M, so E = id*E is
isomorphic to ¢*E, which is trivial by Exercise 4.2.5. [l

In particular every vector bundle over R” is trivial.

4.3. Tangent bundle

We now introduce the most important vector bundle on a smooth n-
manifold M, the tangent bundle. We will also define some of its relatives,
like the cotangent, the normal, and the more general tensor bundle.

4.3.1. Definition. Let M be a smooth manifold. As a set, the tangent
bundle of M is the disjoint union

TM=||T,M
peM

of all its tangent spaces. There is an obvious projection w: TM — M that
sends T,M to p.

The set TM has a natural structure of smooth manifold induced from
that of M as follows. Every chart ¢: U — V of M induces an isomorphism
dyp: TpM — R" for every p € U. Therefore it induces an overall identification
0o T HU) = V x R via

@« (v) = (o(p). dpp(v))

where p = (v), for every v € m=1(U). We define an atlas on T M by taking all
the charts @, of this type. The same charts ¢, furnish the local trivializations
needed to prove that TM — M is indeed a vector bundle.

If dim M = n, then dmTM = 2n. We think of M embedded in TM as
the zero-section, as usual with vector bundles.

Example 4.3.1. The tangent bundle of an open subset U C R" is canoni-
cally identified with the trivial bundle

TU=UxR"
because every tangent space in U is canonically identified with R”.

More generally, we can write the tangent bundle TM of a submanifold
M C R" of any dimension m < n quite explicitly:

TBD
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Figure 4.3. The tangent bundle of S is trivial.

Example 4.3.2. The tangent bundle of a submanifold M C R” is naturally
a submanifold TM C R” x R" = R?", defined by

TM={(p.v) | peMyveT,M}.
For instance, we have
TS"={(x.v) | lIxl=1ve XJ‘}.

Example 4.3.3. As suggested by Figure 4.3, the tangent bundle of St is
trivial. A bundle isomorphism f: ST x R — T S! is the following:

f(eiey t) _ (eie), tei(9+7r/2)).
Is the tangent bundle of S? also trivial? And that of S3?

Exercise 4.3.4. The tangent bundle T M is always an orientable manifold
(even when M is not!).

Every smooth map f: M — N induces a morphism of tangent bundles

™ TN

by setting f.(v) = df,(v) where p = w(v) for all v € TM. The restriction of
f. to each fibre T,M is the differential dfy: ToM — T, N.
If £ is a diffeomorphism, then f, is an isomorphism.

4.3.2. Cotangent bundle. The cotangent bundle T*M of a smooth man-
ifold M is by definition the vector bundle dual to the tangent bundle TM. The
fibre TJM at p € M is the vector space dual to the tangent space T,M and
is called the cotangent space at p.
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The cotangent bundle has some curious features that are lacking in the
tangent bundle. One is the following: every smooth function f: M — R
induces a differential df,: T,M — R at every p € M, which is an element

dfp € T;M

of the cotangent space. We can therefore interpret the family of differentials
{dfp}pem as a section of the cotangent bundle, and call it simply df.

We have discovered that every smooth function f: M — R induces a
section df of the cotangent bundle called its differential.

Remark 4.3.5. When M = R”, both the tangent and the cotangent space
at every p € M are identified to R” and the differential df is simply the gradient
V£, that assigns a vector (Vf), € R" to every point p € R”. Note however
that the tangent and cotangent spaces at a point p € M are not canonically
identified on a general smooth manifold M. A map f: M — R induces a
section of the cotangent bundle, not of the tangent bundle!

4.3.3. Normal bundle. Let M be a smooth manifold and N C M a sub-
manifold. We can find two natural vector bundles based on N: the tangent
bundle TN and the restriction T M|y of the tangent bundle of M to N. The
first is naturally a subbundle of the second, since at every p € N we have a
natural inclusion T,N C T,M.

The normal bundle at N is the quotient

vN = TM|y/TN.

An interesting feature of the normal bundle is that the total space vN is a
manifold of the same dimension as the ambient space M. Indeed if dim M = m
and dim N = n we get

dmuvN=(m—n)+n=m.

This preludes to an important topological application of vN called tubular
neirghbourhood that will be revealed in the next chapters.

Example 4.3.6. On a submanifold M C R” we may use the Euclidean scalar
product to identify vpM with T,Dl\/ll for every p € M. We get an orthogonal
decomposition

ToM & vpyM =R"
for every p. Therefore we can interpret vM as a submanifold
vM={(p.v) | pe M vev,M} CR"xR".
For instance we have

vS"={(x,v) | IIxIl =1, v € Span(x)}.
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It is easy to deduce that the normal bundle of S” inside R"*! is trivial, because
we may identify S” x R and vS" by sending (x, X) to (x, Ax). Therefore we
get a connected sum of bundles

TS"®vS"=S" x R

where two of them vS” and S” x R™! are trivial, but the third one TS" is
often not trivial. It is possible to add a trivial bundle to a non-trivial one, and
get a trivial bundle as a result.

4.3.4. Tensor bundle. For every h, kK > 0 we may construct the tensor
bundle 777k(M) via tensor products of the tangent and cotangent bundles:

TEKM)=TM)@--- T(M)RT*(M)®@--- @ T*(M).
h k

The fiber over p is the tensor space ﬂk(TpM). We define analogously the
symmetric and antisymmetric tensor bundles

sK(m),  AK(M)

as the subbundles of 7*(M) whose fibres over p are SK(T,M) and AX(T,M).
In particular 71 (M) is the tangent bundle and 71(M) = S*(M) = A}(M) is the
cotangent bundle. We also define the trivial tensor bundle 72(M) = M x R,
coherently with the fact that a tensor of type (0, 0) is just a scalar in R.

4.4, Sections

The most important feature of vector bundles is that they contain plenty
of sections. Sections are not as exoteric as they might look like: in fact, many
mathematical entities that will be introduced in this book — like vector fields,
differential forms, and metric tensors — are sections in some appropriate vector
bundles, so it makes perfectly sense to study them in more detail. The effort
we are making now in treating these abstract objects in full generality will be
soon rewarded.

4.4.1. Vector space. Let m: E — M be a vector bundle. The space of
all sections s: M — E is usually denoted by

r(E).

This space is naturally a vector space: the sum s + s’ of two sections s and
s’ is defined by setting (s + s’)(p) = s(p) + s’(p) for every p € M, using the
vector space structure of Ep, and the product with scalars is analogous. The
origin of the vector space I'(E) is of course the zero-section.

Moreover, for every smooth function f: M — R and every section s we
can define a new section fs by setting (fs)(p) = f(p)s(p). Therefore I'(E)
is also a module over the ring C*(M).
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If E and E’ are two bundles over M, with sections s and s’, then one can
define the sections s @ s’ and s® s’ of E® E’ and E ® E’ in the obvious way,

by setting (s @ s')(p) = (s(p), s'(p)) and (s @ ')(p) = s(p) ® 5'(p).

4.4.2. Extensions of sections. We now show that vector bundles have
plenty of sections, and we do this by proving that every “locally defined” section
may be extended to a global one.

Let m: E — M be a vector bundle and s be a section. On a trivialising
neighbourhood U, we get a diffeomorphism ¢: 7=1(U) — U x R¥ and hence

©(s(p)) = (p.s'(p))

for some smooth map s’: U — R¥. In other words, every smooth section s
can be read as a function s': U — RX on every trivalising neighbourhood U.

The fact that sections look locally like functions has some interesting con-
sequences: for instance, we now show that sections defined only partially may
be extended globally.

Let S C M be any subset. We say that a smooth map s: S — E is a
partial section if mos = idg. Recall from Definition 3.3.5 the correct meaning
of “smooth” here.

Proposition 4.4.1. IfS C M is a closed subset, every partial sections: S —
E may be extended to a global one M — E.

Proof. We adapt the proof Proposition 3.3.6 to this context. Locally,
sections are like maps U — R¥ and can hence be extended. Therefore for every
p € S there are an open trivialising neighbourhood U, and a local extension
9p: Up — E of s. We then proceed with a partition of unity following the
same proof of Proposition 3.3.6. U

Remark 4.4.2. By construction, we may suppose (if needed) that s van-
ishes outside of any given neighbourhood of S.

Exercise 4.4.3. Let E — M be a vector bundle of rank kK > 1. If M is not
a finite collection of points, the vector space I'(E) has infinite dimension.

4.4.3. Zeroes. Let m: E — M be a vector bundle over some smooth
manifold M. We say that a section s: M — E vanishes at a point p € M if
s(p) = 0. In that case p is called a zero of s. The section is nowhere vanishing
if s(p) # 0 forall pe M.

Here is one important thing to keep in mind about sections of vector
bundles: although there are plenty of them, it may be hard — and sometimes
impossible — to construct one that is nowhere vanishing. As an example:

Exercise 4.4.4. The Mobius strip line bundle £ — S! has no nowhere-
vanishing section.
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4.4.4. Frames. Let w: E — M be a rank-k vector bundle. A frame for
T consists of k sections sy, ..., sk such that the vectors si(p), ..., sk(p) are
independent, and hence form a basis for E,, for every p € M.

Every s; is in particular a nowhere-vanishing section: finding a frame is even
harder than constructing a nowhere-vanishing section. In fact, the following
shows that frames exist only on trivial bundles.

Proposition 4.4.5. A bundle has a frame <= the bundle is trivial.

Proof. On a trivial bundle £ = M x R¥, the sections s;(p) = (p, ;) with
i =1,... k form a frame. Conversely, a frame s,...,s, onm: E - M
provides a bundle isomorphism F: M x RK — E by writing

F(p, ()\1, R >\k)) = >\151(p) +...+ Aksk(p).
The proof is complete. O

In light of this result, a frame is also called a trivialisation of the bundle E
because it specifies a precise isomorphism of E with the trivial bundle M x RK,
A nontrivial bundle £ — M has no global frame, but it has many local frames:
we define a local frame to be a frame on a trivialising open set U C M. Every
trivialising open set has a local frame, induced by the trivialising chart.

4.4.5. Tensor fields. We now introduce the most important types of sec-
tions in differential topology and geometry, called tensor fields. These are
ubiquitous in this book.

Let M be a smooth manifold. A tensor field of type (h, k) is a section s
of the tensor bundle T;*(M) of M, that is

s e T(TH(M)).

In other words, we have a tensor s(p) € T;¥(T,M) that varies smoothly with
the point p € M.

Since TP (M) = M xR is the trivial line bundle, a tensor field of type (0, 0)
is just a smooth function s: M — R.

A tensor field of type (1,0) assigns a tangent vector at every point and
is called a vector field: vector fields are extremely important in differential
topology and we will study them in the next chapter with some detail.

A tensor field of type (0,1) may be called a covector field, but the term
1-form is more often employed. More generally, a k-form is a section of the
antisymmetric tensor bundle AX(M). These are also important objects and we
will dedicate the Chapter 7 to them.

A symmetric tensor field of type (0, 2) assigns a bilinear symmetric form to
every tangent space: this notion will open the doors to differential geometry.

Most of the operations that we defined on tensors apply naturally to tensor
fields. For instance, the tensor product s ® s’ of two tensor fields s and s’
of type (h, k) and (K, k") is a tensor field of type (h+ W,k + k'), and the
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contraction of a tensor field of type (h, k) is a tensor field of type (h—1, k—1).
It suffices to apply these constructions pointwise at every p € M.

4.4.6. Coordinates. Let s be a tensor field of type (h, k) on M and let
©: U — V be a chart. We now want to express s in coordinates with respect
to the chart ¢.

As we already noticed, for every p € U the differential dy, identifies the
tangent space T,M with R", and we deduce from that an identification of the
tensor space T,X(T,M) with TX(R"). The tensor field s, restricted to U, may
therefore be represented as a smooth map

sV — TH(R).

How can we write such a map? The vector space ﬂk(R”) has a canonical
basis that consists of the elements

ej1®...®eih®ej1®...®ejk

where 1 <i1,...,0hJ1, ..., Jk < nand ey, ..., e,is the canonical basis of R”,
see Section 2.2.2. Therefore s’ may be written uniquely as
/ Myeees i 1 j
S)=sll(x)e, @ @e, @@ @ ek
where we employ the Einstein convention and the coefficients vary smoothly
with respect to x € V. Shortly, the coordinates of s with respect to ¢ are the

coefficients

yeeidp
e

that are real numbers that depend smoothly on x.

4.4.7. Changes of coordinates. If we pick another chart around a point
p € M, the same tensor field s is represented via some different coordinates

and the transformation law relating the two different coordinates is prescribed
by Proposition 2.2.12. It is convenient here to denote the coordinates of the

two charts by x!, ..., x"and 8%, ..., K" respectively, so that the differential of
the transition map may be written simply as
oK'
ox”
The transformation law says that
sy _ OXT 9K OX™ XM Shh
Ji-dk Qxh Ox'h QR ARk MM
For instance, for a vector field we have

oi
_ 8xl j
oxJ

Af
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while for a covector field we get

ox!
= %S,'.
Note that everything is designed so that every two repeated indices stay one
on the top and the other on the bottom, in every formula. This is a conven-
tion that helps us to prevent mistakes; another trick consists of replacing the
notations e; and e with the symbols % and dx/. We will explain this in the
subsequent chapters.

W

4.5. Riemannian metric

It is sometimes useful to equip a vector bundle with some additional struc-
ture, called Riemannian metric. Not only this structure is interesting in its own
right, but it is also useful as an auxiliary tool.

4.5.1. Definition. Let m: E — M be a vector bundle. Consider the bun-
dle E*® E* — M. Remember that the fibre above p € M is the space E,Q E]
of all tensors on E, of type (0,2). Remember also that scalar products are
particular kinds of symmetric tensors of type (0, 2).

Definition 4.5.1. A Riemannian metric in 7 is a section g of E* ® E* such
that g(p) is a positive-definite scalar product on E, for every p € M.

In other words, a Riemannian metric is a positive-definite scalar product
g(p) on each fibre E,, that varies smoothly with p. On a trivialising chart
U the bundle E looks like U x R¥ and g can be represented concretely as a
positive-definite symmetric matrix g;; smoothly varying with p € U.

Proposition 4.5.2. Every vector bundle has a Riemannian metric.

Proof. We fix an open covering {U;} of trivialising sets for the bundle.
Above every U; the bundle is like U; x R¥, so we can identify E, = RK for
every p € U; and assign it the Euclidean scalar product, that we name g(p);.

To patch the g(p); altogether, we pick a partition of unity {p;} subordinate
to the covering. For every p € M we define

9(p) = Zp/(p)g(p)/.

This is a positive-definite scalar product, because a linear combination of pos-
itive definite scalar products with positive coefficients is always a positive-
definite scalar product. O

Example 4.5.3. The Euclidean metric on the trivial bundle M x RX is the
assignment of the Euclidean scalar product on every fibre R¥.

If E — M has a Riemannian metric, then every subbundle and every
restriction to a submanifold also inherits a Riemannian metric.
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4.5.2. Orthonormal frames. Let E — M be a vector bundle equipped
with a Riemannian metric. An orthonormal frame is a frame sy, ..., s, where
s1(p), ..., sk(p) form an orthonormal basis for every p € M.

Proposition 4.5.4. Every frame transforms canonically into an orthonormal
frame via the Gram — Schmidt algorithm.

Proof. This sentence already says everything. The Gram — Schmidt al-
gorithm transforms s;1(p), ..., sk(p) into k orthonormal vectors in a way that
depends smoothly on p, as one can see on a chart. O

Corollary 4.5.5. A bundle has an orthonormal frame <= it is trivial.

Proof. We already know that a bundle has a frame <= it is trivial. O

4.5.3. Isotopies. We will soon need an appropriate notion of isotopy be-
tween bundle isomorphisms.

Let E — M and E/ — M be two vector bundles, and f, g: E — E’ be two
isomorphisms. An isotopy between f and g is a smooth map

F:ExR— FE

such that each F; = F(-, t) is an isomorphism, and Fo = f, F; = g.

4.5.4. Isometries. An isometry between vector bundles E, E’ with Rie-
mannian metrics ¢, g’ is an isomorphism F: E — E’ that preserves the metric,
that is with ¢'(F(v), F(w)) = g(v, w) for all v,w € E, and all p € M.

The following proposition says that, maybe a bit surprisingly, isometry
between vector bundles is not a stronger relation than isomorphism. This fact
extends the well-known linear algebra theorem that says that two real vector
spaces equipped with positive definite scalar products are isometric if and only
if they are isomorphic.

Proposition 4.5.6. Two isomorphic vector bundles equipped with arbitrary
Riemannian metrics are always isometric, via an isometry that is isotopic to
the initial isomorphism.

Proof. If the two bundles are trivial, this follows from Proposition 4.5.4,
since we would find orthonormal frames on both, and an isometry would be
constructed by sending the first to the second.

In general, we can use this argument only locally, and more work is needed
to pass from local to global: the Gram — Schmidt process is not “invariant
enough” for this purpose and we will need the “more invariant” OS decomposi-
ton of Proposition 3.9.8.

We may reduce to the case where m: E — M is a vector bundle and g, ¢’
are two arbitrary Riemannian metrics on it; we must construct an isometry
E — E with respect to the metrics g and ¢, isotopic to the identity.
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Let U be a trivialising neighbourhood. Pick two orthonormal frames s; and
s/ for g and g’ on U. We may represent every isomorphism E|y — E|y with
respect to these frames as a matrix A(p) € GL(n, R) that depends smoothly
on p € U. The isomorphism is an isometry <= A(p) € O(n) for every p € U.

Let A = A(p) represent the identity isomorphism in these basis. Use
Proposition 3.9.8 to decompose A as A= OS with O € O(n) and S € S™(n).
The matrix O(p) defines an isometry for every p € U.

As a consequence of Proposition 3.9.9, we see easily that the isometry
defined by O(p) actually does not depend on the orthogonal frames s; and
s/ chosen above! Therefore by covering M with charts we get a well-defined
global isometry E — E with respect to the metrics g and ¢'.

An isotopy between O and Ais B(p) = O(p)(t/+(1—t)S(p)). using that
ST (n) is convex. This is well defined again by Proposition 3.9.9. O

4.5.5. Unitary sphere bundle. Let m: E — M be a vector bundle. Let
us equip it with a Riemannian metric g. Every fibre £, has a positive-definite
scalar product g(p) and hence every vector v € E, has a norm

vl = vg(v,v).

The associated unitary sphere bundle is the submanifold
S(Ey={veE]||v|=1}

The projection T restricts to a projection m: S(E) — M whose fibre S(E), is
the unitary sphere in Ej.

Proposition 4.5.7. The projection w: S(E) — M is indeed a sphere bundle.
It does not depend, up to isotopy, on the chosen metric g.

By “isotopy” we mean that the sphere bundles constructed from two met-
rics g and ¢ are related by a self-isomorphism of £ — M isotopic to the
identity.

Proof. We prove the local triviality. On a trivialising open set U the bundle
E is isometric to the Euclidean U x R¥, so S(E)|y is like U x SK=1. If we pick
another metric ¢’, we get an E’ isometric to E by Proposition 4.5.6, via an
isometry that is isotopic to the identity. Hence S(E’) is isotopic to S(E). O

4.5.6. Orthogonal bundle. Let E — M be a vector bundle equipped with
a Riemannian metric. For every subbundle E/ — M we have an orthogonal
bundle (E')* — M, whose fiber (E")7 is the orthogonal subspace to E, C E,
with respect to the metric.

The orthogonal bundle is canonically isomorphic to the normal bundle E/E’
and may be seen as a realisation of it as a subbundle of E.

Example 4.5.8. If the tangent bundle TM of a manifold M is equipped
with a Riemannian metric, the normal bundle vN of any submanifold N C M
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may be seen (using the Riemannian metric) as a subbundle of T M|y, so that
we get an orthogonal sum

TM|y=TN& vN.

4.5.7. Dual vector bundle. Here is another instance where a Riemannian
metric may be used as an auxiliary tool, to prove theorems.

Proposition 4.5.9. Every vector bundle E — M is isomorphic to its dual
E* — M.

Proof. Pick a Riemannian metric on M. The scalar product on E, may
be used to identify E, with its dual £ as described in Section 2.3.3. This
furnishes the bundle isomorphism E — E’. O

Example 4.5.10. A Riemannian metric on the tangent bundle T M deter-
mines an identification of the tangent and the cotangent bundles over M.
More generally, it furnishes some bundle isomorphisms

T (M) 2= Ths (M) 2= T (M),

4.5.8. Shrinking vector bundles. A Riemannian metric may be used to
shrink a vector bundle. We will need this technical operation at some point.

Lemma 4.5.11. Let E — M be a vector bundle. For every neighbourhood
W C E of the zero-section M there is an embedding g: E — W with
® gly =idy,
e g(Ep) C E, for every p e M.
Moreover there is an isotopy g+ between gg = idg and g1 = g through embed-
dings g¢+: E — E that also fulfill these two requirements.

Proof. Fix a Riemannian metric on E. Using a partition of unity, we can
prove (exercise) that there is a smooth positive function €: M — R such that
W contains all the vectors v € E,, with |lv|| < e(p), for all p € M. Define

v
gv)=¢(m(v)) —.

V) =)
This map fulfills the requirements. An isotopy is obtained by convex combina-
tion g¢(v) = (1 — t)v + tg(v). O

4.5.9. Trivialising sums. The tangent bundle TS” of a sphere is often
non-trivial, but it suffices to add the normal bundle of S” in R™! to get a
trivial bundle, that is:

TS"®vS"=S" x R,
This is in fact an instance of a more general phenomenon:

Exercise 4.5.12. For any vector bundle E — M there is another vector
bundle E/ & M such that E ® E' — M is trivial.

TBD
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4.6. Exercises

Exercise 4.6.1. Let S be an orientable surface. Show that the tangent bundle
TS is trivial <= there is a nowhere-vanishing vector field on S.

Show that this is false for the Klein bottle K: the tangent bundle T K is not trivial
but K has a nowhere-vanishing section.

Exercise 4.6.2. Prove that there are precisely two vector bundles with rank 1 over
S up to isomorphism.

Exercise 4.6.3. Construct a fibre bundle £ — K with fibre F = ST over the Klein
bottle K, such that E is an orientable 3-manifold.

Hint. Use Exercise 3.12.4. O

Exercise 4.6.4. Show that every non-orientable manifold M of dimension n is
contained in an orientable manifold of dimension n+ 1.

Exercise 4.6.5. Let w: E — M be a bundle with connected fibre F. Fix any
base-point xo € E. Show that m,.: m1(E, x0) — (M, 7(x0)) is a surjective ho-
momorphism. If it is a vector bundle, show that it is an isomorphism (construct a
deformation retract of £ onto the zero-section).

Exercise 4.6.6. The Grassmann bundle Gr¥(E) — M of a bundle £ — M is the
fibre bundle whose fiber Gr(E), over p consists of all k-planes in E,. Prove that
Gr¥(E) has a natural smooth structure, and that there is a natural 1-1 correspondence
between sections of Gr*(E) and k-plane subbundles of E.



CHAPTER 5

The basic toolkit

We now introduce some fundamental notions that apply to every context
in differential topology: we start with vector fields, their flows and Lie brackets;
then we turn to distributions, foliations, and the Fobenius Theorem; finally, we
introduce the two most important tools to understand embedded submanifolds,
namely tubular neighbourhoods and transversality.

5.1. Vector fields

5.1.1. Definition. Let M be a smooth manifold. A section X: M — TM
of the tangent bundle is called a vector field: it assigns a tangent vector
X(p) € Tp(M) to every point p € M that varies smoothly with p. Remember
that sections are smooth by definition, and hence vector fields also are.

Some vector fields on the torus are drawn in Figure 5.1. Recall that a zero
of X is a point p such that X(p) = 0. Note that the vector fields sketched in
the figure have no zeroes.

Example 5.1.1. When n = 2m — 1 is odd, the following is a nowhere-
vanishing vector field on S” C R?™:

(X1 ..... x2m) — (—x2, xt —x2m x2m*1).

Exercise 5.1.2. Write a smooth vector field on S” that vanishes only at
the poles (£1,0, ..., 0).

We denote by X(M) the set of all the vector fields on M. Recall from
Section 4.4 that X(M) = (T M) is a vector space and also a C*>°(M)-module.

Figure 5.1. Nowhere-vanishing vector fields on the torus.

115
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5.1.2. Diffeomorphisms. Many of the mathematical objects that we de-
fine are naturally transported along smooth maps f: M — N, either from M
to N or vice-versa from N to M, but this is not the case with vector fields:
there is no meaningful way to transport a vector field along a generic map f,
neither forward from M to N nor backwards from N to M.

On the other hand, every intrinsic (that is, coordinates-independent) no-
tion can be transported in both directions if f: M — N is a diffeomorphism.
If fis a diffeomorphism, every vector field X in M induces a vector field Y on
N via differentials, that is by imposing:

Y (f(p)) = dfy(X(p)) for every p € M.
This gives an isomorphism between X(M) and X(N) induced by f.

5.1.3. On charts. If X is a vector field on M and p: U -V C R" is a
chart, we can restrict X to a vector field on U and then transport it into a
vector field in V via the diffeomorphism . As we noticed in Section 4.4.6, the
transported vector field assumes the familiar form of a smooth map V — R”
because TV =V x R”, and we may write it as a vector

(Xl(x) ..... X"(x))

in R” that varies smoothly on x € V. Here X' is the i-coordinate of X in the
chosen chart, a real number that depend smoothly on x € V. We can use the
Einstein notation and write the transported vector field in VV more concisely as

Xie/
where eq, ..., e, is the canonical basis of R”. It turns out that it is more
comfortable to use the symbol 62, instead of e;, and we write instead
i 0
ox!’

Why do we prefer the awkward notation % to the more familiar ¢;7 The
partial derivative symbol is appropriate here for three reasons: (i) it is coherent
with the interpretation of tangent vectors as derivations, (ii) there is no risk of
confusing it with anything else, and more importantly (iii) it helps us to write
the coordinate changes correctly via the chain rule. Indeed, if we pick another
chart we get different coordinates

0

%!

and we know from Section 4.4.7 that the coordinates of a vector change
contravariantly, hence

vai

_ 0%
J— X =
(7) X =X"57.
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Thanks to the partial derivative notation, there is no need to remember the
formula by heart: it suffices to apply formally the chain rule and we get
xi 2 :X/a)_({i.
ox! ox' Ox!
This gives (7). Beware that one possible source of confusion is that the
coordinates of a vector change contravariantly, while the vectors themselves
of the basis change covariantly: indeed we have

o ox' o
ox) ~ axJ ox
and the change of basis matrix here is the inverse of the one that we find in
(7). Luckily, we can relax: the partial derivative notation helps us to write the
correct form in any context.

5.1.4. Vector fields on subsets. Let M be a smooth manifold. It is
sometimes useful to have vector fields defined not on the whole of M, but only
on some subset S C M. By definition, a vector field in S is a smooth partial
section S — T M of the tangent bundle, see Section 4.4.2. The following
example may be quite common.

Example 5.1.3. If f: N — M is an embedding, every vector field X in N
induces a vector field Y on the image S = f(N) by setting

Y (f(p)) = dfy(X(p)).
We now rephrase Proposition 4.4.1 in this context:

Proposition 5.1.4. If S C M is a closed subset, every vector field on S
may be extended to a global one on M.

We may also require that the extended vector field vanishes outside of an
arbitrary neighbourhood of S.

Corollary 5.1.5. Let N C M be a closed submanifold. Every vector field
in N extends to a vector field in M that vanishes outside of any given neigh-
bourhood of N.

5.2. Flows

It is hard to overestimate the importance of vector fields in differential
topology: they appear naturally everywhere, not only as intrinsically interesting
objects, but also as very powerful tools to prove deep theorems.

In this section, we show that a vector field X on a smooth manifold M
defines an infinitesimal way to deform M through a flow which moves every
point of p along an integral curve, a curve that is tangent to X at every point.

Flows are powerful tools, and we will use them here to promote isotopies
to ambient isotopies on every compact manifold.
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5.2.1. Integral curves. Let M be a smooth manifold and X a given vector
field on M. An integral curve of X is a smooth curve y: I — M such that

Y (t) = X (v(1))
forall t el.

Example 5.2.1. The curve y(t) = ﬁ(cos t,sint,..., cost,sint) is an
integral curve of the vector field in S described in Example 5.1.1.

An integral curve v: | — M is maximal if there is no other integral curve
n: J— M with | C J and y(t) = n(t) for all t € /. Every integral curve can
be extended to a maximal one by enlarging the domain as much as possible.
A straightforward application of the Cauchy — Lipschitz Theorem 1.3.5 proves
the existence and uniqueness of maximal integral curves:

Proposition 5.2.2. Let X be a vector field in M. For every p € M there is
a unique maximal integral curve yp: I, — M with ¥(0) = p.

Proof. Pick a chart ¢: U — R" and translate locally everything into R".
The vector field X transforms into a smooth map R” — R”, that we still
denote by X for simplicity. An integral curve =y satisfies /(t) = X(’y(t)).
The local existence and uniqueness of <y follows from the Cauchy — Lipschitz
Theorem 1.3.5. The maximal integral curve is also clearly unique. [l

5.2.2. Flows. One very nice feature of the Cauchy — Lipschitz Theorem
is that the unique solution depends smoothly on the initial data. This allows us
to gather all the integral curves into a single smooth global dynamical object
called flow.

For every p € M we have an interval /, C R and a maximal integral curve
Yp: Ip = M. We first gather all the intervals into a set

U= {J ({p} x 1) c MxR.
peM

Then we define the map ®: U — M by gathering all the integral curves:

®(p, t) = 7p(1).

The Cauchy —Lipschitz Theorem 1.3.5, applied locally at every point (p, t) €
U, implies that U is open and & is smooth.

The map @ is the flow associated to the vector field X. If U = M x R
we say that the vector field X is complete. A vector field is complete if all its
maximal integral curves are defined over R.

Example 5.2.3. Pick M = R" and X = % constantly. In this case we
have U = M x R and ®(x,t) = x + tey, so X is complete. If we remove
from M a random closed subset the resulting vector field X is probably not

complete anymore.
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Here is a simple completeness criterion.
Lemma 5.2.4. If M x (—¢,e) C U for some € > 0, then X is complete.

Proof. If at every moment of your life you are guaranteed to live at least
€ more seconds, you never die.

More details follow. We fix an arbitrary point p € M and we must prove
that /, = R. Pick any t € /,. The integral curves emanating from p and
®(p, t) differ only by a translation of the domain: hence /, = g ¢) + t and

(8) O (P(p, t), u) = P(p, t+ )
for every u € lg(p ¢y By hypothesis (—¢,€) C lg(p ¢y and hence (t—¢, t+€) C
Ip. Since this holds for every t € I, we get [, = R. O

Corollary 5.2.5. Every vector field on a compact M is complete.

Proof. By compactness any neighbourhood U of M x {0} in M x R must
contain M x (—e¢, €) for some € > 0. O

Let now X be a complete vector field on a smooth manifold M and & be
its flow. We denote by ®;: M — M the level map ®+(p) = P(p, t).

Proposition 5.2.6. The map ®; is a diffeomorphism for all t € R. Moreover
S, =1 Pris = Pro by
for all t,s € R.

Proof. The equality (8) implies that ®;,s = ;0 ®, for all t, s € R. This
in turn gives ®_; = CDt_l and hence ®; is a diffeomorphism. U

A smooth map ®: M x R — M with these properties is also called a one-
parameter group of diffeomorphisms. Indeed we may consider this family as a
group homomorphism R — Diffeo(M), t — ®; where Diffeo(M) is the group
of all diffeomorphisms M — M.

It is indeed a remarkable fact that by constructing different vector fields
on a compact manifold M we get plenty of one-parameter families of diffeo-
morphisms for M.

Example 5.2.7. The vector field on S constructed in Example 5.1.1 gen-
erates the flow

d(xt, x*M t) = (x' cost — x?sint,x*cost + x'sint,...).

5.2.3. Straightening a vector field. Let X be a vector field on a smooth
manifold M, and p € M a point. Among the infinitely many possible charts
near p, is there one that transports X into a reasonably nice vector field in
R"? The answer is positive if X does not vanish at p.

Proposition 5.2.8 (Straightening vector fields). If X(p) # O, there is a
chart U — V with p € U that transports X into o

axt-
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Figure 5.2. Using the flow we may construct a map 1 that sends the
horizontal lines to the integral lines of X. This map straightens X.

Proof. After taking a chart we may suppose that M = R"”, p = 0, and
X(p) = %. We now use the flow ® of X to construct a chart that straightens
the field X as sketched in Figure 5.2. We set

w(xt . x") = <I>((O,><2 ..... x™M), xb).

The vector field X may not be complete, so 1(x) is well-defined only for
sufficiently small ||x||. We get a map 9: B(0,e) — R" for some € > 0.

We prove that the differential di)g is the identity. We first note that
P(0,x2, ..., x™) =(0,x°, ..., x™), so 7 is the identity on the hyperplane x* =
0, and hence dyp(e)) = e fori=2,..., n. Moreover y(t) = ¢(t,0, ..., 0) =
®(0, t) is an integral curve of X, hence dyp(e1) =¥/ (0) = % = e.

Since dig is invertible, the map 9 is a local diffeomorphism at 0. By
construction 4 sends the lines x+te; to sorge integral curves of X as sketched

in Figure 5.2, so it sends the vector field 575 to X. O

5.3. Ambient isotopy

The previous discussion on flows and diffeomorphisms leads us naturally
to a stronger form of isotopy, called ambient isotopy, that involves a smooth
distortion of the ambient space.

5.3.1. Definition. Let M be a smooth manifold.

Definition 5.3.1. An ambient isotopy in M is an isotopy F between the
identity id: M — M and some diffeomorphism ¢: M — M, such that every
level F+: M — M is a diffeomorphism.

For instance, every flow ® generated by some complete vector field X on
M is an ambient isotopy between the identity ®g and the diffeomorphism 1.
Let now M, N be two manifolds. We say that two embeddings f,g: M —
N are ambiently isotopic if there is an ambient isotopy F on N with Ffp = id
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M

Figure 5.3. The vertical vector field X on M x [0, 1] is transported via
G into a vector field Y defined only on the compact set B.

and F; = @ such that g = pof. We check that this notion is indeed stronger
than that of an isotopy.

Proposition 5.3.2. If f, g are ambiently isotopic, they are isotopic.
Proof. An isotopy G¢ between f and g is G(x) = F(f(x)). O

We now use the flows to show that, if M is compact, the two notions
actually coincide.

Theorem 5.3.3. If M is compact, any two embeddings f,g: M — N are
isotopic <= they are ambiently isotopic.

Proof. Let F: M x R — N be an isotopy relating f and g. We define
G MxR—NxR

by setting G(p,t) = (F(p,t),t). We note that G is time-preserving and
proper (because M is compact, exercise). Moreover

d(Fe)p
dG(p,t) = < 0 p 1>

and hence G is an injective immersion. Being proper, the map G is an embed-
ding (see Exercise 3.8.5) and therefore its image G(M x R) is a submanifold
of N x R.

The vertical vector field X = % on M x [0, 1] is transported via G to a
vector field Y defined only on the compact set B = G(M x [0, 1]), by setting
Y(G(p. 1)) = dGp.r)(Z) as in Example 5.1.3. See Figure 5.3.

The vector field Y is defined only on the compact subset B C N x R, but
we extend it to a vector field on the whole of N x R that vanishes outside of
some compact neighbourhood V of B. After that, we abruptly modify it by
setting everywhere its t-component to be constantly 1. The resulting vector
field (that we still name Y for simplicity) has two keys properties:

(1) it coincides with the original Y on B, since its t-component was
already 1 from the beginning by construction;
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Figure 5.4. The trivial and the trefoil knot are not isotopic. This is
certainly true... but how can we prove it?

(2) it coincides with % outside of V.

We now consider the flow ® of Y in N xR. The vector field Y is complete:
to show this, we note that V' is compact and ®¢+(p, u) = (p, u+ t) outside V,
and these two facts easily imply that there is an € > 0 such that ® is defined
at every time |t| < €, so Lemma 5.2.4 applies.

Since the t-component of Y is constantly 1 we get

®¢(p,0) = (H(p, t). t)

for some smooth map H: NxR — N. We write H¢(p) = H(p, t) and note that
H:: N — N is diffeomorphism for every t, since ®; is. Moreover Hy = id and
hence H furnishes an ambient isotopy. Finally, we have H(f(p), t) = F(p, t)
for every (p, t) € M x [0,1] because Y = dG(Z) on B. Therefore H is an
ambient isotopy relating f and g. O

Corollary 5.3.4. Every connected smooth manifold M is homogeneous,
that is for every two points p,q € M there is a diffeomorphism f: M — M
isotopic to the identity such that f(p) = q.

Proof. There is a smooth arc y: R — M with ¥(0) = p and ¥(1) = g
(exercise). This arc may be interpreted as an isotopy between two embeddings
{pt} — M that send a single point to p and to g, respectively. This isotopy
may be promoted to an ambient isotopy, that sends p to q. O

How can we prove that two given homotopic embeddings are actually not
isotopic? For instance, how can we prove the intuitive fact that the two knots
in Figure 5.4 are not isotopic? Recall that a knot is an embedding S < R3.
Here is one answer: if they were isotopic, they would also be ambiently iso-
topic (because S! is compact), and hence there would be a diffeomorphism
of the whole R3 sending the first to the second. This implies in particular
that they would have homeomorphic complements. One can then try to cal-
culate the fundamental groups of the complements and prove that they are
not isomorphic: this strategy works for the two knots depicted in the figure.
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5.4. Lie brackets

We now introduce an operation on vector fields called Lie bracket. The
Lie bracket [X, Y] of two vector fields X and Y in M is a third vector field that
measures the “lack of commutativity” of X and Y.

5.4.1. Vector fields as derivations. Let X be a vector field on a smooth
manifold M. For every open subset U C M and every smooth function f €
C*(U) we may define a new function Xf € C*(U) by setting

(X1)(p) = X(p)(F)

for every p € U. Recall that X(p) € T,M is a derivation and hence transforms
any locally defined function f into a real number X(p)(f), so the definition of
the function Xf makes sense.

In coordinates, the vector field X is written as

9
Ox!

i

and the new function Xf is simply
Of
X' —.
ox!
This shows in particular that Xf is smooth.

We have just discovered that we can employ vector fields to “derive” func-
tions. We use the term “derivation” here, because the Leibniz rule

X(fg) = (Xf)g+ f(Xg)

is satisfied by construction for every functions f and g defined on some com-
mon open set U C M. Of course the derived function Xf depends heavily on
the vector field X.

Another way of seeing X is as the result of a contraction of the differential
df, a tensor field of type (0, 1), with X, a tensor field of type (1,0). The result
is a tensor field Xf of type (0, 0), that is a smooth function.

5.4.2. Lie brackets. Let X and Y be two vector fields on a smooth man-
ifold M. The Lie bracket [X,Y] of X and Y is a new vector field, uniquely
determined by requiring that

[X,Y]f = XY -YXf
for every function f defined on any open subset U C M.
Proposition 5.4.1. The vector field [X,Y] is well-defined.

Proof. For the moment, the bracket [X, Y] = XY —Y X is just an operator
on smooth functions defined on any open subset U C M. For every f,g €
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C>®(U) we get
XY (fg) = X((Yf)g) + X(f(Y9))
= (XYf)g+ (Y)(Xg) + (XF)(Yg)+ f(XYg),
YX(fg) = (YXF)g+ (XF)(Yg)+ (Y)(Xg) +f(YXg)
from which we deduce that
(X, Y](fg) = ([X, Y]f)g+ f([X, Y]g).

We have proved that [X, Y] is also a derivation. This allows us to define [X, Y]
as a vector field, by setting

[X. Y](p)(F) = [X, Y](f)(p)
for every p € M and every f defined near p. The proof is complete. O

5.4.3. Lie algebra. We introduce an important concept.

Definition 5.4.2. A Lie algebra is a real vector space A equipped with an
antisymmetric bilinear operation [, ] called Lie bracket that satisfies the Jacobi
identity

[x.vl.z] + [lv. 2. x] + [[z.x].y] =0
for every x,y,z € A.

Let M be a smooth manifold. Recall that X(M) is the vector space con-
sisting of all the vector fields in M.

Exercise 5.4.3. The space X(M) with the Lie bracket [,] is a Lie algebra.

5.4.4. In coordinates. The definition of the Lie bracket is quite abstract
and it is now due time to write an explicit formula that is valid in coordinates
with respect to any chart.

Exercise 5.4.4. In coordinates we get

) By’ BX!
[X,Y]’:Xfa i9

ox/ oxl

The reader may also wish to define [X, Y] directly via this formula, but
in that case she needs to verify that this definition is chart-independent, a
fact that is not immediately obvious: if we modify the formula randomly, for
instance by inserting a factor 2 after the minus sign, the definition is not
chart-independent anymore.

In the definition of the Lie bracket of two vector fields we have seen the
appearance of a recurrent theme in differential topology and geometry: the
eternal quest for intrinsic (that is, chart-independent) definitions. One may ful-
fil this task either working entirely in coordinates, or using some more abstract
arguments as we just did. As usual, both viewpoints are important.

The following exercises may be solved working in coordinates.
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Exercise 5.4.5. For every X,Y € X(M) and f, g € C*°(M) we have
[fX,gY] =fg[X, Y]+ f(Xg)Y —g(YF)X.

Exercise 5.4.6. On an open set of R”, for every /,j we have
o 0
Ty T~ = O
Ox!'" OxJ
More generally, we have

[a .a]_awa_ay

I V4 B —— = —
ox'' " ox Oxi Oxi  Ox'’

Exercise 5.4.7. Let A, B be two n x n matrices. Consider the vector fields
in R” defined as
X(x) = Ax, Y(x) = Bx.
Their Lie bracket is
[X,Y](x) = (BA— AB)x.
If you get (AB — BA)x, you made a (quite common) mistake. This is a very
instructing exercise.

5.4.5. Diffeomorphism invariance. The Lie bracket [X, Y] is an impor-
tant object because it is intrinsically defined given X and Y only, and this is
enough to dignify it: in differential topology and geometry we long for intrin-
sically defined objects, because they usually have nice functorial properties.
Indeed it follows readily from the definition that the bracket commutes with
diffeomorphisms: a diffeomorphism f: M — N between manifolds that sends
the fields X1, X» to Y1, Ya respectively, necessarily sends [X1, X»] to [Y1, Y2].

More than that, one can show the following. If f: M — N is any smooth
map between manifolds, we say that two vector fields X € X(M) and Y €
X(N) are f-related if df,(X(p)) =Y (f(p)) for all p e M.

Exercise 5.4.8. If X1, X5 are f-related to Y1, Y5 respectively, then [ X7, X3]
is f-related to [Y1, Ya].

Corollary 5.4.9. Let N C M be a submanifold. If X,Y are vector fields on
N, and X,Y are any extensions of X, Y to some open subset U C M containing
N, then at every point p € N we get

[X.Y1(p) = [X. Y1(p).
We now introduce a more geometric interpretation of the Lie bracket.

5.4.6. Non-commuting flows. Let X and Y be two vector fields on a
smooth manifold M, and let ®, W be their corresponding flows. Consider a
point p € M. In general, the two flows do not commute, that is ®s(V¢(p))
may be different from W;(®ds(p)) whenever they are defined. We now show
that the Lie bracket [X, Y] at p measures this possible lack of commutation.
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Proposition 5.4.10. On any chart, we have
W (Ps(p)) — Ps(We(p)) = st[X, Y](p) + o(s* + t2),

Note that the whole expression makes sense only on a chart, that is on
some open subset V' C R” with p € V and with s, t sufficiently small. On a
general smooth manifold M the points W+(®s(p)) and ©s(V¢(p)) are probably
distinct points in M and there is no way of estimating their “distance”. The
expression is however very useful because it holds on every chart.

Proof. We fix p and consider the smooth function

F(s t) = Ve(Ps(p)) — Ps(We(p)).

We have F(s,0) = F(0,t) =0 for all s, t. Since F =0 on the axis s =0 and
t = 0, the second-order Taylor expansion of F reduces to

O%F 5 5
F(s, t) = stasat - + o(s” + t°).
There is only one second—order term that we now calculate. We have
Ve(@s(p))]_ =Y (s(p)
and then
02 0] oY
- — —
gsar Vi@ 5("))‘ I AU L) oxI”
Therefore ) 5
o0°F oYy X
— 2L i
557(0.0) = X 22 =Y 25 = [X.Y](p)
by Exercise 5.4.4. The proof is complete. O

We say that two vector fields X and Y commute if [X, Y] = 0 everywhere.
The corresponding flows ® and W commute locally if

Ps(Ve(p)) = Ve (Ps(p))
for every p and sufficiently small s, . These two notions coincide:

Proposition 5.4.11. Two vector fields commute <= their flows do locally.

Proof. If the flows commute, then [X,Y] = 0 because of Proposition
5.4.10. Conversely, suppose that [X, Y] = 0.

Consider a point p € M. If X(p) =Y (p) =0, we get ®s(p) = Vi(p) =p
and we are done. Otherwise suppose that X(p) # 0. On a chart we can
straighten X and get X = 8 =1 and ®s(p) = p + ser.

Now [X, Y] = 0 and Exercise 5.4.6 imply that

oYy
oxt
The field Y is hence invariant by translations along e;. Therefore W;(p+se;) =
V.(p) + ser, that is Wy commutes with &, O
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Exercise 5.4.12. If both X and Y are complete, their flows ® and W
commute locally if and only if they commute globally, that is ®s(V¢(p)) =
Vi (Ps(p)) for every p, s, t.

5.4.7. Multiple straightenings. Can we straighten two or more vector
fields simultaneously? It should not be a surprise now that the answer depends
on their Lie brackets. Let Xy, ..., Xy be vector fields on a smooth manifold
M, and p € M be a point.

Proposition 5.4.13. Suppose that X1(p), ..., Xk(p) are independent vec-
tors. There is a chart U — V that transports X1, ..., Xy into % ..... =
<= [X;, Xj] =0 for all i,j on some neighbourhood of p.

Proof. If there is a chart of this type, then clearly [Xj, X;] = 0. We now
prove the converse and suppose [X;, X;] = 0 for all /, j. The proof is similar to
that of Proposition 5.2.8.

By taking a chart we may suppose that M is an open set in R”, p = 0,
and X;(0) = % foralli=1,..., k. Let &} be the flow of X;. Define

and «y(t) = ¥(tej))withi=1,..., k is an integral curve for X;, so v/(0) = 66X,-.

We deduce that 9 is a local diffeomorphism. It is clear that v sends the
lines x+tey .to integral curves for X, so it sends a%k to Xk. Since [X;, X;] =0,
the flows ®} commute and we can permute them in the definition of ¢ at our
pleasure: so we can put ®} at the end of the composition and the same

argument shows that 1 sends % to X, for all i. O

5.4.8. Lie derivative. We have just noted that a vector field X may be
used to derive functions. Can we also use X to derive other objects, for
instance another vector field Y or more generally any tensor field s? The
answer is positive, and this operation is called the Lie derivative.

We first note that every diffeomorphism f: M — N induces an isomor-
phism between the corresponding tensor bundles

fo: THM — TN

induced from that of the tangent bundles f,: TM — TN, and we may use f,
to transfer tensor fields from M to N and viceversa.

Let now X be a vector field on a smooth manifold M, and let s be any
tensor field on M, of some type (h, k). The Lie derivative Lxs is a new tensor
field of the same type (h, k), morally obtained by deriving s along X, and
defined as follows.
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Let ®; be the flow generated by X. For every point p € M, there is a
sufficiently small € > 0 such that ®; is defined on a neighbourhood of p and
is a local diffeomorphism at p for all |t| < €. Therefore (P¢).(s) is another
tensor field defined on a neighbourhood of ®;(p), that varies smoothly in t,
and we now want to compare s and (P;).(s).

We note that the tensor

(P_t)« (S(CDt(P)))

is well-defined and lies in ﬁ,k(TpM) for every sufficiently small t and varies
smoothly in t, so it makes sense to define its derivative

d
(£x5)(P) = | _ (@-0)u(s(@e(p))).
We have defined a linear map
Lx: T (T (M) — T (T (M)
that “derives” any tensor field along X.

Exercise 5.4.14. The following holds:

o if f € C®(M), then Lxf = Xf;
e if Y is a vector field, then LxY = [X,Y];
e for every tensor fields S and T of any types we have

Lx(SRT)=(LxS)®T +S®(LxT);

the Lie derivative commutes with contractions.

The Lie derivative Lxs measures how s changes along X, in fact it follows
readily from the definition that £Lxs = 0 on M <= the tensor field s is
invariant under the flow ®;.

It is important to note here that, as opposite to the directional derivative
in R", the value of Lxs at a point p depends on the local behaviour of X near
p, not on the directional vector X(p) alone! To get a derivation that, like the
directional derivative in R”, depends in p only on the directional vector based
at p, we need to introduce an additional structure called connection. We will
do this later on in this book. The Lie derivative is the maximum we can get
on a smooth manifold without equipping it with some additional structure.

5.5. Foliations

We now introduce some higher-dimensional analogues of vector fields and
integral curves, where we replace vectors with k-dimensional subspaces, and
integral curves with k-dimensional submanifolds.
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5.5.1. Foliations. Let M be a smooth n-manifold. An immersed subman-
ifold in M is the image of an immersion S — M. A horizontal affine k-plane in
R” = R¥ xR™ ¥ is an affine k-plane of type R¥ x {c} for some fixed c € R"k.

Definition 5.5.1. A k-dimensional foliation in M is a partition .% = {A,-}
of M into injectively immersed k-dimensional connected submanifolds \; C M
called leaves, such that the following holds: for every p € M there is a chart
p: U — R" with p € U such that ¢(X\; N U) is the union of some parallel
horizontal affine k-planes, for every i.

In other words, at every point p there is a chart ¢ that transforms the
partition % near p into the partition of R” into parallel horizontal k-planes.
We say that such a chart ¢ is compatible with the foliation.

Remark 5.5.2. For a fixed leaf \;, the image ¢(A\;NU) along a compatible
chart ¢ may consist of infinitely many k-planes. These are countable, because
A; is the image of an immersed submanifold S — M and S has countable base.

We also note that a foliation contains uncountably many leaves: this is
a consequence of the previous remark, or of the more general fact that the
union of countably many immersed manifolds of smaller dimension than M has
measure zero and hence cannot cover M.

Example 5.5.3. The following are foliations:

(1) the partition of R" into all the affine spaces parallel to a fixed vector
subspace L C R";

(2) if E — B is a fibre bundle, the partition of E into the fibres E;

(3) for a fixed slope v € R, the family of all curves a: R — S! x St of
type a(t) = (&', /WM as y varies.

Exercise 5.5.4. In the last example, the leaves are compact <= X € Q.
If X € R\ Q every leaf is dense.

We now furnish an equivalent definition of foliation.

Definition 5.5.5. A k-dimensional foliation in M is an atlas {¢;: U; — R"}
compatible with the smooth structure of M whose transition maps ¢;; are all
locally of the following form:

0ij(x,y) = (0}(x.¥), 05(¥)).
Here we represent R” as R¥ x R"~K, both as a domain and as a codomain.

In other words, we require that the last n — k coordinates of ¢;; should
depend locally only on the last n — k coordinates of the point. By “locally” we
mean as usual that every point p in the domain of ¢;; has a neighbourhood
such that ¢;; is of that form.

The two definitions look very different but are indeed equivalent! If % is a
foliation in the partition sense, by considering only charts that are compatible



130 5. THE BASIC TOOLKIT

with % we get an atlas as in Definition 5.5.5 (exercise). Conversely, given
an atlas A = {¢,} of this kind, the transition maps preserve locally the k-
dimensional affine horizontal subspaces {y = c} which hence glue to form
immersed submanifolds in M.

To construct the immersed manifolds rigorously, we proceed as follows. We
assign to R¥ and R"¥ respectively the Euclidean and the discrete topology,
and we give the product topology to R¥ x R, Note that this topology is
finer than the Euclidean one. We now use this model to define a finer topology
on M, by declaring a set in M to be open if it intersects the domain U; of every
chart p; € A into a subset whose image in ¢;(U;) C Rk x R"k is open in the
new finer topology.

The manifold M with the finer topology decomposes into (uncountably
many) connected components {M;}. The atlas {g;: U; — R"} furnishes
to every M; a structure of smooth manifold: the only tricky part here is to
prove that it has a countable base, and is left as an exercise. Hint: Select
a countable sub-atlas A" C A and prove that every leaf “propagates” only to
countably many nearby ones at each step.

5.5.2. Distributions. Let M be a smooth n-manifold. Here is another
natural geometric definition.

Definition 5.5.6. A k-distribution in M is a rank-k subbundle D of the
tangent bundle T M.

A distribution is a collection of k-subspaces D, C T,M that vary smoothly
with p, see Exercise 4.6.6. On R”, a distribution is like a smooth map R"” —
Grk(R") that places a subspace Dy, C R” = T,R" at every x € R"

Example 5.5.7. If % is a k-dimensional foliation on M, the k-spaces tan-
gent to the leaves of .% form a k-distribution.

A distribution that is tangent to some foliation % is called integrable.
Note that a diffeomorphism ¢: M — M’ transforms a distribution D on M
into one D’ on M’ in the obvious way, by setting Dfp(p) = dy,(Dp) Vp € M.
The integrability condition may also be expressed without using foliations:

Proposition 5.5.8. D is integrable <= Vp € M thereisa chartp: U — R"
with p € U that transforms D into the horizontal distribution.

The horizontal distribution in R" is D, = R x {0} € R x R"~% ¥x € R".

Proof. (=). If D is tangent to a foliation .%, any chart compatible with
& transforms D into the horizontal one.
(«=). All these charts define a foliation in the sense of Definition 5.5.5. [
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5.5.3. The Frobenius Theorem. \We now state and prove a theorem that
characterises the integrable distributions via the Lie bracket of vector fields.

A vector field X on a manifold M is tangent to a distribution D if X(p) €
Dy for all p € M. A distribution D is involutive if whenever X,Y are two
vector fields defined in some open set that are tangent to D, their Lie bracket
[X,Y] is also tangent.

Theorem 5.5.9 (Frobenius Theorem). A distribution D on a manifold M
Is integrable <= it is involutive.

Proof. If D is integrable, at every p € M there is a chart that transforms
it into the horizontal distribution D, = R¥ x {0} in R”. If X,Y are vector
fields in R"” tangent to D, they are of the form

SN SN
X = /'EIX oY ?ljy =~

and by Exercise 5.4.4 we get [X, Y]’ = 0 for all i > k. Therefore [X, Y] is also
tangent to D and D is involutive.

Conversely, suppose that D is involutive. For every p € M we pick a chart
near p that transforms p in 0 and D,, into the horizontal space Dg = Rk x {0}.
For sufficiently small x every k-space Dy may not be horizontal, but it still
intersects the vertical space V = {0} x R"¥ in the origin. By projecting along

V we get canonical isomorphisms Dy — D, that send the basis ey, ..., ek to
a local frame on D of the type
a o .0
— ..., Xk== X, —.
X1= 8x1+ Z 6 k axk+‘Z kBxi
i=k+1 i=k+1

Exercise 5.4.4 gives [X,-,XJ-]’ =0 forallijl=1,..., k, hence [X;, Xj] is
tangent to the vertical space V' at every point. Since D is involutive, the
vector field [X;, X;] must be tangent to D and this implies that [X;, X;] = 0.

We have discovered that Xy, ..., X are commuting vector fields and by
Proposition 5.4.13 we can transform them via a chart into the coordinate
ones X; = %. In this chart the distribution is horizontal so Proposition 5.5.8

applies. The proof is complete. O
As an example, the vector fields in R3
0 0 0
X1 =—, X
1= B 2= 3 T8z

do not commute since [ X1, Xao] = a . Therefore they generate a non-integrable
plane distribution in R3, drawn in Figure 5.5.
The following criterium may be useful in some cases.

Exercise 5.5.10. A distribution D in M is involutive <= for every p € M
there is a local frame Xy, ..., Xy for D such that [X;, Xj] is tangent to D Vi, j.
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Figure 5.5. A non-integrable plane distribution in R>.

Figure 5.6. A tubular neighbourhood of a curve on the plane.

Hint. To prove <, write any vector field X,Y tangent to D locally as a
combination of X;, with coefficients that are smooth functions. Use Exercise
5.4.5 to deduce that [X, Y] is also tangent to D. O

5.6. Tubular neighbourhoods

Let M be a smooth m-manifold. Among all the open neighbourhoods
of a given point p € M, the simplest ones are undoubtedly those that are
diffeomorphic to R™. These are certainly not unique, and there is no canonical
way to choose a preferred one; however, we will prove in this section that these
are unique up to isotopy, thus answering to Question 3.10.7.

More generally, we will show that not only points, but any submanifold
N C M has a similar kind of nice open neighbourhood, called a tubular neigh-
bourhood. The idea that we have in mind is that, for a curve on the plane, a
tubular neighbourhood should look like in Figure 5.6, and for a knot K C R3
it should be a little open tube around K. As in Figure 5.6, a tubular neigh-
bourhood should be a bundle over N.

We prove here the existence and uniqueness (up to isotopy) of tubular
neighbourhoods for any submanifold N C M.

5.6.1. Definition. Let M be a m-manifold and N C M a n-submanifold.
A tubular neighbourhood for N is a vector bundle E — N together with an
embedding i: E < M such that:
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Figure 5.7. To construct a tubular neighbourhood, we map the normal
bundle in R” and pick a sufficiently small neighbourhood of N so that this
map is an embedding.

e /|y =idy, where we identify N with the zero-section in E;
e /(E) is an open neighbourhood of N.

We usually call a tubular neighbourhood simply the image i(E) of E in N, but
keeping in mind that it has a bundle structure with base N.

The second hypothesis implies that dim £ = dim M, so E must have rank
m — n. Recall that the normal bundle vN of N inside M has precisely that
rank, so it seems a promising candidate.

5.6.2. Existence. \We now prove the existence of tubular neighbourhoods
in two steps: in the first step we only consider the case M = R"™.

Proposition 5.6.1. Every submanifold N C R™ has a tubular neighbour-
hood with E = vN.

Proof. As shown in Example 4.3.6, we have
vN={(p,v) | peNvey,N} CNxR”CR"xR".
We have identified v, N with T,N+. We now define the smooth map
f: vN—R",
(p,v) — p+v.
See Figure 5.7. We now study the differential df, oy at each p € N. We have
TpoyvN =TpoN x vpN CR™ x R".

If we identify T, N x v, N with R™, we discover easily that the differential df, )
is the identity. In particular, it is invertible, so f is an immersion at every point
in N. We now prove that there is an open neighourhood U of N in vN where
f is an embedding, see Figure 5.7.
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Since being an immersion is an open condition, there is an open neighbour-
hood U of N where f is an immersion. Since f|y is injective, after possibly
taking a smaller U we may also suppose that f|y is injective and an embedding

(exercise).
By shrinking vN as in Lemma 4.5.11 we can embed /: vN — U keeping
N fixed, and the composition f o/ is a tubular neighbourhood for N. ([

We now turn to a more general case.

Theorem 5.6.2. Let M be a manifold. Every submanifold N C M has a
tubular neighbourhood with E = vN.

Proof. We may embed M in some RX thanks to Whitney's Theorem
3.11.8. Now for every p € N we have the vector space inclusions

T,N C T,M C R*.
We identify v,/N with the orthogonal complement of T,N inside T,M, so that
TN @ v,N =T,M C R¥,
We consider the smooth map
F: vN— RX
(p,v) — p+v.
Let W be a tubular neighbourhood of M in R¥, with bundle projection m: W —
M. We set U = F~1(W) and define the map
f: U— M,
(p,v) — m(p+v).
As above, the differential at N is just the identity and we conclude that f o/

is a tubular neighbourhood for N for some appropriate bundle shrinking /. [

5.6.3. Uniqueness. It is a remarkable and maybe surprising fact that, de-
spite their quite general definition, tubular neighbourhoods are actually unique
if one considers them up to isotopy.

We must clarify what we mean by “isotopy” in this context. Let M be a
manifold and N C M a submanifold. Two tubular neighbourhoods iy: E® — M
and i1 EY — M are isotopic if there are a bundle isomorphism ¢ : E® — E!
and an isotopy F relating the embeddings iy and i; o4 that keeps N pointwise
fixed, that is such that F(p,t) = p for all p € N and all t.

Note that each embedding F+ = F (-, t) is a tubular neighbourhood of N,
so F indeed describes a smooth path of varying tubular neighbourhoods.

Theorem 5.6.3. Let M be a manifold and N C M a submanifold. Every
two tubular neighbourhoods of N are isotopic.

To warm up, we start by proving the following.
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Proposition 5.6.4. Every embedding f: R" — R" with f(0) = 0 is isotopic
to its differential dfy via an isotopy that fixes O at each time.
Proof. The isotopy for t € (0, 1] is simply defined as follows:
f(tx)

F(x, t) = L

We extend it to the time t = 0 by writing the first-order Taylor expansion
F(x) = hi(x)xt + .. 4 ha(x)x"
where h;(0) = %(O) for all /. For every t € (0, 1] we get

F(x, t) = hi(tx)xt + ...+ hp(tx)x"

and this expression makes sense also for t = 0, yielding the equality F(x,0) =
dfy(x). The proof is complete.? O

We can now prove Theorem 5.6.3.

Proof. Let £% and E! be two tubular neighbourhoods of N. We see E*! as
embedded directly in M, and we want to modify the given embedding f: E° —
M via an isotopy so that it matches with EL.

We first prove that after an isotopy we may suppose that f(E°) c E*.
Indeed, Lemma 4.5.11 provides a shrinkage g: E® — E® with fo g(E®) C E!
isotopic to the identity through a family g; of embeddings, and by composing
it with £ we get an isotopy between f and f o g.

Now that f(E®) C E?, we can construct the isotopy F: E9 x [0,1] = M
by mimicking the proof of Proposition 5.6.4: we simply write

Fv,t) = f(zfv).

Here f(tv) is a particular vector in E and hence its division by t makes sense.
This is certainly an isotopy for t € (0, 1], and we now extend it to t = 0
similarly to what we did above.

Consider a v € EY, with p = m(v) € N. The point p has an open
neighbourhood U above which E? is trivialised as U x R™~". There are also
a smaller neighbourhood V' C U and a r > 0 such that E°| is also trivialised
as V x R™" and moreover

f(VxB(0,r) CcUxR"".

This holds by continuity. See Figure 5.8. We may represent f on V' x B(0, r)
as a map

Fx.y) = (Alxy) B(x.¥)).
We have f(x,0) = (x,0). Since f2(x,0) = 0 we can write

H(x,y) =h(xy)yt + .o+ hpea(x, y)y™ "

176 be precise, we should substitute t with p(t) via a transition function p to get an
isotopy defined for all t € R. We will tacitly assume this in other points in this book.
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Figure 5.8. By continuity, we can find two neighbourhoods V' C U of
p above which both E® and E* trivialise, and a r > 0 such that f(V x
B(0,r)) C U x R™" (the yellow zone).

with
ot
hi(x,0) = a—yl.(x, 0).

We can then represent F as

Flxoy, t) = (fl(x, ). Thx, ty))

= (A(x, ty), hi(x, ty)y' + ...+ hpon(x, ty)y™™").

This map is well-defined and smooth also at t =0. The mapatt=0is
of:
Falx,) = Fxv.0) = (x. 52(x, 0 ).

It sends every fibre of EC to a fibre of E! via a linear map, which is in fact an
isomorphism because f is an embedding and hence

In *
Tx0) = | g 9 (x.0)

is an isomorphism. Therefore Fy: E° — E! is a bundle isomorphism. O

We have proved that the tubular neighbourhood of a submanifold N C M
is unique up to isotopy and bundle isomorphisms: in particular, this shows that
every tubular neighbourhood of N is isomorphic to the normal bundle v/N.

5.6.4. Embedding open balls. The uniqueness theorem for tubular neigh-
bourhoods is quite powerful, and it has some remarkable consequences already
when N is a point.

Proposition 5.6.5. Let M be a connected smooth n-manifold. Two em-
beddings f,g: R" < M are always isotopic, possibly after pre-composing ¢
with a reflection in R".
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Proof. We may see both f and g as tubular neighbourhoods of f(0) and
g(0). Since connected manifolds are homogeneous (Corollary 5.3.4), after
an ambient isotopy we may suppose that f(0) = g(0). By the uniqueness
of the tubular neighbourhood, the map f is isotopic to g o ¢ for some linear
isomorphism 9 : R" — R”. By Corollary 3.9.11 we may isotope 1 to be either
the identity or a reflection. O

The oriented version is more elegant to state:

Proposition 5.6.6. Let M be an oriented connected smooth n-manifold.
Two orientation-preserving embeddings f, g: R" < M are always isotopic.

5.6.5. Hypersurfaces. Let M be a smooth manifold. A hypersurface in
M is a submanifold N C M of codimension 1.

Proposition 5.6.7. Let M be orientable. The normal bundle of a hypersu-
face N C M is trivial <= N s also orientable.

Proof. Fix an orientation for M. The normal bundle is a line bundle, and
it is trivial <= it has a nowhere-vanishing section.

If N is orientable, we fix an orientation on N. The two orientations of M
and N induce a locally coherent orientation on the normal line vN, for every
p € N, which distinguishes between “positive” and “negative” normal vectors,
see Exercise 2.5.2. Fix a Riemannian metric on vN, and pick all the positive
vectors of norm one: they form a nowhere-vanishing section.

On the other hand, if the normal bundle is trivial, the normal orientation
and the orientation of M induce similarly an orientation on N. O

5.6.6. Continuous maps are homotopic to smooth maps. By combin-
ing the tubular neighbourhoods and Whitney's Embedding Theorem, we may
now prove that every continuous map between smooth manifolds is homotopic
to a smooth map. Let M and N be two smooth manifolds.

Theorem 5.6.8. Let f: M — N be a continuous map, whose restriction
to some (possibly empty) closed subset S C M is smooth. The map f is
continuously homotopic to a smooth map g: M — N with f(x) = g(x) for all
x € S, via a homotopy that is constant on S.

Proof. By Whitney's Embedding Theorem 3.11.8 we may suppose that
N C R" for some n. Let vN be a tubular neighbourhood of N. For every
p € N we let r(p) be the distance from p to the boundary of the open set vN.

By Proposition 3.3.9 there is a smooth map h: M — R” with ||h(p) —
f(p)|| < r(f(p)) and h(p) = f(p)Vp € S. The homotopy H(p,t) = (1 —
t)f(p) + th(p) lies entirely in N and hence can be composed with the pro-
jection : vN — N to give a homotopy G(p,t) = w(H(p, t)) between f and
the smooth g = 1o h. O
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Figure 5.9. Transversality depends on the ambient space: the two curves
are transverse in R?, not in R3.

The proof shows also that g may be chosen to be arbitrarily close to f,
but to express “closeness” rigorously we need to see N embedded in some R".

Corollary 5.6.9. Two smooth maps f,g: M — N are continuously homo-
topic <= they are smoothly homotopic.

Proof. Every continuous homotopy F: M x [0,1] — N can be extended
to a continuous map F: M x R — N and then be homotoped to a smooth
map G: M xR — N by keeping F|yx 0} and Flpx 1y fixed. O

5.7. Transversality

We now show that any two smooth maps (and in particular, submanifolds
with their inclusion maps) can be perturbed to cross nicely. The notion of
“nice crossing” is surprisingly simple to define and is called transversality.

5.7.1. Definition. Let f: M — N and g: W — N be two smooth maps
between manifolds, sharing the same target N.

Definition 5.7.1. We say that f and g are transverse if for every p € M
and g € W with f(p) = g(q) we have

Im df, +Imdgq = Tr(p)N.
In this case we write f M g.

If M C N is a submanifold and g: W — N is a map, we say that g and
M are transverse if g and the inclusion map M — N are, and in this case we
write g M M. Two submanifolds M, W C N are transverse if their inclusions
are, and in this case we write M h W to denote their intersection M NW.

Set m=dmM, w =dmW, and n = dmN. Note that if m4+w < n
then f M g <= the maps f and g have disjoint images. See Figure 5.9.

If W = {q} is a point, then f i g <= g(q) is a regular value for f.
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5.7.2. Fibre bundles. Here is a basic example.

Proposition 5.7.2. Let m: E — M be a fibre bundle. A map f: N — E is
transverse to a fibre Eq <= q Is a regular value for wo f.

Proof. Pick p € N with f(p) € Eq. We have T¢(, Eq = ker dTs(p,), SO
Im dfy + Trp)Eq = Te(p)E == Imd(mof), =TyM.
The proof is complete. O

Exercise 5.7.3. A submanifold W C E is the image of a section of a bundle
E — M <= it intersects transversely every fibre Eg in a single point.

5.7.3. Intersections. We now extend a theorem from the context of reg-
ular values to the wider realm of transverse maps.

Proposition 5.7.4. Let M C N be a submanifold and g: W — N a smooth
map. If gh M then X = g=*(M) is a submanifold of codimension n — m.

Proof. Pick p € X. We look at a neighbourhood of ¢ = g(p) € M and
after taking a chart we suppose that (M, N) = (R” x {0}, R™ xR"~™), g = 0.
Consider the projection m: R™ x R"=™ — R"~™ onto the second factor.
Near p we have X = g~} (R™ x {0}) = g~ }(n~1(0)) = (7 0 g)~1(0) and by
Proposition 5.7.2 the composition 7 o g is a submersion at p. Therefore X is
a submanifold near p, and hence everywhere, of codimension n — m. O

In particular, the intersection X = M th W of two transverse submanifolds
M W C N is a submanifold with codim X = codim M + codimW.

5.7.4. Thom’s Transversality Theorem. \We now state a general theo-
rem, that will allow us to construct many transverse maps. Let M, S, N be
manifolds of arbitrary dimension.

Theorem 5.7.5. Let F: M x § — N be a smooth map. If F is transverse
to some submanifold Z C N, then Fs = F(-,s): M — N is also transverse to
Z for almost every s € S.

We mean as usual that the thesis holds for all the values s € S that lie
outside of some zero measure subset.

Proof. Since F M Z, the preimage W = F~1(Z) C M x S is a smooth
submanifold. Consider the projection m: M x S — S and particularly its
restriction 7|y : W — S. We now claim that if s is a regular value for 7|y,
then Fs h Z. From this we conclude: by Sard’s Lemma almost every s € S is
a regular value for 7|y .

Consider a point (p,s) € W. Since s is regular for 7|, we have

T(p,s)W + T(p’s)(M X {S}) = T(p,s)(M X S)



140 5. THE BASIC TOOLKIT
Since F M Z we have

IF(p.5) (T(p.5)(M % ) + Tr(p.5)Z = TE(ps)N.
By combining the two equations we get

Trps)N = dF .9 (To)W) + dFp 5 (T(p,s) (M x {s})) + Te(pZ

= dF(p.s) (T(p.s)(M x {s})) + Tr(p,5)Z
= d(F)p(ToM) + Tr(p)Z.

In the second equality we have eliminated the first addendum since it is con-
tained in the third. We have proved that Fs h Z. U

5.7.5. Consequences. We now draw some consequences from Thom's
Transversality Theorem. Here is an amazingly simple application.

Corollary 5.7.6. Let M be a manifold and f: M — R" be a smooth map.
Let Z C R" be a submanifold. For almost all s € R", the translated map

fs(p) = f(p) +s
Is transverse to Z.

Proof. The map F: M x R" — R", F(p,s) = f(p) + s is a submersion
and is hence clearly transverse to any submanifold Z C R”. So Thom's
Transversality Theorem applies. O

Corollary 5.7.7. Let M,N C R" be any two submanifolds. For almost
every s € R" the translate M + s and N are transverse.

Here is a perturbation theorem for a map between two arbitrary manifolds.

Corollary 5.7.8. Let f: M — N be a smooth map between manifolds and
W C N be a submanifold. There is a g: M — N homotopic to f that is
transverse to W'.

Proof. Consider N embedded in some R" and pick a tubular neighbourhood
vN C R" of N with projection m: vN — N. Using a partition of unity, pick
a smooth positive function r: N — R such that B(q, r(q)) C vN for every
g € N. We define the map

F:MxB"— N, F(ps)=mn(f(p)+r(f(p))s).

Here B" C R" is the unit ball as usual. The map F is a submersion and is
hence transverse to any W C N. Therefore for some s € B"” the map g = Fs
is transverse to W and is homotopic to f through Fis. O
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5.7.6. Stability. If we perturb a map (with compact domain) that is
transverse, it keeps being transverse: transversality is a stable property. We
introduce this concept in more generality.

A property P of a smooth map f: M — N is stable if for every smooth
homotopy f;: M — N, t € R with fo = f there is an € > 0 such that all the
maps f; with |t| < € share the property P.

Proposition 5.7.9. Let M be compact and f: M — N a smooth map. The
following properties are stable for f:

f is an immersion,
f is a submersion,
f is an embedding,
f Is transverse to a fixed closed submanifold W C N.

Proof. Consider
F:MxR— NxR, F(x,t) = (f(x), t).

The map f; is an immersion or submersion at p € M <= F is an immersion or
submersion at (p, t). Written in coordinates, this is an open condition, hence
it holds on a neighbourhood of M x {0} C M xR, which contains M x (—¢, €)
since M is compact.

Suppose that f is an embedding. Then f; is an immersion for t € (—¢, €).
We prove that, after possibly taking a smaller € > 0, each f; with t € (—¢,¢€) is
injective: if not, there are sequences t; — 0, p;, g € M with f,(p;) = f:,(qi).
Since M is compact we may suppose that pj — p and g; — q. Since f is
injective we have p = g. This gives a contradiction because F is an immersion
at (p,0) and is hence injective on a small neighbourhood. Finally, injective
immersions are embeddings because M is compact (again).

Stability of transversality is similar and left as an exercise. O

We warn the reader that being an embedding is a stable property (when
the base manifold is compact), while being only injective is not! Consider

fi(x): R — R, fi(x) = (x% — t2)x.

Here fp is injective while f; is not so for any t # 0. One can use this homotopy
to construct another homotopy f;: ST — S! where fy is a homeomorphism
and f; is not injective for any t # 0. Of course fy is not a diffeomorphism,
since there must be a p € S with trivial df.

5.8. The Ehresmann Theorem

We prove here a theorem that promotes every proper submersion to a fibre
bundle. We then apply it to the definition of some new fibre bundles.
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5.8.1. The theorem. A fibre bundle is a submersion, but the converse is
often not true: if pick a fibre bundle and remove a random closed subset from
the domain, we still get a submersion that is probably not a fibre bundle. The
converse is however guaranteed if the map is proper.

Theorem 5.8.1 (Ehresmann). Every proper submersion is a fibre bundle.
We start with a lemma.

Lemma 5.8.2. Let f: M — N be a submersion. For every vector field
Y € X(N), there is one X € X(M) that is f-related to Y.

Proof. Every p has an open neighbourhood U(p) where the submersion
looks like a projection R” x RX — R”, and it is easy to construct a vector field
Xp € X(U(p)) that is f-related to Y|¢y). We take a partition of unity {po,}
subordinate to the covering {U(p)} and define

X(q) = pr(q)XP(Q)-
We get dfq(X(q)) = > pp(q)Y(f(q)) =Y (f(q)) and we are done. O

We leave the following as an exercise.

Exercise 5.8.3. Let f: M — N be a proper map, and X € X(M), Y € X(N)
two f-related vector fields. The field X is complete <= Y is.

Proof of the Ehresmann Theorem. Let f: M — N be a proper submer-
sion. Since the theorem is local in the codomain, we can suppose that N = R".
Let X1,..., X, be fields in M that are f-related to o .. %. These

OxT

are complete by Exercise 5.8.3. Let &1, ..., @ be their flows. The map
f7H0) x R" — M
(poxt, o XT) = OLn (- (P (p)) )
is a diffeomorphism with inverse
G (O (- (P2a(p)) -+ ), F(a))
where f(q) = (x, ..., x™). Therefore f is a fibration. O

Corollary 5.8.4. A submersion between compact manifolds is a fibre bundle.

This corollary is quite useful, because proving that a map is a submersion
is much easier than verifying that it is a fibre bundle.

5.8.2. The Hopf fibration. Consider the 3-sphere in C2, written as
SB={(w,2) eC? | |wP+|z]> =1}.

The Hopf fibration is the map
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Figure 5.10. Some fibers of the Hopf fibration, projected stereograph-
ically on R%. The counterimage of the circular arcs in S shown on the
bottom are portions of tori foliated into circles n 3-space.

$3 — cp!
(w,z) — [w, 2]
Since CP! is diffeomorphic to S2, we may consider it as a map S3 — S2.

Exercise 5.8.5. The Hopf fibration is a submersion, and hence a fibration
by Ehresmann’s Theorem.

If (w,z) € S3, we find easily that
FL(f(w,2)) = {(e”w, e?2) ‘ e e st}
and hence the fibre of the Hopf fibration is a geometric circle. The Hopf
fibration is a curious fibration S® — S2 with fibres consisting of circles. It is

clearly not trivial, since the total space is not diffeomorphic to S% x S1. We
also deduce the non intuitive fact that S may be foliated into circles!

Exercise 5.8.6. The stereographic projection S\ {N} — R" sends circles
disjoint from N to circles, and circles containing N to lines.

We deduce that R3 may be foliated into 1-dimensional submanifolds that
consist of one single line and infinitely many circles. Can you visualize it? A
portion is shown in Figure 5.10. The line there is vertical.

We can define a Hopf bundle S2"t1 — CP" with fibre S for every n.

5.9. Exercises

Exercise 5.9.1. Let X be a vector field on M. Let y: R — M be an integral curve
and p € M a point such that lims_, o y(t) = p. Show that X(p) = 0.
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Exercise 5.9.2. Construct a nowhere-vanishing vector field on each lens space
L(p. q).
Exercise 5.9.3. Let M be a manifold and X,Y € X(M) vector fields. Prove that
[Lx, Ly] = Lixy-
This is an equality of operators on [(7,”(M)). The bracket [A, B] of two such opera-

tors is by definition [A, B] = AB — BA. Note that if (h, k) = (1,0) this is equivalent
to the Jacobi equality on vector fields.

Exercise 5.9.4. Construct a foliation on the torus 7 = S! x S! that has both
compact and non-compact leaves.

Exercise 5.9.5. Let D be a rank-k distribution on a manifold M. Show that D is
integrable if and only if the following holds: for every p € M there is a k-submanifold
S C M containing p with T4S = D, for all g € S.

Exercise 5.9.6. Show that each lens space L(p, g) has a foliation in circles.

Exercise 5.9.7. Consider S = {(z1,2) € C? | |z]? 4+ |w|> = 1}. For every
p = (z1,2) € S3, pick the complex line

ro={(w1, w2) € C* | m 2 + w2, = 0}.

(1) Show that r, C T,S3. Therefore {r,},es: is a plane distribution in S3
called the Hopf distribution.
(2) Is the Hopf distribution integrable?

Exercise 5.9.8. Show that two embedding f, g: R < R? are always isotopic.

Exercise 5.9.9. Let M be a connected manifold. Let N C M be a closed hyper-
surface. Show that M\ N has either one or two connected components. Describe
some examples in both cases.

Exercise 5.9.10. Let f: S — R3 be a knot (that is, a smooth embedding). Show
that there is an affine plane P C R3 such that wo f: S' < P is an immersion, where
7 is the orthogonal projection onto P.

Exercise 5.9.11. Let X = M h W be the transverse intersection of two sub-
manifolds M, W C N. Show that every point p € X has a neighbourhood U in N
and a chart ¢: U — RY™ x R¥ x R™ that transforms W N U and M N U into
R x R* x {0} and {0} x R* x R with m =dim M, w =dimW, x = dim X.



CHAPTER 6
Cut and paste

Cutting and gluing are simple geometrical constructions which, given
some smooth manifolds (possibly with boundaries or corners) and
additional data where necessary, give rise to new manifolds. On
account of their perspicuity, these methods were much used in the
days of topology of surfaces, and they remain a very powerful tool

C. T. C. wall, 1960

In this chapter we address the following question: how can we construct
new smooth manifolds? The most effective techniques known consist in build-
ing more complicated smooth manifolds out of simpler pieces, glued altogether
along smooth maps. A piece is usually a manifold with boundary, and the pieces
are glued along (portions of) their boundaries.

Among all kinds of decompositions of manifolds into simple pieces, a promi-
nent role is played by handle decompositions, some very general constructions
that may be used to build any compact smooth manifold in any dimension,
tightly related to the theory of Morse functions. We will then use handle
decompositions to classify all compact surfaces.

6.1. Manifolds with boundary

We introduce a variation of the definition of smooth manifold that allows
the presence of some particular boundary points. This is a very natural notion
and is present everywhere in differential topology and geometry.

Most of the definitions and theorems about smooth manifolds also apply
to manifolds with boundary, with appropriate modifications.

6.1.1. Definition. Consider the upper half-space
RT = {xeR" | x, > 0}

in R”. Its boundary is the horizontal hyperplane OR/, = {x, = 0}, while its
interior is the open subset R} \ OR’] = {x, > 0}.

We now redefine the notions of charts and atlases in a more general context
that allows the presence of boundary points: everything will be like in Section
3.1.1, only with R’} replacing R".

Let M be a topological space. A R -chart is a homeomorphism ¢: U — V
from an open set U C M onto an open set V C R’l. A smooth R!] -atlas in

145
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M is a set {¢;} of R -charts with UU; = M such that the transition maps ¢;;
are smooth where they are defined. Note that the domain of @;; is an open
subset of R and may not be open in R", so the correct notion of smoothness
is that stated in Definition 3.3.5.

Definition 6.1.1. A smooth manifold with boundary is a Haussdorff second-
countable topological space M equipped with a smooth R’! -atlas.

We will drop the symbol R’} from the notation. As in Section 3.1.1, two
compatible atlases are meant to give the same smooth structure.

6.1.2. The boundary. Let M be a smooth manifold with boundary. The
points p € M that are sent to OR'l via some chart form the boundary OM.
There is no possible ambiguity here, since if one chart sends p inside OR',
then all charts do (exercise).

The boundary OM is naturally a (n — 1)-dimensional smooth manifold
without boundary. Indeed by restricting the charts to OM we get an atlas for
OM with values onto some open sets of the hyperplane OR'!, that we identify
with R"~1 in the obvious way.

Example 6.1.2. Every open subset U C R is a smooth manifold with
boundary OU = U N OR']. The atlas consists of just the identity chart.

The interior of M is int(M) = M\ OM. It is a manifold without boundary.

6.1.3. Maps. The notions of smooth maps and diffeomorphisms extend
to manifolds with boundary without any modification. When we have a smooth
map f: M — N between manifolds with boundary, a boundary or interior point
of M may be sent to a boundary or interior point of N: all four combinations
may arise, and the reader is invited to construct examples of all four types.

A diffeomorphism f: M — N between two manifolds with boundary re-
stricts to a diffeomorphism f: OM — ON of their boundaries.

6.1.4. Regular domains. We now describe one important source of ex-
amples. Let M be a smooth n-manifold without boundary.

Definition 6.1.3. A regular domain is a subset D C M such that for every
p € D there is a chart ¢: U — V with p € U and V C R" that sends U N D
onto VNRY.

Every regular domain D has a natural structure of manifold with boundary,
obtained by taking as an atlas all the charts ¢ of this type. The boundary 0D
is a codimension-1 submanifold of M.

Exercise 6.1.4. For every a < b, the closed segment [a, b] is a domain in
R and hence a manifold with boundary; the boundary consists of the points a
and b.



6.1. MANIFOLDS WITH BOUNDARY 147

Here is a concrete way to construct regular domains:

Proposition 6.1.5. Let M be a manifold without boundary and f: M — R
a smooth function. If yg is a regular value, then D = f~1(—o0, yo| is a regular
domain with D = f~1(yp).

Proof. Consider a point p € D. If f(p) < yo, the point p has an open
neighbourhood fully contained in D that can be sent inside the interior of Rl
via some chart.

If f(p) = yo, by Proposition 3.8.10 there are charts ¢: U — R” and
Yv: W — Rwith p € U, po(p) =0, ¥(v) =0, f(U) C W such that ¢ o
fopl(x, ..., Xn) = Xp and up to composing with a reversion we may also
require that ¢ is orientation-reversing. Therefore (UN D) = R} U

Corollary 6.1.6. The unit disc
D"={xeR" ‘ x| <1}
is a domain in R" with boundary D" = S"~1.

Proof. We pick f(x) = ||x||> and get D" = f~1(—o0, 1]. Every non-zero
value is regular for f. O

Remark 6.1.7. The square [—1,1] x [~1, 1] is not a regular domain in R?,
because it has corners. More generally, the product M x N of two manifolds
with boundary is not necessarily a manifold with boundary, because if OM # &
and ON # & then some corners arise. However, if OM = & then M x N is
naturally a manifold with boundary and

(M x N) = M x dN.

For instance, the cylinder S' x [—1,1] is a surface with boundary, and the
boundary consists of the two circles S* x {£1}. More generally S™ x D" is a
manifold with boundary and

9(S™x D") =SMx S"L.

6.1.5. Tangent space. The definition of tangent space via derivations
also extends verbatim to manifolds with boundary.! For every point p € R7,
included those on the boundary, we get T,RT = R". For a general n-manifold
M with boundary, the space T,M is a n-dimensional vector space Vp € M.

At every boundary point p € OM the tangent space T,0M is naturally a
hyperplane inside T,M, that divides T,M into two components, the “interior”
and “exterior” tangent vectors, according to whether they point towards the
interior of M or the exterior. This subdivision between interior and exterior is
obvious in Rl and transferred to M unambiguously via charts.

As in the boundaryless case, every smooth map f: M — N induces a
differential dfy: ToM — T¢(,)N at every point p € M.

1The definition through curves would need some modifications, so we just abandon it.
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Figure 6.1. The canonical orientation on the disc (given by the canonical
basis e1, &) induces the counterclokwise orientation on the boundary circle
(left). We may write conveniently the orientations on a surface and on a
curve using (curved) arrows (right)

6.1.6. Orientation. The notion of an orientation for a manifold M also
extends as is to the boundary case, either as a locally coherent assignment of
orientations on the tangent spaces T,M, or equivalently as an oriented atlas.
One nice additional feature is that an orientation on M induces one on its
boundary OM, as we now explain.

Let M be an oriented manifold with boundary of dimension n > 2. For
every p € OM, we choose an exterior vector v € T,M and note that

TpM = Span(v) & T,0M.

With this subdivision, the orientation on T,M induces one on T,0M: we
say that a basis v,. .. .. vy for T,OM is positive <= the basis v, vo, ..., Vv, Is
positive for Tp/\//.2 By looking on a chart we see that this is a locally coherent
assignment that does not depend on the choice of the exterior vector v.

We now consider the one-dimensional case, that is slightly different. First,
we define an orientation on a point to be the assignment of a sign 1. When
not mentioned, a point is always equipped with the 41 orientation: points are
in fact the only manifolds that have a canonical orientation!

If M is an oriented 1-manifold, we orient every boundary point p € OM as
+1 or —1 depending on whether the vectors pointing outside in the line T,M
are positive or negative.

Every domain in R” is naturally oriented by the canonical basis eq, .. ., e,,
so for instance the disc D" has a canonical orientation. This canonical orien-
tation induces an orientation on the boundary sphere S"~1. The case n = 2
is shown in Figure 6.1.

6.1.7. Immersions, embeddings, submanifolds. Let M, N be manifolds
with boundary. We define an immersion as usual as a map f: M — N
with injective differentials, and then an embedding as an injective immersion
f: M — N that is a homeomorphism onto its image.

2This is not the only possible choice one could make, and is usually called the outward-
first convention.
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Y IN N AT

Figure 6.2. Different kinds of compact 1-dimensional submanifolds in-
side the half-plane R3.

Definition 6.1.8. Let N be a manifold. A submanifold is the image of an
embedding f: M — N.

The reader should note that, as opposite to Definition 3.7.1, we are not
saying that a submanifold should look locally like some simple model. This is
by far not the case here: Figure 6.2 shows that many different kinds of local
configurations arise already when one embeds a segment in the half-plane Ri.
In higher dimensions things may also get more complicated.

In some cases, we may require the submanifold to satisfy some require-
ments. For instance, a submanifold M C N is neat if

e OM = MnNOAoN, and
e M meets ON transversely, that is at every p € OM we have T,M +
TyON = T,N.

None of the embedded submanifolds in Figure 6.2 is neat.

6.1.8. Fibre bundles and vector bundles. The theory of bundles extends
harmlessly to manifolds with boundary with minor obvious modifications. On
a fibre bundle E — M, we can allow M to have boundary, and in that case
the trivialising neighborhoods will be diffeomorphic to open subsets of R” , or
we can allow the fibre F to have boundary; however, we do not admit both M
and F to have boundary, because some corners would arise and E would not
be a smooth manifold.

In particular the theory of vector bundles also work on manifolds M with
boundary. Every manifold M has its tangent bundle T M together with all the
other tensor bundles, so we can talk about vector fields and tensor fields in M.

6.1.9. Vector fields. The behaviour of a vector field X € X(M) at the
boundary OM is often important. We say that X is tangent, pointing outward,
or inward at the boundary if X(p) is so at every boundary point p € OM.

If a vector field X € X(M) is tangent to the boundary, many facts on vector
fields that we proved in the previous chapters are still valid for X with only
minor obvious modifications: every point is contained in a maximal integral
curve, if X is complete we get a flow on M, and if M is compact then X is
necessarily complete. A flow on M restricts to a flow on M. We can define
the Lie derivative Lx of any tensor field along X.
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If X is not tangent to the boundary the notions of integral curve and flow
are evidently more problematic, but it still possible to define the Lie derivative
Lx. Details are left to the reader.

6.1.10. Homotopy, isotopy, ambient isotopy. The notions of smooth
homotopy, isotopy, and ambient isotopy extend verbatim to manifolds with
boundary. An ambient isotopy of a manifold M with boundary restricts to an
ambient isotopy of its boundary. An appropriate isotopy extension theorem
holds in this context, where the target manifold is allowed to have boundary
as long as the isotopy does not cross it:

Theorem 6.1.9. Let M be compact without boundary, and let N may pos-
sibly have boundary. Let f,g: M — int(N) be embbeddings that are isotopic
through embeddings f;: M — int(N). There is an ambient isotopy of N relat-
ing f and g which is constantly the identity on ON.

Proof. The same proof of Theorem 5.3.3 applies; it suffices to stay away
from the boundary ON in all the arguments, so that the vector field Y will be
constantly vertically tangent to it. O

6.1.11. The unit disc bundle. Let E — M be a vector bundle over a
manifold M without boundary. Fix a Riemannian metric g for E. The unit
disc bundle is the submanifold with boundary

D(E)y={veE||v|]<1}.

The projection 7 restricts to a projection m: D(E) — M and one sees as in
Proposition 4.5.7 that this is a disc bundle (a fibre bundle with F = D) and
that it does not depend on g up to isotopy (that is, up to an isomorphism of
E — M that is isotopic to the identity).

The boundary of D(E) is the unit sphere bundle S(E), already consid-
ered in Section 4.5.5. The interior of D(E) may be given a bundle structure
isomorphic to E — M by shrinking E.

6.1.12. Closed tubular neighbourhoods. Let N C int(M) be a com-
pact submanifold without boundary contained in the interior of a manifold
M possibly with boundary. We know that the submanifold N has a tubular
neighbourhood vN in the interior int(M) of M.

Definition 6.1.10. A closed tubular neighbourhood of N in M is the unit
disc bundle of any tubular neighbourhood vN of N.

To better distinguish a tubular neighbourhood from a closed tubular neigh-
bourhood, we can call the first an open tubular neighbourhood. We will use
the notation UN for a closed tubular neighbourhood; note that the interior of
a closed tubular neighbourhood may in turn be given the structure of an open
tubular neighbourhood, so one can switch easily from open to closed and back.
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A closed tubular neighbourhood is a fibre bundle with compact base N and
compact fibre DX, and is hence also compact (exercise). For this reason it is
sometimes better to work with closed tubular neighbourhoods; for instance,
we may promote isotopy to ambient isotopy:

Theorem 6.1.11. Let M be a manifold possibly with boundary and N C
int(M) be a compact submanifold without boundary. The submanifold N has
a unique closed tubular neighbourhood VN up to ambient isotopy in M.

Proof. We already know that tubular neighbourhoods are isotopic, and
hence also the closed tubular neighbourhoods are. Since these are compact,
the isotopy may be promoted to an ambient isotopy. O

The same results apply if M has boundary, as long as N is entirely contained
in the interior of M.

6.1.13. Collar. Let M be a manifold with boundary, and N be the union
of some connected components of OM. A collar of N in M is an embedding

it Nx[0,1) — M

such that i(p,0) = p for every p € N. The collars should be interpreted as
the tubular neighbourhoods of the boundary.

Proposition 6.1.12. The manifold N has a unique collar up to isotopy.

The proof is the same as that for tubular neighbourhoods, and we omit
it. A closed collar is the restriction of an open collar to N x [0,1/2]. If N is
compact, the closed collar is unique up to ambient isotopy.

Exercise 6.1.13. For every manifold M the inclusion int(M) < M is a
homotopy equivalence.

Hint. Use a collar for M to define the homotopy inverse. O

6.1.14. One-dimensional manifolds. We leave to the reader to solve the
following exercise, that fully classifies all connected one-dimensional manifolds.

Exercise 6.1.14. Every connected one-dimensional manifold is diffeomor-
phic to one of the following:

st (0,1), [0,1), [0, 1].

In particular St is the unique connected compact one-dimensional manifold
without boundary.
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6.1.15. Discs. Let M be a n-manifold, possibly with boundary. A disc in
M is an embedding f: D" < int(M). It may be seen as a closed tubular of
f(0). We can now prove this remarkable theorem.

Theorem 6.1.15 (The Disc Theorem). Let M be a connected smooth n-
manifold, possibly with boundary. Two discs f,g: D" < int(M) are always
ambiently isotopic, possibly after pre-composing g with a reflection.

Proof. We argue as in Proposition 5.6.5 using Theorem 6.1.11. ([

With a little abuse we sometimes call a disc the image of an embedding
f: D" — M. With this interpretation, which disregards the parametrisation,
two discs are always ambiently isotopic. The reader should appreciate how
powerful this theorem is, already in the only apparently simpler case M = R”",
for instance in dimension n = 2.

The Disc Theorem was proved by Palais in 1960.

6.1.16. Spheres. We end this section by describing how every sphere de-
composes beautifully into two simple submanifolds with boundary.

For every 0 < k < n we identify R” = R¥ x R" % and write a point of
R" as (x,y) with x € R¥ and y € R"%. By radial expansion we may easily
construct a homeomorphism between D" and D¥ x D", which restricts to a
homeomorphism between S"~! and the topological boundary of DX x D"k,
(Recall that DX x D"~k is not a smooth manifold because its boundary has
corners.) The latter in turn decomposes into two closed subsets

Sk—l % Dn—k Dk % Sn—k—l
whose intersection is S¥~1 x S"~k=1 Having understood this simple topologi-
cal phenomenon, we write an analogous decomposition of S~ in the smooth
setting. We write
S ={(x,y) e RE xR | |Ix|> +|ly|I* = 1}.
We now consider the subsets
A={(xy)eS" ] IxIP <3}, B={(xy)eS" | lyl* <3}

These are both domains, since % is a regular value for the maps (x, y) — ||x||?

or ||y||? restricted on S"~! (exercise). The common boundary
ANB={(xy) e S" | IIxI?P = Iyl*= 3}
is diffeomorphic to SK=! x S™ k=1 via the map (x,y) — (V2x,v2y). We

now identify the domains: the map

A — DK x gn—k-1. (x,y) — (\@X Hi”)

is a diffeomorphism, with inverse (x,y) g(x v/2 = |Ix[|2y). We have an
analogous diffeomorphism between B and S¥=1 x D"k,
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Figure 6.3. A solid torus is a 3-manifold diffeomorphic to D? x S*. The
stereographic projection sends the solid torus B C S® to the standard one
shown here. Its complement in S° is also a solid torus A. Can you see it?

We have discovered that S"~1 decomposes into two domains A = DK x
S"=k=1 and B = Sk=1 x D"~k with common boundary SK=1 x S"=k=1 \We
also note that A and B are closed tubular neighborhoods of the spheres

Sn=k=1 % {0} {0} x Sk-1.

6.1.17. The 3-sphere. We analyse the 3-sphere with more details. The
discussion above shows that S3 decomposes into A = S'xD? and B = D?x St
along a middle torus AN B = S x S!. The stereographic projection

2
]_ _

P, 2.W) = T (x.y.2)

sends the middle torus
2
ANB= {\g(cosé, sin @, cos ¢, sin w)}

to the subset

{\@fsm(p(cos@, sin @, cos (p)} .
A simple computation shows that this is the standard torus of Example 3.8.6
with parameters a = 2 and b = 2v/2. The interior of a standard torus is called
a solid torus and is the domain B = D? x S stereographically projected into
IR3, see Figure 6.3. Its complement is another solid torus A. The 3-sphere S3
decomposes into two solid tori.

6.2. Cut and paste

We now introduce some basic cut and paste manipulations that allow to
modify the topology of a smooth manifold.

6.2.1. Punctures. Let M be a connected smooth n-manifold, possibly
with boundary. The simplest topological modification we can make on M is to
remove a point p € int(M). By Corollary 5.3.4, the new manifold M’ = M\{p}
does not depend (up to diffeomorphism) on p, and we say that it is obtained
by puncturing M.
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AN
“2

Figure 6.4. How to cut a manifold along a two-sided hypersurface.

A variation of this modification consists of picking a disc D C int(M) and
removing its interior: the new manifold

M" = M\ int(D)

has the same boundary components as M, plus one new sphere 8D. The
manifold M” does not depend (up to diffeomorphisms) on the chosen disc D
by the Disc Theorem 6.1.15.

Exercise 6.2.1. The manifolds M’ and M” \ 8D are diffeomorphic.
Exercise 6.2.2. If M = S" we get M' 2 R" and M" = D",
Exercise 6.2.3. If M = D" then M" = 5"~ 1 x [-1,1].

Exercise 6.2.4. If dim M > 3 then w1 (M) = w1 (M") = 71 (M).

Hint. Use Van Kampen. O

6.2.2. Cutting along submanifolds. \We now extend the above manipu-
lation from points to arbitrary compact submanifolds.

Let M be a smooth manifold and N C int(M) a compact submanifold of
some codimension k > 1. The complement M’ = M\ N is a new manifold. As
above, a variation consists in taking a closed tubular neighbourhood /N and
considering

M" = M\ int(DN).

The manifold M” has a new compact boundary component 87N, which is a
Sk=1_pundle over N. The manifold M” only depends on N and not on the
tubular neighbourhood DN since it is unique up to ambient isotopy.

This operation is particularly interesting if N has codimension 1 and is
two-sided, that is has trivial normal bundle vN = N x R. For instance, this
holds if both M and N are orientable: see Proposition 5.6.7. In this case the
new manifold M” has two new boundary components, both diffeomorphic to
N. See Figure 6.4. We say that M” is obtained by cutting M along N.

Example 6.2.5. By cutting S” along its equator S"~! we get two discs.
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Figure 6.5. How to paste two boundary components N; and N- via a
diffeomorphism ¢. To get a new smooth manifold, we pick two collars
and we make them overlap.

If N C M are both connected and N has codimension one, the new man-
ifold M" may be connected or not; in the first case, we say that N is non-
separating, and separating in the second.

6.2.3. Pasting along the boundary. Pasting is of course the inverse of
cutting. Let M be a (possibly disconnected) manifold, let Ni, N> be two
boundary components of M, and ¢: Ny — N> be a diffeomorphism. We now
define a new manifold M’ obtained by pasting M along .

A naive construction would be to define M’ as M/, where ~ is the equiv-
alence relation that identifies p ~ @(p) for all p € Ni. The result is indeed a
topological manifold, but it is not obvious to assign a smooth atlas to M/... So
we abandon this route, and we define M’ instead by overlapping open collars
as suggested by Figure 6.5.

Here are the details. We identify two disjoint closed collars of Ny and N>
in M with Ni x [0, 1] and N> x [0, 1], where N; = N; x {0}. The manifold M" is
obtained from M by first removing N1 and N, and then identifying the open
subsets Nq (0, 1) and N> x (0, 1) via the gluing map ®: (p, t) — (p(p), 1—t).
The smooth structure on M’ is now easily induced by that of M: it suffices to
take as an atlas all the charts o (m|y)~t: U" — V where m: M\ (N;UN>) —
M’ is the projection and ¢: U — V is a chart of M\ (N1 U N») such that
mly: U — U is a diffeomorphism.

Proposition 6.2.6. The manifold M' depends up to diffeomorphism only
on M and on the isotopy class of .

Proof. Different closed collars are ambiently isotopic and hence produce
diffeomorphic manifolds M’. Let us identify the glued part of M’ with the open
product N1 x (0,1). Let F; be an isotopy between g = Fp and 1 = Fq, that
we rescale as being constant at t € [0, €] and t € [1 —¢, 1]. A diffeomorphism
between the resulting manifolds M{ and Mj is constructed as follows: it is the
identity outside the open product, and (p, t) — (F; *(¢o(p)). t) on it. a

The manifold M’ contains a copy N of Ni = No, embedded as N =
N1 x {1/2} in the glued product Ny x (0,1) C M'. If we cut M’ along N we
recover back our original M.
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SREN IS O

Ny N

Figure 6.6. If the gluing map ¢ is orientation-reversing, the orientations
extend to the new manifold M.

Remark 6.2.7. Suppose that M is oriented. Both N; and N> inherit an
orientation. If ¢ is orientation-reversing, the gluing map & is orientation-
preserving and hence the orientation of M induces naturally an orientation on
M'’. So, if you want orientations to extend, you need to glue along orientation-
reversing maps . See Figure 6.6.

Exercise 6.2.8. The smooth manifold M’ is homeomorphic to the topolog-
ical manifold M/ .. obtained from M by identifying p ~ ¢(p) for every p € Nj.

In light of this fact, we will often think of M’ simply as the topological
space M/, equipped with an appropriate smooth atlas induced by .

6.2.4. Self-diffeomorphisms. Proposition 6.2.6 suggests that it is impor-
tant to understand the self-diffeomorphisms of a manifold up to isotopy. We
now solve this (generally difficult) problem for S*.

Two self-diffeomorphisms of an orientable manifold M are cooriented if
they either both preserve or both invert the orientation.

Exercise 6.2.9. If two self-diffeomorphisms of an orientable manifold M
are isotopic, they are cooriented.

The converse is also sometimes true.
Proposition 6.2.10. Two cooriented diffeomorphisms of S are isotopic.

Proof. Let g, p1: ST — ST be two cooriented diffeomorphisms. They
lift to smooth maps @g, ¥1: R — R between their universal covers, that are
monotone (that is, @(t), @;(t) > 0 (or < 0) Vt) and periodic (that is,
i(t+2m) = ;(t) + 27 Vt). The convex combination

Ge(x) = (1 — t)Po(x) + t@1(x)
is also periodic and monotone, hence it descends to a monotone map ¢;: St —

S1. Each ¢; is hence a covering, but since it is homotopic to g it is a
diffeomorphism: we get an isotopy between g and ;. O

This fact has important consequences when we want to glue two surfaces
along their boundaries. Let ¥ be a (possibly disconnected) surface and let
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C1, Co be two compact boundary components of ¥. Each C; is diffeomorphic
to St by Exercise 6.1.14. We want to glue them along a diffeomorphism
@: C;1 — Cy as in Figure 6.5. The proposition tells us that there are only two
possible gluing maps ¢ up to isotopy.

6.2.5. Doubles. Here is a simple kind of pasting that applies to every
manifold with boundary.

The double DM of a manifold M with boundary is obtained by taking two
identical copies My, M> of M and defining ¢: OM; — OM, as the identity
map, that is the one that sends every point in @M to its corresponding point
in OM>. Then DM is obtained by pasting My LI M> along ¢.

The doubled manifold DM has no boundary. If M is compact, then DM
also is.

Exercise 6.2.11. The double of D" is diffeomorphic to S". The double of
a cylinder St x [0, 1] is diffeomorphic to a torus S* x S*. What is the double
of a Mobius strip?

6.2.6. More theorems extended to manifolds with boundary. We note
that the double DM contains a copy of M as a closed domain, so in partic-
ular we have proved that every manifold with boundary is contained in some
manifold without boundary as a closed domain. This fact is often useful to
quickly extends theorems from manifolds without boundary to manifolds with
boundary. This applies for instance to Whitney's embedding theorem.

Theorem 6.2.12. For every smooth m-manifold M with boundary there is
a proper embedding M — R2m+1,

Proof. The Whitney embedding Theorem 3.11.3 furnishes a proper em-
bedding DM < R2™+1. The inclusion M < DM is also a proper embedding,
so the composition M < R?2™+1 3lso is. O

It also applies to smoothenings of continuous maps.

Theorem 6.2.13. Every continuous map f: M — N between manifolds
with boundary is homotopic to a smooth one.

Proof. Using a collar for N we can easily push f inside the interior of
N, that is we can homotope f to a map whose image lies in int(N). The
resulting map doubles to a continuous map DM — int(N), which is in turn
homotopic to a smooth map g by Theorem 5.6.8. We conclude by restricting
gtoMC DM. ([l

Theorem 6.2.14. Two smooth maps f, g: M — N between manifolds with
boundary are continuously homotopic <= they are smoothly homotopic.

Proof. Let f and g be continuously homotopic. Using collars for M and
N we can smoothly homotope f and g so that their images lie in int(N) and
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each f and g is constant along the fibres of the collar of M. By doubling,
these maps extend to smooth maps DM — int(N), that are still homotopic.
By Corollary 5.6.9 there is a smooth homotopy relating them, that restricts
to a smooth homotopy between f and g. O

6.2.7. Exotic spheres. WWe now investigate the following apparently in-
nocuous construction: we pick a self-diffeomorphism ¢: S ! — S"1 and
we glue two copies of D" along ¢, thus getting a new manifold M without
boundary. What kind of smooth manifold M do we get?

Exercise 6.2.11 says that if ¢ = id then M is diffeomorphic to S". More
generally, in the topological category, the answer does not depend on .

Proposition 6.2.15. The manifold M is homeomorphic to S". If ¢ extends
to a self-diffeomorphism of D", then M is also diffeomorphic to S".

Proof. By Exercise 6.2.8 the manifold M is homeomorphic to the topo-
logical manifold D; U, Do obtained by identifying p with ¢(p). We define a
continuous map

F: D1UidD2—>D1U(pD2

by coning ¢, that is: if x € Dy then F(x) = x, while if x € D, we set

o) — { Ixllo(p) i x#0

0 if x=0
The map F is a homeomorphism. By Exercise 6.2.11 we have Dy Ujq Dy = S”,

and this completes the proof that M is homeomorphic to S”.

If ¢ extends to a diffeomorphism ®: D" — D", we can replace F|p, with
@ and get a diffeomorphism. More precisely, to get a smooth map we need to
smoothen it at the equator D" like when we compose two smooth isotopies
(details are left as an exercise). O

Corollary 6.2.16. If n = 2 then M is diffeomorphic to S2.

Proof. Up to isotopy, the gluing map ¢: S — St is either the identity or
a reflection z — Z, and they both extend to self-diffeomorphisms of D2. O

The striking fact here is that when n > 7 the smooth manifold M may
not be diffeomorphic to S”, despite being homeomorphic to it. This implies
in particular that there are some crazy self-diffeomorphisms of S” that are not
isotopic neither to the identity nor to a reflection, and moreover they do not
extend to self-diffeomorphisms of D",

Remark 6.2.17. A smooth manifold homeomorphic but not diffeomorphic
to S is called an exotic sphere. In dimension n > 7 there are many exotic
spheres, and they are all constructed in this way. On the other hand, there
are no exotic spheres in dimensions n =1,2,3,5,6. The dimension 4 remains
a total mystery: we do not know if there are exotic spheres, and if there are,
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they are certainly not constructed in this way (that is, by gluing two discs).
Even more puzzling, we know that the number of exotic spheres (considered
up to diffeomorphism) is finite in every dimension — for instance these are 27
in dimension 7 — except in dimension four, where the number of exotic spheres
could be any value from 0 to oo, both extremes included, as far as we know.

6.3. Connected sums and surgery

We have learned how to cut a manifold along a submanifold, and how to
glue two boundary components along a diffeomorphism. We now introduce
some more elaborate manipulations that combine cutting and pasting. The
most important ones are the connected sum that “connects” two manifolds
along a tube, and the more general surgery that roughly replaces a k-sphere
(with trivial normal bundle) with a (n — k — 1)-sphere. The boundary versions
of these manipulations are also important.

6.3.1. Definition. Let My and M, be two connected oriented n-manifolds,
possibly with boundary. We now define a new oriented manifold My # M- called
the connected sum of My and Mb.

To do so, we consider the orientation-reversing diffeomorphism

a:int(D")\ {0} — int(D")\ {0}, a(v)=(1— ||v|\)L

and two arbitrary embeddings
fi: D" — int(My), fr: D" — int(M,)

such that f; is orientation-preserving and f; is orientation-reversing. Then we
glue the punctured manifolds M; \ f1(0) and M\ £2(0) via the diffeomorphism

hoaof t: fi(int(D")\ {0}) — K(int(D")\ {0}).

The resulting smooth manifold is the connected sum of M; and M, and is
denoted as

My #Mo.

Since fhoa o ffl is orientation-preserving, the manifold My#M> is naturally
oriented. You may visualise an example in Figure 6.7. By the Disc Theorem
6.1.15 the manifold Mi#M> does not depend, up to orientation-preserving
diffeomorphisms, on the maps 1 and 5.

Remark 6.3.1. The connected sum M;#M> may also be described as a
two-steps cut-and-paste operation, where:
(1) first, we remove f;(int(D;)) from M;, thus creating a new boundary
component f;(0D;) for M;, Vi =1,2;
(2) then, we paste the two new boundary components via the diffeomor-
phism f> o ffl: 0D1 — 0D5.
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M \ /M'

MH#M'

Figure 6.7. The connected sum of two compact surfaces.

We leave as an exercise to prove that this definition of My # M is equivalent to
the one given above. In light of the exotic spheres construction, it is important
to require the gluing map to be > o ffl and not any map.

We may see # as a binary operation on the set> of all oriented connected
n-manifolds considered up to diffeomorphism.

Proposition 6.3.2. The connected sum is commutative and associative,
and S" is the neutral element. That is, there are diffeomorphisms

MAN 22 N4M, M#A(N#P) = (M#N)#P, M#S™ 22 M.

Proof. Commutativity is obvious. Associativity holds because we can sep-
arate the discs using isotopies, so that both connected sums can be performed
simultaneously.

To construct M#S" we follow Remark 6.3.1. We choose @,: D" — S"
to be the standard parametrisation of the upper hemisphere. The two-steps
operation consists of substituting the upper hemisphere with the lower one
along the same map, and this does not change the manifold M. O

The connected sum may be defined also for non-oriented manifolds, but in
this case the resulting manifold M#N is not unique: there are two possibilities,
and these may produce non-diffeomorphic manifolds in some cases. We have
used orientations here only to simplify the theory.

6.3.2. Compact surfaces. Enough for the theory, we need some exam-
ples. One-dimensional manifolds are not very exciting, so we turn to surfaces.
We already know some compact connected surfaces, possibly with boundary:

S2, RP?, D? S'x[0,1], S'xS' M K
3The suspicious reader may object that smooth manifolds do not form a set. However,

if we consider them up to diffeomorphism, we may use Whitney's embedding theorem and
see them as subsets of some R”, and the subsets of R" of course form a set.
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4 p - &=

Figure 6.8. The 8-connected sum of two manifolds with boundary.

where M and K are the compact Mobius strip, considered with its (connected!)
boundary, and the Klein bottle. Can we add more surfaces to this list?

Definition 6.3.3. The genus-g surface Sy is the connected sum

Sg=T# .. . #T
N——
g

of g copies of the torus T = St x S?.

By convention, the surface of genus zero Sy is the sphere S2, and that of
genus one S; is the torus. We have

Se#Sh = Sgin.

Figure 6.7 shows that S,#S; = S3. Note that the torus T is mirrorable, so
each time we make a connected sum with T it is not really important which
orientation we put on 7. In fact each Sy is easily seen to be mirrorable.

6.3.3. O-connected sum. A O-connected sum is an operation similar to
the connected sum, where a bridge is added to connect two portions of the
boundaries as in Figure 6.8.

The construction goes as follows. We consider the half-disc D!l = D" N
R7. We define D"t = D7 N {x, =0} and int(D7) = DT N {||x|]| < 1}. We
consider the same orientation-reversing diffeomorphism as above

. . v
a:int(D])\ {0} — int(D])\ {0}, a(v)=(1- ||v||)m
Let M; and M, be two oriented n-manifolds with boundary. Pick two embedded
half-discs

fliDi%Ml, 7:2D1<—>M2

such that £1(8M;) = D"1 as in Figure 6.8-(left). We require f; to be
orientation-preserving and f> orientation-reversing. Then we glue the manifolds
My \ f1(0) and My \ £2(0) via the diffeomorphism

hoaofit: fi(int(D])\ {0}) — H(int(DY) \ {0}).
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1

e —

Figure 6.9. The 8-connected sum with a disc does not change the man-
ifold up to diffeomorphism.

The resulting oriented smooth manifold with boundary is the 0-connected sum
of My and M> and is denoted as

Mi#aMo.

See Figure 6.8. As above one proves that the resulting manifold depends only
on the connected components of M7 and M, intersecting the half-discs.
In particular, if both My and M, have connected boundary, then Mi#sM> is
uniquely determined.

Proposition 6.3.4. If OM; and OM> are connected, we have
O(Mri#oMa) = OM1#OMs.
In general we have M#5D" = M.

Proof. The manipulation restricted to the boundaries is a connected sum,
so the first isomorphism holds. The second is sketched in Figure 6.9, and
we leave the tedious exercise of writing the correct diffeomorphism to the
courageous reader. O

6.3.4. Pasting manifolds along submanifolds. We now introduce a gen-
eralisation of the connected sum, in which we glue manifolds along disc bundles
instead of just discs.

Pick 0 < k < n. Let My and M5 be two n-manifolds possibly with bound-
ary, and let Ny C int(My) and Ny C int(M>) be two diffeomorphic compact
k-submanifolds without boundary. We suppose that there is a vector bundle
isomorphism @: vN; — vN> between the two normal bundles, both realised
as tubular neighborhoods vN; C int(My) and vN, C int(Mz). We fix a Rie-
mannian metric on one normal bundle v/N; and transport it to the other v N>
along ¢, to get an induced isomorphism of the corresponding closed tubular
neighbourhoods ¢: DNi — UN>.

As above, we define the self-diffeomorphism

o int(UN7) \ Ny — int(DNyg) \ Ny, a(v) = (1- Hvu)ﬁ
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We now glue the manifolds M; \ N1 and M> \ N> via the diffeomorphism
poaoQ: int(DNl) \ Ny — int(DNg) \ N>.

The resulting manifold M is obtained by pasting My and M, along the sub-
manifolds Ny and Ns. It is an operation that can be done as soon as the
submanifolds N; and N, have isomorphic normal bundles; note however that,
as opposite to connected sum, the choice of the vector bundle isomorphism ¢
is important here, because two different isomorphisms may not be isotopic in
many interesting cases, even if they are co-oriented.

Remark 6.3.5. Asin Remark 6.3.1, the construction of M may be described
alternatively as a two-steps cut-and-paste operation, where:

(1) first, we remove from M; the open submanifold int(ZN;), thus creat-
ing a new boundary component OV N;;
(2) then, we paste the two new boundary components via .

6.3.5. Surgery. There is a particular type of pasting that is so important
to deserve a separate name.

Let M be a n-manifold, possibly with boundary, and ¥ C int(M) be a k-
sphere (that is, a submanifold diffeomorphic to S¥) with trivial normal bundle,
forsome 0 < k< n-—1.

As in Section 6.1.16, we set RA+1 xRk = R™1 and consider Sk x {0} C
S". We have seen that the normal bundle of S x {0} in S" is also trivial. We
can therefore paste M and S” along the k-spheres ¥~ and S¥ x {0}. To do so,
we must choose a normal bundle isomorphism ¢: vS — vSk. This operation
is called a surgery along the sphere ¥ C int(M). The resulting manifold M’
depends on the chosen isomorphism .

Remark 6.3.6. We have seen in Section 6.1.16 that S” decomposes into
Sk x D"k and DK+l x §"—k=1 Therefore, by Remark 6.3.5, a surgery may
also be described as follows: whenever we find a domain in M diffeomorphic
to Sk x D"k, we first remove its interior, thus creating a new boundary
Skx S"=k=1 and then glue D1 x S"=k—1 to it via the identity map. Shortly:
we substitute SK x D"~k with DkT1 x Sn—k-1,

Remark 6.3.7. A surgery along a O-sphere is like a connected sum: we
replace SO x D", that is two disjoint discs, with D! x S"~1, that is a tube.
When both points in S° are contained in the same connected component, this
may be interpreted as a self-connected sum of that component.

The inverse operation of a surgery along a k-sphere is naturally a surgery
along a (n — k — 1)-sphere.

Example 6.3.8. Le M be an orientable 3-manifold, possibly with boundary.
A knot in M is a submanifold K C int(M). Since M is orientable, we will
prove that the normal bundle vK of K in M is trivial. The closed tubular

TBD alla fine
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neighbourhood K C int(M) is therefore diffeomorphic to a solid torus St x
D?. A surgery along K consists of replacing the solid torus S x D? with
another solid torus D? x S!. This operation typically modifies drastically the
topology of the ambient manifold.

6.3.6. Pasting along submanifolds in the boundary. There is of course
a boundary version of pasting along submanifolds, where the submanifolds lie
in the boundary. This operation generalises the 0-connected sum and will be
fundamental in the next section.

Let M; and M5 be two n-manifolds with boundary, and let N; C OM; and
N> C OM> be two compact k-submanifolds without boundary. Let ¢: vN; —
v N> be an isomorphism of their normal bundles in My and OMs>.

We now define a new manifold M’ obtained by pasting My and M, along
the submanifolds N7 and N>. The operation is the same as above, only with
half-discs instead of disc bundles.

Each closed tubular neighbourhood oN; € M; is a D"~k~1-bundle over N;,
and using collars we may extend it to a half-disc Di’k—bundle Uy N; that is a
“half"-tubular neighbourhood of N; in M;. The diffeomorphism ¢ also extends
to w: U N1 — U4 No. We glue the manifolds My \ N; and M, \ N, via the
diffeomorphism

woo:int(DyrN1) \ Ny — int(DLNa) \ No

where a and int(7N;) are defined on every fibre D~ as we did for 8-connected
sums.
The 9-connected sum corresponds to the case where N; and N are points.

6.4. Handle decompositions

We now show that every compact manifold M decomposes into finitely
many simple blocks, called handles. This important procedure is called a handle
decomposition.

6.4.1. Handles. We have described in the previous section the operation
of pasting two manifolds along submanifolds in their boundaries. We now
introduce a particularly important case.

Let M be a n-manifold with boundary. Let ¥ C OM be a (k — 1)-sphere
with trivial normal bundle v~ C M, with 0 < k < n. A k-handle addition
on M is the operation that consists of pasting M with D" along the (k — 1)-
spheres ¥ and SK=1 x {0} € S"~!. As in Section 6.1.16, we see D" inside
R" = RK x R"k,

The result is a new smooth manifold M’, which depends on the (isotopy
class of the) chosen identification of the trivial normal bundles of ¥ and of
Sk=1 % {0}.

A n-handle addition is the glueing of a disc D" to a boundary component
Y C OM diffeomorphic to S"~! via a diffeomorphism D" — ¥. We also
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R
B S
oM hx
R .
oM by

Figure 6.10. An alternative description of the attachment of a k-handle
to M.

define a 0-handle addition to be simply the addition of a disjoint connected
component D", with no attachment.

6.4.2. Local model. To better visualise what is going on, we furnish a
concrete local model of a k-handle addition, drawn in Figure 6.10.

Let ¥ C OM be a (k — 1)-sphere with trivial normal boundary. It has a
half-tubular neighbourhood in M is diffeomorphic to ¥ x R"~% x R, and we
identify it with the manifold with boundary

U={(x.y) eR"™ xR | |ly| > 1}
via the map (u, v, t) — (v, (t + 1)u). With this identification we have
¥y = {0} x Sk, oU =UNdM =Rk x k=1,

Let p: [-1,1] — R4 be a continuous positive function that is smooth on
(=1, 1) and such that all derivatives of p tend to +00 as t — 41 (correspond-
ing signs). We define a bigger manifold M’ by substituting U with the bigger
set

U =Uudllyll < 1 lIxll < e(liyllD }-

Exercise 6.4.1. The manifold M’ is diffeomorphic to M with a k-handle
attached to >.

See Figure 6.10. Note that with this description the original manifold M
is naturally a submanifold of M.

6.4.3. Topological handles. \We can make one further step towards visu-
alization and intuition by using topological handles. These capture the topo-
logical structure of M’ while being a little bit imprecise on its smooth structure.
See Figure 6.11.
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Figure 6.11. The attachment of a 1-handle and of a topological 1-
handle along the same map . The resulting topological manifold is the
same in both constructions, but the smooth structure is well-defined only
with the first. For practical purposes, we usually think of a handle as a
topological handle whose corners have been somehow “smothened.”

A topological handle is what we get if we take p(t) = 1 constantly in
the previous construction. The result is not smooth, but it still works up to
homeomorphisms.

In other words, we use DX x D"~* instead of D". This is not a smooth
manifold because of its corners; its topological boundary decomposes into the
horizontal DX x S %=1 and the vertical Sk~ x D"~k For every embedding

0: S x DK oM
we define a new topological space
M = MU, (DX x D"K)

obtained by attaching DX x D"~k to M along . This operation is the at-
tachment of a topological k-handle to M. The attaching of a handle or a
topological handle along the same map ¢ produce homeomorphic manifolds
M': the only difference between the two constructions is that in the topo-
logical setting the smooth structure on M’ is not obvious to see — some new
corners arise that should be smoothened, see Figure 6.11. From now on, we
will always think as a handle as a topological handle whose corners have been
smoothened.

One should think of a topological k-handle D¥ x D"~k as a thickened k-
dimensional disc. Here is some useful terminology: the number k is the index
of the handle; the sphere SK~1 x {0} is the attaching sphere, while the sphere
{0} x S"~k~1 s the belt sphere. The discs D¥ x {0} and {0} x D"~ are the
attaching and belt discs. See some examples in Figure 6.12.
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belt belt

attach attach

Figure 6.12. A three-dimensional topological 1-handle (left) and 2-
handle (right), with the attaching and belt spheres in blue.

Figure 6.13. Some handle decompositions in dimension two and three.
On the left, we have two O-handles (yellow), one 1-handle (orange), and
one 2-handle (red) in dimension two. On the right, we have two 0-handles
(yellow) and one 1-handle (orange) in dimension three.

Remark 6.4.2. If M’ is obtained from M by the attachment of a k-handle
to the (k — 1)-sphere S C M, the new boundary M’ is obtained from the old
OM by surgery along the sphere S. This follows readily from the definition.

6.4.4. Handle decomposition. Let M be a compact smooth n-manifold,
possibly with boundary. A handle decomposition for M is the realisation of M
as the result of a finite number of operations

=My~ My~ oo Mg =M

where each M, is obtained by attaching some handle to M;. Since the only
handle that can be attached to the empty set is a 0-handle, the manifold M;
is the result of a 0-handle attachment to @ and is hence a n-disc.

Example 6.4.3. The sphere S, and more generally each of the exotic
spheres described in Section 6.2.7, decomposes into two n-discs. We may
interpret this decomposition as a n-handle attached to a 0-handle. Therefore
5™ has a handle decomposition with one 0-handle and one n-handle.

Conversely, if a compact manifold M without boundary decomposes into
two handles only, then these must be a 0- and a n-handle, and so M is either
S or an exotic sphere (in all cases, it is homeomorphic to S").
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Figure 6.14. If h < k, we can always slide a k-handle away from a
previously attached h-handle. Here h=k = 1.

6.4.5. Reordering handles. More examples are shown in Figure 6.13. In
both examples in the figure the handle decomposition goes as follows: we first
attach some O-handles (that is, we create discs out of nothing), then we attach
some 1-handles, then we attach some 2-handles. We think at the 1-handles in
the (left) figure as attached simultaneously. We now show that every handle
decomposition can be modified to be of this type.

Proposition 6.4.4. Every handle decomposition can be modified so that we
first attach all 0-handles, then all 1-handles, then all 2-handles ... and so on.

Proof. Suppose that M, 1 is obtained from M, by attaching a k-handle
H*, and M, is obtained from M,,1 by attaching a h-handle H". We write

M1 = M; Uy HY, Miyo = Miy1 Uy H'.

We show below that if h < k then H" can be slid away from H*X as in
Figure 6.14. After this move, the handles H” and HX are disjoint and hence
we can obtain the same manifold M; . by first attaching H" and then H*.

By applying finitely many exchanges of this type we transform every handle
decomposition into one where handles are attached with non-decreasing index.
Moreover, the handles with the same index can be slid to be disjoint, and hence
can be thought to be attached simultaneously. This proves the proposition.

We now show how to slide H" aways from HX. The attaching sphere of
H"is a (h—1)-sphere ¥ C &M, while the belt sphere of H* isa (n—k—1)-
sphere ¥/ C OM;;1. If h < k, we have (h— 1)+ (n—k—-1) < n—1. By
transversality, we may isotope ¥~ away from ¥’

The handles H* and H" intersect OM into two closed tubular neighbour-
hoods of ¥’ and . Since ¥’ N¥ = &, we can isotope the tubular neighbour-
hood of ¥ to be disjoint from that of ¥’. That is, we can slide the handle H”
away from H¥, as stated. O

As stressed in the proof, the handles of the same index are disjoint and
can be attached simultaneously, as in Figure 6.13.
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Our next goal is to show that every compact smooth manifold decomposes
into handles. To this purpose we study the critical points of functions M — R
and we introduce the Morse functions, that are of independent interest.

6.4.6. Hessian at a critical point. Let M be a manifold without boundary
and f: M — R a smooth function. Let p € M be a critical point of f. The
Hessian of f at p is a symmetric bilinear form

Hess (f)p: ToM x T,M — R

defined as follows. Given v, w € T,M, extend them to two arbitrary vector
fields X, Y in some neighbourhood of p. Then we set

Hess (f)p(v, w) = X(Y(F))(p).
Lemma 6.4.5. The map Hess (f), is well-defined, bilinear, and symmetric.

Proof. Since pis a critical point we have u(f) = 0 for every tangent vector
u € TpM. This holds in particular for u = [X,Y](p) and gives v(Y(f)) =
w(X(f)). The left member does not depend on the extension X, and the right
does not depend on the extension Y: therefore both do not depend on the
extensions, and the bilinear form is manifestly symmetric. O

It is crucial here that df, = 0. Alternatively, we can also define the Hessian
in coordinates: we pick p = 0 for simplicity and get

f(x) = f(0) + & xHx + o(||x]?).

On some other chart with variables X, we get x = Jx + o(||%||) where J is the
differential of the coordinates change at x = 0 and therefore

F(x) = F(0) + 2 ‘(U + o(IIRIN) H(Ix + o(IX]1)) + o(IIx]I?)
= 7(0) + 3 X UHIx + o(|Ix|]?).

Therefore H changes to "JHJ and hence describes a chart-independent bilinear
form on T,M. The two definitions just given coincide because
0°f
Hess (f)o(ej, €j) = ——— = H,j.
( )O( I J) aX,an i
6.4.7. Non-degenerate critical points. Let M be a manifold without
boundary and f: M — R a smooth function. We say that a critical point
p € M for f is non-degenerate if the bilinear form Hess (f), on T,M is non-
degenerate. We now study the non-degenerate critical points. We start by
exhibiting an alternative definition.

Proposition 6.4.6. A critical point p is non-degenerate <= the section df
of T*M s transverse to the zero-section at p.
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Proof. On a chart, we have f: U — R for some open set U C R". We see
df as the gradient Vf: U — R". Now Vf is transverse to the zero-section at
p € U <= the differential of Vf is invertible in p. The differential of Vf is
Hess (f)p, so we are done. O

Corollary 6.4.7. Non-degenerate critical points are isolated.

If pis a non-degenerate critical point, then Hess (f), is a scalar product on
T,M and has some signature (k, n— k) for some 0 < k < n. The integer n—k
is the index of the critical point p. The following Morse Lemma determines
the behaviour of f near p, according to its index.

Lemma 6.4.8 (Morse Lemma). Let p be a non-degenerate critical point of
index n — k. On some appropriate chart near p the function f is read as

FX)=F(p)+xF+ ... +XF —Xgpg — .. — X2

The chart sends p to 0.

Proof. On a chart we get f: R” — R with p = 0. Since 0 is a critical
point, Taylor's Theorem 1.3.1 gives

1 n
F(x)=f(0)+5 Z hij(X)xix;
iJj=1
for some smooth maps hj; such that h;; = h;;. The Hessian H = h;;(0) has
signature (k, n — k).
To transform f into the desired form, we follow the usual procedure to

diagonalise scalar products, and extend it smoothly on a neighbourhood of 0.
We proceed by induction: suppose that on some coordinates we write

Fx) =42+ x>, + Z hij(x)xix;.
ij>r

After a linear change of coordinates we may suppose that h,(x) Z0at x =0
and hence on some small neighbourhood around 0. We pick new coordinates

yi=x;i fori#r,
ve = VTGOl (3 + 5y, 2650 )

This is indeed a new coordinate systems around O by the Inverse Function
Theorem. With these new coordinates we easily get

Fy)=dy £ £y2+ > W)y

IJj>r

for some functions hfj defined near p, and we conclude by induction on r. [
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6.4.8. Morse functions. Let M be a manifold without boundary. A Morse
function on M is a function f: M — R whose critical points are all non-
degenerate. In other words, the differential df is transverse to the zero-section.

We now prove that there are plenty of Morse functions. Via the Whitney
embedding theorem we may suppose that M C R™ for some m.

Lemma 6.4.9. Let M C R™ be a submanifold and f: M — R any smooth
function. For almost every v € R™, the modified function

f,: M — R, fu(x) = f(x) + (v, x)
is a Morse function.
Proof. Consider the map
F:MxR"—T*M
(p,v) — d(f)p.

If we prove that F is transverse to the zero-section sp C T*M, the Thom
Transversality Theorem 5.7.5 implies that df, is transverse to sy for almost
every v € R™ and we conclude.

To prove that F is transverse to sp, we first note that

d(fy)p = dfp + (v, -).

We deduce that F(p,-): R" — Ty M is affine and surjective for every p € M.
This implies easily that F is transverse to any section s of T*M. O

Corollary 6.4.10. Let f: M — R a smooth function. For every € > 0 there
is a Morse function g: M — R with |f(p) — g(p)| < € for all p € M.

Proof. Embed M in a ball of R™, and then apply Lemma 6.4.9 with suffi-
ciently small ||v]|. O

We have proved in particular that every M has some Morse function
f: M — R. Itis sometimes useful to add the following requirement.

Theorem 6.4.11. Every manifold M without boundary has a proper Morse
function f: M — R where the critical values form a discrete closed subset of
R and distinct critical points have distinct critical values.

Proof. Start with a proper function M — R and perturb it to a proper
Morse function using Corollary 6.4.10. The critical points form a closed dis-
crete subset of M, hence there are only finitely many of them in the compact
subset f~1([a, b]) for every a < b. Therefore the critical values form a discrete
closed subset of R. By choosing a generic small v in the proof of Corollary
6.4.10 we also get that distinct critical points have distinct values. O
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Figure 6.15. On this torus, the height function f(x, y, z) = z is a Morse
function with four non-degenerate critical points of index 0, 1, 1, and 2.
The level sets f~!(t) are manifolds, except when t is a critical value.

>

Figure 6.16. Each time a non-degenerate critical point of index k is
crossed, a k-handle is added. We show here the two critical points of
index 1, and the core segment of the 1-handle in each case.

6.4.9. Existence of handle decompositions. \We have introduced Morse
functions as a fundamental tool to prove the following remarkable theorem.

Theorem 6.4.12. Every compact manifold M without boundary has a han-
dle decomposition.

Proof. Let f: M — R be a Morse function where critical points have
distinct images. Since M is compact, it has finitely many critical points. For
instance, Figure 6.15 shows a Morse function on the torus with four critical
points. For every a € R we define

M, = f (-0, al.
When a is regular, M, is a domain in M, that is a submanifold with boundary.
Consider two regular values a < b. We now prove two facts:

(1) If [a, b] contains no critical values, then M, and M}, are diffeomorphic.
(2) If [a, b] contains a single critical value, image of a critical point of
index k, then My is diffeomorphic to M, with a k-handle attached.

An example is shown in Figure 6.16. When a crosses a critical point of index
k, a k-handle is attached to M,. So the torus decomposes into one 0-handle,
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two 1-handles, and one 2-handle. The claims (1) and (2) clearly imply that M
decomposes into handles, one for each critical point of M.

We first prove (1). Fix an arbitrary Riemannian metric on M, that is on
the tangent bundle TM. Every T,M is equipped with a scalar product (,),
and we use it to transform the covector field df into a vector field V£ in the
usual way, by requiring that

dfp(v) = (Vf(p), v).
The field Vf vanishes at the critical points. On a curve v: | — M we get

(fo)'(t) = dfy) (Y (1) = (V.Y (1)).

Let p: M — R be a smooth function that equals 1/(Vf, Vf) on the compact
set f~1[a, b] and which vanishes outside some bigger compact subset. We
define a new vector field

X(p) = p(P)VT(p).

Since M is compact, the vector field X is complete and generates a flow ®.
Consider a maximal integral curve y(t) = ®(p, t). If y(t) € f~1[a, b] then

(Fo) (1) =(VF (1)) =(VF X) =1
Therefore the flow defines a diffeomorphism
My — My, pr— ®(p, b— a).

We turn to (2). Let p € M be the unique critical point in f~1[a, b]. We
suppose for simplicity that f(p) = 0. By (1) we may choose a= —cand b=¢
for some small € > 0. By the Morse Lemma, on a chart U = R" = Rk x R¥
the function f is

F(x.y) = IIxII> = llyll?
where (x, y) € R™* xR and p = (0, 0). The manifolds M, and M_ intersect
the chart R"~k x R¥ as in Figure 6.17-(left).

We now substitute M, with a diffeomorphic submanifold M’ that still con-
tains M_¢, and which has the additional property that M’ \ M_¢ lies entirely
in the chart R"~% x R as shown in Figure 6.17-(right). To this purpose, we
pick a smooth function ¢: R — R such that

#(0)>e, ¢(t)=0Vt>2e, —1<¢(t) <0Vt

We now define another smooth function F: M — R, by requiring that F(p) =
f(p) outside the chart, and

F(x,y) = f(x,y) = o2lIxI7 + Iyl?)
inside the chart. We then set
M' = F~!(—o0, —¢].



174 6. CUT AND PASTE

’
M n-k

Figure 6.17. The manifolds M. and M_. intersect the chart R x R*
as shown here (left). We replace M, with a diffeomorphic submanifold M’,
still containing M_¢, so that the yellow zone M’ \ M_. lies entirely in this
chart. The yellow zone is a k-handle (right).

Clearly M" > M_. and M’ \ M_¢ is contained in the chart. We show that
M = F71 (=00, €].

Indeed, we obviously have M, C F~1(—o0, €], and conversely if F(x,y) < €
and ¢(2[|x]1% + [lylI?) > 0 we get 2||x||? + |ly||?> < 2¢; therefore

FOx,y) = IxI? = Iyl < IIxI1P + 3lyI? < e.

In the chart we have
oF _

(9) o =2 = 2l + Iy IP)x 22X
(10) 5y =~ — PN+ )y <~y

This implies that dF vanishes only at the origin, so F has the same critical
points as f. Since F(p) < —¢, the function F has no critical values in [—¢, €]
and (1) implies that M’ and M, are diffeomorphic.

Finally, we need to show that M’ is diffeomorphic to M_¢ with a k-handle
attached, painted in yellow in Figure 6.17-(right). To this purpose we fix
yo € R¥ and consider

F(x,y0) = IXII” = [lyoll”> = o2IIxI1* + [Iy0ll?)-
The horizontal slice y = yg of M’ has the form
M{y =y} ={(xy)]| Fx.y) < —¢€}.
Since ¢(t) > e —t for all t > 0, we get

F(0,y0) = =llyoll* = (llyoll*) < —¢
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=

Figure 6.18. A 1-handle attached to two distinct 0-handles: the result
is diffeomorphic to a disc.

and hence (0, yp) belongs to the horizontal slice. The function F(x, yp) de-
pends only on ||x|| and increases with ||x|| by (9), so the horizontal slice is a
disc with some radius r(yp) > 0 depending smoothly on yp. When |[|yo||? > 2¢
we get r(yo) = +/[yoll* — €.

One concludes by showing that Figure 6.17-(right) is in fact diffeomorphic
to Figure 6.10-(right). Therefore M" is M_¢ with a k-kandle attached. The
explicit diffeomorphism is left as an exercise. O

6.5. Classification of surfaces

In the previous section we have seen that every compact smooth manifold
without boundary decomposes into simple pieces called handles. \We now use
this construction to classify all compact surfaces.

6.5.1. The main theorem. We defined in Section 6.3.2 the genus-g sur-
face Sy as the connected sum of g tori.

Theorem 6.5.1. Every compact connected and orientable surface S with-
out boundary is diffeomorphic to Sy, for some g > 0.

Proof. We pick a handle decomposition of S. This consists of some 0-
handles, then 1-handles attached to these O-handles, and finally 2-handles
attached to the result.

We first make an observation that is valid in all dimensions: if we attach
a 1-handle to two distinct O-handles as in Figure 6.18, this is equivalent to
making a boundary connected sum of two discs, so the result is again a disc.
Therefore we can replace the two 0-handles and the 1-handle altogether with
a singe 0-handle, thus simplifying the handle decomposition.

After finitely many such moves, we may suppose that in the handle decom-
position of S every 1-handle is attached twice to the same 0-handle. Since S
is connected, this easily implies that there is only one 0-handle.

A dual argument works for the 2-handles. Note that every 1-handle is
incident to two 2-handles, attached to the two long sides of the 1-handle. If
the 2-handles are distinct, then the 1-handle together with the two incident
2-handles form again a picture like in Figure 6.18, and can thus be replaced by
a single disc, that is a single 2-handle. After finitely many moves of this type,
we easily end with a single 2-handle.
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Figure 6.19. The 0-handle and some 1-handles (left). Two interlaced
1-handles (centre). Two interlaced handles form a handle decomposition
of a holed torus, seen here as a square with opposite edges identified, with
the white hole removed (right).

We have simplified the handle decomposition of S so that it has only one
0- and one 2-handle. If there are no 1-handles, then S decomposes into a 0-
and a 2-handle and is hence diffeomorphic to S2 by Corollary 6.2.16.

Suppose that there are 1-handles. Every 1-handle is a topological rectangle
attached to the 0-handle along its short sides, as in Figure 6.19-(left). Up to
diffeomorphism, there are two ways of attaching a 1-handle: with or without
a twist. However, twists produce Mobius strips, which are excluded since S is
orientable. So every 1-handle is attached without a twist, as in the figure.

Since there is only one 2-handle, the union of the 0- and 1-handles is a
surface with connected boundary. This implies that every 1-handle must be
interlaced with some other 1-handle as in Figure 6.19-(centre). Let S’ C S
be the subsurface consisting of the 0-handle and these two 1-handles. Figure
6.19-(right) shows that S’ is diffeomorphic to a torus with a hole. Therefore if
we substitute S’ with a single O-handle, that is a disc, we find a simpler handle
decomposition of a new surface S” such that

S =S"#T.

We conclude by induction on the number of 1-handles that S is a connected
sum of some g tori. O

In the next chapters we will prove that Sy is not diffeomorphic to Sy
if g # ¢, so the genus of a surface fully characterises the surface up to
diffeomorphism.

6.6. Exercises

The Euler characteristic of a surface Sg is x(S4) = 2 —2g. This can be taken as
a definition here.

Exercise 6.6.1. Pick any positive integers g,¢’,d > 1. Show that if x(Sg) =
dx(Sg) then there is a degree-d covering Sq — Sy .
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Exercise 6.6.2. Let M and N be two connected oriented n-manifolds of dimension
n > 3. Show that
T (M#N) = w1 (M) * w (N)

where x* is the free product of groups.






CHAPTER 7

Differential forms

Smooth functions from R to R can be summed, multiplicated, composed,
derived, and integrated. Is there any kind of tensor field on a general manifold
M for which these five possible types of manipulations still make sense? Yes!
These are the differential forms, and they are, together with vector fields,
among the most powerful objects one can encounter on a smooth manifold.

Differential forms can be summed, multiplicated, pull-backed along any
smooth map, derived, and integrated along submanifolds. They can be used
to talk about volumes on manifolds. Their derivation generalises the notions
of gradient, curl, and divergence in Euclidean space. The interplay between
derivation and integration culminates with the Stokes’ Theorem which gener-
alises various statements that one encounter in analysis relating the integration
of objects on domains of R" and on their boundaries.

7.1. Differential forms

We introduce the main protagonist of this chapter.

7.1.1. Definition. Let M be a smooth n-manifold, possibly with boundary.
A differential k-form (shortly, a k-form) is a section w of the alternating bundle

N(M)

over M, see Section 4.3.4. In other words, for every p € M we have an
antisymmetric multilinear form

w(p): ToM x --- x T,M — R
k

that varies smoothly with p € M.

Example 7.1.1. A 1-form is a section of A'(M) = T*M, that is a covector
field. As an important example, the differential df of a smooth function
f: M — Ris a 1-form, see Section 4.3.2. This example is not exhaustive: we
will see that some 1-forms are not the differential of any function.

By Corollary 2.4.10, every k-form with k > n is necessarily trivial. The
vector space of all the k-forms on M is denoted by

QK(M) = T (AN*M).

179
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7.1.2. Exterior product. Recall from Section 2.4.3 that the exterior al-
gebra A*(V) of a real vector space V is equipped with the exterior product A.
Let now w and 1 be a k-form and a h-form on a manifold M. Their exterior
product is the (k + h)-form w A m defined pointwise by setting

(wAnN)(p) =wlp) An(p).

As in Section 2.4.3, the space

Q" (M) = P ak(m)

k>0

inherits the structure of an anticommutative associative algebra such that

wAn=(-1)"nAw
and if k is odd we get

wAw=0.
This holds in particular for every 1-form w.
7.1.3. In coordinates. As usual, differential forms may be written quite

conveniently in coordinates.

Let U be an open subset of R" or R’l. Recall that for some notational
reasons it is preferable to denote the canonical basis of R” by

o 9
ox1' T axn

For similar reasons, we will now write the dual basis of (R")* = R" as
dxt, ... dx"

The notation is appropriate because dx' is the differential of the linear map
x +— x'. We have seen in Section 2.4.4 that the vector space AX(R") has
dimension () and a basis consists of all the elements

dx A - A dx'

where 1 < 1 < ... < Ix < nvary. Therefore we can write any k-form w in U
in the following way:

w= Y fi i dx" A A dx
<<l
where f; is a smooth function on U. We may simplify the notation by

considering multi-indices | = (i1, ..., i) with i1 < --- < ix and writing
w = Z f/dx’.
/

Here of course dx! = dx® A -+« A dx'.

Example 7.1.2. The differential of a function f: U - R is

of | | of
df—@dx ++8X”

dx".
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Example 7.1.3. The following are 1-forms in R3:
x%dy — xe¥dz, xdx + ydy + zdz
and the following are 2-forms:
xdx Ady +x3dy A dz, xdy Ndz —ydx Ndz+ zdx Ndz.
Remark 7.1.4. Every n-form in U C R" is of the type
Fdxt A~ A dx"

for some smooth function f: U — R. Therefore n-forms on open sets U C R”
are somehow like smooth functions on U, but one should not go too far with
this analogy, because forms and functions are intrinsically different objects!

It is sometimes useful to write a form as a linear combination of elements
dxt A -+ A dx'* without the strict hypothesis i1 < ... < ix. One has to take
care that the notation is not unique in this case, for instance

1 1
w=dxNdy=—dyNdx= de/\dy—idy/\dx.
It suffices to keep in mind the following relations:
dx' A dx! = —dx! A dx', dx' A dx' = 0.

Example 7.1.5. With these rules in mind, it is also easy to write the wedge
product of two differential forms. For instance:

(xz%dy + xdz) A (eYdx A dz) = —xe¥z%dx A dy A dz.

7.1.4. Change of coordinates. On a chart, every form w may be ex-
pressed uniquely as a linear combination
w= Z fiyo i dXT A A dxX
<<

If we use another chart with variables X we get

for some new functions f. How can we pass from one expression to the other?
The differentials dx’ are elements of (R”)* and hence change as follows

The notation dx’ is designed to help us to write this equation correctly. We can
then plug this expression in the linear combination to pass from one notation
to the other.
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Example 7.1.6. Consider the 2-form w = zdx A dy on the open set U =
{x,y,z > 0}. We change the coordinates via x = X°, y = y+Z, z=y. Then

dx = 2xdX, dy =dy+dz, dz =dy
and by substituting we see that w in the new coordinates is read as
w = (¥)(2xdx) A (dy + dZ) = 2XydX A dy + 2xydx A dZ.

An interesting case occurs when we consider n-forms in a n-dimensional
manifold. Here on a chart we have

w=fdx*A---Adx"
and Proposition 2.4.15 yields the following simple formula:

axi =1 =n

ox/
This equality is very much similar to the change of coordinates formula for
integration given in Section 1.3.8, and this is in fact a crucial feature of dif-
ferential forms: they can be meaningfully integrated on manifolds, as we will

soon see.

7.1.5. Support. Let M be a n-manifold and w be a k-form on M. We
define the support of w to be the closure in M of the set of all the points p
such that w(p) # 0. Using bump functions, one can easy construct plenty of
non-trivial k-forms in R” and R’ having compact support.

Moreover, for every k-form w on M and every open covering U; of M, we
can pick a partition of unity p; subordinate to the covering and write

w= Zp,-w.
i

The support of pjw is contained in U; for every i, and this possibly infinite sum
makes sense because it is finite at every point p € M. One can in this way
write every k-form w as a (possibly infinite, but locally finite) sum of compactly
supported k-forms p;w. If w is already compactly supported, the sum is finite.

7.1.6. Pull-back. When we introduced tensors in Chapter 2, the roles of
V and V* were somehow interchangeable, because each space is just the dual
of the other. This symmetry is now broken when we talk about manifolds and
tensor fields, and it turns out that tensor fields of type (0, k) are sometimes
better behaved than those of type (h,0).

We explain this phenomenon. Let f: M — N be any smooth map between
two manifolds. We have already alluded to the fact that a vector field cannot
be transported along f in general, neither forward from M to N nor backwards
from N to M. On the other hand, every tensor field a of some type (0, k) on
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N may be transported back to a tensor field f*a of the same type (0, k) on
M, by setting

(12) fra(p)(vi, ..., vi) = a(f(p)) (dfp(va). - - dfp(vi))

for every p € M and every vy, ..., vk € ToM. The tensor field f*a is the
pull-back of a along f. If a is (anti-)symmetric, then f*a also is.

In particular, the pull-back of a k-form w in N is a k-form f*w in M. We
get a morphism of algebras

QY (N) — Q*(M).
In particular, we have
(13) f(wAn)=Ff(w)AFf ().

As usual, we can describe this operation in coordinates: let f: U — V be a
smooth map between two open subsets U C R™ and V C R”, and

W= Z Giy i AXE AN dX

n<...<lg

be a k-form in V. We get

Ffw= > (gu...iof)df* A---ndf

h<...<lg

where f': U — R is the i-th coordinate of f and df’ its differential. This
equality is proved (exercise) by showing that it satisfies (12), using (13).

Example 7.1.7. Consider f: R® — R? f(t,u,v) = (tu,uv) and the 2-
form w = xdx A dy on R2. We get

f*w = tudfy N dfr = tu(udt + tdu) A (vdu + udv)
= tuvdt A du+ tuPdt A dv + t°u?du A dv.

7.1.7. Contraction. Let M be a manifold and X be a vector field in M.
The contraction defined in Section 2.4.6 extends pointwise to a linear map

L QK(M) — QK Y(m)
that sends w € QK(M) to the (k — 1)-form tx(w) that acts as

ix(W)(p)(va, ..., Vk-1) = w(X(p), v, ..., Vk—1)-

7.2. Integration

We now show that k-forms are designed to be integrated along k-submanifolds.



184 7. DIFFERENTIAL FORMS

7.2.1. Integration. Consider a n-form
w=fdx A Adx"

on some open subset V' of R"” or R, having compact support. We define the
integral of w over V simply and naively as

[

Let now ¢ : V — V/ be an orientation-preserving diffeomorphism between open
sets in R” or R’} , and denote by 9,w = (¢ ~1)*w the n-form transported along
1. Here is the crucial property that characterises differential forms:

Proposition 7.2.1. We have

/ w= Y.
v %

Proof. Combine (11), where det > 0 since ¥ is orientation-preserving, with
the change of coordinates law for multiple integrals, see Section 1.3.8. [l

It is really important that 4 be orientation-preserving: if 4 is orientation-
reversing, then a minus sign appears in the equality. Encouraged by this result,
we now want to extend integration of forms from open subsets of R” to
arbitrary oriented manifolds.

Let M be an oriented n-manifold, possibly with boundary, and w be a
n-form on M with compact support. We now define the integral of w over M

[ w

as follows. If the support of w is fully contained in the domain U of a chart

@: U—V we set
/w:/w*w.
M v

The definition is well-posed because it is chart-independent thanks to
Proposition 7.2.1. More generally, if the support of w is not contained in
the domain of any chart, we pick an oriented atlas {¢;: U; — Vj} on M and a
partition of unity p; subordinated to the covering U;. We decompose w as a
finite sum w = ), pjw and define

/Mw:zi:/Mp,-w.

Proposition 7.2.2. This definition is well-posed.

Proof. Let {¢}: U — V/} be another compatible oriented atlas and o/ a
partition of unity subordinated to UJ’-. We find

L= [pe=3 [ (S)ow= [ oo
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In this expression the roles of p; and pJ/- can be interchanged, so if we use the
partition of unity ,oj. to calculate the integral we get the same result. O

The following properties follow readily from the definitions. Let w be
a compactly supported n-form on an oriented n-manifold M, possibly with
boundary. We denote as —M the manifold M with the opposite orientation.

Proposition 7.2.3. We have

o= f

If f: M — N is an orientation-preserving diffeomorphism, then

/w:/f*w.
M N

Remark 7.2.4. We observed in Remark 7.1.4 that on a chart a n-form
looks like a function, but we warned the reader that the two notions are quite
different on a general manifold M. As opposite to n-forms, functions in M
cannot be integrated in any meaningful way; conversely, the value w(p) of a n-
form w at p € M is not a number, in any reasonable sense. Shortly: functions
can be evaluated at points, and n-forms can be integrated on sets, but not
the converse.

7.2.2. Examples. In practice, nobody uses partitions of unity to integrate
a n-form on a manifold, because the partition of unity is typically not explicit.
Instead, we prefer to subdivide the manifold into small pieces where the n-form
may be integrated easily. We explain briefly the details.

Let M be a smooth n-manifold, possibly with boundary. Recall the notion
of Borel subset from Section 3.11.1. If w is a compactly supported n-form on
M, we can define the integral fsw over a Borel set S C M using a partition
of unity in the same way as we did above.

Proposition 7.2.5. If the support of w is contained in a Borel set S that is
a countable disjoint union of Borel sets S;, then

/SMZZ/&W_

Proof. The equality holds for Borel sets in R” because it is a property of
Lebesgue integration; via a partition of unity we can extend it to M. [l

Recall that having measure zero is a well-defined property for Borel subsets
of any smooth manifold. If the complement of S C M has measure zero, then

o= e

because the integral over M \ S is zero. So we can remove from M any
zero-measure set to get a more comfortable domain S and integrate w there.
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Example 7.2.6. Consider the n-dimensional torus T = S! x --- x S where
every point has some coordinates (6%, ...,6"), and the n-form

w=do ' A---Ad".

/w:/w:/ 1=(2m)"
T U (0,2m)x--x(0,27)

by using the open chart U = (0,27) x --- x (0,27) whose complement has
measure zero.

We have

We can integrate n-forms on oriented n-manifolds, for all n > 1. It is
sometimes useful to extend this operation to zero-dimensional manifolds. Re-
call that an orientation for a point p is the assignment of a sign £1 and a
0-form on p is just a function f, that is a number f(p). We define the integral
of f on p as £f(p) according to the orientation of p.

7.2.3. Integration on submanifolds. By combining pull-backs and inte-
gration, we get a nice new tool: we can integrate k-forms along k-submanifolds.
Let M be a smooth manifold, possibly with boundary, and w be a fixed
compactly supported k-form on M. For every oriented closed submanifold
S C M of dimension k, possibly with boundary, we may define the integral of

w along S as follows:
/w:/i*w
5 5

where /: S < M is the inclusion map. Quite remarkably, we can use w to
assign a real number to every closed k-submanifold S C M.

Remark 7.2.7. Since the submanifold S is closed, the support of /*w is
compact and the integral makes sense. More generally, it suffices that the
intersection of the support of w with S be compact for the integral to make
sense. For instance, this holds for every w € QK(M) if S is itself compact.

Shortly: functions can be evaluated at points, and k-forms can be inte-
grated along oriented k-submanifolds.

Exercise 7.2.8. Consider the torus T = S* x S* with coordinates (6", 62)
and the 1-form w = df*. Consider the 1-submanifold «y; = {6’ = 0} for
i =1,2, oriented like S'. We have

/wzo, /w:27r.
Y1 Y2

7.2.4. Submanifolds of (co-)dimension 1 in R”. The integration of a
k-form along a k-submanifold of R” may be expressed in a nice geometric way
when kK = 1 or k = n— 1, by interpreting the form as a vector field. This
discussion is particularly relevant for R3 since it involves both 1- and 2-forms.
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Every 1-form
w=fdx' + -+ frdx"

in R™ defines a vector field X with coordinates X' = f;, and viceversa every
vector field X in R” defines a 1-form w. Here we are using implicitly the
identification of R” with its dual (R")* furnished by the canonical basis, that
is by the Euclidean metric tensor: there is no way to pass from 1-forms to
vector fields on a generic smooth manifold (we need a metric tensor for that).

Let C C R" be an oriented closed 1-submanifold, possibly with boundary
(a curve). Let T be the unit tangent field to C, oriented coherently with C.
We suppose that w has compact support.

Proposition 7.2.9. We have

fo=[x

Proof. We parametrize locally C as the image of an embedding «y: (a, b) —
R" and write y(t) = (x'(t), ..., x"(t)). We get

b 1 n
d d
/ w:/ fldxl+--~+f,,dx”:/ <f1X+-~+an) dt
v(a,b) v(a,b) a dt dt

:/abx-’)’/(t)dt:/abx.t||'y/(t)||dt:/cx.7__

The proof is complete. O

We have discovered that the integral of a 1-form on a curve C equals the
integral of the tangential component of the corresponding vector field. We
now look at the codimension-1 case. A (n— 1)-form in R” may be written as

n
w=Y fidx' Ao AdxI A Adx]
i=1

where dx' indicates that this symbol is missing. This also defines a vector field
X with coordinates X' = (—1)'*1f;, and conversely a vector field defines a (n—
1)-form. (Again, we can do this in R”, but beware that no natural identification
between (n — 1)-forms and vector fields exists on a generic manifold.)

Let S C R” be an oriented closed codimension-1 submanifold, possibly
with boundary, for instance a surface in R3. The orientation of S defines a
unit normal vector field v on S, determined by requiring that v, vy, ..., vh_1 be
a positive basis for R™ if vy, ..., v,—1 is a positive basis for T,S at any p € S.
Suppose that w has compact support.

Proposition 7.2.10. We have

Ju=[xv
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Proof. We can parametrise S locally as the image of a map ¢: U — R”
for some open subset U C R"~!. We use the coordinates t!,..., t"! for U
and x1, ..., x" for R". We write ¢(t) = x(t) and get

n

w= Fdx A Adxi A A dx"
/tp(U) /«J(U); '
n
axl . axn .
:/Zf,x.dtﬂA--w X g
U “ ot Ot/n-1
=1
n
:/Zf,-J,-dtl---dt”_l
Uizt

n
:/Zx"(—1)"1j,-dt1mdt”1
Uiz1

where J; is the determinant of the matrix obtained by deleting the /-th row of
%. The vector J = (J1, — o, ..., (—1)"1J,) is a positive multiple of v and
its norm is the infinitesimal volume of S. Therefore we get

/ w:/X-Jdtl‘--dt”:/X-u||J||dt1-~dt”: X v
(V) u u (V)

The proof is complete. O

We have proved that the integral of a (n—1)-form along a hypersurface S
equals the integral of the normal component of the corresponding vector field.

7.2.5. Volume form. A smooth manifold is not equipped with any canon-
ical notion of “volume” for its Borel subsets. The most convenient way to
introduce one is to select a preferred differential form called a volume form.

Let M be an oriented n-manifold, possibly with boundary.

Definition 7.2.11. A volume form in M is a n-form w such that

w(p)(vy,...,vy) >0

for every p € M and every positive basis vy, ..., v, of T,M.

Let w be a volume form on M and S C M be a Borel set with compact
closure. It makes sense to define the volume of S as

\/OI(S):/Sw.

Example 7.2.12. The Euclidean volume form on R" or R} is
w=dx*A---Adx".
The volume that it defines on R" or R} is the ordinary Lebesgue measure.

Here is the crucial property of volume forms:
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Proposition 7.2.13. We have Vol(S) > 0 for every Borel subset S C M
with compact closure. If S has non-empty interior, then Vol(S) > 0.

Proof. If we use only orientation-preserving charts, the form w transforms
into n-forms fdx! A ---dx" with f(x) > 0 for every x. O

As in ordinary Lebesgue measure theory, we can now define Vol(S) for
every Borel set S, as the supremum of the volumes of the Borel sets with
compact closure contained in S. The volume may (or may not) be infinite if
S has not compact closure. We have obtained a measure on all the Borel sets
in M, that is we have the countable additivity

Vol(S) = ) Vol(S))

whenever S is the disjoint union of countably many Borel sets S;.

Of course different selections of the volume form w give rise to different
measures, and there is no way to choose a “preferred” volume form w on an
arbitrary oriented manifold M.

Proposition 7.2.14. If w is a volume form and f: M — R is a strictly
positive function, then w' = fw is another volume form. Every volume form
w’ may be constructed from w in this way.

Proof. The first assertion is obvious, and the converse follows from the
fact that A"(T,M) has dimension 1 and hence for every w, w’ we may define
f(p) as the unique positive number such that w/(p) = f(p)w(p). O

We also note that volume forms always exist:
Proposition 7.2.15. If M is oriented, there is always a volume form on M.

Proof. Pick an oriented atlas {@;: U; — V;} and a partition of unity p;
subordinate to the covering {U;}. We define

w(p) =D pilp)@}(dx! A+ A dx”)

and get a volume form w. Indeed for every p € M and positive basis vy, ..., Vi
at T, M the number w(p)(v1, ..., vy) is a finite sum of strictly positive numbers
with strictly positive coefficients p;(p), so it is strictly positive. O

7.3. Exterior derivative

At various places in this book we introduce some objects, typically some
tensor fields, and then we try to “derive” them in a meaningful way. We now
show that differential forms can be derived quite easily, through an operation
called exterior derivative, that transforms k-forms into (k 4+ 1)-forms and ex-
tends the differential of functions (that transform functions, that is 0-forms,
into 1-forms).
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7.3.1. Definition. Let w be a k-form in a smooth manifold M, possibly
with boundary. We define the exterior derivative dw, a new (k + 1)-form on
M. We first consider the case where M is an open set in R” or R’l. Then

and we define

Recall that dfj, ; is a 1-form, hence dw is a (k + 1)-form. When w is a
0-form, that is a function w = f, then dw is the ordinary differential.

Example 7.3.1. Consider the form w = xydx + xydz in R3. We get
dw = xdy Ndx+ ydx Ndz+ xdy N\ dz.

We now extend this definition to an arbitrary smooth manifold M, as usual
by considering charts: we just define dw on any open chart as above.

Proposition 7.3.2. The definition of dw using charts is well-posed. The
derivation induces a linear map

d: QK(M) — QKL (M)
such that, for every w € QX(M) and n € Q"(M) the following holds:
(14) d(wAn) =dwAn+ (1) w A dn,
(15) d(dw) = 0.
Proof. We first prove the properties (14) and (15) on a fixed chart, and
later we use these properties to show that the definition of dw is chart-
independent and hence well-posed.

Linearity of d is obvious, and using it we may suppose that w = fdx’ and
1 = gdx’ where |, J are some multi-indices. We get

dwAn) =d(fg) Adx Adx? = df Adx! A gdx? +dg A Fdx! A dx?
=dwAn+ (1) w A dn.
If w= fdx' then

N : |

— / J —

d(dw) = Z g X N Adx =0
1Jj=1

because dx' A dx) = —dx! A dx' so the terms cancel in pairs.

Finally, we can prove that the definition is chart-independent, via the fol-
lowing trick: on open subsets U C R”, the derivation d may be characterised
(exercise) as the unique linear map d: Q*(U) — Q¥*1(U) that is the ordi-
nary differential for k = 0 and that satisfies (14) and (15). Therefore two
definitions of d on overlapping charts must coincide in their intersection. [
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The exterior derivative commutes with the pull-back:
Exercise 7.3.3. If ¢: M — N is smooth and w € QX(N), we get
d(p*w) = ¢*(dw).
Hint. Prove it when w = f is a function, and when w = df is the differ-

ential of a function. Use Proposition 7.3.2 to extend it to any w = fidx'. O

7.3.2. Action on vector fields. \We may characterise the exterior deriva-
tive of k-forms by describing how it interacts with vector fields. For instance,
the differential df of a function f acts on vector fields X € X(M) as

df (X) = X(f).
Concerning 1-forms, we get the following:

Exercise 7.3.4. If w € Q*(M) is a 1-form and and X,Y € X(M) are vector
fields, we get

dw(X,Y) =X (w(Y)) = Y(w(X)) —w([X,Y]).
Hint. Again, everything is local, so work in coordinates. O

A similar formula holds also for the differential dw of a k-form.

7.3.3. Gradient, curl, and divergence. \We now show that the inspiring
formula d(dw) = 0 generalises a couple of familiar equalities about functions
and vector fields in R3.

Let U C R3 be an open set. Recall that the gradient of a function f: U —

R is the vector field
of of of
f=l—.=—.=—=|.
v (6‘x1' ox?’ 8X3>
If X is a vector field in U, its divergence is the function
oxt ax?% ox3

divX = ox1 + ox? + ox3

while its curl is the vector field
otx — (ax3 _ox? axt ax® ax? ax1>
Ox2  0Ox3'ox3 oxl'oxl  ox2 )’
As in Section 7.2.4, we may interpret a vector field X in U as a 1-form

w= Xtdx! + X?%dx® + X3dx®

and vice-versa. We can also interpret a vector field X as a 2-form
w = XYdx? A dx® + X2dx3 A dxt 4+ X3dxt A dx?

and viceversa. Finally, we can interpret a 3-form as a function. Beware as
usual that this interpretation is not allowed in an arbitrary smooth manifold.
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Exercise 7.3.5. With this interpretation, the differential of a 0-, 1-, and
2-form in R3 corresponds to the gradient, curl, and divergence. That is we
get a commutative diagram where vertical arrows are isomorphisms:

0o R3) *) QI(R?’) *) Q2(R3) *) Q3(R3)
o3y _ VY 3 3y _dv_ ~oco/m3
C®(R?) — X(R°’) —— X(R®) ——= C>°(R?)
Here d o d = 0 transforms into the two well-known equalities
rotoV =0, div o rot = 0.

7.3.4. Cartan’s magic formula. Let now M be a manifold, possibly with
boundary, and let X a vector field in M. Our toolbox contains an abundance of
operators on k-forms, some being determined by X. We find the Lie derivative
along X, the contraction along X, and the exterior derivative:

Lx: QX (M) = QK(M), 1x: QK(M) = Q<1 (M), d: QK(M) — QKL (M).
These three operators behave similarly with respect to the wedge product:
Proposition 7.3.6. For every w € QX(M) and n € Q"(M) we have:
Lx(wAmn) = (Lxw) An+wA(Lxn),
ex(wAm) = (bxw) A+ (=1) w A (exn).
Proof. This follows from Exercises 5.4.14 and 2.7.4. (]

Compare with Proposition 7.3.2. We say that Lx is a derivation, while
Lx and d are anti-derivations because of the (—1)* sign in the formula. Note
also that tx otx =0and dod = 0.

Proposition 7.3.7. The following operators commute:
ﬁx od=do ﬁx,
,CXOI,X :LXO,Cx.

Proof. This first equality holds because the exterior derivative d commutes
with diffeomorphisms and with derivations of paths of forms. Hence

91 (@0 (dul(®elp))
= a\t:od(“’ft)*(w(d’t(p)))
d
=d <C“L:0(¢r)*(w(¢r(p)))) = d(Lx(w))(p).

Here ®; is the flow associated to X. The second is proved analogously. O

Lx(dw)(p) =
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The operators tx and d do not commute in general. The three are con-
nected by a nice formula called Cartan’s magic formula:

Theorem 7.3.8 (Cartan’s magic formula). The following holds:
Lx =doix +tiLxod.
Proof. On a function f, the formula holds because tx(f) = 0 and
Lx(f) = X(f) = vx(df).
On the 1-form df, the formula holds because d(df) = 0 and
Lx(df) = dLx(f) = d(tx(df)).

Propositions 7.3.2 and 7.3.6 show that both operators Lx and dowtx +txod
are derivations (the composition of two antiderivations is a derivation).

Every k-form w may be written locally as a sum of wedge products fdx’
of functions f and 1-forms dx’. Cartan’s equality holds for each factor f and
dx'. Since both sides of the equality are derivations, it holds also for w. O

7.4. Stokes’ Theorem

We end up this chapter with Stokes’ Theorem, that relates elegantly ex-
terior derivatives and integration along manifolds with boundary.

7.4.1. The theorem. We first note that the whole theory of differentiable
forms and integration applies also to manifolds with boundary with no modifi-
cation. We then highlight a fascinating analogy: when we talk about forms w
we have

d(dw) =0
while when we deal with manifolds M with boundary we also get
o(OM) = o

since the boundary of M is a manifold without boundary. Note also that d
transforms a k-form into a (k+1)-form, while 8 transforms a (k+ 1)-manifold
into a k-manifold. The operations d and O are beautifully connected by the
Stokes’ Theorem.

Let M be an oriented (n + 1)-manifold with (possibly empty) boundary,
and equip OM with the orientation induced by M.

Theorem 7.4.1 (Stokes’ Theorem). For every compactly supported n-form
w in an oriented (n + 1)-manifold M possibly with boundary, we have

/dw:/ w.
M M
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Proof. We first prove the theorem for M = Rfl. We have
n+1
w = Zw/
i=1
with
wi=fdx* A Adxi A Adx"TE

where the hat indicates that the /-th term is missing. By linearity it suffices
to prove the theorem for each w; individually. We have

dw; = df AdX A ---Adxi A - A dx"

of . —
:§ —Ldx AdxE A AdxE A A dx™TL
- ox/

fi —
:ax'l.dx’/\dxl/\-'-/\dx’/\---/\dX”H

L Of
= (—1)’_18—X'/d><1 Ao AdxL

In the third equality the terms with j # i vanish because dx/ A dx/ = 0. We
now consider two cases separately. If i < n we have

- f
/ dw; = (—1)’_1/ a—.d><1/\~~/\dx”Jrl
Rn+1 Rn+1 aX’
+ +

= (—1)"‘1/ Ofi ... gxn+1
R

n+1 aX/
+

- fi —
= (—1)'1/ < gxll.dx’> dxt---dxi---dx"T = 0.
R \JR

When the A is not present in the expression, it means that we are just doing
the usual Lebesgue integration of functions on some Euclidean space. In the
last equality we have used that
ofi .
—Ldx" = lim
R ox! t—oo

- f,-(xl,...,xi_l,—t,xi+1,...,X”“)] =0-0=0

[f,'(Xl, o ,Xi_l, f,XH_l, o ’Xn—i-l)

because f; has compact support. On the other hand, we also have

/ w; =0
1
ORTF

because w; contains dx™! whose pull-back to 8]1%1“ vanishes.
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If i=n+1 we get

R+ n\Jo  Ox"t1

= (—1)”/Rn (0 — fr (Xt ..o, x",0))dx! - dx"

= (_1)n+1/ fopr (Xt .o, x",0)dxt .- dx"
Rn

_/ » fn+1dX1/\"'/\an_/ +1wn+1.
n n
ORY, ORY

The mysterious disappearance of the (—1)"*1 sign at the end is due to the fact
that the orientations on R"” and BRZH match only when n is odd (exercise).

We have proved the theorem for M = ]R’_frl. On a general M we pick an
atlas {p;: U; — Vj} with V; C ]R{i“ and a partition of unity p; subordinate to
Ui, so that w =), pjw is a finite sum (because w has compact support). By
linearity, it suffices to prove the theorem for each addendum p;w, but in this
case we can transport it via ¢, to a form in Rﬂfl and we are done. Ul

Corollary 7.4.2. If M is an oriented n-manifold without boundary, for every
compactly supported (n — 1)-form w we have

/dw:O.
M

7.4.2. Some consequences. Some familiar theorems in multivariate anal-
ysis in R, R?, or R® may be seen as particular instances of Stokes' Theorem.

In the line R, Stokes’ Theorem is just the fundamental theorem of calculus.
A bit more generally, we may consider an embedded oriented arc vy C R3 with
endpoints p and g and a smooth function f defined on it. Stokes says that

/ df = £(q) — F(p).
;

So in particular the result depends only on the endpoints of -y, not of -y itself.
In the plane R?, we may consider a 1-form

w = fdx+ gdy
and calculate 5 of
_ (99 _©or
dw = <8x 6y> dx ANdy.

For every compact domain D C R? bounded by a simple closed curve C = 8D,
Stokes' Theorem transforms into Green's Theorem:

/fdx—i—gdy:/ (69—87() dxdy.
C D Ox 6y

In the space R3, the boundary D of a compact domain D C R3 is some
surface, and we pick a vector field X on D. After interpreting X as a 2-form as
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in Sections 7.2.4 and 7.3.3, we apply Stokes' Theorem and get the Divergence

Theorem:
/ divX = X-n
D aD

where n is the normal vector to 0D.

Finally, we can also consider an oriented surface S ¢ R with some (pos-
sibly empty) boundary 8S, and a vector field X in R® supported on S. By
interpreting X as a 1-form as in Sections 7.2.4 and 7.3.3 and applying Stokes'’
Theorem we get the Kelvin — Stokes Theorem:

/rotX-n: X -t
S as

where n is the unit normal field to S and t is the unit tangent field to 85,
both oriented coherently with the orientations of S and R3.
We have proudly proved all these theorems (and many more!) at one time.

7.5. Metric tensors and differential forms

The theory of differential forms on a manifold M may be enriched by the
presence of a metric tensor g. Metric tensors will be the protagonist of the
third part of this book, and they make here only a fleeting appearance.

7.5.1. Metric tensors. A metric tensor on a manifold M, possibly with
boundary, is a section g of the symmetric bundle

S2(M)

such that g(p) is a scalar product (that is, it is non-degenerate) for every
p € M. In other words, for every p € M we have a scalar product

g(p): ToM x T,M — R

that varies smoothly with p. This notion will be of fundamental importance
when we introduce Riemannian geometry in Chapter 9.

The scalar product g(q) at g € M has some signature (p, m). One verifies
easily that if M is connected the pair (p, m) does not depend on the chosen
point g € M and we simply call it the signature of g.

Example 7.5.1. The Euclidean metric tensor gg on R" is
n . .
ge(x,y) =Y Xy’
=1

where we have identified T,R"” with R" as usual.
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7.5.2. A metric tensor induces a volume form. If M is oriented, every
metric tensor g induces a natural volume form w on M as follows. At every
point p € M, the tangent space T,M is equipped with an orientation and a
scalar product g(p), and as in Section 2.5.3 we define w unambiguously by
requiring

w(p)(vi, ..., va) =1
on every positive orthornormal basis vy, ..., v, of T,M. To show that w varies
smoothly with p we calculate w on coordinates.

Proposition 7.5.2. If g;; is a metric tensor on U C R", then

w = /|detg;ldx* A A dx".

Proof. Let v!, ..., v" be a positive g-orthonormal basis for (R")*. We get
w=viA. AV =detAdx ' A...AdX"
where v/ = A}ef. Now Afg’jAJ’-( = ¢'% gives (det A)2det g~ = 1 and hence we

get det A= /| detg|. O

In particular the volume of a Borel subset S C U is

Vol(S) = / \/|det gj;ldxt - - dx".
s /

7.5.3. Euclidean volume form. The Euclidean metric tensor induces the
Euclidean volume form
we =dx' AL A dX"

on R", already encountered in Example 7.2.12, which acts as

we(p)(vi, ..., vy) =det (vl e vn)

at every p € R".

More generally, we may define a Euclidean volume form w on every ori-
ented k-submanifold M C R"”. We do this in two steps: first, we restrict the
Euclidean metric tensor from R" to its subspace T,M for every p € M, thus
obtaining a (positive definite) metric tensor on M. Then we use this metric
tensor on M to get a volume form w. Again w(p) is characterised by the prop-
erty that w(p)(va, ..., vk) = 1 on every positive orthonormal basis vi, ..., vk
for T,M. It is also characterized by the fact that the integral of w along a
Borel subset D C M is the ordinary k-volume of D as defined in multivariable
analysis.

Note that we are using the Euclidean scalar product here to define w on
M. A volume form on a smooth manifold N does not induce in general a
volume form on a lower-dimensional submanifold M. The metric tensor is
needed here.

The codimension-1 case is particularly simple.
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Proposition 7.5.3. Let M C R" be an oriented (n — 1)-manifold. The
volume form on M is the pull-back of

n
w=Y (=1)"tn'dxt A AdxT A A dX"
=1

where n = (nt, ..., n") is the unit normal vector field on M.

Proof. Proposition 7.2.10 says that

/Dw:/Dn-n:/Dl:VoI(D)

for every Borel subset D C S, so this is the correct volume form. Alternatively,

we may easily verify that for every positive orthonormal basis vy, .. ., Vp_1 of
T,M we have

w(p)(nva,..., Vo—1) =det(n,vq, ..., V1) =1
In either way, the proof is complete. O

Following the language of Section 7.2.4, the form w corresponds to the
unit normal vector field n. In particular, the Euclidean volume form on S2 is
the pull-back of

w=dyNdz+dzNdx+dxNdy.
More generally, the n-form w in R"*1\ {0} given by

1 ot : : —
w= Tl z:(—l)’_lx’dx1 Ao ANdxEA - A dxTE
=
pull-backs simultaneously to the volume form on the sphere S(0, r) centred in
0 and of radius r > 0, for every r > 0.

7.5.4. Scalar product on compactly supported k-forms. Let M be a
manifold, possibly with boundary, equipped with a metric tensor g. As shown
in Section 2.4.11, the scalar product g(p) induces a rescaled scalar product
(,) on A*(T,M) at each p € M. By letting p vary, we may couple any two
k-forms o, B € QK(M) to get a smooth function (a, B) € C>®(M).

Let QX(M) be the space of compactly supported k-forms. We can define
a bilinear form on Qk(M) by setting

(a. B) = /M o

Here w is the volume form induced by g. If g(p) is positive definite for
every p € M, then (,) and (,) are also both positive definite. In that case we
can define the norm ||a|| = +/(a, &) of a compactly supported k-form a.



7.5. METRIC TENSORS AND DIFFERENTIAL FORMS 199

7.5.5. The Hodge star operator. Let M be an oriented n-manifold pos-
sibly with boundary, equipped with a metric tensor g. We may identify k-forms
and (n — k)-forms via the Hodge star operator, introduced in Section 2.5.4.

Indeed, if we apply it simultaneously to all points of M, the Hodge star
operator becomes a linear map

w1 QK(M) — Q" K(Mm).
The map is uniquely determined by requiring that
a/(+6) = (o, Blw
for all a € QX(M). Here w is the volume form induced by g.

Example 7.5.4. Let us consider R” with its Euclidean metric tensor. It
follows from Exercise 2.5.3 that

s(dxP A A dxK) = dxXFFL A oA dX".
More generally,

#(dXT A A dx) = £dxkt A A dx
where the sign is that of the permutation (i1, ..., In).

If a, 3 are compactly supported k-forms, by integrating on M we get
/ a3 = (apB).
M

7.5.6. (Anti-)self-dual differential forms. If the metric tensor g is pos-
itive definite, we deduce from Exercise 2.5.3 that *: QK(M) — QK(M) is an
isometry and

B =(-1)""p

for every B € Q¥(M). In particular, when n = 2k we get an endomorphism
w1 QK(M) — QK(M)

whose square is ¥2 = (—1)X. If k is even (so n is divisible by 4) we get **> = 1
and as explained in Section 2.5.4 we get a pointwise splitting into eigenspaces
N(TpM) = NE(T,M) & A% (T,M) and hence a global splitting of bundles

AK(M) = N(M) @ A5 (M).
This gives a splitting of sections
QK(M) = QX (M) @ QX (M).

The k-forms in QX (M) and in Q% (M) are called respectively self-dual and
anti-self-dual.
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7.5.7. Codifferential. Let M be an oriented n-manifold possibly with
boundary, equipped with a metric tensor g. We define the codifferential

§: QN (M) — QK 1(m)
by setting
S=(-Dk«1dx.
It is immediate to prove that §(dw) = 0 for any w € QX(M).

Exercise 7.5.5. Consider R with its Euclidean metric tensor. We have
k of -
S(Fdxt A+ A dxF —dx A AdxE A A dXE
(fdx X Z} o X X
The following proposition says that when OM = & the operator § is the

formal adjoint® of d with respect to the scalar product (,).

Proposition 7.5.6. Let M have empty boundary. For every a € QX(M)
and B € QKTL(M) we get

(o, 06) = (da, B).

Proof. We note that oo A 3 is a (n — 1)-form and Stokes gives
_ _ _1\k
0—/Md(oc/\*5) —/M(da/\*ﬁ)+/M( D" A d(x0)
— (da )+ [ (-1 n (-1 56 = (daB) - (a0 36).
M

The proof is complete. O

Note that we do not require g to be positive-definite. After checking all
signs very carefully, we may also write

§ = (71)kn+n+m+l % d*

where (p, m) is the signature of g.

7.5.8. Laplacian. By combining differentials and codifferentials we can
define the Laplacian of k-forms:

A QK(M) — QK(M)
by setting
A= (5+d)?=6d+ dé.
In the second equality we used that d? =0 and §2 = 0.

The term formal adjoint is employed for operators that behave formally like adjoints
on spaces that are not necessarily Hilbert spaces.
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Exercise 7.5.7. On R” equipped with the Euclidean metric tensor, the
Laplacian of a function (that is, of a 0-form) is the usual one (with a sign):

n
o*f

i=1 "
Exercise 7.5.8. The following equalities hold:
%0 = (—1)Kdx, 0% = (=11 xd, *dd=0dd*, *5d=déx, *A=Ax.
If OM = @&, the Laplacian is formally self-adjoint:

Exercise 7.5.9. Let M have no boundary. For every o, 3 € Q’E(M) we get

(1) (Ac,B) = (6cx, 66) + (da, dB) = (e, AB),
(2) (Aa, @) = ||6a||? + ||dal|? > 0 if g is positive definite,

7.5.9. Harmonic forms. A k-form a € QK(M) is harmonic if Aa = 0.

Proposition 7.5.10. Let M have no boundary and be equipped with a pos-
itive definite metric tensor g. A compactly supported k-form a € QK(M) is
harmonic <= da =0 and da = 0.

Proof. If doo = 0 and da = 0 then of course Ao = 0. Conversely, if
Ao = 0 then Exercise 7.5.9-(2) gives da = 0 and o = 0. O

Let HX(M) C QX(M) denote the vector subspace consisting of all har-
monic k-forms. Since *A = Ax, we deduce that

w1 HEK(M) — H=K(M)

is an isomorphism. If M is compact and g is positive definite, the spaces
HK(M) are equipped with the positive-definite scalar product (,) and * is also
an isometry.

Proposition 7.5.11. Let M be connected. Then

e HO(M) = R consists of the constant functions.
e H"(M) = R consists of the n-forms Aw with A € R, where w is the
volume form induced by g.

Proof. A function f on M is harmonic <= df = 0 < f is locally
constant <= f is constant (since M is connected). The second assertion
follows since *: HO(M) — H"(M) is an isomorphism that sends the constant
function 1 to the volume form w, see Exercise 2.5.3. U

7.6. Special relativity and electromagnetism

We now use all the mathematical background exposed in the previous pages
to introduce two major physical theories, that is Einstein’s special relativity
and Maxwell's equations of electromagnetism. Both theories have a strong
geometric nature and can be described concisely and elegantly using metric
tensors and differential forms. We start with the former.
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7.6.1. Minkowski space. In special relativity, the spacetime is modeled
as the Minkowski space. This is simply R* with coordinates t = x°, x!, x2, x3,
equipped with a specific metric tensor 1. Since the tangent plane at every
point x € R* is identified with R* itself, a metric tensor is specified by a 4 x 4
invertible symmetric matrix that depends smoothly on x € R*. The tensor

field 1 used here is just constantly the matrix

—c2 000
o 100
N 0 010

0 00 1

The positive real number c is the speed of light. From now on, to make life
easier we choose some appropriate units such that ¢ = 1. The first thing to
note is that 7 is a non positive definite scalar product, having signature (3, 1).
The Minkowski space is sometimes denoted as R3!. We interpret n both as
a matrix and as a scalar product, so for every v, w € R3! we write

n(v,w) = n,-jv"Wj.

The tangent space at every point x € R3! has a rich structure, that is
of fundamental importance in special relativity and in the way we understand
our universe. A vector v # 0 in the tangent space is timelike, lightlike, or
spacelike according to whether n(v, v) is negative, null, or positive. See Figure
7.1-(left). Timelike vectors v are partitioned into two open cones, depending
on the sign of their time component v, called future and past. Timelike
(spacelike) vectors v with n(v, v) = —1 (respectively, n(v,v) = 1) are called
unit timelike (spacelike) vectors and form a hyperboloid with two (one) sheets:
see Figure 7.2.

A point in R3! is called an event. A world path is any curve in R3! whose
tangents are all future directed timelike vectors, as in Figure 7.1-(right). In
special relativity, nothing can travel faster than light: massless particles (like
photons) travel straight with constant speed ¢, while the velocity of every
massive particle is always strictly smaller than ¢. Therefore photons travel
along straight lines with lightlike slope, and massive particles travel along world
paths.

Let v be a world path. Up to reparametrising we may always suppose that
the derivative «/(t) is a unit vector for all t, and this will be always assumed
tacitly in the following.

A crucial aspect of Minkowski space is that it comes naturally equipped
with a group of symmetries called Lorentz tranformations, that mix space and
time in a counterintuitive way.

7.6.2. Lorentz transformations. A Lorentz transformation is a linear iso-
morphism f(x) = Ax of R* that preserves the bilinear form m, that is such
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Figure 7.1. The tangent space of every point x € R*! contains points
of three types: timelike, lightlike, and spacelike. The timelike points are
divided into two components, future and past. The picture displays the
tangent space with one spacial dimension omitted (left). A world line is a
curve with future-directed timelike tangent vectors (right)

Figure 7.2. The spacelike vectors v with n(v, v) = 1 form a hyperboloid
with one sheet, the lightlike vectors form a cone (called the light cone),
and the timelike vectors v with (v, v) = —1 form a hyperboloid with two

sheets (future and past).
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that "AnA = n as matrices. In coordinates we write this as
AmiAf = ;.
The group of all Lorentz transformations is denoted by O(3,1).
A Lorentz basis is a basis vy, v1, v2, v3 of vectors such that n(v;, v;) = n;;.
The canonical basis eg, e1, e, €3 is an example. A matrix A defines a Lorentz

transformation <= its columns form a Lorentz basis.
Every orthogonal matrix B € O(3) gives rise to a Lorentz transformation

(16) A (é g) |

These matrices represent the usual isometries of three-dimensional space
and have no effect on time. For instance one finds the usual rotation of angle
9 around a coordinate axis

1 0 0

0 cosf —sinf

0 sinf cos6
0 0

—= O O O

o

A somehow similar kind of Lorentz transformation is the Lorentz boost

cosh( —sinh¢ 0 O
sinh{ cosh 0 O
0 0 0

1

A= 1
0 0 0

This is the simplest kind of Lorentz transformation that mixes space and
time. As opposite to rotations, different values of ¢ € R vyield distinct trans-
formations (no periodicity!). The following exercise can be proved much in the
same way as we did in Proposition 3.9.2 for O(n).

Exercise 7.6.1. The group O(3, 1) is a 6-dimensional submanifold of M(4),
hence a Lie group.

Note that O