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CHAPTER 1

Preliminaries

We state here some basic notions of topology and analysis that we will use
in this book. The proofs of some theorems are omitted and can be found in
many excellent sources.

1.1. General topology

1.1.1. Topological spaces. A topological space is a pair (X, T) where X
is a set and 7 is a collection of subsets of X called open subsets, satisfying
the following axioms:

e & and X are open subsets;
e the arbitrary union of open subsets is an open subset;
e the finite intersection of open subsets is an open subset.

The complement X\ U of an open subset U € T is called closed. When we
denote a topological space, we often write X instead of (X, T) for simplicity.

A neighbourhood of a point x € X is any subset N C X containing an
open set U that contains x, thatis x € U C N C X.

1.1.2. Examples. There are many ways to construct topological spaces
and we summarise them here very briefly.

Metric spaces. Every metric space (X, d) is also naturally a topological
space: by definition, a subset U C X is open <= for every xg € U there is an
r > 0 such that the open ball

B(xo,r) = {x e X ’ d(x, xg) < r}

is entirely contained in U.
In particular R"” is a topological space, whose topology is induced by the
euclidean distance between points.

Product topology. The cartesian product X = [, X; of two or more
topological spaces is a topological space: by definition, a subset U C X is
open <= it is a (possibly infinite) union of products [ [, U; of open subsets
U; C X;, where U; # X; only for finitely many /.

This is the coarsest topology (that is, the topology with the fewest open
sets) on X such that the projections X — X; are all continuous.

3



4 1. PRELIMINARIES

Subspace topology. Every subset S C X of a topological space X is also
naturally a topological space: by definition a subset U C S is open <= there
is an open subset V C X such that U =V N S.

This is the coarsest topology on S such that the inclusion i: S — X is
continuous.

In particular every subset S C R” is naturally a topological space.

Quotient topology. Let f: X — Y be a surjective map. A topology on
X induces one on Y as follows: by definition a set U C Y is open < its
counterimage f~1(U) is open in X.

This is the finest topology (that is, the one with the most open subsets)
on Y such that the map f: X — Y is continuous.

A typical situation is when Y is the quotient space Y = X/. for some
equivalence relation ~ on X, and X — Y is the induced projection.

1.1.3. Continuous maps. A map f: X — Y between topological spaces
is continuous if the inverse of every open subset of Y is an open subset of X.
The map f is a homeomorphism if it has an inverse f~1: Y — X which is also
continuous.

Two topological spaces X and Y are homeomorphic if there is a homeomor-
phism f: X — Y relating them. Being homeomorphic is clearly an equivalence
relation.

1.1.4. Reasonable assumptions. A topological space can be very wild,
but most of the spaces encountered in this book will satisfy some reasonable
assumptions, that we now list.

Hausdorff. A topological space X is Hausdorff if every two distinct points
x,y € X have disjoint open neighbourhoods Uy and Uy, that is UyNU, = @.

The euclidean space R" is Hausdorff. Products and subspaces of Hausdorff
spaces are also Hausdorff.

Second-countable. A base for a topological space X is a set of open sub-
sets {U;} such that every open set is an arbitrary union of these. A topological
space X is second-countable if it has a countable base.

The euclidean space R” is second-countable. Countable products and
subspaces of second-countable spaces are also second-countable.

Connected. A topological space X is connected if it is not the disjoint
union X = X7 U X, of two non-empty open subsets X1, X». Every topologi-
cal space X is partitioned canonically into maximal connected subsets, called
connected components. Given this canonical decomposition, it is typically
harmless to restrict our attention to connected spaces.

A slightly stronger notion is that of path-connectedness. A space X is
path-connected if for every x,y € X there is a path connecting them, that is
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a continuous map a: [0,1] — X with a(0) = x and a(1) = y. Every path-
connected space is connected. The converse is also true if one assumes the
reasonable assumption that the topological space we are considering is locally
path-connected, that is every point has a path-connected neighbourhood.

The Euclidean space R” is path-connected. Products and quotients of
(path-)connected spaces are (path-)connected.

Locally compact. A topological space X is locally compact if every point
x € X has a compact neighbourhood. The euclidean space R" is locally
compact.

1.1.5. Reasonable consequences. The reasonable assumptions listed in
the previous section have some nice and reasonable consequences.

Countable base with compact closure. \We first note the following.

Proposition 1.1.1. If a topological space X is Hausdorff and locally com-
pact, every x € X has an open neighbourhood U(x) with compact closure.

Proof. Every x € X has a compact neighbourhood V/(x), that is closed
since X is Hausdorff. The neighbourhood V/(x) contains an open neighbour-
hood U(x) of x, whose closure is contained in V/(x) and hence compact. [

Proposition 1.1.2. Every locally compact second-countable Hausdorff space
X has a countable base made of open sets with compact closure.

Proof. Let {U;} be a countable base. For every open set U C X and
x € U, there is an open neighbourhood U(x) C U of x with compact closure,
which contains a U, that contains x. Therefore the U; with compact closure
suffice as a base for X. O

Exhaustion by compact sets. Let X be a topological space. An exhaus-
tion by compact subsets is a countable family K7, K5, ... of compact subsets
such that K; C int(Kjy1) for all i and U;K; = X.

The standard example is the exhaustion of R” by closed balls

Ki=B(0,i)={xeR"| |x|| <i}.

Proposition 1.1.3. Every locally compact second-countable Hausdorff space
X has an exhaustion by compact subsets.

Proof. The space X has a guntable base Uy, Uy, ... of open sets with
compact closures. Define K; = U; and

Kipi=UU...UUx

where k is the smallest natural number such that K; C uleuj. O
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Figure 1.1. Alocally compact second-countable Hausdorff space is para-
compact: how to construct a locally finite refinement using an exhaustion
by compact subsets.

Paracompactness. An open cover for a topological space X is a set {U;}
of open sets whose union is the whole of X. An open cover {U,} is locally
finite if every point in X has a neighbourhood that intersects only finitely many
Ui. A refinement of an open cover {U;} is another open cover {V;} such that
every V; is contained in some U;.

Definition 1.1.4. A topological space X is paracompact if every open cover
{U;} has a locally finite refinement {V/}.

Of course a compact space is paracompact, but the class of paracompact
spaces is much larger.

Proposition 1.1.5. Every locally compact second-countable Hausdorff space
X is paracompact.

Proof. Let {U;} be an open covering: we now prove that there is a locally
finite refinement. We know that X has an exhaustion by compact subsets
{K;}, and we set Ko = K_1 = @. For every /,j we define V; = (int(Kj41) \
Kj_2) NU; as in Figure 1.1. The family {Vj;} is an open cover and a refinement
of {U;}, but it may not be locally finite.

For every fixed j = 1,2, ... only finitely many Vj; suffice to cover the com-
pact set K\ int(Kj_1), so we remove all the others. The resulting refinement
{Vi;} is now locally finite. O

In particular the Euclidean space R” is paracompact, and more generally
every subspace X C R" is paracompact. The reason for being interested
in paracompactness may probably sound obscure at this point, and it will be
unveiled in the next chapters.

1.1.6. Topological manifolds. Recall that the open unit ball in R" is
B"={xeR"||x|| <1}.

A topological manifold of dimension n is a reasonable topological space
locally modelled on B".
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‘4@»‘

Y vV v

Figure 1.2. A topological manifold is covered by open subsets, each
homeomorphic to B". Here the manifold is a circle, and is covered by four
open arcs, each homeomorphic to the open interval B?.

Definition 1.1.6. A topological manifold of dimension n (shortly, a topo-
logical n-manifold) is a Hausdorff second-countable topological space M such
that every point x has an open neighbourhood Uy homeomorphic to B”".

In other words, a Hausdorff second-countable topological space M is a
manifold <= it has an open covering {U;} such that each U, is homeomorphic
to B". A schematic picture in Figure 1.2 shows that the circle is a topological
1-manifold: a more rigorous proof will be given in the next chapters.

Example 1.1.7. Every open subset of R” is a topological n-manifold. In
general, any open subset of a topological n-manifold is a topological n-manifold.

1.1.7. Pathologies. The two reasonability hypothesis in Definition 1.1.6
are there only to discard some spaces that are usually considered as patholog-
ical. Here are two examples. The impressionable reader may skip this section.

Exercise 1.1.8 (The double point). Consider two parallel lines Y = {y =
+1} C R? and their quotient X = Y/ where (x,y) ~ (X', y’) <= x = x’ and
(y = y' or x # 0). Prove that every point in X has an open neighbourhood
homeomorphic to B!, but X is not Hausdorff.

The following is particularly crazy.

Exercise 1.1.9 (The long ray). Let o be an ordinal, and consider X =
ax [0, 1) with the lexicographic order. Remove from X the first element (0, 0),
and give X the order topology, having the intervals (a, b) = {a < x < b} as
a base. If a is countable, then X is homeomorphic to R. If @ = wq is the
first non countable ordinal, then X is the long ray: every point in X has an
open neighbourhood homeomorphic to B, but X is not separable (it contains
no countable dense subset) and hence is not second-countable. However, the
long ray X is path-connected!

1.1.8. Homotopy. Let X and Y be two topological spaces. A homotopy
between two continuous maps f, g: X — Y is another continuous map F: X x
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[0,1] — Y such that F(-,0) = f and F(-,1) = g. Two maps f and g are
homotopic if there is a homotopy between them, and we may write f ~ g.

Two topological spaces X and Y are homotopically equivalent if there are
two continuous maps f: X — Y and g: Y — X such that f o g ~ idy and
gof ~idx.

Two homeomorphic spaces are homotopically equivalent, but the converse
may not hold. For instance, the euclidean space R" is homotopically equivalent
to a point for every n. A topological space that is homotopically equivalent to
a point is called contractible.

1.2. Algebraic topology

1.2.1. Fundamental group. Let X be a topological space and xg € X a
base point. The fundamental group of the pair (X, xp) is a group

m1(X, x0)

defined by taking all loops, that is all paths starting and ending at xg, considered
up to homotopies with fixed endpoints. Loops may be concatenated, and this
operation gives a group structure to m1(X, xp).

If x1 is another base point, every arc from xg to x; defines an isomorphism
between 1 (X, xp) and m1(X, x1). Therefore if X is path-connected the fun-
damental group is base point independent, at least up to isomorphisms, and
we write it as 71 (X). If m1(X) is trivial we say that X is simply connected.

Every continuous map f: X — Y between topological spaces induces a
homomorphism

fo: m(X, x0) — m1(Y, f(x0)).

The transformation from f to f. is a functor from the category of pointed
topological spaces to that of groups. This means that (f o g), = fi 0 g« and
(idx)x = id7r1(X,x0)- It implies in particular that homeomorphic spaces have
isomorphic fundamental groups.

Exercise 1.2.1. Every topological connected manifold M has a countable
fundamental group.

Hint. Since M is second countable, we may find an open covering of M
that consists of countably many open sets homeomorphic to open balls called
islands. Every pair of such sets intersect in an open set that has at most
countably many connected components called bridges. Every loop in 1 (M, xg)
may be determined by a (non unique!) finite sequence of symbols saying which
islands and bridges it crosses. There are only countably many sequences. [

Two maps f,g: (X,x0) — (Y, %) that are homotopic, via a homotopy
that sends xp to yp at each time, induce the same homomorphisms f, =
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g« on fundamental groups. This implies that homotopically equivalent path-
connected spaces have isomorphic fundamental groups, so in particular every
contractible topological space is simply connected.

There are simply connected manifolds that are not contractible, as we will
discover in the next chapters.

1.2.2. Coverings. Let X and X be two path-connected topological spaces.
A continuous surjective map p: X — X is a covering map if every x € X has
an open neighbourhood U such that

p (V) = |_| Ui
i€l
where U; is open and p|y,: U; — U is a homeomorphism for all / € /.

A local homeomorphism is a continuous map f: X — Y where every x € X
has an open neighbourhood U such that f(U) is open and f|y: U — f(U) is a
homeomorphism. A covering map is always a local homeomorphism, but the
converse may not hold.

The degree of a covering p: X — X is the cardinality of a fibre p~t(x) of
a point x, a number which does not depend on x.

Two coverings p: X — X and p’: X’ — X of the same space X are
isomorphic if there is a homeomorphism f: X — X’ such that p = p’ o f.

1.2.3. Coverings and fundamental group. One of the most beautiful
aspects of algebraic topology is the exceptionally strong connection between
fundamental groups and covering maps.

Let p: X — X be a covering map. We fix a basepoint x5 € X and a lift
X0 € p~1(x0) in the fibre of xy. The induced homomorphism

Ds 7r1()~<,>~<0) — m1(X, X0)

is always injective. If we modify Xq in the fibre of xp, the image subgroup Im p,
changes only by a conjugation inside 71(X, xp). The degree of p equals the
index of Im p, in w1 (X, xo).

A topological space Y is locally contractible if every point y € Y has a
contractible neighbourhood. This is again a very reasonable assumption: every
topological space considered in this book will be of this kind.

We now consider a connected and locally contractible topological space X
and fix a base-point xg € X.

Theorem 1.2.2. By sending p to Im p, we get a bijective correspondence

coverings p: X — X subgroups of 71 (X, xo)
up to isomorphism up to conjugacy

The covering corresponding to the trivial subgroup is called the univer-
sal covering. In other words, a covering X — X is universal if X is simply
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connected, and we have just discovered that this covering is unique up to
isomorphism.

Exercise 1.2.3. Let p: X = X be a covering map. If X is a topological
manifold, then X also is.

Hint. To lift the second countability from X to X, use that mi(X) is
countable by Exercise 1.2.1 and hence p has countable degree. O

1.2.4. Deck transformations. Let p: X — X be a covering map. A deck
transformation or automorphism for p is a homeomorphism f: X — X such
that pof = p. The deck transformations form a group Aut(p) called the deck
transformation group of p.

If Imps is a normal subgroup, the covering map is called regular. For
instance, the universal cover is regular. Regular covering maps behave nicely
in many aspects: for instance we have a natural isomorphism

Aut(p) = m1(X)/, (%)-

To be more specific, we need to recall some basic notions on group actions.

1.2.5. Group actions. An action of a group G on a set X is a group
homomorphism
p: G — S(X)
where S(X) is the group of all the bijections X — X. We denote p(g) simply
by g, and hence write g(x) instead of p(g)(x). We note that

g(h(x)) = (gh)(x), e(x) = x
for every g, h € G and x € X. In particular if g(x) = y then g~ 1(y) = x.
The stabiliser of a point x € X is the subgroup Gyx < G consisting of all
the elements g such that g(x) = x. The orbit of a point x € X is the subset

O(x)={9(x) | ge G} c X

Exercise 1.2.4. We have x € O(x). Two orbits O(x) and O(y) either
coincide or are disjoint. They coincide <= Jg € G such that g(x) = y.

Therefore the set X is partitioned into orbits. The action is:

e transitive if for every x,y € X there is a g € G such that g(x) = y;

e faithful if p is injective;

e free if the stabiliser of every point is trivial, that is g(x) # x for every
x € X and every non-trivial g € G.

Exercise 1.2.5. The stabilisers G, and G, of two points X, y lying in the
same orbit are conjugate subgroups of G.

Exercise 1.2.6. There is a natural bijection between the left cosets of G
in G and the elements of O(x). In particular the cardinality of O(x) equals
the index [G : G4] of Gx in G.
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The space of all the orbits is denoted by X/s. We have a natural projection
m: X = X/g.

1.2.6. Topological actions. If X is a topological space, a topological
action of a group G on X is a homomorphism

G — Homeo(X)

where Homeo(X) is the group of all the self-homeomorphisms of X. We have
a natural projection m: X — X/ and we equip the quotient set X/s with the
quotient topology. The action is:

e properly discontinuous if any two points x,y € X have neighbour-
hoods Uy and U, such that the set

{9€G | gU)NU, + 2}
is finite.
Example 1.2.7. The action of a finite group G is always properly discon-
tinuous.

This definition is relevant mainly because of the following remarkable fact.

Proposition 1.2.8. Let G act on a Hausdorff path-connected space X. The
following are equivalent:

(1) G acts freely and properly discontinuously;
(2) the quotient X/ is Hausdorff and X — X/¢ is a regular covering.

Every regular covering between Hausdorff path-connected spaces arises in this
way.

Concerning the last sentence: if X — X is a regular covering, the deck
transformation group G acts transitively on each fibre, and we get X = )N</G.
This does not hold for non-regular coverings.

We have here a formidable and universal tool to construct plenty of regular
coverings and of topological spaces: it suffices to have X and a group G acting
freely and properly discontinously on it.

Since every universal cover is regular, we also get the following.

Corollary 1.2.9. Every path-connected locally contractible Hausdorff topo-
logical space X is the quotient X /s of its universal cover by the action of
some group G acting freely and properly discontinuously.

Note that the group G is isomorphic to m1(X). There are plenty of exam-
ples of this phenomenon, but in this introductory chapter we limit ourselves to
a very basic one. More will come later.

Example 1.2.10. Let G = Z act on X = R as translations, that is g(v) =
v+ ¢g. The action is free and properly discontinuous; hence we get a covering
R — R/z. The quotient R/z is in fact homeomorphic to S (exercise).
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In principle, one could now think of classifying all the (locally contractible,
path-connected, Hausdorff) topological spaces by looking only at the simply
connected ones and then studying the groups acting freely and properly dis-
continuously on them. It is of course impossible to carry on this too ambitious
strategy in this wide generality, but the task becomes more reasonable if one
restricts the attention to spaces of some particular kind like — as we will see —
the riemannian manifolds having constant curvature.

Recall that a continuous map f: X — Y is proper if f~1(K) is compact
for every compact K C Y.

Exercise 1.2.11. Let a group G act on a locally compact space X. Assign
to G the discrete topology. The following are equivalent:

e the action is properly discontinuous;
e for every compact K C X, the set {g | g(K) N K # @} is finite;
e the map G x X — X x X that sends (g, x) to (g(x), x) is proper.

1.3. Multivariable analysis

1.3.1. Smooth maps. A map f: U — V between two open sets U C R"
and V C R™ is C* or smooth if it has partial derivatives of any order. All the
maps considered in this book will be smooth.

In particular, for every p € U we have a differential

dfy: R" — R™
which is the linear map that best approximates f near p, that is we get
f(x) = f(p) + dfo(x — p) + o(|x — pll).

If we see df, as a m x n matrix, it is called the Jacobian and we get

o .. Of
6X1 Oxp
—(of ... 0of) _ : :
dfP - (Bxl axn) - : . :
Ofm ... Ofm
Ox1 Oxn

A fundamental property of differentials is the chain rule: if we are given two
smooth functions

then for every p € U we have
d(g o f)p = dgf(p) o dfp

1.3.2. Taylor theorem. A multi-index is a vector o = (a1, ..., ) of
non-negative integers a; > 0. We set

a
la| =a1+...+ an, al =oq!---apl, X =Xt xg
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Let f: U — R be a smooth map defined on some open set U C R". For every

multi-index o we define the corresponding combination of partial derivatives:
olelf

Df = —5——=—a-

Oxg - 0xp"

We recall Taylor's Theorem:

Theorem 1.3.1. Let f: U — R be a smooth map defined on some open
convex set U C R". For every point xo € U and integer k > 0 we have

=3 Tt 3 k(-0
la|<k || =k+1

where hy: U — R is a smooth map that depends on o.

1.3.3. Diffeomorphisms. A smooth map f: U — V between two open
sets U C R" and V C R™ is a diffeomorphism if it is invertible and its inverse
f~1:V — U is also smooth.

Proposition 1.3.2. If f is a diffeomorphism, then df, is invertible for every
p € U. In particular we get n = m.

Proof. The chain rule gives

idgn = d(idy), = d(f tof), = dff_(;) o dfp,
idrn = d(idy)s(p) = d(F o F )y = dfy 0 dfy .
Therefore the linear map df, is invertible. g

We now show that a weak converse of this statement holds.

1.3.4. Local diffeomorphisms. We say that a smooth map f: U — V
is a local diffeomorphism at a point p € U if there is an open neighbourhood
U" C U of psuch that f(U’) is open and f|y: U" — f(U’) is a diffeomorphism.

Here is an important theorem, that we will use frequently.

Theorem 1.3.3 (Inverse Function Theorem). A smooth map f: U — V is
a local diffeomorphism at p € U <= its differential df, is invertible.

We say that a smooth map f: U — V is a local diffeomorphism if it is so
at every point p € U. A diffeomorphism is always a local diffeomorphism, but
the converse does not hold as the following example shows.

Example 1.3.4. The smooth map f: R? — R? given by
(x> <eX cosy>
F) = (6.
y eXsiny

df _ (€Xcosy —efsiny
) 7 \eXsiny  eXcosy

has Jacobian
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Figure 1.3. A smooth bump function f: R> = R.

with determinant e* and hence everywhere invertible. By the Inverse Function
Theorem, the map f is a local diffeomorphism. The map f is however not
injective, hence it is not a diffeomorphism.

1.3.5. Bump functions. A smooth bump function is a smooth function
p: R™ — R that has compact support (the support is the closure of the set of
points x € R where p(x) # 0). See Figure 1.3.

The existence of bump functions is a peculiar feature of the smooth envi-
ronment that has many important consequences in differential topology. The
main tool is the smooth function

1

Tt ift>0
hty=¢ € " TE=2
(t) { 0 iftLo0.

We may use it to build a bump function p: R" — R as follows:

p(x) = h(1 = [Ix]?).
The support of p is the closed unit disc || x|| < 1, and it has a unique maximum
at the origin x = 0.
Note that a bump function is never analytic (unless it is constantly zero).
Sometimes it is useful to have a bump function that looks like a plateau, for
instance consider n: R” — R defined as follows:

AP
M) = ) + (X =)

Here n(x) = 1 for all ||x|| < 4 and n(x) = 0 for all ||x|| > 1, while n(x) € (0, 1)
for all % < |Ix|I < 1.

1.3.6. Transition function. Another important smooth non-analytic func-
tions is the transition function V: R — R defined as
_ h(x)
"~ h(x)+ h(1—x)
where h(x) is the function defined above. The function W is smooth and non-
decreasing, and we have W(x) = 0 for all x < 0 and W(x) =1 for all x > 1.
See Figure 1.4.

V(x)
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Figure 1.4. A smooth transition function W.

1.3.7. Cauchy—Lipschitz theorem. The Cauchy—Lipschitz Theorem cer-
tifies the existence and uniqueness of solutions of a system of first-order dif-
ferential equations, and also the smooth dependence on its initial values, when
appropriate hypothesis are satisfied. Here is the version that we will use here.

Theorem 1.3.5. Given a smooth function g: R" — R", there is a number
€ > 0 and a unique smooth map

f:B"x(—¢g,€e)—R"
such that

f(x,0) =x,
%(x, t) = g(f(x, t))

Uniqueness here means that if we get another ¢ and another f’ then
f(x,t)=f'(x,t) for all x € B" and [t| < min{e, €'}.

1.3.8. Integration. A Borel set V C R" is any subset constructed from
the open and closed sets by countable unions and intersections.

If V. C R"is a Borel set and f: V — R is a non-negative measurable
function, we may consider its Lebesgue integral

%

If o: U — V is a diffeomorphism between two open subsets of R”, then we
get the following changes of variables formula

/f:/ | det dop|f o @

for any Borel subsets U’ C U and V' = @(U’).

Remark 1.3.6. A diffeomorphism of course does not preserve the measure
of Borel sets, but it sends zero-measure sets to zero-measure sets.



16 1. PRELIMINARIES

1.3.9. The Sard Lemma. Let f: U — R” be a smooth map defined
on some open subset U C R™. We say that a point p € U is regular if
the differential df, is surjective, and singular otherwise. A value g € R” is
a regular value if all its counterimages p € f~!(q) are regular points, and
singular otherwise.

Here is an important fact on smooth maps.

Lemma 1.3.7 (Sard's Lemma). The singular values of f form a zero-
measure subset of R".

Corollary 1.3.8. If m < n, the image of f is a zero-measure subset.

Recall that a Peano curve is a continuous surjection R — R?. Maps of
this kind are forbidden in the smooth world.

1.3.10. Complex analysis. Let U,V C C be open subsets. Recall that a
function f: U — V is holomorphic if for every z5 € U the limit

f'(z0) = lim 1(z) = (z)
z—29 zZ—27p

exists. The limit f'(zy) is a complex number called the complex derivative of
f at zo.

Quite surprisingly, a homolorphic function satisfies a wealth of very good
properties: if we identify C with R? in the usual way, we may interpret f as
a function between open sets of R?, and it turns out that f is smooth (and
even analytic) and its Jacobian at Zz; is such that

det(dfz,) = |f'(20) .
It is indeed a remarkable fact that the presence of the complex derivative alone
guarantees the existence of partial derivatives of any order.
1.4. Projective geometry

1.4.1. Projective spaces. Let K be any field: we will be essentially inter-
ested in the cases K =R or C. Let V be a finite-dimensional vector space on
K. The projective space of V' is

P(V) = (V\{0})/~
where v ~ w <= v = Aw for some X\ # 0. In particular we write
KP" = P(K"1).

Every non-zero vector v = (xg,...,x,) € K" determines a point in KP"
which we denote as

These are the homogeneous coordinates of the point. Of course not all the
X; are zero, and [Xp, ..., Xn] = [AX0, ..., Axp] for all X # 0.
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1.4.2. Topology. When K = R or C, the space KP" inherits the quotient
topology from K"*1 and is a Hausdorff compact connected topological space.
A convenient way to see this is to consider the projections

m: S" — RP", m: §2Hl  CP”
obtained by restricting the projections from R”\ {0} and C"\ {0}. Note that
Sl ={zeC™ ||z +... +|z))* = 1}.

Exercise 1.4.1. Show that the projections are surjective and deduce that
the projective spaces are connected and compact.
Exercise 1.4.2. We have the following homeomorphisms
RP'~S',  CP'=S2
The fundamental group of RP"” is Z when n =1 and Z/>z when n > 1.

On the other hand the complex projective space CP" is simply connected for
every n.






CHAPTER 2

Tensors

2.1. Multilinear algebra

2.1.1. The dual space. In this book we will be concerned mostly with real
finite-dimensional vector spaces. Given two such spaces V, W of dimension
m, n, we denote by Hom(V, W) the set of all the linear maps V. — W. The
set Hom(V, W) is itself naturally a vector space of dimension mn.

A space that will be quite relevant here is the dual space V* = Hom(V, R),
that consists of all the linear functionals V' — R, also called covectors. The
spaces V and V* have the same dimension, but there is no canonical way to
choose an isomorphism V' — V* between them: this fact will have important
consequences in this book.

A basis B = {v1,...,v,} for V induces a dual basis B* = {v!,... v"} for
V* by requiring that v’(vj) = 0jj. (Recall that the Kronecker delta §;; equals
1if i = and O otherwise.) We can construct an isomorphism V — V* by
sending v, to v/, but it heavily depends on the chosen basis 5.

On the other hand, a canonical isomorphism V — V** exists between V
and its bidual space V** = (V*)*. The isomorphism is the following:

vi— (Vv — v (v)).
For that reason, the bidual space V** will play no role here and will always be
identified with V. In fact, it is useful to think of V and V* as related by a
bilinear pairing
VxV"—R

that sends (v, v*) to v*(v). Not only the vectors in V* act on V/, but also the
vectors in V act on V*.

Every linear map L: V — W induces an adjoint linear map L*: W* — V*
that sends f to f o L. Of course we get L** = L.

2.1.2. Multilinear maps. Given some vector spaces V4, ..., Vi, W, amap
F:Vyx- - xV,—W
is multilinear if it is linear on each component.

Let B = {vj1,..., Vi.m } be a basis of V; and C = {wqy, ..., w,} a basis
of W. The coefficients of F with respect to these basis are the numbers

y
Fi

,,,,, Jk
19
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with 1 < j; < mj and 1 < < nsuch that

Exercise 2.1.1. Every multilinear F is determined by its coefficients, and
every choice of coefficients determines a multilinear F.

We denote by Mult(V, ..., Vi; W) the space of all the multilinear maps
Vi x -+ x V. — W. This is naturally a vector space.

Corollary 2.1.2. We have
dimMult(wg, ..., Vi W) =dim V4 - - -dim V. dim W.

When W = R we omit it from the notation and write Mult(\;, ..., Vi).
In that case of course we have

dimMult(Wvg, .. ., Vi) =dimV4 - -dim V.

In fact, every space Mult(\, . . ., Vi; W) may be transformed canonically into
a similar one where the target vector space is R, thanks to the following:

Exercise 2.1.3. There is a canonical isomorphism
Mult(W, ..., Vi W) — Mult(\g, . . ., Vi, W*)
defined by sending F € Mult(W, .. ., Vi; W) to the map
(vi,..., Vi, W) — w* (F(v1 ..... vk)).
Hint. The spaces have the same dimension and the map is injective. [

2.1.3. Sum and product of spaces. \We now introduce a couple of opera-
tions @ and ® on vector spaces. Let 4, ..., Vi be some real finite-dimensional
vector spaces.

Sum. The sum Vi @®---® Vj is just the cartesian product with componen-
twise vector space operations. That is:

Vl@"'@VkZ{(Vl ..... vk)}vle\/l ..... VkEVk}

and the vector space operations are

We deduce that
dm(Vi & - - V) =dimVy + ... +dim V.
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Tensor product. The tensor product Vi ® - -+ ® Vj is defined (a bit more
obscurely. ..) as the space of all the multilinear maps V" x --- x V = R, i.e.
Vi®- @ Ve =Mult(V, ..., Vi),
We already know that
dim(\Vi ® --- ® V) =dim V4 - - -dim V.
Any k vectorsvy € Vi, ..., Vi € Vi determine an element
Vi@ Qv eV @@ Vi
which is by definition the multilinear map
(vi, ..., Vi) —> vi(vy) - v (k).

As opposite to the sum operation, it is important to note that not all the
elements of V4 ® - - - ® V) are of the form vi ® - - - ® v,. The elements of this
type (sometimes called pure or simple) can however generate the space, as
the next proposition shows. Let B; = {v;1,..., Vi.m} be a basis of V; for all
1<i<k.

Proposition 2.1.5. A basis for the tensor product Vi ® --- @ Vi is
{vij, @ - ®vi}
where 1 < j; < mj, varies foreachi =1, ..., k.

Proof. The number of elements is precisely the dimension dimVj - - - dim V,
of the space, hence we only need to show that they are independent. Let
B ={v't . v/'Mi} be the dual basis of B;. Suppose that

Z)\JVLJI@'“@V/(J,(:O
J

where J = (j1,..., Jk). By applying both members of the equation to the
element (viJ1, ..., vki) we get Ay = 0 where J = (ji, ..., Jk), and this for
every multi-index J. ([l

Example 2.1.6. A basis for R ® R? is given by the elements

)2 (0) @)=() (el ()6)
0 0/’ 0 1)’ 1 0/’ 1 1
Exercise 2.1.7. The following relations hold in V & W:
v+Vv)ow=veaw+v ew, v (wt+w)=vaw+vaw,
Aveaw)=(v)dw=vR® (Aw),
vdw=0<=v=0o0rw=0.

Exercise 2.1.8. Let v,v' € V and w,w’ € W be non-zero vectors. If v and
v/ are independent, then v® w and v/ ® w’ also are.
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Exercise 2.1.9. Let v,v/ € V and w,w’ € W be two pairs of independent
vectors. Show that

vaw+Vvow eVeoWw

is not a pure element.

2.1.4. Canonical isomorphisms. We now introduce some canonical iso-
morphisms, that may look quite abstract at a first sight, but that will help us
a lot to simplify many situations: two spaces that are canonically isomorphic
may be harmlessly considered as the same space.

We start with the following easy:

Proposition 2.1.10. The map v — v ® 1 defines a canonical isomorphism

V —- VR,
Proof. The spaces have the same dimension and the map is linear and
injective by Exercise 2.1.7. O
Let 4, ..., Vi, Z be any vector spaces.

Proposition 2.1.11. There is a canonical isomorphism
Mult(V4, ..., Vi; Z) — Hom(W\L ® -+ - ®@ Vg, 2)

defined by sending F € Mult(\V4, ..., Vk; Z) to the unique homomorphism F'
that satisfies the relation

F/(Vl ®"'®Vk) = F(vl,...,vk).
for everyvi € Vi, ..., Vi € V.

Proof. It is easier to define the inverse map: every homomorphism F’ €
Hom(Vi ® --- ® Vk, Z) gives rise to an element F € Mult(V, ..., Vi; Z) just
by setting F(vq, ..., vi) = F'(vi ® --- ®@vy). This gives rise to a linear map

Hom(Vi ® - @ V, Z) — Mult(W4, ..., Vk; Z)

between spaces of the same dimension. The map is injective (exercise: use
Proposition 2.1.5), hence it is an isomorphism. O

This canonical isomorphism is called the universal property of ® and one
can also show that it characterises the tensor product uniquely. This is typically
stated by drawing a commutative diagram like this:

(1) V1><"'><Vk4>\/1®"'®\/k

F/
F v

Z

The universal property is very useful to construct maps. For instance, we
may use it to construct more canonical isomorphisms:
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Proposition 2.1.12. There are canonical isomorphisms
Vow=way, (VeWw)sZ=2voWaezZ=Vae(Wa Z),
VoW=WeyV, (VeaWw)eZ2VeWeZ=2Ve(WeZ),
VaWaeZ2)Z2(VaW)a (Ve 2),
M-V 2Ve oV, M- V) 2Ve o V.
Proof. The isomorphisms in the first line are
(v,w) — (w,v), (v,w,z) — ((v,w),z), (v,w,z) — (v, (w,z)).
Those in the second line are uniquely determined by the conditions
VOW— W®V, VRWRZ— (VRW)®z, VRIWRZ—VE (W Z)

thanks to the universal property of the tensor products. Analogously the iso-
morphism of the third line is determined by

Ve (w,z) = (VR w,vR zZ).

Concerning the last line, the first isomorphism is straightforward. For the
second, we have

W@ -V =Hom(\1®-- @V, R) = Mult(W, ..., Vi) =V®- -V

More concretely, every element vl @ --- @ vk € Vi ®---® V] is naturally an
element of (Vi ® --- ® V,)* as follows:

W@ @v)(w @ @wg) = vi(wy) - vF(wg).
The proof is complete. O

There are yet more canonical isomorphisms to discover! The following is
a consequence of Exercise 2.1.3 and is particularly useful.

Corollary 2.1.13. There is a canonical isomorphism
Hom(V,W) = V* @ W.

In particular we have End(V) = V* @ V = Mult(V, V*). In this canonical
isomorphism, the identity endomorphism idy corresponds to the bilinear map
V x V* — R that sends (v, v*) to v*(v).

Exercise 2.1.14. Given v* € V* and w € W, the element v* ® w corre-
sponds via the canonical isomorphism Hom(V,W) = V* ® W to the homo-
morphism v — v*(v)w. Deduce that the pure elements in V* @ W correspond
precisely to the homomorphisms V' — W of rank < 1.
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2.1.5. The Segre embedding. We briefly show a geometric application
of the algebra introduced in this section. Let U,V be vector spaces. The
natural map U x V — U ® V induces an injective map on projective spaces

P(U) x P(V) = P(U® V)

called the Segre embedding. The map is injective thanks to Exercise 2.1.8.

We have just discovered a simple method for embedding a product of
projective spaces in a bigger projective space. If U =R and V = R™! we
have an isomorphism U ® V = R(M+t1(1+1) and we get an embedding

RP™ x RP" < RPMTM+N

Example 2.1.15. When m = n = 1 we get RP! x RP! — RP3. Note that
RP! x RP! is topologically a torus. The Segre map is

([x0. xa], [vo. ya]) — [(2) ®© (ﬁ)]

and the right member equals

1 2 1 n 1 2 0 4 0 ® 1 L 0 2 0
X0)0 0 0 Xoy1 0 1 X1)0 1 0 X1y1 1 1/
In coordinates with respect to the canonical basis the Segre embedding is

([Xo, x1], [)/0,)/1]) — [XoYo., Xoy1. X1Y0, X1y1].

It is now an exercise to show that the image is precisely the quadric zpzz3 = z1 2
in RIP®. We recover the well-known fact that such a quadric is a torus.

2.1.6. Infinite-dimensional spaces. In very few points in this book we
will be concerned with infinite dimensional real vector spaces. We summarise
briefly how to extend some of the operations introduced above to an infinite-
dimensional context.

The dual V* of a vector space V is always the space of all functionals
V — R. There is a canonical injective map V — V** which is surjective if and
only if V' has finite dimension.

Let V4, V5, ... be vector spaces. The direct product and the direct sum

v v
li i

are respectively the space of all sequences (v1, vo,...) with v; € Vj, and the
subspace consisting of sequences with only finitely many non-zero elements.
In the latter case, when the spaces V; are clearly distinct, one may write every
sequence simply as a sum

Vi +...+ v
of the non-zero elements in the sequence. There is a canonical isomorphism

(@Vvi)" =1LV
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The tensor product V ® W of two vector spaces of arbitrary dimension may
be defined as the unique vector space that satisfies the universal property
(1). Uniqueness is easy to prove, but existence is more involved: the space
Mult(V*, W*) does not work here, it is too big because V' # V**. Instead we
may define V @ W as a quotient

VeoW=FV xW)/.

where F(S) is the free vector space generated by the set S, that is the abstract
vector space with basis S, and ~ is the equivalence relation generated by
equivalences of this type:

(vi,w) + (v2, w) ~ (v + vo, w),

(viwg) + (v, wn) ~ (v, wy + wp),

(Av, w) ~ X(v,w) ~ (v, Aw).

The equivalence class of (v, w) is indicated as v ® w. More concretely, if {v;}
and {w;} are basis of V' and W, then {v; ® w;} is a basis of V ® W, and this
is the most important thing to keep in mind.

The tensor product is distributive with respect to direct sum, that is there
are canonical isomorphisms

Ve (oW)=ai(VeWw,)
but the tensor product is not distributive with respect to the direct product in
generall We need dimV < oo for that:

Exercise 2.1.16. If V has finite dimension, there is a canonical isomorphism
Ve ([IW) 2I(VeWw,).

2.2. Tensors

We have defined the operations &, ®, * in full generality, and we now apply
them to a single finite-dimensional real vector space V.

2.2.1. Definition. Let V be a real vector space of dimension n and h, k >
0 some integers. A tensor of type (h, k) is an element T of the vector space

TEV)=V@ - aVaV'e e V*.
h k
In other words T is a multilinear map
T: V"X xV*xVx-.---xV—R.
h k
This elegant definition gathers many well-known notions in a single word:

e a tensor of type (0, 0) is by convention an element of R, a scalar;
e a tensor of type (1,0) is an element of V, a vector;
e a tensor of type (0, 1) is an element of V*, a covector;

Dimostrare?
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e a tensor of type (0,2) is a bilinear form V x V — R;
e a tensor of type (1,1) is an element of V ® V* and hence may be
interpreted as an endomorphism V. — V/, by Corollary 2.1.13;
More generally, every tensor T of type (h, k) may be interpreted as a
multilinear map
T Vx-xV-—=V® -V
k h

by writing
T (vi, ..., vi)(vy, ..., vi)=T(vj,..., ViV, V).
In particular a tensor of type (1, k) can be interpreted as a multilinear map

T:Vx---xV —V
k

Example 2.2.1. The euclidean scalar product in R" is defined as
(x1, .. xn) - (X, X)) = xax] + .+ XX,
It is a bilinear map R” x R” — R and hence a tensor of type (0, 2).
Example 2.2.2. The cross product in R3 is defined as
(v, 2)NX Yy 2= (yZ — zy', zx' — xZ', xy' — yX).
It is a bilinear map R3 x R3 — R3 and hence a tensor of type (1,2).
Example 2.2.3. The determinant may be interpreted as a multilinear map

R"%x .- xR" — R
N———
n

that sends (v1,...,v,) to det(vy ---v,). Assuch, it is a tensor of type (0, n).

2.2.2. Coordinates. Every abstract and ethereal object in linear algebra
transforms into a more reassuring multidimensional array of numbers, called
coordinates, as soon as we choose a basis.

Let B = {v1,..., v,} be a basis of V, and B* = {v!, ..., v} be the dual
basis of V*. A basis of the tensor space 777k(V) consists of all the vectors

Vi1®"‘®Vih®le®"‘®ij

where 1 <, ..., T J1y e Ji < n. Overall, this basis consists of n* vectors.
Every tensor T of type (h, k) can be written uniquely as
(2) T=T0 @ @v, oWt @ @ vk,

We are using here the Einstein summation convention: every index that is re-
peated at least twice should be summed over the values of the index. Therefore
in (2) we sum over all the indices i1, ..., ip, j1, ..., Jk. 1he following proposition
shows how to compute the coordinates of T directly.
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Figure 2.1. The coordinates of the cross product tensor with respect
to the canonical basis of R® (or any positive orthonormal basis) form the
Levi-Civita symbol €ij.

Proposition 2.2.4. The coordinates of T are

T = T v g, ).
Proof. Apply both members of (2) to (v, ... v v, ... v). O

Example 2.2.5. The coordinates of the Euclidean scalar product g on R”
with respect to an orthonormal basis are g;; = §;.

Example 2.2.6. The coordinates of id € Hom(V, V) =V ®V™ with respect
to any basis are idJ’. = 61’-. This is again the Kronecker delta, written as 6J’. for
convenience.

Exercise 2.2.7. The coordinates of the cross product tensor in R3 with
respect to any positive orthonormal basis are

_ +1 if(i,j,k)is(1,2,3),(2,3,1), or (3,1,2),
Tj’k =¢€j=1< —1 if(i,jk)is(3,21),(1,3,2), or (21,3),
0 ifi=j, orj=k, ork=1.

The three-dimensional array ¢;j is called the Levi-Civita symbol and is shown
in Figure 2.1.

Exercise 2.2.8. The determinant in R® may be interpreted as a tensor of
type (0, 3). Show that its coordinates with respect to any positive orthonormal
basis are also €.

2.2.3. Coordinates manipulation. The coordinates and the Einstein con-
vention are powerful tools that enable us to describe complicated tensor ma-
nipulations in a very concise way, and the reader should familiarise with them.
We start by exhibiting some simple examples. We fix a basis B = {vy, ..., vp}
for V and consider coordinates with respect to this basis. We write the coor-
dinates of a generic vector v as v/, that is we have

v =V'v,.
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If v eV isavector and T:V — V is an endomorphism, that is T € T1(V),
we may write w = T (v) directly in coordinates as follows:

w = TIJV'
where v/, w/, T/ are the coordinates of v, w, T. The trace of T is simply

7.

If v,w € V are vectors and g: V xV — Ris a bilinear form, that is g € T2(V),
it has coordinates g;; and we may write the scalar g(v, w) as follows:

V/g,'jo.
The expressions W/ = TIJV’ and v’g,jvvf are just the usual products matrix-
times-vector(s) that describe endomorphisms and bilinear forms in coordinates:
we are only rewriting them using the Einstein convention.
Let T be the tensor of type (1,2) that describes the cross product in R3.

The equality z = v A w can be written in coordinates as

7= E’kvfwk.
Note that in all the cases described so far the Einstein convention is applied
to pairs of indices, one being a superscript and the other a subscript. This is

in fact a more general phenomenon.

Example 2.2.9. We prove the well-known equalities
(vAW)-z=v-(wAz)=det(vwz)
using coordinates. The three members may be written as
vf7_J-’k Wkg,,z’, v’g,,wfﬂikzk, det;jx vind Z.
Now we take an orthonormal basis B, so that g;; = d;; and Tfk = €k = detjjk.
The three members simplify as

k k

€jjrvwiz', G/J'kV’WJZk, €jjkv' Wz

and they represent the same number thanks to the symmetries of €.
2.2.4. Change of basis. If C = {w3, ..., W, } is another basis of V' then
w; = Ajv,-, v, = Bfw,-
for some matrices A and B = A~1. Here A} is the entry at the j-th row and

the j-th column of A, and we use the Einstein convention: we sum along the
repeated index i. The relation B = A~ may be written as

| ok ' i Ak
where 6J’f is the Kronecker delta.

Proposition 2.2.10. The dual bases change as follows:
w=B, V= Aw.
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Proof. We check that the proposed w' form the dual basis of w;:
w'(w)) = (BivF)(Alv)) = BL AV (v)) = BLASf = Bl AS =6/,

It is a useful exercise to fully understand each of the previous equalities! In
the fourth one we removed the Kronecker delta and set k = /. O

~ Let T be a tensor as in (2). We now want to determine the coordinates
7A‘.’1""'J.’: of T in the new basis C, in terms of the coordinates TJ’I1 """"""" ; ’: in the old
basis B and of the matrices A and B.

Proposition 2.2.11. We have
Sy i ] ..l
(3) Tl =By BRAT A T,

This complicated equation may be memorised by noting that we need one
A for every lower index of T, and one B for every upper index.

Proof. By Proposition 2.2.4 we have

T = T W)
- T(B;‘llv’1 ..... B;:v’h, Aﬂ“vml ..... Ajr-:kvmk)
=Bl BPAT - ATCT (W v v, )
— B/'ll . B;: AZH .. Ajr-:k T/)%i----/‘hmk.
The proof is complete. O

The reader should appreciate the generality of the formula (3): it describes
in a single equality the coordinate changes of vectors, covectors, endomor-
phisms, bilinear forms, the cross product in R3, the determinant, and some
more complicate tensors that we will encounter in this book. We write some
of them:

ol il I~ m i iamTl ~ m aAn

The formula (3) contains many indices and may look complicated at a
first glance, but in fact it only says that the lower indices ji,...,Jjkx change
through the matrix A, while the upper indices i, ..., In change via the inverse
matrix B = A~L. For that reason, the lower and upper indices are also called
respectively covariant and contravariant.

Remark 2.2.12. In some physics and engineering text books, the formula
(3) is used as a definition of tensor: a tensor is simply a multi-dimensional
array, that changes as prescribed by the formula if one modifies the basis of
the vector space.

We now introduce some operations with tensors.
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2.2.5. Tensor product. It follows from the definitions that
T (V)@ TH(V) = T (V).

In particular, given two tensors S € TX(V) and T € T2(V), their product
S®T is an element of 7'ffjr+n’7’(V). In coordinates with respect to some basis
B, it may be written as

(S ® T)jl---ihjh+l---ih+m — /llh ih+1-'-jh+m
J1+-JkJk+1-Jk+n J1odk k1 Jkn T

2.2.6. The tensor algebra. The tensor algebra of V is

TWV)= P T¥\V).

h,k>0

The product ® is defined on every pair of tensors, and it extends distributively
on the whole of 7 (V). With this operation 7 (V) is an associative algebra and
an infinite-dimensional vector space (if V is not trivial). Recall that

TTV)=R,  T(V)=V. Tg(V)=V"

Exercise 2.2.13. If dimV > 2 the algebra is not commutative: if v,w € V
are independent vectors, then v w #= w Q v.

Hint. Extend them to a basisvy =v,vo =w,v3, ..., v, consider the dual
basis v!, ..., v" and determine the value of v@w and w®v on (v, v?). O

We denote for simplicity
(V) =To (V). TV) =T (V).

The vector spaces

V) =P TV). TW=TV)

h>0 k>0

are both subalgebras of 7(V) and are called the covariant and contravariant
tensor algebras, respectively.

Exercise 2.2.14. The algebras 7.(R) and R[x] are isomorphic.

Remark 2.2.15. Let B = {vy,..., v,} be a basis of V. The elements
Vi, ..., v, € T1(V) generate T.(V) as a free algebra. This means that every
element of 7.(V) may be written as a polynomial in the variables vy, .. ., vV, in
a unique way up to permuting its addenda. Note that ® is not commutative,
hence the ordering in each monomial is important. As an example:

34vy —7vo+Vvi ®Vy —3vs Q V.
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2.2.7. Contractions. We now introduce a general important operation
on tensors called contraction that generalises the trace of endomorphisms.

The trace is an operation that picks as an input an endomorphism, that is
a (1, 1)-tensor, and produces as an output a number, that is a (0, 0)-tensor.
More generally, a contraction is an operation that transforms a (h, k)-tensor
into a (h— 1, k — 1)-tensor, and is defined for all h, k > 1. It depends on the
choice of two integers 1 < a< hand 1 < b < k and results in a linear map

C: T (V) — TEH(WV).
The contraction is defined as follows. Recall that

TEV)=Ve VeV eV,
h k

The indices a and b indicate which factors V' and V* need to be “contracted".
After a canonical isomorphism we may put these factors at the end and write

TEV)=Ve -aVeV'e eV eVeV' =T HV)e VeV
h—1 k—1

The contraction is the linear map
C:TF 1 V)eVe Vv — T V)
determined by the condition
Clwevev) =v(v)w.

Recall that C is well-defined because (w,v,v*) — v*(v)w is multilinear and
hence the universal property applies.

Example 2.2.16. The contraction of a pure tensor is
C(V1®...®vh®v1®...®vk):
VWV @ BV @ BV Vi@ @V @ @ vk
where W indicates that the factor w is omitted.

2.2.8. In coordinates. The definition of a contraction may look abstruse,
but we now see that everything is pretty simple in coordinates. Let B; =
{vi,...,v,} be a basis for V.

Proposition 2.2.17. If T has coordinates TJ’I1 """ .’:, then C(T) has

I Y Ay B
C(T)Ji ----- jk—1_7}1 ----- lodk—1

where | is inserted at the positions a above and b below.
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Proof. We write the coordinates of T as TJ’11 '''''''' ¥ ' _______ ’J-"::ll for convenience,
where / and j occupy the places a and b. We have
c(T) :C(lell ......... J/ ......... J I::llvh Q- QOV - ®V, ® Wl ®...®VJ®...®VJk—1)
— T Ih*léjl:vil ® @V, ®vjl ® ...®vjk—1

Jiveedsedk—1

=T @, OV @ v,

The proof is complete. O

This shows in particular that, as promised, the contraction of an endomor-
phism whose coordinates are T} is indeed its trace T/

Contractions are handled very easily in coordinates. As an example, a
tensor T of type (1,2) has coordinates Tjk and can be contracted in two
ways, producing two (typically distinct) covectors v and v/ with coordinates

i / i
ke = T v =Tj;.

It is important to remember that the coordinates depend on the choice of a
basis B, but the covectors v and v’ obtained by contracting T do not depend
on B. Likewise, a tensor of type T/g/ has four types of contractions, producing
four (possibly distinct) tensors of type (1,1), that is endomorphisms.

It is convenient to manipulate a tensor using its coordinates as we just did:
remember however that we must always contract a covariant index together
with a contravariant one! The “contraction” of two covariant (or contravari-
ant) indices makes no sense because it is not basis-independent. This should
not be surprising: the trace T,’ of an endomorphism is basis-independent, but
the trace g;; of a bilinear form is notoriously not. Said with other words:
there is a canonical homomorphism V ® V* — R, but there is no canonical
homomorphism V @ V — R.

Exercise 2.2.18. The tensor T that expresses the cross product in R3 has
two contractions. Prove that they both give rise to the null covector.

Hint. This can be done by calculation, or abstractly: since T is invariant
under orientation-preserving isometries, also its contractions are. O

Example 2.2.19. Let T, det, g be the tensors in R3 that represent the cross
product, the determinant, and the Euclidean scalar product. They are of type
(1,2), (0,3), and (0, 2) respectively. The tensor T ® g is of type (1,4) and
may be written in coordinates as T,f—g/m. It has four contractions C(T ® g),
that are all of type (0, 3). These are

Thgm.  Thm.  Tigkm  Tha.

The first two are null by the previous exercise. The last two, expressed on a
orthonormal basis, become €;;,, and €;;;. Therefore for these two contractions
we get C(T ® g) = det.
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Every time we sum over a pair of covariant and contravariant indices, we
are doing a contraction. So for instance each of the operations

J— TJ,i il
w/ =TV, v gijw

described in Section 2.2.3 may be interpreted as two-steps operations, where
we first multiply some tensors and then we contract the result. Contractions
are everywhere.

2.3. Scalar products

We now study vector spaces V equipped with a scalar product g. We
investigate in particular the effects of g on the tensor algebra 7 (V). We start
by recalling some basic facts on scalar products.

2.3.1. Definition. A scalar product on V is a symmetric bilinear form g
that is not degenerate, that is

gv,w)=0WeV <= w=0.

Recall that the scalar product is

e positive definite if g(v,v) > 0 Vv # 0,
e negative definite if g(v,v) < 0 Vv # 0,
e indefinite in the other cases.

Every scalar product g has a signature (p, m) where p (respectively, m) is the
maximum dimension of a subspace W C V such that the restriction g|y is
positive definite (respectively, negative definite). We have p+m = n=dimV.
The scalar product is positive definite (respectively, negative definite) <= its
signature is (n, 0) (respectively, (0, n)).

A scalar product g is a tensor of type (0, 2) and its coordinates with respect
to some basis B = {vy, ..., Vv, } are written as gj;. The basis B is orthonormal
if gijj = +0;; for all /,j. In particular g;; = £1, and the sign 4+1 and —1 must
occur p and m times as / varies. Every scalar product has an orthonormal
basis.

We are mostly interested in positive definite scalar products, but indefinite
scalar product also arise in some interesting contexts — notably in Einstein’s
general relativity.

2.3.2. Isometries. Let V and W be equipped with some scalar products
g and h. A linear map T:V — V is an isometry if g(u,v) = h(T (u), T(v))
for all u, v € V. This condition can be expressed in coordinates as

u'gyv = u’7',khk,7}’vj
and since it must be verified for all u, v we get

g =TK thTJ'/-
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2.3.3. The identification of V and V*. Let V be equipped with a scalar
product g. Our aim is now to show that g enriches the tensor algebra 7 (V)
with some new interesting structures.

We first discover that g induces an isomorphism

V — V¥

that sends v € V to the functional v* € V* defined by v*(w) = g(v,w). (This
is an isomorphism because g is non-degenerate!) This is an important point:
as we know, the spaces V and V* are not canonically identified, but we can
identify them once we have fixed a scalar product g.

Exercise 2.3.1. In coordinates, the isomorphism V — V/* sends a vector v/
to the covector
v = gyv"
The scalar product g induces a scalar product on V*, that we lazily still
name g, as follows:
g(v',w*) = g(v,w)
where v*, w* € V* are the images of v, w € V along the isomorphism V — V*

defined above. The scalar product g on V* is a tensor of type (2,0) and its
coordinates are denoted by gV.

Proposition 2.3.2. The matrix g" is the inverse of gj;.

Proof. Note that gj; is invertible because g is non-degenerate. The equality
defining g” may be rewritten in coordinates as

Vigikgklglej = ngkIW/ = ngijo-
Since this holds for every v,w € V we get
9ikg" gy = gy.

Read as a matrices multiplication, thisis GHG = G that implies GH = HG =/
because G is invertible and hence H = G~1. The proof is complete. O

Note that the proposition holds for every choice of a basis B.

2.3.4. Raising and lowering indices. \We may use the scalar product g
on V to “raise” and “lower” the indices of any tensor at our pleasure. That is,
the isomorphism V — V* induces an isomorphism

T (V) — Thei(V)
for all h, k > 0. In coordinates, the isomorphism sends a tensor TJ’I1 """ i to

oesibdleedk — Tedh gy L lkdk
U - Tll ..... /k g g :

We can use ¢g” to raise the indices of a tensor, and in the opposite direction
we can use g;; to lower them. This operation may be encoded efficiently
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and unambiguously by assigning different indices to distinct columns in the
notation. So for instance we start with a tensor like

T/Jk/
and then we may raise or lower some indices to produce a new tensor that we
may lazily indicate with the same letter; for instance we can move the indices
I and j and get a new tensor

T’J- K-
If gij = &;j, then g” = §Y and the coordinates of the two different tensors are
just the same, that is T,jk, = TQ- ., Torevery i, J, k, I. In general we have

Tk =T7 9" 9i-
2.3.5. Scalar product on the tensor spaces. A scalar product g on V

induces a scalar product on each vector space 77,k(V), still boringly denoted by
g. This is done as follows: if S, T € TX(V), then g(S, T) is the scalar

/1 ..... Ih . - '1m1 o 'kmk /1 ..... /h
7}1 ’’’’’ Jk 9iih glh/hgj gj Sml my -

Note that this number is basis-independent: it is obtained by multiple contrac-
tions of a product of tensors.

Exercise 2.3.3. If B={vi,...,v,} is an orthonormal basis of V, then
vi® v, W @ - @w}
is an orthonormal basis of T,X(V). If g is positive-definite on V' then it is so
also on T (V).
2.4. The symmetric and exterior algebras

Symmetric and antisymmetric matrices play an important role in linear
algebra: both concepts can be generalised to tensors.

2.4.1. Symmetric and antisymmetric tensors. \We now introduce two
special types of contravariant tensors.

Definition 2.4.1. A tensor T € TK(V) is symmetric if
(4) T(ug,..., ue) = T (U, - - -, Uo())

for every vectors uy, ..., ux € V and every permutation ¢ € Si. On the other
hand T is antisymmetric if

T(Ul, Cey uk) = (_1)sgn(a)7—(ua(1)v e Ug(k))
for every vectors uq, ..., ux € V and every permutation o € S.
Both conditions are very easily expressed in coordinates. As usual we fix

any basis B = {vi,...,v,} on V and consider the coordinates of T with
respect to B.
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Proposition 2.4.2. A tensor T € T*(V) is
=T,

o symmetric <= T (1) rlo (k)

e antisymmetric <= T

Proof. We prove the first sentence, the second is analogous. Recall that

7—,'1 YYYYY ,'k:T(V,'l,...,V,'k).
Therefore we must prove that (4) holds for all vectors <= it holds for the
vectors in the basis B. This is left as an exercise. U

For instance a tensor T;; is symmetric if T;; = T;; and antisymmetric if
Tij=—Tj, forall1<i,j<n.

Example 2.4.3. Every scalar product on V is a symmetric tensor g €
T2(V). The determinant is an antisymmetric tensor det € 7"(R").

Remark 2.4.4. If T is antisymmetric and the indices i1, ..., ik are not all
distinct, then T; =0.

----- Ik

2.4.2. Symmetrisation and antisymmetrisation of tensors. If a ten-
sor T is not (anti-)symmetric, we can transform it by brute force into an
(anti-)symmetric one.

Let T € T*(V) be a contravariant tensor. The symmetrisation of T is the
tensor S(T) € T*(V) defined by averaging T on permutations as follows:

1
S(T)(Vl, C ,Vk) = E Z T(Vcr(l)v AN ,Vg(k)).
’ oESK
Analogously, the antisymmetrisation of T is the tensor
1
ATV, vi) = o D (9T (Voy, - Voh)-
’ oESK

Exercise 2.4.5. The tensors S(T) and A(T) are indeed symmetric and
antisymmetric, respectively. We have S(T) = T <= T is symmetric and
A(T) =T <= T is antisymmetric.

In coordinates with respect to some basis we have

' oeSK

The members on the right can be written more concisely as

The round or square brackets indicate that we symmetrise or antisymmetrise
by summing along all permutations on the indices (and dividing by k!).
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2.4.3. The symmetric and antisymmetric algebras. \We now introduce
two more algebras associated to V. For every k > 0 we denote by

SV, A(W)

the vector subspace of 7%(V/) consisting of all the symmetric or antisymmetric
tensors, respectively. We now define

S* (V)= sk v). N (V) = P A(V).

k>0 k>0

These are both vector subspaces of the contravariant tensor algebra 7*(V).
These are not subalgebras of 7*(V), because they are not closed under ®.
Note that

SYV) =AY (V) =THV) = V"

but S?(V) and A?(V) are strictly smaller than 72(V) if dimV > 2, because
of the following:

Exercise 2.4.6. If v*,w* € V* are independent, then v* ® w* is neither
symmetric nor antisymmetric. Moreover
1 1
S(view*) = §(v* QW +w v, AV eow") = §(v* QW —w"®v).

The spaces S*(V') and A*(V) are actually algebras, but with some products
different from ®, that we now define. The symmetrised product of some
contravariant tensors T1 € T¥(V), ..., Tme Tk(V)is

ki+ ...+ kn)!
T1®~--®Tm=(1 m)5(T1<§9---<§§>T’”)
kil km!
while their antisymmetrised product is
ki+ ...+ kn)!
Tin . armek m)A(Tl®...®Tm)_
kil k!
For instance if v*, w* € V* then
vViow =viow" +w v, ViaAw =viow —w v
Note that
viow" =w"ov, viAW = —wF AV
More generally, if vi, ..., v € V* then
v]'@...@vm: Z VU(1)®_'.®VO'(IT7),
0ESH

VA AT = 3T (—1)n@y @) gL ym),
oESH
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Using coordinates with respect to some basis B of VV we can write

(p+q)!

(To U)/i ,,,,, Ip+q — qu! T(/1 ..... /,,U/,)H ..... iptq)
(p+q)!

(TAU)i,ipsg = “oig e i Uipi1,eipial

Proposition 2.4.7. The vector spaces S*(V') and N*(V') form two associa-
tive algebras with the products © and A respectively.

Proof. Everything is immediate except associativity. We prove it for A,
the other is analogous. Pick S € AP, T € A9, and U € A". In coordinates

1
(SAT)AU), ot = (p T )1 (SAT)p

1
stl[h ..... ip Tipt1,eeniorg

1
:Ws[h ..... io Tipt1veeipta

=(SATAU);
The third equality follows from the fact that the same permutation in the

symmetric group Sp4q+r is obtained (p+q)! times. Analogously we can prove
that SA(T AU) =S AT AU. The proof is complete. O

u

----- ip+q ip+q+1r---,ip+q+r]

1%

Ip4 g1 mdptqrr]

U

//3+q+1 ----- fp+q+r]

----- /p+q+r :

The two algebras S*(V) and A*(V) are called the contravariant symmetric
algebra and the contravariant exterior algebra. The products ® and A are
called the symmetric and exterior product.

2.4.4. Dimensions. We now construct some standard basis for S*(V/)
and A%(V) and calculate their dimensions. Let B = {v1, ..., vp} be a basis
for V and B* = {v!, ..., v} the dual basis of V*.

Proposition 2.4.8. A basis for S¥(V) is
{vio.-ovk}

n vary. A basis for N<(V) is
{vi A AV

wherel1 < i <...<

IN

where 1 < i < ... < < n vary.
Proof. Thisis a consequence of Propositions 2.4.2 and Remark 2.4.4. O

Example 2.4.9. The following is a basis for S?(R?):

etoel, eloe?

The following is a basis for A%(R3):

e’ ®e2.

el rne?, elned, e’ned
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Corollary 2.4.10. We have

dim SK(V) = (HZ_ 1> ,
n .
<
dim AK(V) = <k> k< n,
0 ifk>n

Corollary 2.4.11. The algebra S*(V') is commutative, while N*(V') is anti-
commutative, that is
TAU=(-1)PIUNT
for every T € NP(V) and U € N9(V).

Proof. We prove anticommutativity. It suffices to prove this when T, U
are basis elements, that is we must show that

VIAAVEAWEA AW = (“1)PIVEA AV AV AL AP
This equality follows from applying pg times the simple equality
ViAW" = —w" AV
The proof is complete. O
Corollary 2.4.12. If T € N*(V) with odd k then T AT = 0.
Corollary 2.4.13. We have dim S*(V) = oo and dim A*(V) = 2".
Exercise 2.4.14. The algebras S*(V) and R[xq, . . ., Xp] are isomorphic.

2.4.5. The determinant line. One of the most important aspect of the
theory, that will have important applications in the next chapters, is the fol-
lowing — apparently innocuous — fact:

dimA"(V) = 1.

The space A"(V) is called the determinant line. If v!, ..., v is a basis of V*,
then a generator for A”(V) is the tensor

viA . AV

In fact, we already know that there is only one alternating n-linear form in V/
up to rescaling — this is exactly where the determinant comes from. When
V =R", we get

det=e*A...N€"

where e!, ..., e is the canonical basis of (R")* = R". Note however that
A"(V') has no canonical generator unless we make some choice, like for instance
a basis of V.

Let now v!, ..., v’ and wl, ..., w” be two basis of V*, and let A the
change of basis matrix, so that v/ = AJ’w/
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Proposition 2.4.15. The following equality holds:
VIAL AV =detA-wl AL AW
Proof. We have
VEA L AVT=AL AW AL AW

= Z Aé’(l) M Ag.(n)wg(l) VAP Wa(n)
€S,

oEeS,
=detA-wiA.. AW

The proof is complete. O

We have discovered here another important fact: the equality looks like
the formula in the change of variables in multiple integrals, see Section 1.3.8.
This will allow us to connect alternating tensors with integration and volume.

2.4.6. Totally decomposable antisymmetric tensors. An antisymmetric
tensor T € AK(V) is totally decomposable if it may be written as
T=wlA.. . AwF

for some covectors wt, ..., wk € V*. This notion is similar to that of a pure
tensor, only with the product A instead of ®.

Proposition 2.4.16. The element T = w! A ... AwX is non-zero <= the
covectors wl, ..., wX are linearly independent.

Proof. If wl = \;w’, then T is a combination of totally decomposable
elements where the same covector w' appears twice, and w' Aw' = 0.

Conversely, if they are independent they can be completed to a basis
w!, ..., w” of V and we know that w* A ... Aw"” # 0, hence T # 0. O

Not all the antisymmetric tensors are totally decomposable:
Exercise 2.4.17. If v1,v5,v3,v4 € V* are linearly independent then
Vi A Vo + V3 AVvy
is not totally decomposable.

Hint. If w is totally decomposable, then w Aw = 0. O
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2.4.7. Covariant versions. We have established the theory of symmetric
and antisymmetric contravariant tensors, but actually everything we said also
holds verbatim for the covariant tensors: we can therefore denote by

Sk(V)., MA(V)

the subspaces of 7x(V) consisting of all the symmetric or antisymmetric ten-
sors, and define

S.(V) =P sk(v), A(V) = P Ae(V).
k>0 k>0
These form two algebras, called the covariant symmetric algebra and covariant
exterior algebra.

2.4.8. Linear maps. Every linear map L: V — W between vector spaces
induces some algebra homomorphisms

Li: To(V) — TL(W), L*: T*(W) — T*(V),
Li: Su(V) — Sc(W), L*: S* (W) — S*(V),
Li: A(V) — A(W), L*: N*(W) — A" (V).
The passing from L to L, or L* is functorial, that is
(L'o L)y =L, olL,, ide =id,
(L'o L) = L*o (L"), id* =id.

From this we deduce that if L is an isomorphism then L, is an isomorphism.
More than that:

e if L is injective then L, is injective and L* is surjective,

e if L is surjective then L, is surjective and L* injective.
This holds because if L is injective (surjective) thereis a linear map L": W — V
such that L’oL =idy (LolL’ =idy,), as one proves with standard linear algebra
techniques.

Remark 2.4.18. The terms covariance and its opposite contravariance are
used for similar objects in two quite different contexts, and this is a perma-
nent source of confusion. In general, a mathematical entity is “covariant”
if it changes “in the same way" as some other preferred entity when some
modification is made. But which modifications are we considering here?

Physicists are interested in changes of frame, that is of basis, and they
note that if we change a basis with a matrix A, then the coordinates of a
vector change with B = A~!, that is contravariantly. On the other hand,
mathematicians are mostly interested in functoriality, and note that a map
L:V — W induces maps Ly: To(V) — T.(W) and L*: T*(W) — T*(V)
on tensors, and they call contravariant the second ones because arrows are
reversed.
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The reader can ignore all these matters — in fact, these issues start to
annoy you only when you decide to write a textbook, and you are forced to
choose a notation that is both reasonable and consistent.

2.5. Grassmannians

After many pages of algebra, we now would like to see some geometric
applications of the structures that we have just introduced. Here is one.

2.5.1. Definition. Let V be a real vector space of dimension n. Remem-
ber that the projective space P(V') is the set of all the vector lines in V. More
generally, fix 0 < k < n=dimV.

Definition 2.5.1. The Grassmannian Gry(V) is the set consisting of all the
k-dimensional vector subspaces W C V.

Recall that every W C V determines a dual subspace W* C V* consisting
of all the functionals that vanish on W. We have dimW* = n — dimW.
Therefore the sets Grg(V) and Gr,_,(V*) may be identified canonically. In
particular we get

Gri(V) =B(V),  Grp1(V) = B(V*).

The simplest new interesting set to investigate is the Grassmannian Gra(R*)
of vector planes in R*. How can we study such an object?

2.5.2. The Pliicker embedding. A generic Grassmannian is not a pro-
Jjective space in any sense, but we now show that it can be embedded in some
(bigger) projective space. We do this using the exterior algebra.

For every k-dimensional subspace W C V of V we have the inclusion map
L: W — V which induces an injective linear map

Since dimAx (W) = 1, the image of this map is a line in Ax(V) that depends
only on W. By sending W to this line we get a map

Grk(V) — IP)(/\/((V))
called the Pliicker embedding. Concretely, the map sends W C V to
Wi Ao A wy]

where wq, ..., Wy is any basis of W.

Proposition 2.5.2. The Pliicker embedding is injective.

Proof. Consider W # W’. Let wy, ..., wy and w), ..., w} be any basis of
W and W’. Pick any vector w € W \ W’. By Proposition 2.4.16 we have
Wi A AW AW =0, Wi AL AW AW #O.

Therefore the tensors wiA. . .Awy and wiA. . ./\w; cannot be proportional. [
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For instance, we get the Pliicker embedding

4

Gra(R*) — P(Ay(R%)) = IP’(R( 2 )) — RPS.

This embedding is clearly not surjective because of Exercise 2.4.17. We can
consider the set Grx(R") canonically embedded in RPV with N = (}) — 1 and
in particular we may assign it the subspace topology.

2.5.3. The Veronese embedding. Here is another geometric application.
Fix k > 0 and consider the natural map V — S¥(V) defined as

V— VO ---OV.
N—_————
k

This map is not linear in general, however it is injective (exercise) and it also
induces an injective map between projective spaces

P(V) < P(S*(V))
called the Veronese embedding. This map is not a projective map in general.

Exercise 2.5.3. If V = R™! and we use the canonical basis, we get

P" — PN
where N = ("} %) — 1. The map sends [xo, ..., xa] to [x§, x§ *x1,...] where
the square brackets contain all the possible degree-k monomials in the variables
X, - .., Xn. Forinstance for k = n =2 we get

P? — PP

given by
[x,y, z] — [x*, %, 2% xy, yz, zx].
For n =1 we get
Pl s Pk
given by
[x, y] — x5, x5y, o oxyRL vk
2.6. Orientation

We end this chapter with a short section, where we introduce and discuss
the notion of orientation on a real vector space V.
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2.6.1. Definition. Let us say that two basis of V' are cooriented if the
change of basis matrix relating them has positive determinant. Being coori-
ented is an equivalence relation on the set of all the basis in V/, and one checks
immediately that we get precisely two equivalence classes of basis.

Definition 2.6.1. An orientation on V is the choice of one of these two
equivalence classes.

If V is oriented, the bases belonging to the preferred equivalence class
are called positive, and the other negative. Of course V has two distinct
orientations. The space R” has a canonical orientation given by the canonical
basis, but a space V may not have a canonical orientation in general.

Exercise 2.6.2. If V = U@ W, then an orientation on any two of the spaces
U, V,W induces an orientation on the third, by requiring that, for every positive
basis uq, ..., ux of U and wy, ..., w, of W, the basis uq, ..., g, wi, ..., wp of
V is also positive.

2.6.2. Via the exterior algebra. We now study briefly the relation be-
tween the orientation on V' and on some other tensor spaces.

Exercise 2.6.3. An orientation on V induces one on V* and vice-versa, as
follows: a basis on V is positive <= its dual basis on V* is positive.

Proposition 2.4.15 in turn shows that an orientation on V* induces one
on A"(V) and vice-versa: a basis v!, .. ., v" is positive in V* <= the element
vl A...AV"is a positive basis for the line A"(V).

Indeed we could define an orientation on V to be an orientation on the

determinant line A"(V).

2.6.3. Scalar product. Finally, we note that if V is equipped with both
an orientation and a positive-definite scalar product g, then we get for free a
canonical generator T for the determinant line A”(V) by taking

T=viA.. AV

where v1,... v is any positive orthonormal basis of VV*. The generator T

does not depend on the basis, because any two such basis are related by an
orthogonal matrix A with det A = 1 and hence Proposition 2.4.15 applies. The
element T is also determined by requiring that

on every positive orthonormal basis vy, ..., v, of V.



CHAPTER 3

Smooth manifolds

3.1. Smooth manifolds

We introduce here the notion of smooth manifold, the main protagonist
of the book.

3.1.1. Definition. The definition of topological manifold that we have
proposed in Section 1.1.6 is simple but also very poor, and it is quite hard to
employ it concretely: for instance, it is already non obvious to answer such a
natural question as whether R” and R are homeomorphic when n #= m. To
make life easier, we enrich the definition by adding a smooth structure that
exploits the power of differential calculus.

Let M be a topological n-manifold. A chart is a homeomorphism ¢: U —
V from some open set U C M onto an open set V C R”. The inverse map
@~V — Uis called a parametrisation. An atlas on M is a set {¢;} of charts
@;: U — Vi that cover M, that is such that UU; = M.

Let {¢;} be an atlas on M. Whenever U; N U; # @, we define a transition
map

wij: pi(UinU;) — ¢;(Uiny))
by setting ¢;; = (pjo<pl.*1. The reader should visualise this definition by looking
at Figure 3.1. Note that both the domain and codomain of ;; are open sets of
R", and hence it makes perfectly sense to ask whether the transition functions
p;j are smooth. We say that the atlas is smooth if all the transition functions
p;j are smooth. Here is the most important definition of the book:

Definition 3.1.1. A smooth n-manifold is a topological n-manifold equipped
with a smooth atlas.

To be more precise, we allow the same smooth manifold to be described by
different atlases, as follows: we say that two smooth atlases {¢;} and {¢}} are
compatible if their union is again a smooth atlas; compatibility is an equivalent
relation and we define a smooth structure on a topological manifold M to be
an equivalence class of smooth atlases on M. The rigorous definition of a
smooth manifold is a topological manifold M with a smooth structure on it.

Remark 3.1.2. The union of all the smooth atlases in M compatible with
a given one is again a compatible smooth atlas, called a maximal atlas. The
maximal atlas is uniquely determined by the smooth structure: hence one can

45
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Figure 3.1. Two overlapping charts ¢; and ¢; induce a transition func-
tion @;; = ;0 ;.

also define a smooth manifold to be a topological manifold equipped with a
maximal atlas, without using equivalence classes.

As a first example, every open subset U C R” is naturally a smooth mani-
fold, with an atlas that consists of a unique chart: the identity map U — U.

The open subsets of R” can be pretty complicated, but they are never
compact. To construct some compact smooth manifolds we now build some
atlases as in Figure 1.2.

3.1.2. Spheres. Recall that the unit sphere is
S"= {x e R"! \ x|l = 1}.

This is the prototypical example of a compact smooth manifold. To build a
smooth atlas on S”, we may consider the hemispheres

Uf ={xes"| x>0}, U ={xeSs"|x<0}
fori=1,...,n4+1 and define a chart (p,i: U,-lL — B" by forgetting x;, that is

Proposition 3.1.3. These charts define a smooth atlas on S".

Proof. The inverse (o)™t is

V1, Yn) — <y1,...,y/Li\/l—yf—---—y%,y,-,---,yn).

+

The transition functions are compositions (p?E o ((pj )~ and are smooth. O

We have equipped S" with the structure of a smooth manifold. As we said,
the same smooth structure on S can be built via a different atlas: for instance
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Figure 3.2. The stereographic projection sends a point x € S"\ {N} to
the point ¢(x) obtained by intersecting the line / containing N and x with
the horizontal hyperplane x,+1 = —1.

we describe one now that contains only two charts. Consider the north pole
N =1(0,...,0,1) in S" and the stereographic projection @wp: S"\ {N} — R",

The geometric interpretation of the stereographic projection is illustrated in
Figure 3.2. The map ¢p is a homeomorphism, so in particular S\ {N} is
homeomorphic to R”. We can analogously define a stereographic projection

s via the south pole S = (0,...,0,—1), and deduce that S" \ {S} is also
homeomorphic to R”.

Exercise 3.1.4. The two charts {ps, on} form a smooth atlas for S”,
compatible with the one defined above.

The atlases {(p,i} and {¢s, oy} define the same smooth structure on S”.

Remark 3.1.5. The circle St is quite special: we can identify C with R? and
write St = {e'® | § € R}. The universal covering R — S1, 8+ e/ is of course
not injective, but it furnishes an atlas of natural charts when restricted to the
open segments (a, b) with b — a < 2. The transition maps are translations.

3.1.3. Projective spaces. \We now consider the real projective space RP”.
Recall the every point in RP" has some homogeneous coordinates [xg, . . ., Xn].

Fori=0,..., n we set U; C RP” to be the open subset defined by the
inequality x; # 0. We define a chart ¢;: U; — R" by setting

oi([x0, ..., xp]) = <XO ...,Xi_l,Xi+l,...,)<'7>.

X' Xi Xi Xi

The inverse parametrisation <pl-_1: R" — U; may be written simply as

(pj_l(X].i Tt vXn) = [X].' cea X1, 11XI'+11 T 1XI'I]'
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Figure 3.3. The torus S* x S' embedded in R®. Every point (e, ™) €
S' x S! of the torus may be interpreted on the figure as a point with (blue)
longitude 6 and (red) latitude . Note that the latitude and longitude
behave very nicely on the torus, as opposite to the sphere where longitude
is ambiguous at the poles. Cartographers would enjoy to live on a torus-
shaped planet.

The open subsets Uy, ..., U, cover RP" and the transition functions ¢;; are
clearly smooth: hence the atlas {¢;} defines a smooth structure on RP".

We have discovered that RIP” is naturally a smooth n-manifold. The same
construction works for the complex projective space CP” which is hence a
smooth 2n-manifold: it suffices to identify C"*1 with R?"*2 in the usual way.

Recall that RP"” and CP" are connected and compact, see Exercise 1.4.1.

3.1.4. Products. The product M x N of two smooth manifolds M, N of
dimension m, n is naturally a smooth (m + n)-manifold. Indeed, two smooth
atlases {¢;}, {%;} on M, N induce a smooth atlas {¢; x 9;} on M x N.

For instance the torus S x S is a smooth manifold of dimension two. By
the way, a 2-manifold is usually called a surface. The torus may be conveniently
embedded in R? as in Figure 3.3.

3.1.5. Alternative definition. We end this section with a slightly techni-
cal observation, that the reader may wish to skip. We note that it is not strictly
necessary to priorly have a topology to define a smooth manifold structure:
we can also proceed directly with atlases as follows.

Let X be any set. We define a smooth atlas on X to be a collection
of subsets U; covering X and of bijections ¢,: U; — V; onto open subsets
of R", such that ¢;(U; N U;) is open for every /,j, and the transition maps
@jj=@jo <p,71 are smooth wherever they are defined.

Exercise 3.1.6. There is a unique topology on X such that every U; is open
and every ¢;: U; — V; is a homeomorphism. In this topology, a subset U C X
is open <= the sets (U N U;) are open for every i.

Therefore a smooth atlas on a set X defines a compatible topology. If
this topology is Hausdorff and second-countable, this gives a smooth manifold
structure on X.
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3.2. Smooth maps

Every honest category of objects has its morphisms. We have defined the
smooth manifolds, and we now introduce the right kind of maps between them.

We will henceforth use the following convention: if M is a given smooth
manifold, we just call a chart on M any chart ¢: U — V compatible with the
smooth structure on M.

3.2.1. Definition. We say that a map f: M — N between two smooth
manifolds is smooth if it is so when read along some charts. This means that
for every x € M there are some charts ¢: U — V and ¢: W — Z of M and
N, with x € U and f(U) C W, such that the map

PYofop iV —2Z

is smooth. Note that the manifolds M and N may have different dimensions.
It may be useful to visualise this definition via a commutative diagram:

U—sw

o

V—Z7
F
Here F =) o f o ¢! should be thought as “the map f read on charts”.

Remark 3.2.1. If f: M — N is smooth then ¢ o f o ¢! is also smooth
for any charts ¢ and 1 as above. This is a typical situation: if something is
smooth on some charts, it is so on all charts, because the transition functions
are smooth and the composition of smooth maps is smooth.

A curve in M is a smooth map v: | — M defined on some open interval
| C R, that may be bounded or unbounded. Curves play an important role in
differential topology and geometry.

Exercise 3.2.2. The inclusion S” < R"*1 is a smooth map.

The space of all the smooth maps M — N is usually denoted by C>*(M, N).
We will often encounter the space C*°(M,R), written as C°>°(M) for short.
We note that C*°(M) is a real commutative algebra.

3.2.2. Diffeomorphisms. A smooth map f: M — N is a diffeomorphism
if it is a homeomorphism and its inverse f~1: N — M is also smooth.

Example 3.2.3. The map f: B" — R" defined as

bs
f(xX) = ——
1—Ix||?

is a diffeomorphism. Its inverse is
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Two manifolds M, N are diffeomorphic if there is a diffeomorphism f: M —
N. Being diffeomorphic is clearly an equivalence relation. The open ball of
radius r > 0 centred at xg € R” is by definition

B(xo,r) = {x €R" | |Ix — xoll < r}.
Exercise 3.2.4. Any two open balls in R” are diffeomorphic.
As a consequence, every open ball in R” is diffeomorphic to R” itself.

Exercise 3.2.5. The antipodal map ¢: S” — S”, ((x) = —x is a diffeomor-
phism.

Example 3.2.6. The following diffeomorphisms hold:
RP' = S!,  CP'=S°
These are obtained as compositions
RP! — RU {o0} — St

CP! — CU {0} — 52

where the first map sends [xg, X1] to x1/xp, and the second is the stereographic
projection. All the maps are clearly 1-1 and we only need to check that the
composition is smooth, and with smooth inverse. Everything is obvious except
near the point [0,1]. In the complex case, if we take the parametrisation
z +— [z,1], by calculating we find that the map is

[z,1] — (4Rz, —43z,1 — 4/z)?) .

1
1+ 4|z]?

So it is smooth and has smooth inverse.

3.3. Partitions of unity

We now introduce a powerful tool that may look quite technical at a
first reading, but which will have spectacular consequences in the next pages.
The general idea is that smooth functions are flexible enough to be patched
altogether: one can use bump functions (see Section 1.3.5) to extend smooth
maps from local to global, or to approximate continuous maps with smooth
maps.

3.3.1. Definition. Let M be a smooth manifold. We say that an atlas
{pi: Ui — V;} for M is adequate if the open sets {U;} form a locally finite
covering of M, we have V; = R” for all /, and the open sets (pl-_l(B”) also form
a covering of M.

We already know that M is paracompact by Proposition 1.1.5, so every
open covering has a locally finite refinement. We reprove here this fact in a
stronger form.
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Figure 3.4. A partition of unity on S*.

Proposition 3.3.1. Let {U;} be an open covering of M. There is an ade-
quate atlas {@y: Wy — R"} such that {W,} refines {U;}.

Proof. We readapt the proof of Proposition 1.1.5. We know that M has
an exhaustion by compact subsets {K|}, and we set Ko = K_; = @.

We construct the atlas inductively on j = 1,2... For every p € K; \
int(Kj_1) there is an open set U; containing p. We fix a chart ¢,: W, — R”"
with p € W, C (int(Kjt1) \ Kj—2) N U;.

The open sets wgl(B”) cover the compact set K; \ int(K;_1) as p varies
there, and finitely many of them suffice to cover it. By taking only these
finitely many ¢, for every j = 1,2, ... we get an adequate covering. O

Let {U;} be an open covering of M.

Definition 3.3.2. A partition of unity subordinate to the open covering
{U;} is a family {p;: M — R} of smooth functions with values in [0, 1], such
that the following hold:

(1) the support of p; is contained in U; for all i,
(2) every x € M has a neighbourhood where all but finitely many of the
p; vanish, and Y, pi(x) = 1.

See an example in Figure 3.4. What is important for us, is that partitions
of unity exist.

Proposition 3.3.3. For every open covering {U;} of M there is a partition
of unity subordinate to {U;}.

Proof. Fix a smooth bump function A: R” — R with values in [0, 1] such
that A(x) = 1if ||x]| <1 and A(x) =0 if ||x|| > 2, see Section 1.3.5.

Pick an adequate atlas {¢x: Wi — R"} such that {W} refines {U;}.
Define the function px: M — R as pk(p) = A(wk(p)) if p € Wi and zero
otherwise. The family {px} is almost a partition of unity subordinate to {Wk},
except that EJ pj(p) may be any strictly positive number (note that it is not
zero because the atlas is adequate). To fix this it suffices to set

P (p)
pr(p) = ==+~
2 > Pi(p)
The family {px} is a partition of unity subordinate to {Wy}. To get one {n;}
subordinate to {U;} we fix a function i(k) such that Wy C Uj for every k
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and we define
ni(p) =Y px(p).
i(k)=i

The proof is complete. O

3.3.2. Extension of smooth maps. We show an application of the par-
titions of unity. Let M and N be two smooth manifolds. The fact that we
prove here is already interesting and non-trivial when M is R™ or some open
set in it. We first need to define a notion of smooth map for arbitrary (not
necessarily open) domains.

Definition 3.3.4. Let S C M be any subset. A map f: S — N is smooth if
it is locally the restriction of smooth functions. That is, for every p € S there
are an open neighbourhood U C M of p and a smooth map g: U — N such

that gluns = fluns.

One may wonder whether the existence of local extensions implies that of
a global one. This is true if the domain is closed and the codomain is R".

Proposition 3.3.5. IfS C M is a closed subset, every smooth map f: S —
R" is the restriction of a smooth map F: M — R".

Proof. By definition for every p € S there are an open neighbourhood
U(p) and a local extension g,: U(p) — R" of f. Consider the open covering

{U(P)} pes UM\ S}

of M, and pick a partition of unity {p,} U {p} subordinate to it. For every
x € M we define

FO) = pp(x)gp(x)

where the sum is taken over the finitely many p € M such that p,(x) # 0.
The function F: M — R is locally a finite sum of smooth functions and is
hence smooth. If x € S we have

F() =Y pp(x)9p(x) =Y pp(x)F(x) = F(x) D pp(x) = F(x).
Therefore F: M — R" is a smooth global extension of f. (Il

Remark 3.3.6. Smooth (not even continuous) extensions cannot exist for
every S C M for obvious reasons. Take for instance M = R and S = R* =
R\ {0} and f: S — R with f(x) =1onx>0and f(x) =0o0n x<0.

Remark 3.3.7. In the proof, the extension F vanishes outside UpcsU(p).
In the construction we may take the U(p) to be arbitrarily small: hence we
may require F to vanish outside of an arbitrary open neighbourhood of S.
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3.3.3. Approximation of continuous maps. Here is another application
of the partition of unity. Let M be a smooth manifold.

Proposition 3.3.8. Let f: M — R" be a continuous map, whose restriction
fls to some (possibly empty) closed subset S C M is smooth. For every
continuous positive function €: M — R~q there is a smooth map g: M — R"
with f(x) = g(x) for all x € S and |f(x) — g(x)| < €(x) for all x € M.

Proof. The map g is easily constructed locally: for every p € M there are
an open neighbourhood U(p) C M and a smooth map g,: U(p) — R” such
that f(x) = gp(x) for all x € U(p) N'S and |f(x) — gp(x)| < e(x) for all
x € U(p). (This is proved as follows: if p € S, let g, be an extension of f,
while if p & S simply set g,(x) = f(p) constantly. The second condition is
then achieved by restricting U(p).)

We now paste the g, to a global map by taking a partition of unity {p,}
subordinated to {U(p)} and defining

9(x) = 3" pp(x)gp(x):

The sum is taken over the finitely many p € M. such that p,(x) # 0. The
map g: M — R" is smooth and f(x) = g(x) for all x € S. Moreover

) = 90| = | 3 0o F(x) = D pp(x)95(x)|
<30 (3) = 9] < 3 pp(x)e(x) = £(x).

The proof is complete. O

We have proved in particular that every continuous map f: M — R"” may
be approximated by smooth functions.

3.3.4. Smooth exhaustions. Here is another application. A smooth ex-
haustion on a manifold M is a smooth positive function f: M — Rsq such
that £=1[0, T] is compact for every T.

Proposition 3.3.9. Every manifold M has a smooth exhaustion.

Proof. Pick a locally finite covering {U;} where U; is compact for every i,
and a subordinated partition of unity p;. The function

f(p) = _Jjpi(p)
=1

is easily seen to be a smooth exhaustion. O
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Figure 3.5. The tangent space T,M is the set of all curves =y passing
through p up to some equivalence relation.

3.4. Tangent space

Let M be a smooth n-manifold. We now define for every point p € M a
n-dimensional real vector space T,M called the tangent space of M at p.

Heuristically, the tangent space T, M should generalise the intuitive notions
of tangent line to a curve in R? or R3, or of a tangent plane to a surface in
R3, as in Figure 3.5. There is however a problem here in trying to formalise
this idea: our manifold M is an abstract object and is not embedded in some
bigger space like the surface in R3 depicted in the figure! For that reason we
need to define T, M intrinsically, using only the points that are contained inside
M and not outside — since there is no outside at all. We do this by considering
all the curves passing through p: as suggested in Figure 3.5, every such curve
v should define somehow a tangent vector v € T,M.

3.4.1. Definition via curves. Here is a rigorous definition of the tangent
space T,M at p € M. We fix a point p € M and consider all the curves
v: 1 — M with 0 € | and v(0) = p. (The interval / may vary.) We want
to define a notion of tangency of such curves at p. Let 1,72 be two such
curves.

If M = R", the derivative «/(t) makes sense and we say as usual that
71 and 2 are tangent at p if 41(0) = ¥5(0). On a more general M, we
pick a chart ¢: U — V and we say that «y; and -y, are tangent at p if the
compositions ¢ oy; and ¢ o7y, are tangent at (p(p).1

This definition is chart-independent, that is it is not influenced by the
choice of @, because a transition map between two different charts transports
tangent curves to tangent curves.

The tangency at p is an equivalence relation on the set of all curves y: [ —
M with «(0) = p. We are ready to define T,M.

170 be precise, we may need to priorly restrict y; and/or 2 to a smaller interval I’ C /
in order for their images to lie in U.
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Definition 3.4.1. The tangent space T,M at p € M is the set of all curves
v: 1 — M with 0 € | and «v(0) = p, considered up to tangency at p.

When M = R", the space T,R" is naturally identified with R" itself, by
transforming every curve =y into its derivative v/(0). We will always write

T,R" = R".

This holds also for open subsets M C R”.

3.4.2. Definition via derivations. \We now propose a more abstract and
quite different definition of the tangent space at a point. It is always good to
understand different equivalent definitions of the same mathematical object:
the reader may choose the one she prefers, but we advise her to try to under-
stand and remember both because, depending on the context, one definition
may be more suitable than the other — for instance to prove theorems.

Let M be a smooth manifold and p € M be a point. A derivation v
at p is an operation that assigns a number v(f) to every smooth function
f: U — R defined in some open neighbourhood U of p, that fulfils the following
requirements:

(1) if f and g agree on a neighbourhood of p, then v(f) = v(g);

(2) vislinear, that is v(Af + ug) = Av(f) + nv(g) for all numbers A, u;

(3) v(fg) = v(fa(p) + f(p)v(9).
In (2) and (3) we suppose that f and g are defined on the same open neigh-
bourhood U. The term “derivation” is used here because the third requirement
looks very much like the Leibnitz rule. Here is a fresh new definition of the
tangent space at a point:

Definition 3.4.2. The tangent space T,M is the set of all the derivations
at p.

A linear combination Av + X'v/ of two derivations v, v/ with A\, N € R is
again a derivation: therefore the tangent space T,M has a natural structure
of real vector space.

We study the model case M = R". Here every vector v € R" determines
the directional derivative 0, along v, defined as usual as

n

;Of

6\/7‘_: Vai)q,

i=1
which fulfils all the requirement (1-3) and is hence a derivation. Conversely:

Proposition 3.4.3. If M = R" every derivation is a directional derivative 0,
along some vector v € R".
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Proof. We set p = 0 for simplicity. By the Taylor formula every smooth
function f can be written near 0 as

of
f(x)=1f(0)+ Z a(O)X,‘ + Z hij(x)xix;
- / .
i 1J
for some smooth functions h;;. If v is a derivation, by applying it to f we get

V(F) = FOV) + Y 5o (Owlx) + 3 vihpeog),

The first and third term vanish because of the Leibnitz rule (exercise: use
that v(1) = v(1-1)). Therefore v is the partial derivative along the vector

(v(x1),...,v(xn)). O

We have discovered that when M = R" the tangent space T, M is naturally
identified with R". This works also if M C R" is an open subset.

We have shown in particular that the two definitions — via curves and via
derivations — of T,M are equivalent at least for the open subsets M C R". On
a general M, here is a direct way to pass from one definition to the other: for
every curve v: | — M with «(0) = p, we may define a derivation v by setting

v(f) = (f27)(0).

This gives indeed a 1-1 correspondence between curves up to tangency and
derivations, as one can immediately deduce by taking one chart.

Summing up, we have two equivalent definitions: the one via curves may
look more concrete, but derivations have the advantage of giving T,M a natural
structure of a n-dimensional real vector space.

It is important to note that T,M is a vector space and nothing more than
that: for instance there is no canonical norm or scalar product on T,M, so
it does not make any sense to talk about the lengths of tangent vectors —
tangent vectors have no lengths. We are lucky enough to have a well-defined
vector space and we are content with that. To define lengths we need an
additional structure called metric tensor, that we will introduce later on in the
subsequent chapters.

3.4.3. Differential of a map. We now introduce some kind of derivative
of a smooth map, called differential. The differential is neither a number, nor
a matrix of numbers in any sense: it is “only” a linear function between tangent
spaces that approximates the smooth map at every point, in some sense.

Let f: M — N be a smooth map between smooth manifolds. The differ-
ential of f at a point p € M is the map

dfy: ToM — Tr(pN

that sends a curve «y with y(0) = p to the curve f o7y.
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The map df, is well-defined, because smooth maps send tangent curves to
tangent curves, as one sees by taking charts. Alternatively, we may use deriva-
tions: the map df,, sends a derivation v € T,M to the derivation df,(v) = v/
that acts as v/(g) = v(go f).

Exercise 3.4.4. The function v/ is indeed a derivation. The two definitions
of df, are equivalent; using the second one we see that dfj, is linear.

The definition of df, is clearly functorial, that is we have

d(QOf)p:dgf(p)Odfp, d(id/\/])pzidTp/w.
This implies in particular that the differential df, of a diffeomorphism f: M —
N is invertible at every point p € M.
When M C R™ and N C R" are open subsets, the differential df, of a
smooth map f: M — N is a linear map

dfy,: R™m — R"
because we have the natural identifications T,M = R™ and T¢,)N =R". Itis
an exercise to check that df, is just the ordinary differential of Section 1.3.1.

3.4.4. On charts. A constant refrain in differential topology and geome-
try is that an abstract highly non-numerical definition becomes a more concrete
numerical object when read on charts. If ¢: U — V and ¢¥: W — Z are charts
of M and N with f(U) C W, then we may consider the commutative diagram

U—sw

o |

V—>7
F

where F =1 ofop1isthe map f read on charts. By taking differentials we
find for every p € U another commutative diagram of linear maps

df,
TpM — Te(yW
dwpl ldipf(p)
R™M R"

dFy(p)

and dF,p) should be thought as "the differential df, read on charts”. Note
that the vertical arrows are isomorphisms, so one can fully recover df, by
looking at dF, ). In particular dF,,) has the same rank of df,, and is
injective/surjective <= df,, is.

It is convenient to look at df(,) because it is a rather familiar object:
being the differential of a smooth map F: V — Z between open sets V C R
and Z C R", the differential dFy(,) is a quite reassuring Jacobian nx m matrix
whose entries vary smoothly with respect to the point p(p) € V.
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Example 3.4.5. The Veronese embedding f: RP* — RP? is
f([Xo.Xl]) = [Xg-XoXLXlz],
see Exercise 2.5.3. The map sends the open subset Ug = {xp # 0} C RP! into
Wo = {xo0 # 0} C RP?. We use the coordinate charts ¢: Uy — R, [1, t] —

t and ¥: Wy — R?[1,t,u] — (t,u). Read on these charts the map f
transforms into a map F =9 ofop 1: R — R?, thatis

F(t) = (t,t?).
Its differential is (1,2t), so in particular it is injective. Analogously the chart

U = {x1 # 0} C RP! injects into W5 = {x # 0} C RP? like t + (t2, t). We
have discovered that df, is injective for every p € RP*.

Exercise 3.4.6. For every k, n and every p € RP", show that the differential
df, of the Veronese embedding f: P" < PN of Exercise 2.5.3 is injective.

3.4.5. Products. Let M x N be a product of smooth manifolds of dimen-
sions m and n. For every (p, q) € M x N there is a natural identification

TipyM X N = TyM x TyN.

This identification is immediate using the definition of tangent spaces via
curves, since a curve in M x N is the union of two curves in M and N.

Exercise 3.4.7. The Segre embedding f: RP! x RP! — RP? is

[x0. x1] X [Yo.y1] = [xo¥0. Xoy1. X1 Y0, X1y1].

See Section 2.1.5. Prove that for every (p, g) € RP* x RP! the differential
df(p.q) is injective.

3.4.6. Velocity of a curve. If yv: | — M is a curve, for every t € | we
get a differential dvye: TeR — TynM. Since TR = R we may simply write
dvi: R — Ty M and it makes sense to define the velocity of y at the time
t as the tangent vector

v'(t) = dve(1).
In fact, if we use the description of T,M via curves, this definition is rather
tautological. Recall as we said above that there is no norm in T, )M, hence
there is no way to quantify the “speed” of 4/(t) as a number — except when it
is zero.

3.4.7. Inverse Function Theorem. The Inverse Function Theorem 1.3.3
applies to this context. We say that f: M — N is a local diffeomorphism at
p € M if there is an open neighbourhood U C M of p such that f(U) C N is
open and f|y: U — f(U) is a diffeomorphism.

Theorem 3.4.8. A smooth map f: M — N is a local diffeomorphism at
p € M <= its differential df, is invertible.
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Proof. Apply Theorem 1.3.3 to 9 o f o ¢~! for some charts @, . [l

Exercise 3.4.9. Consider the map S” — RP" that sends x to [x]. Prove
that it is a local diffeomorphism.

3.5. Smooth coverings

In the smooth manifolds setting it is natural to consider topological cover-
ings that are also compatible with the smooth structures, and these are called
smooth coverings.

3.5.1. Definition. Let M and N be two smooth manifolds of the same
dimension.

Definition 3.5.1. A smooth covering is a local diffeomorphism f: M — N
between smooth manifolds that is also a topological covering.

For instance, the map R — S!, t — et is a smooth covering of infinite
degree, and the map S” — RP" of Exercise 3.4.9 is a smooth covering of
degree two. To construct a local diffeomorphism that is not covering, pick any
covering M — N (for instance, a diffeomorphism) and remove some random
closed subset from the domain.

3.5.2. Surfaces. As an example, one may use a bit of complex analysis
to construct many non-trivial smooth coverings between smooth surfaces.

Exercise 3.5.2. Let p(z) € C[z] be a complex polynomial of some degree
d > 1. Consider theset S = {z € C | p’(z) = 0}, that has cardinality at most
d — 1. The restriction

p: C\p~H(p(S)) — C\ p(S)

is a smooth covering of degree d.

For instance, the map f(z) = z" is a degree-n smooth covering f: C* —
C* where we indicate C* = C\ {0}.

3.5.3. From topological to smooth coverings. Let M — M be a cov-
ering of topological spaces. If M has a smooth manifold structure, we already
know from Exercise 1.2.3 that M is a topological manifold; more than that:

Proposition 3.5.3. There is a unique smooth structure on M such that
p: M — M is a smooth covering.

Proof. For every chart ¢: U — V of M and every open subset U ¢ M
such that p|U: U= Uis a homeomorphism, we assign the chart ¢ o p|0 to
M. These charts form a smooth atlas on M and p is a smooth covering.
Conversely, since p is a local diffeomorphism the smooth structure of M is
uniquely determined (exercise). O
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As a consequence, much of the machinery on topological coverings sum-
marised in Section 1.2.2 apply also to smooth coverings. For instance, if
M is a connected smooth manifold, there is a bijective correspondence be-
tween the conjugacy classes of subgroups of 71(M) and the smooth cov-
erings M — M considered up to isomorphism, where two smooth cover-
ings p: M — M,p': M’ — M are isomorphic if there is a diffeomorphism
f: M — M such that p=p'of.

3.5.4. Smooth actions. We keep adapting the topological definitions of
Section 1.2.6 to this smooth setting. A smooth action of a group G on a
smooth manifold M is a group homomorphism

G —> Diffeo(M)

where Diffeo(M) is the group of all the self-diffeomorphisms M — M. All the
results stated there apply to this smooth setting. In particular we have the
following.

Proposition 3.5.4. Let G act smoothly, freely, and properly discontinuously
on a smooth manifold M. The quotient M/s has a unique smooth structure
such that p: M — M/ is a smooth regular covering.

Every smooth regular covering between smooth manifolds arise in this way.

Proof. We already know that p is a covering and M/s is a topological
manifold. The smooth structure is constructed as follows: for every chart
U — V on M such that p|y is injective, we add the chart @ o p=t: p(U) — V
to M. We get a smooth atlas on M because G acts smoothly. O

For instance, if M is a smooth manifold and v: M — M a fixed-point free
involution (a diffeomorphism ¢ such that > = id), then M/, = M/ where
G = () has order two is a smooth manifold and M — M/, a degree-two
covering. This applies for instance to

RP" = 5"/,

where ¢ is the antipodal map. Every degree-two covering in fact arises in this
way, because every degree-two covering is regular (every index-two subgroup
is normal).

3.5.5. The n-dimensional torus. Here is one example. Let G = Z" act
on R" by translations, that is g(v) = v 4+ g. The action is free and properly
discontinuous, hence the quotient 7" = R" /7 is a smooth manifold called the
n-dimensional torus. The manifold is in fact diffeomorphic to the product

Stx...x St
~—_——

n
via the map
f(Xl, ce ,Xn) = (627rx1i’ . e27rx,,i).



3.5. SMOOTH COVERINGS 61

0,1) (1,1) (0,1) (1,1)

(0,0) (1,0) (0,0) (1,0)

Figure 3.6. Some fundamental domains for the torus, the Klein bottle,
and the projective plane. The surface is obtained from the domain by
identifying the boundary curves with the same colours, respecting arrows.

The map f is defined on R” but it descends to the quotient 77, and is invertible
there. The n-torus T" is compact and its fundamental group is Z".

3.5.6. Lens spaces. Let p > 1 and g > 1 be two coprime integers and

2mi
define the complex number w = e» . We identify R* with C? and see the
three-dimensional sphere S° as

SP={(z,w) eC? | |z +|w|]* = 1}.

The map

f(z,w) =(wz, wiw)
is a linear isomorphism of C? that consists geometrically of two simultaneous
rotations on the coordinate real planes w =0 e z=0. The map f preserves
S3, it has order p and none of its iterates f, f2, ..., fP~1 has a fixed point in
S3. Therefore the group I = (f) generated by f acts freely on S3, and also
properly discontinuously because it is finite. The quotient

L(p.q)=S/r

is therefore a smooth manifold covered by S3 called /ens space. Its fundamental
group is isomorphic to the cyclic group I' = Z/pz. Note that the manifold
depends on both p and gq.

3.5.7. Fundamental domains. Let G be a group acting smoothly, freely,
and properly discontinuously on a manifold M. Sometimes we can visualise
the quotient manifold M/ by drawing a fundamental domain for the action.

A fundamental domain is a closed subset D C M such that:

e every orbit intersects D in at least one point;
e every orbit intersects int(D) in at most one point.

For instance, Figure 3.6 shows some fundamental domains for:

e the action of Z? to R? via translations, yielding the torus T = R?/,;
e the action of G on R?, yielding the Klein bottle K = R?/s. Here G
is the group of affine isometries generated by the maps

fx.y)=(x+1y), 9gxy)=(G-xy+1);
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e the action of the antipodal map ¢ on S? yielding RP? = S2/,.
We will encounter the Klein bottle again in Section 3.6.5.

3.6. Orientation

Some (but not all) manifolds can be equipped with an additional structure
called an orientation. An orientation is a way of distinguishing your left hand
from your right hand, through a fixed convention that holds coherently in the
whole universe you are living in.

3.6.1. Oriented manifolds. Let M be a smooth manifold. We say that
a compatible atlas on M is oriented if all the transition functions ¢;; have
orientation-preserving differentials. That is, for every p in the domain of ¢;;
the differential d(¢;;), has positive determinant, for all /,j. Note that this
determinant varies smoothly on p and never vanishes because g;; is a diffeo-
morphism: hence if the domain is connected and the determinant is positive
at one point p, it is so at every point of the domain by continuity.

Definition 3.6.1. An orientation on M is an equivalence class of oriented
atlases (compatible with the smooth structure of M), where two oriented
atlases are considered as equivalent if their union is also oriented.

There are two important issues about orientations: the first is that a
manifold M may have no orientation at all (see Exercise 3.6.7 below), and the
second is that an orientation for M is never unique, as the following shows.

Exercise 3.6.2. If A = {p,} is an oriented atlas for M, then A" = {roy;}
is also an oriented atlas, where r: R” — R" is a fixed reflection along some
hyperplane H C R". The two oriented atlases are not orientably compatible.

We say that the orientations on M induced by A and A’ are opposite. If
M admits some orientation, we say that M is orientable.

Exercise 3.6.3. The sphere S" is orientable.
Exercise 3.6.4. If M and N are orientable, then M x N also is.

3.6.2. Tangent spaces. We now exhibit an equivalent definition of orien-
tation that involves tangent spaces. Recall the notion of orientation for vector
spaces from Section 2.6.1.

Let M be a smooth manifold. Suppose that we assign an orientation to
the vector space T,M for every p € M. We say that this assignment is locally
coherent if the following holds: for every p € M there is a chart ¢: U — V
with p € U whose differential doq: TqgM — T,R" = R" is orientation-
preserving (that is, it sends a positive basis of T,M to a positive one of R"),
for all g € U.

Here is a new definition of orientation on M.
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Figure 3.7. The Mébius strip is a non-orientable surface.

Definition 3.6.5. An orientation for M is a coherent assignment of orien-
tations on all the tangent spaces T,M.

We have two distinct notions of orientation on M, and we now show that
they are equivalent. We see immediately how to pass from the first to the
second: for every p € M there is some chart ¢: U — V in the oriented atlas
with p € U and we assign an orientation to T,M by saying that a basis In
Tp,M is positive <= its image in R" along dy,, is. The orientation of T,M is
well-defined because it is chart-independent: every other chart of the oriented
atlas differs by composition with a ¢;; with positive differentials. We leave to
the reader as an exercise to discover how to go back from the second definition
to the first.

Proposition 3.6.6. A connected smooth manifold M has either two orien-
tations or none.

Proof. Let A be an oriented atlas, and A’ its opposite. Suppose that we
have a third oriented atlas A”. We get a partition M = SUS’" where S (§') is
the set of points p € M where the orientation induced by .A” on T,M coincides
with that of A (A’). Both sets S, S’ are open, so either M =S or M = &,
and hence A" is compatible with either A or A’. O

Exercise 3.6.7. The Mobius strip shown in Figure 3.7 is non-orientable.
(A rigorous definition and proof will be exhibited soon, but it is instructive to
guess why that surface is not orientable only by looking at the picture.)

3.6.3. Orientation-preserving maps. Let f: M — N be a local dif-
feomorphism between two oriented manifolds M and N. We say that f is
orientation-preserving if the differential df,: T,M — TN is an orientation-
preserving isomorphism for every p € M. That is, we mean that it sends pos-
itive bases to positive bases. Analogously, the map f is orientation-reversing
if dfy is so for every p € M, that is it sends positive bases to negative bases.

Exercise 3.6.8. If M is connected, every local diffeomorphism f: M — N
between oriented manifolds is either orientation-preserving or reversing.



64 3. SMOOTH MANIFOLDS

As a consequence, if M is connected, to understand whether f: M — N
is orientation-preserving or reversing it suffices to examine df, at any single
point p € M.

Exercise 3.6.9. The orthogonal reflection 7 along a linear hyperplane H C
R+ restricts to an orientation-reversing diffeomorphism of S”

Hint. Suppose H = {x; = 0}, pick p = (0,...,0,1), examine dmp. O

Corollary 3.6.10. The antipodal map v: S" — S" s orientation-preserving
<= n Is odd.

Proof. The map ¢ is a composition of n+1 reflections along the coordinate
hyperplanes. U

Remark 3.6.11. Let M be connected and oriented and f: M — M be a
diffeomorphism. The condition of f being orientation-preserving or reversing
is independent of the chosen orientation for M (exercise). A manifold M that
admits an orientation-reversing diffeomorphism M — M is called mirrorable.
For instance, the sphere S is mirrorable. Not all the orientable manifolds are
mirrorable! This phenomenon is sometimes called chirality.

3.6.4. Orientability of projective spaces. \We now determine whether
RP” is orientable or not, as a corollary of the following general fact.

Proposition 3.6.12. Let w: M — M be a regular smooth covering of man-
ifolds. The manifold M is orientable <= M s orientable and all the deck
transformations are orientation-preserving.

Proof. If M is orientable, there is a locally coherent way to orient all the
tangent spaces T, M, which lifts to a locally coherent orientation of the tangent
spaces T5/\7l, by requiring dms to be orientation-preserving Vp € M. Every
deck transformation T is orientation preserving because mo T = T.

Conversely, suppose that M is orientable and all the deck transformations
are orientation-preserving. We can assign an orientation on T,M by requiring
that dms be orientation-preserving for some lift p of p: the definition is lift-
independent since the deck transformations are orientation-preserving and act
transitively on m~1(p) because T is regular. O

Corollary 3.6.13. The real projective space RP" is orientable <= n is odd.

Proof. We have RP" = S"/, and the deck transformation ¢ is orientation-
preserving <= n is odd. O

Exercise 3.6.14. The projective plane RP? contains an open subset diffeo-
morphic to the Mobius strip.

On the other hand, the n-torus and the lens spaces are orientable, be-
cause they are obtained by quotienting an orientable manifold (R” or S3) via
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Figure 3.8. The Klein bottle immersed non-injectively in R.

an group of orientation-preserving diffeomorphisms acting freely and properly
discontinuously.

Example 3.6.15. We may redefine the Mobius strip as
S=5S'x(-1,1)/,

where ¢ is the involution (e, t) = (e/(®+™ —t). The non-orientability of S
is now a consequence of Proposition 3.6.12.

3.6.5. The Klein bottle. Inspired by Example 3.6.15, we now define an-
other non-orientable surface K, called the Klein bottle. This is the quotient

K=T/,
of the torus T = S' x S! via the fixed-point free involution
L(eie, ei(p) _ (ei(9+7r)' e—i(p)_

Since ¢ is orientation-reversing, the Klein bottle is not orientable. It has infinite
fundamental group 71 (K) with an index-two normal subgroup isomorphic to
m1(T) = Z x Z. This shows in particular that K is not homeomorphic to RP?.

We will soon see that, as opposite to the Mobius strip, the Klein bottle
cannot be embedded in R3, and the best that we can do is to “immerse” it

in R3 non-injectively as shown in Figure 3.8. The notions of immersion and
embedding will be introduced in Section 3.8.

Exercise 3.6.16. Verify that this Klein bottle is indeed diffeomorphic to
the Klein bottle already introduced in Section 3.5.7. Convince yourself that by
glueing the opposite sides of the central square in Figure 3.6 you get a surface
homeomorphic to that shown in Figure 3.8.

3.6.6. Orientable double cover. Non-orientable manifolds are fascinat-
ing objects, but we will see in the next chapters that it is often useful to assume
that a manifold is orientable, just to make life easier. So, if you ordered an
orientable manifold and you received a non-orientable one by mistake, what
can you do? The best that you can do is to transform it into an orientable
one by substituting it with an appropriate double cover. We now describe this
operation.

We say that a manifold N is doubly covered by another manifold N if there
is a covering N — N of degree two.



66 3. SMOOTH MANIFOLDS

Proposition 3.6.17. Every non-orientable connected manifold M is canon-
ically doubly covered by an orientable connected manifold M.

Proof. We define M as the set of all pairs (p, 0) where p € M and o is an
orientation for T,M. By sending (p, 0) to p we get a 2-1 map 7: M — M. We
now assign to the set M a structure of smooth connected orientable manifold
and prove that 7 is a smooth covering.

For every chart ¢;: U; — V; on M we consider the set U,- C M of all pairs
(p, 0) where p € U;j and o is the orientation induced by transferring back that
of R" via dy,. We also consider the map ¢;: Ui — V., ¢;i = pj om. We now
show that the maps

@i Ui —V,
constructed in this way form an oriented smooth atlas for the set M, recall
the definition in Section 3.1.5.

To prove that this is an oriented smooth atlas, we first note that the sets
U,- cover M and every @; is a bijection. Then, we must show that for every
i,j the images of U;N Uj along @; and @, are open subsets (if not empty) and
the transition map ¢;; is orientation-preservingly smooth.

We consider a point (p, 0) € U,— N Uj. The charts ¢; and ¢; both send
o to the canonical orientation of R”, therefore the transition map ¢;; has
positive determinant in @;(p) and hence in the whole connected component
W of @;(U;NU;) containing ;(p). This implies that @;(Uin Uj) contains the
open set W. Moreover ¢;; is orientation-preserving on W.

Now that M is a smooth manifold, we check that 7 is a smooth covering:
for every p € M we pick any chart ¢;: U; — V; with p € U; and note that
@, = rog; is also a chart for any reflection r of R”; the two charts define two
open subsets U, U,{ of M, each projected diffeomorphically to U; via .

Actually, it still remains to prove that M is connected: if it were not, it
would split into two components, each diffeomorphic to M via m, but this is
excluded because M is orientable and M is not. O

For instance: the Klein bottle is covered by the torus, the projective spaces
are covered by spheres, and the Md&bius strip is covered by the annulus ST x
(—1,1), with degree two in all the cases.

Corollary 3.6.18. Every simply connected manifold is orientable.
Proof. A simply connected manifold has no non-trivial covering! O
Corollary 3.6.19. The complex projective spaces CP" are all orientable.

Remark 3.6.20. The orientability of CP" can be checked also by noting
that C” has a natural orientation and that the transition maps between the
coordinate charts are holomorphic and hence orientation-preserving.
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Figure 3.9. A smooth submanifold S C M looks locally like a linear
subspace L C R™.

3.7. Submanifolds

One of the fundamental aspects of smooth manifolds is that they contain
plenty of manifolds of smaller dimension, called submanifolds.

3.7.1. Definition. Let M be a smooth m-manifold.

Definition 3.7.1. A subset S C M is a n-dimensional smooth submanifold
(shortly, a n-submanifold) if for every p € S there is a chart ¢: U — R™ with
p € U that sends U N S onto some linear n-subspace L C R™.

That is, the subset S looks locally like a vector n-subspace in R™, on some
chart. Of course we must have n < m. See Figure 3.9.

A smooth submanifold S C M is itself a smooth n-manifold: an atlas
for S is obtained by restricting all the diffeomorphisms U — R as above to
UN'S, composed with any linear isomorphism L — R"”. The transition maps
are restrictions of smooth functions to linear subspaces and are hence smooth.

If we use the definition of tangent spaces via curves, we see immediately
that for every p € S there is a canonical inclusion /: T,S — T,M. Via
derivations, the inclusion is i(v)(f) = v(f|s). We will see T,S as a linear
n-subspace of T,M.

When m = n, a submanifold N C M is just an open subset of M.

Example 3.7.2. Every linear subspace L C R" is a submanifold.

Example 3.7.3. The graph S of a smooth function f: R" — R™ is a n-
submanifold of R” x R™ diffeomorphic to R”. The map R” x R™ — R"” x R™
that sends (x, y) to (x,y + f(x)) is a diffeomorphism that sends the linear
space L = {y =0} to S.

As a consequence, a subset S C R" that is locally the graph of some
smooth function is a submanifold. For instance, the sphere S” C R"*! can be
seen locally at every point (up to permuting the coordinates) as the graph of
the smooth function x + /1 — ||x||2 and is hence a n-submanifold in R"*1.

If S C R"” is a k-submanifold, the tangent space T7,S at a point p € S
may be represented very concretely as a k-dimensional vector subspace of
T,R" =R".
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Exercise 3.7.4. For every p € S” we have
T,S" = p*

where pt indicates the vector space orthogonal to p. (We will soon deduce
this exercise from a general theorem.)

Example 3.7.5. A projective k-dimensional subspace S of RP" or CP" is the
zero set of some homogeneous linear equations. It is a smooth submanifold,
because read on each coordinate chart it becomes a linear k-subspace in R"
or C". It is diffeomorphic to RP¥ or CPX.

Exercise 3.7.6. Let M, N be smooth manifolds. For every p € M the
subset {p} x N is a submanifold of M x N diffeomorphic to N.

3.8. Immersions, embeddings, and submersions

We now study some particular kinds of nice maps called immersions, em-
beddings, and submersions.

3.8.1. Immersions. A smooth map f: M — N between smooth mani-
folds of dimension m and n is an immersion at a point p € M if the differential

dfy: ToM — Tr(pN

is injective. This implies in particular that m < n.

It is a remarkable fact that every immersion may be described locally in a
very simple form, on appropriate charts. This is the content of the following
proposition.

Proposition 3.8.1. Let f: M — N be an immersion at p € M. There are
charts o: U — R™ and : W — R" withp € U C M and f(U) C W C N
such that Yo fo *(x1,....xm) = (x1,....xm 0,...,0).

The proposition can be memorised via the following commutative diagram:

(5) Uu—"ow

wl lw
RM™ —— R"

where F(x1,...,Xm) = (x1,...,Xm,0,...,0). Read on some charts, every
immersion looks like F.

Proof. We can replace M and N with any open neighbourhoods of p and
f(p), in particular by taking charts we may suppose that M C R™ and N C R”
are some open subsets.



3.8. IMMERSIONS, EMBEDDINGS, AND SUBMERSIONS 69

We know that df,: R™ — R" is injective. Therefore its image L has
dimension m. Choose an injective linear map g: R~ — R"” whose image is
in direct sum with L and define

G:MxR"™™ —R"

by setting G(x,y) = f(x)+g(y). Its differential at (p, 0) is dGp 0y = (dfp, 9)
and it is an isomorphism. By the Implicit Function Theorem the map G is
a local diffeomorphism at (p,0). Therefore there are open neighbourhoods
Uy, U, W of p,0, f(p) such that

G|U1><U2: U1 X U2 - W
is a diffeomorphism, and we call 1 its inverse. Now for every x € U; we get

w(f(x)) = ’l/J(G(X, 0)) = (x,0).
Therefore we get the commutative diagram

U —~w

X

U1?U1XU2

with F(x) = (x,0) as required. To conclude, we may take neighbourhoods
U, U, diffeomorphic to R™, R"~™ and the diagram transforms into (5). O

Amap f: M — Nis an immersion if it is so at every p € M. An immersion
is locally injective because of Proposition 3.8.1, but it may not be so globally:
see for instance Figure 3.10-(left).

3.8.2. Embeddings. We have discovered that an immersion has a partic-
ularly nice local behaviour. We now introduce some special type of immersions
that also behave nicely globally.

Definition 3.8.2. A smooth map f: M — N is an embedding if it is an
immersion and a homeomorphism onto its image.

The latter condition means that f: M — f(M) is a homeomorphism, so
in particular f is injective. We note that f may be an injective immersion
while not being a homeomorphism onto its image! A counterexample is shown
in Figure 3.10-(right). We really need the "homeomorphism onto its image”
condition here, injectivity is not enough for our purposes.

The importance of embeddings relies in the following.

Proposition 3.8.3. If f: M — N is an embedding, then f(M) C N is a
smooth submanifold and f : M — f(M) a diffeomorphism.
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<0~

Figure 3.10. A non-injective immersion S* — R? (left) and an injective
immersion R — R? that is not an embedding (right).

Proof. For every p € M there are open neighbourhoods U C M, V C N
of p, f(p) such that f|y: U — V N f(M) is a homeomorphism.

By Proposition 3.8.1, after taking a smaller V there is a chart that sends
(V,V nf(M)) to (R", L) for some linear subspace L. Therefore f(M) is a
smooth submanifold, and f is a diffeomorphism onto f(M). O

Figure 3.10-(right) shows that the image of an injective immersion needs
not to be a submanifold. Conversely:

Exercise 3.8.4. If S C N is a smooth submanifold, then the inclusion map
i: S < Nis an embedding.

We now look for a simple embedding criterion. Recall that a map f: X —
Y is proper if C C'Y compact implies f~1(C) C X compact.

Exercise 3.8.5. A proper injective immersion f: M — N is an embedding.

In particular, if M is compact then f is certainly proper, and we can con-
clude that every injective immersion of M is an embedding. This is certainly a
fairly simple embedding criterion.

Example 3.8.6. Fix two positive numbers 0 < a < b and consider the map
f: St x St — R3 given by

f(e, e®) = ((acos6 + b) cosp, (acosb + b)sinp, asinb).
Using the coordinates 6 and o, the differential is

—asinfcosyp —(acos® + b)sinp
—asinfsing (acosf + b) cosp
acos6 0

and it has rank two for all 8, . Therefore f is an injective immersion and
hence an embedding since S x St is compact. The image of f is the standard
torus in space already shown in Figure 3.3.

Example 3.8.7. Let p, g be two coprime integers. The map g: S! —
St x St given by
g(e®) = (ein, eti)
is injective (exercise) and its differential in the angle coordinates is (p, q) #
(0,0). Therefore g is an embedding.
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Figure 3.11. A knot is an embedding S* < R®. This is a torus knot:
what are the parameters p and g here?

The composition f o g: ST — R3 with the map f of the previous example
is also an embedding, and its image is called a torus knot: see an example in
Figure 3.11. More generally, a knot is an embedding S < R3.

Exercise 3.8.8. Let p, g be two real numbers with irrational ratio p/q. The
map h: R — St x ST defined by
h(t) = (e't, e'")
is an injective immersion but is not an embedding. Its image is in fact a dense
subset of the torus.

Exercise 3.8.9. If M is compact and N is connected, and dim M = dim N,
every embedding M — N is a diffeomorphism.

3.8.3. Submersions. We now describe some maps that are somehow dual
to immersions. A smooth map f: M — N is a submersion at a point p € M
if the differential df, is surjective. This implies that m > n. Again, every such
map has a simple local form.

Proposition 3.8.10. Let f: M — N be a submersion at p € M. There are
charts p: U — R™ and . W — R" withp e U C M and f(U) CW C N
such that Yo fo t(x1, ..., Xm) = (X1,....Xn).

The proposition can be memorised via the following commutative diagram:

Uu—"sw

of

R"™ —— R”
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where F(xi,..., Xm) = (x1,..., Xp). Read on some charts, every submersion
looks like F.

Proof. The proof is very similar to that of Proposition 3.8.1. We can
replace M and N with any open neighbourhoods of p and f(p), in particular
by taking charts we suppose that M C R™ and N C R” are open subsets.

We know that df,: TpM — T,y N is surjective, hence its kernel K has
dimension m — n. Choose a linear map g: R™ — R™~" that is injective on K
and define

G:M— NxR""

by setting G(x) = (f(x),g(x)). Its differential at p is dG, = (df,, g) and
is an isomorphism. By the Implicit Function Theorem the map G is a local
diffeomorphism at p.

Therefore there are open neighbourhoods U, W1, W5 of p, f(p), 0 such that
G(U) = Wh x W, and G|y is a diffeomorphism. Now f(G™!(x,y)) = x and
we conclude similarly as in the proof of Proposition 3.8.1. O

A smooth map f: M — N is a submersion if it is so at every p € M.

3.8.4. Regular values. We have proved that the image of an embedding
is a submanifold, and now we show that (somehow dually) the preimage of a
submersion is also a submanifold. In fact, one does not really need the map
to be a submersion: some weaker hypothesis suffices, that we now introduce.

Let f: M — N be a smooth map between manifolds of dimension m > n
respectively. A point p € M is regular if the differential df, is surjective (that
is if £ is a submersion at p), and critical otherwise.

Proposition 3.8.11. The regular points form an open subset of M.

Proof. Read on charts, the differential df, becomes a n x m matrix that
depends smoothly on the point p. The matrices with maximum rank m form
an open subset in the set of all n X m matrices. O

A point g € N is a regular value if the counterimage ffl(q) consists en-
tirely of regular points, and it is singular otherwise. The map f is a submersion
<= all the points in the codomain are regular values.

Proposition 3.8.12. If g € N is a regular value, then S = f=1(q) is either
empty or a smooth (m — n)-submanifold. Moreover for every p € S we have

TpS = ker dfy,.

Proof. Thanks to Proposition 3.8.10 there are charts at p and f(p) that
transform f locally into a projection : R” — R”. On these charts f~1(q) is
the linear subspace kerm, hence a (m — n)-submanifold. The tangent space
at pis ker m = ker dfp. g



3.9. EXAMPLES 73

Using this proposition we can re-prove that the sphere S" is a submanifold
of R™1: pick the smooth map f(x) = ||x||? and note that S” = f~1(1). The
gradient dfy is (2x1, ..., 2Xp), hence every non-zero point x € R is reqular
for f, and therefore every non-zero point y € R is a regular value: in particular
1 is regular and the proposition applies.

We can also deduce Exercise 3.7.4 quite easily: for every x € S we get

TxS" = ker df, = ker(2xq, . . ., 2xp) = X

3.9. Examples

Some familiar spaces are actually smooth manifolds in a natural way. We
list some of them and state a few results that will be useful in the sequel.

3.9.1. Matrix spaces. The vector space M(m, n) of all m x n matrices is
isomorphic to R™" and inherits from it a structure of smooth manifold. The
subset consisting of all the matrices with maximal rank is open, and is hence
also a smooth manifold.

In particular, the set M(n) of all the square n x n matrices is a smooth
manifold, and the set GL(n, R) of all the invertible n x n matrices is a smooth
manifold, both of dimension n?. We do not forget that M(n) is a vector space:
hence for every A € M(n) we have a natural identification TaM(n) = M(n),
and also TpoGL(n,R) = M(n) for every A € GL(n, R).

The subspaces S(n) and A(n) of all the symmetric and antisymmetric
matrices are submanifolds of dimension (”J;l)" and (”_21)” respectively.

A less trivial example is the set of n x n matrices with unit determinant:

SL(n,R) = {A€ M(n) | detA=1}.

Proposition 3.9.1. The set SL(n, R) is a submanifold of M(n) of codimen-
sion 1. We have

TiSL(n,R) = {A € M(n) | trA=0}.

Proof. The determinant is a smooth map det: M(n) — R. We show that
1 € R is a regular value. For every A € SL(n,R) and B € M(n) we easily get

det(A+ tB) = det(/ + tBA™Y) = 1 + ttr(BA™Y) + o(t?).

Therefore d deta(B) = tr(BA~1) and by taking B = A we deduce that d det A
is surjective. Hence 1 is a regular value, so by Proposition 3.8.12 the preimage
SL(n, R) is a smooth submanifold and T;SL(n, R) = ker d det, is as stated. [J

3.9.2. Orthogonal matrices. Another important example is the set of all
the orthogonal matrices

O(n) ={Ae M(n)| 'AA=1}.
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Proposition 3.9.2. The set O(n) is a submanifold of M(n) of dimension

@. We have

T,0(n) = A(n).
Proof. Consider the smooth map
f: M(n) — S(n),
Ar— AA.
Note that O(n) = f~1(/). We now show that / € S(n) is a regular value. For
every A € O(n) we have
f(A+tB) =" A+tB)(A+tB)="AA+ t('BA+'AB) + t>'BB
=1+ t("BA+"AB) + o(t).

and hence

dfa(B) = 'BA+'AB.

For every symmetric matrix S € S(n) there is a B such that '‘BA+'AB =S
(exercise). Therefore df, is surjective for all A € O(n) and hence / is a regular
value.

We deduce from Proposition 3.8.12 that O(n) = f~1(/) is a smooth
manifold of dimension dim M(n) — dim S(n) = @ Moreover, we have

T,0(n) = kerdfy, = {B | 'B+ B =0} = A(n).
The proof is complete. [l
3.9.3. Fixed rank. We now exhibit some natural submanifolds in the
space M(m, n) of all m x n matrices. For every 0 < k < min{m, n}, we

define My(m, n) C M(m, n) to be the subset consisting of all the matrices
having rank k.

Proposition 3.9.3. The subspace My(m, n) is a submanifold in M(m, n) of
codimension (m — k)(n — k).

Proof. Consider a matrix Py € My(m,n). Up to permuting rows and
columns, we may suppose that Py = (é‘g gg) where Ag € GL(k, R).

On an open neighbourhood of Py every matrix P is also of this type P =
(25) with A € GL(k,R) and if we set Q = (%, 1 7) € GL(n, R) we find

In—k

- P 0
PQ = (CA3L D — CAlB> ’
Since rkP = rkPQ), we deduce that
kP =k <= D =CA™'B.

Therefore Mx(m, n) is a manifold parametrised locally by (A, B, C), of codi-
mension (m — k)(n — k). O
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3.9.4. Squareroots. Let ST(n) C S(n) be the open subset of all positive-
definite symmetric matrices. We will neeed the following.

Proposition 3.9.4. Every S € S*(n) has a unique square root /S € S*(n),
that depends smoothly on S.

Proof. The existence and uniqueness of v/S are consequences of the spec-
tral theorem. Smoothness may be proved by showing that the map 7: S*(n) —
S*(n), A+ A?is a submersion: being a 1-1 correspondence, it is then a dif-
feomorphism.

To show that f is a submersion, up to conjugacy we may suppose that D
is diagonal, and write

f(D+ tM) = (D + tM)? = D?> + t(DM + MD) + o(t).
We have
(DM + /\//D),j = DjiM;; + M;;D;; = (Dji + Djj)M,‘j.

Since D;; > 0 for all /, if M #£ 0 then DM 4+ MD # 0, so dfp is injective and
hence invertible. O

3.9.5. Some matrix decompositions. It is often useful to decompose a
matrix into a product of matrices of some special types. Let T(n) be the set
of all upper triangular matrices with positive entries on the diagonal.

Proposition 3.9.5. For every A € GL(n, R) there are unique O € O(n) and
T € T(n) such that A= OT. Both O and T depend smoothly on A.

Proof. Write A= (v!...v") and orthonormalise its columns via the Gram—
Schmidt algorithm to get O = (w!...w"). The algorithm may in fact be
interpreted as a multiplication by some 7. Conversely, if A = OT then O is
uniquely determined: the vector w'*! must be the unit vector orthogonal to
Span(v?, ..., v') on the same side as v/*1. O

Corollary 3.9.6. We have the diffeomorphisms
n(n
GL(n,R) = O(n) x T(n) = O(n) x R™5.

In particular there is a smooth strong deformation retraction of GL(n, R)
onto the compact subset O(n). We also deduce a similar result for SL(n, R).
Let ST(n) C T(n) be the submanifold of all upper triangular matrices with
positive entries on the diagonal and unit determinant.

Corollary 3.9.7. We have the diffeomorphisms

n(n+1) 1

SL(n,R) =2 SO(n) x ST(n) ZSO(n) x R™ 2

The decomposition M = OT is nice, but we will later need one that is
“more invariant”.
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Proposition 3.9.8. For every A € GL(n, R) there are unique O € O(n) and
S € ST(n) such that A= OS. Both O and S depend smoothly on A.

Proof. Pick S = /"AA. Write O = AS~! and note that O is orthogonal:
'00 =57 1tAAs = 57152571 — .
Conversely, if A= OS then "AA ='S'00S = 52 O

The decomposition A = OS is also known as the polar decomposition and
is "more invariant” than A = OT because it satisfies the following property:

Proposition 3.9.9. If A” = PAQ for some orthogonal matrices P,Q €
O(n), then the corresponding O' and S’ are O' = POQ and S' = Q71SQ.

Proof. From A = OS we deduce
PAQ = (POQ)(Q1SQ).
Here POQ € O(n) and Q71SQ € S*(n). O

3.9.6. Connected components. Recall that every A € O(n) has det A =
+1. We define

SO(n) ={A€O(n) | detA=1}

Proposition 3.9.10. The manifold O(n) has two connected components,
one of which is SO(n).

Proof. We first prove that SO(n) is path-connected. Let Ry be the 6-
rotation 2 x 2 matrix. Linear algebra shows that every matrix A € SO(n) is
similar A= M~1BM via a matrix M € SO(n) to a B € SO(n) of type

Re, 0 ngl e O O
B=| 3 R R
R Om
0 Ron 0 ... 0 1
depending on whether n =2m or n =2m+1, for some angles 64, .. ., Om. By

sending continuously the angles to zero we get a path connecting B to /,, and
by conjugating everything with M we get one connecting A to /,.

Finally, two matrices in O(n) with determinant 1 and —1 cannot be path-
connected because the determinant is a continuous function. O

Corollary 3.9.11. The manifold GL(n,R) has two connected components,
consisting of matrices with positive and negative determinant, respectively.

Corollary 3.9.12. The manifold SL(n, R) is connected.
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3.9.7. Grassmannians. Let V be a real vector space of dimension n, and
fix 1 < k < n. We introduced and studied the Grassmannian Grg (V) in Section
2.5. We now show that Grg (V) has a natural smooth manifold structure.

We consider Gri(V/) as a subset of P(Ax(V)) via the Pliicker embedding.

Proposition 3.9.13. The Grassmannian Gry(V') is a compact smooth sub-
manifold of P(A«(V)) of dimension (n— k)k.

Proof. Consider any k-plane W € Grg(V), and pick a basis vq, ..., vy for
W, so that in fact W = [vy A ... A vg] via the Pliicker embedding. Complete
to a basis vy, ..., v, for V. Set Z = Span(vky1, ..., Vo). Then W & Z =V.
Define the open subset U C Ax(V) as

U={[T]| TAVig1 A...Avp #0}.

The open set U contains W. Clearly UNGrg (V) consists of all the k-subspaces
W' such that W & Z =V.
Consider now the map

F: Zx---xZ—U
———

(z1,..., zi) — [ +z1) A A (i + 20)].

Linear algebra shows that F is injective and its image is U N Grg(V). The
map F is an immersion at W (exercise: use on both sides the basis induced
by vi,..., vp) and F is proper (exercise). Therefore Gry(V) is a submanifold
near W of dimension k(n — k). Since W is generic, the subset Grg(V) is a
submanifold. It is compact because it is the image of the map

G: O(n) — P(Ax(V))
A [AY AL A AR
where A’ is the i-th column of A. The proof is complete. O

Exercise 3.9.14. Show that the Grassmannian Grg(V/) is connected.

3.10. Homotopy and isotopy

There are plenty of smooth maps M — N between two given smooth man-
ifolds, and in some cases it is natural to consider them up to some equivalence
relation. We introduce here a quite mild relation called smooth homotopy and
a stronger one, that works only for embeddings, called isotopy.

3.10.1. Smooth homotopy. We introduce the following notion.

Definition 3.10.1. A smooth homotopy between two given smooth maps
f,.g: M — N is a smooth map F: M xR — N such that F(x,0) = f(x) and
F(x,1) = g(x) for all x € M.
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In general topology, a homotopy is just a continuous map F: Xx[0,1] =Y
where X,Y are topological spaces. In this smooth setting we must (a bit
reluctantly) substitute [0, 1] with R because we need the domain to be a
smooth manifold. Anyway, the behaviour of F(x, t) when t & [0, 1] is of no
interest for us, and we may require F(x, -) to be constant outside that interval:

Proposition 3.10.2. If F is a smooth homotopy between f and g, then
there is another smooth homotopy F' such that F'(x,t) equals f(x) for all
t <0 andg(x) forallt > 1.

Proof. Take a smooth transition function ¥: R — IR as in Section 1.3.6,
such that W(t) = 0 for all t < 0 and W(t) = 1 for all t > 1. Define
F'(x,t) = F(x, W(t)). O

Two smooth maps f,g: M — N are smoothly homotopic if there is a
smooth homotopy between them.

Proposition 3.10.3. Being smoothly homotopic is an equivalence relation.

Proof. The only non-trivial part is the transitive property. Let F be a
smooth homotopy between f and g, and G be a smooth homotopy between g
and h. We must glue them to an isotopy H between f and g.

To do this smoothly, we first modify F and G as in the proof of Proposition
3.10.2, taking a transition function W such that W(x) = 0 for all x < % and
W(x) =1 for all x > 5. Now F(x,-) and G(x, ) are constant outside [3, 5]
and can be glued by writing

F(x,2t) fort<3,
H(x, t) =
G(x,2t—1) fort> %
The map H is smooth and the proof is complete. O

Example 3.10.4. Let M be a smooth manifold. Any two maps f,g: M —
R" are smoothly homotopic: indeed, every f: M — R" is smoothly homotopic
to the constant map c(x) = 0, simply by taking

F(x,t) = tf(x).

3.10.2. Isotopy. We now introduce an enhanced version of smooth ho-
motopy, called isotopy, that is nicely suited to embeddings.

Definition 3.10.5. An isotopy between two embeddings f,g: M — N is a
smooth homotopy F: M x R — N between them, such that F;(x) = F(x, t)
is an embedding F;: M — N for all t € [0, 1].

We can prove as above that the isotopy between embeddings is an equiv-
alence relation. Being isotopic is much stronger than being homotopic: for
instance two embeddings f,g: M — R” are always smoothly homotopic, but
they may not be isotopic in many interesting cases.
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As an example, two knots f, g: ST < R3 may not be isotopic. The knot
theory is an area of topology that studies precisely this phenomenon: its main
(and still unachieved) goal would be to classify all knots up to isotopy in a
satisfactory way.

Another interesting challenge is to study the set of all self-diffeomorphisms
M — M of one fixed manifold M up to isotopy. Note that if M is compact and
connected, every level F; in one such isotopy is a diffeomorphism by Exercise
3.8.9. This is already a fundamental and non-trivial problem when M = S" is
a sphere; the one-dimensional case is the only one that can be solved easily:

Proposition 3.10.6. Every self-diffeomorphism ¢: St — Sl is isotopic ei-
ther to the identity or to a reflection z — Z, depending on whether ¢ is
orientation-preserving or not.

Proof. Suppose that ¢: S — S! is orientation-preserving. We lift ¢ to
a map ¢: R — R between universal covers, and note that ¢'(x) > 0 for all
x € R. Consider the map

Fe(x) = tg(x) + (1 — t)x.

Since Fi(x + 2km) = ﬁt(>~<) + 2k the map descends to a map F;: St — St.
When t € [0, 1] we get F{(x) = t@'(x) + (1 — t) > 0, hence each F; is an
embedding. Therefore F; is an isotopy between id and . U

Here is another interesting question, that we will be able to solve in the
positive in the next chapters.

Question 3.10.7. Let M be a connected n-manifold. Are two orientation-
preserving embeddings f, g: R" — M always isotopic?

3.11. The Whitney embedding

We now show that every manifold may be embedded in some Euclidean
space. This result was proved by Whitney in the 1930s.

3.11.1. Borel and zero-measure subsets. \We start with some prelimi-
naries that are of independent interest.

Let M be a smooth n-manifold. As in every topological space, a Borel
subset of M is any subspace S C M that can be constructed from the open
sets through the operations of relative complement, countable unions and
intersections.

Exercise 3.11.1. A subset S C M is Borel <= its image along any chart
is a Borel subset of R".

Let S C M be a Borel set. Although there is no notion of measure for
S, we may still say that S has measure zero if the image ¢(U N S) along any
chart ¢: U — V has measure zero, with respect to the Lebesgue measure in
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R". Note that any diffeomorphism sends zero-measure sets to zero-measure
sets (Remark 1.3.6), so it suffices to check this for a set of charts covering S.

Proposition 3.11.2. Let f: M — N be a smooth map between manifolds
of dimensions m, n. If m < n, the image of f is a zero-measure set.

Proof. This holds on charts by Corollary 1.3.8. O

In particular, the image of f has empty interior.

3.11.2. The compact case. We now prove that every compact manifold
embeds in some Euclidean space. Not only the statement seems very strong,
but its proof is actually relatively easy.

Theorem 3.11.3. Every compact smooth manifold M embeds in some R".

Proof. Since M is compact, it has a finite adequate atlas {(p,-: U, — R’"}
that consists of some k charts (see Section 3.3.1). The open subsets V; =
(pfl(B’") also cover M. Let A\: R™ — R be a bump function with A\(x) =1
if ||x]| <1, see Section 1.3.5.

Forevery i =1,..., k we define the smooth map \j: M — R by setting
Xi(p) = A((p,-(p)) if p € U; and zero otherwise. Note that \; = 1 on V; and
A; = 0 outside U;. Analogously we define the smooth map ¥;: M — R™ by
setting ¥i(p) = Ai(p)wi(p) when p € U; and zero otherwise.

Let n=k(m+1). We define F: M — R" by setting

F(p) = (¥1(p). ... ¥k(p). A1(p). ... M(p)).

The codomainisindeed R x .. . xR™ xR x ... xR =R". We now show that
F is an injective immersion, and hence an embedding since M is compact.

Since the covering is adequate, for every p € M there is at least one /
such that A\; = 1 on a neighbourhood of p. In particular ¥; = @; is a local
diffeomorphism at p, its differential has rank m, and hence also the differential
of F has rank m. Therefore F is an immersion.

If Xi(p) = Xi(q) = 1, then 9¥; = @, and therefore ¥;(p) = ;(q) implies
p = q. This shows injectivity. [l

We now want to improve the theorem in two directions: we remove the
compactness hypothesis, and we prove that the dimension n = 2m+1 suffices.

3.11.3. Immersions. Let M be a manifold of dimension m, not necessarily
compact. We know from Proposition 3.3.8 that every continuous map f: M —
R" into a Euclidean space can be perturbed to a smooth map. We now show
that if n > 2m the map can be perturbed to an immersion.

Theorem 3.11.4. Let f: M — R" be a continuous map, and n > 2m. For
everye > 0 there is an immersion F: M — R" with ||F(p)—f(p)|| < e Vp € M.
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&

U
Us

Figure 3.12. We pass from F'~! to F' by modifying the function only
in U;, with the purpose to get an immersion on V.

Proof. By Proposition 3.3.8, we may suppose that f is smooth.

Let {¢;: Ui — R™} be an adequate atlas, with countably many indices
i=1,2,... The open subsets V; = <p,-_1(Bm) also form a covering of M. Let
Y. M — R™ be defined as in the proof of Theorem 3.11.3, so that 9; = o,
on V; and ¥; = 0 outside U;. We set

i
M=V
j=1

and note that {M;} is a covering of M with compact subsets.
We define a sequence FO, F1, ... of maps F': M — R” such that:
(1) [IF'(p) — f(p)Il <€ forall pe M,
(2) F''= F=1 outside of U;,
(3) dF} is injective for all p € M;.
See Figure 3.12. Since {U;} is locally finite, the maps F' stabilise on every
compact set and converge to an immersion F: M — R" as required.
We define F' inductively on i as follows. We set F° = f and

Fl=F~1+ Ay,
for some appropriate matrix A = A; € M(n, m) that we now choose accurately
so that the conditions (1-3) will be satisfied.

We note that F' satisfies (2). Condition (1) is also fine as long as ||A]l
is sufficiently small. To get (3) we need a bit of work. By the inductive
hypothesis dF} 1 is injective for all p € M;_;, and it will keep being so if ||A]
is sufficiently small. It remains to consider the points p € M; \ M;_;.

At every p € V; we have ¢; = @; and

dF) = dF) ™ + Ad()),.
Therefore dFF’; is not injective if and only if
A=B—d(F ™ o))

for some matrix B € M(n, m) of rank k < m.
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Figure 3.13. Can you perturb this continuous map f: S? — R? to an
immersion? Probably not... At every horizontal level except the poles, the
map is as in Figure 3.14 below. The map f is an immersion everywhere
except at the poles, but it seems hard to eliminate the singular points at
the poles just by perturbing f. If we are allowed to raise the dimension of
the target, then f can certainly be perturbed to an immersion S? — R*
and to an embedding S? — R® by Whitney's Theorems 3.11.4 and 3.11.7,
although both perturbations may be hard to see...

By Proposition 3.9.3, the space My(m, n) of all rank-k matrices is a man-
ifold of dimension mn — (m — k)(n — k). For every k < m consider the map

V: B™ x My(n,m) — M(n, m)
(x,B)— B—d(F"top1),.

i

The dimensions of the domain and codomain are
m+ mn—(m—k)(n— k), mn.
Since n > 2m and kK < m—1 we have
m—(m—-k)(in—k)y<m—-1-(n—m+1)=2m—-n—-1<0.

By Proposition 3.11.2 the image of W has zero measure for all k. Therefore it
suffices to pick A with small ||A|| and away from these zero-measure sets. [

In particular, every continuous map R — R? or S — R? can be perturbed
to an immersion. If S is a surface, every continuous map S — R* can be
perturbed to an immersion.

We cannot remove the condition n > 2m in general. For instance, no map
S — R can be perturbed to an immersion, because there are no immersions
S — R at all. The dimensions m = 2 and n = 3 seem also problematic:
as a challenging example, consider the continuous map f: S? — R3 drawn in
Figure 3.13. Can you perturb f to an immersion?

Remark 3.11.5. The proof of Theorem 3.11.4, especially in the choice of
the matrix A, suggests that any “generic’ smooth perturbation of f should be
an immersion. This suggestion can be made precise by endowing the space of
all maps M — R” with the appropriate topology: we do not pursue this here.

Corollary 3.11.6. Every m-manifold M immerses in R™.
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QH

Figure 3.14. This immersion S' — R? cannot be perturbed to an embedding.

QH

Figure 3.15. It suffices to raise the dimension of the target by one, and
the immersion can now be perturbed to an injective immersion.

Proof. Pick a constant map f: M — R?™ and apply Theorem 3.11.4. O

3.11.4. Injective immersions. Can we perturb an immersion M"™ — R”
to an injective immersion? This may not be possible in some cases, see Figure
3.14. In fact, Figure 3.15 suggests that we could achieve injectivity just by
adding one dimension to the codomain: the immersion can be perturbed to be
injective in R3, not in R2. We now show that this is a general principle.

Theorem 3.11.7. Let f: M — R" be an immersion, and n > 2m+ 1. For
every € > 0 there is an injective immersion F: M — R" with ||[F(p) — f(p)| <
eVpe M.

Proof. We adapt the proof of Theorem 3.11.4 to this context. By Propo-
sition 3.8.1 the map f is locally injective, so by Proposition 3.3.1 we can find
an adequate atlas {(p,-: U — ]Rm} such that f|y, is injective for all /.

We define again V; = <p,_1(Bm) and M; = Uj<;V;. Let \j;: M = R be a
bump function with A; =1 on V; and A\; = 0 outside U,.

We now construct a sequence FO, F1, ... of immersions F': M — R”,
that satisfy the following conditions:

(1) IF'(p) — f(p)l <& forall p e M,
(2) F' = F'~1 outside of U;,
(3) F’|Uj is injective for all J,
(4) F'is injective on M;.
Again, we conclude that F’ converge to some F, that is an injective immersion.
We set FO = f. Given F'~1, we define

Fi = Fi_l + >\,'V,'

where v = v; € R" is some vector that we now determine. If ||v|| is sufficiently
small, then F' is an immersion and (1) is satisfied. Moreover (2) is automatic.
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Now let U C M x M be the open subset

U={(p.q) e Mx M| X(p)#Xi(q)}.
We define W: U — R” by setting
I )l )
Ai(p) — Ai(q)
We deduce that F/(p) = F'(q) if and only if one of the following holds:

(@) (p,q) € Uand v=NV(p,q), or

(b) (p.q) ¢ U and F'~*(p) = F'~*(q).
Since dim U = 2m, the image W(U) form a zero-measure subset and we may
require that v be disjoint from it. This excludes (a) and therefore F' is injective
where F'~1 is injective: we get (3).

To show (4), suppose that F'(p) = F'(q) for some p, g € M;. We must
have Xi(p) = Xi(q) and F'=(p) = F'1(q). If \;(p) =0, then p,q € M;_,
and we get p = g by the induction hypothesis. If X\j(p) > 0, then p,q € U;
and we get p = g by the induction hypothesis again. O

V(p, q) =

3.11.5. Embeddings. We now want to make one step further, and pro-
mote injective immersions to embeddings. The following result is the main
achievement of this section.

Theorem 3.11.8 (Whitney embedding Theorem). For every smooth m-
manifold M there is a proper embedding M —s R?M+1.

Proof. Pick a smooth exhaustion g: M — Rsg from Proposition 3.3.9
and consider the proper map f: M — R2™1 f(p) = (g(p),0,..., 0). By
applying Theorems 3.11.4 and 3.11.7 with any fixed € > 0 we can perturb f
to an injective immersion, that is easily seen to be still proper. Being proper,
it is an embedding by Exercise 3.8.5. O

Concerning properness, we note the following.

Exercise 3.11.9. An embedding i: M — R" is proper <= i(M) is a closed
subset of R”.

Corollary 3.11.10. Every m-manifold M is diffeomorphic to a closed sub-
manifold of R>™+1.

For instance, every surface embeds properly in R>.



CHAPTER 4

Bundles

We introduce here a notion that is ubiquitous in modern geometry, that
of a bundle. We start with the more general concept of fibre bundle, and then
we turn to vector bundles.

4.1. Fibre bundles

In the previous chapter we have introduced the immersions M — N, and
we have proved that they behave nicely near each point p € M. After that,
we have discussed the enhanced notion of embedding that is also nice at every
point g € N.

Here we do more or less the same thing with submersions. These are maps
that behave nicely at every point p € M, and we would like them to be nice
also at every point g € N. Following this path we are led quite naturally to
the notion of fibre bundle.

4.1.1. Definition. \We work as usual in the smooth manifolds context.

Definition 4.1.1. Let F be a smooth manifold. A smooth fibre bundle with

fibre F is a smooth map
. E— B

between two smooth manifolds E, B called the total space and the base space,
that satisfies the following local triviality condition. Every p € B has an open
trivialising neighbourhood U C B whose counterimage w~1(U) is diffeomorphic
to a product U x F, via a map @: 7 (U) — U x F such that the following
diagram commute:

YU) L= UxF
W\L /
!
U
where m1: U X F — U is the projection onto the first factor.

The definition might look slightly technical, but on the contrary is indeed
very natural: in a fibre bundle E — B, every fibre is diffeomorphic to F, and
locally the fibration looks like a product U x F projecting onto the first factor.

Example 4.1.2. The trivial bundle is the product E = B x F, with the
projection m: E — B onto the first factor.

85
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Figure 4.1. The Mébius strip is the total space of a fibre bundle with
base a circle and fibre R. Although it is locally trivial (as every fibre bundle),
it is globally non-trivial: the fibre R makes a “twist” when transported all
through the base circle.

immersion H submersion H local diffeomorphism H smooth homotopy

embedding H fibre bundle H smooth covering H isotopy

Table 4.1. We summarise here some of the most important definitions
in differential topology. Every notion in the second row is an improvement
of the one above.

The prototype of a non-trivial fibre bundle is the Mébius strip shown in
Figure 4.1, which is the total space of a fibre bundle with F = R and B = S!.

If the fibre F is diffeomorphic to the line R, the circle S, the sphere S”,
the torus T, etc. we say correspondingly that E is a line, circle, sphere, or
torus bundle over B. For instance, the Mdbius strip is a line bundle over St.

Two fibre bundles w: E — B and 7’: E' — B are isomorphic if there is a
diffeomorphism 4 : E — E’ such that m = 7’ o 9. We say that a fibre bundle
is trivial if it is isomorphic to the trivial bundle.

Remark 4.1.3. Every fibre bundle is a submersion, but not every submer-
sion is a fibre bundle. Table 4.1 summarises some important definitions that
we have introduced up to now. Recall that immersions and submersions are
somehow dual notions, and every concept in the second row is an improvement
of the one lying above.

Example 4.1.4. Both the torus T and the Klein bottle K are total spaces of
fibre bundles over ST with fibre S1. A fibration on the torus is (e?, e/®) s e/
and is clearly trivial. Recall from Section 3.6.5 that K = T/, with ¢(e?, e'¥) =
(e'®+m), e=1%). A fibration on the Klein bottle is (e, e/?) — 2. It is not
trivial, because K is not diffeomorphic to S* x S*. See Figure 4.2.
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Figure 4.2. The torus and the Klein bottles are both total spaces of
circle fibrations over the circle. The first is trivial, the second is not.

4.1.2. Sections. A section of a fibre bundle E — B is a smooth map
s: B — E such that mos =idg.

Example 4.1.5. On a trivial fibre bundle Bx F — B everymap f: B — F
determines a section s(p) = (p, f(p)), and every section is obtained in this
way, so sections and maps B — F are roughly the same thing.

On non-trivial bundles sections are more subtle: there are fibre bundles
that have no sections at all. We will often confuse a section s with its image
s(B); we can do this without creating any ambiguity since s(B) determines s.

Exercise 4.1.6. Show that any two sections on the Mobius strip bundle
intersect. This also implies that the bundle is non-trivial.

4.2. Vector bundles

A vector bundle is a particular fibre bundle where every fibre has a structure
of finite-dimensional real vector space. This is an extremely useful concept in
differential topology and geometry.

4.2.1. Definition. A smooth vector bundle is a smooth fibre bundle £ —
M where the fibre E, = 7~(p) of every point p € M has an additional
structure of a real vector space of some dimension k, compatible with the
smooth structure in the following way: every p € M must have a trivialising
open neighbourhood U such that the following diagram commutes

T1(U) —2= U x R¥

e

U

via a diffeomorphism ¢ that sends every fibre £, to R* x {p} isomorphically
as vector spaces. Note that the dimensions k and n of the fibre and of M may
be arbitrary.

The simplest example of a vector bundle over M is the trivial one M x RX.
In general, the natural number k > 0 is the rank of the vector bundle. A
vector bundle with rank k = 1 is called a line bundle. Vector bundles arise
quite naturally in various contexts, as we will soon see.
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Exercise 4.2.1. Recall that RP" may be interpreted as the space of all the
vector lines | C R"T1. Consider the space

E={(v)eRP"xR"™! | vel}.

This is a smooth (n+1)-submanifold of RP" x R"*1 and the map 7: E — RP"
that sends (/,v) to / is a smooth line bundle with fibre F = R, called the
tautological line bundle.

4.2.2. Morphisms. A morphism between two vector bundles £ — M and
E' — M’ is a commutative diagram

E—f.F

M— M
f

where F and f are smooth maps, and F is a linear map on each fibre (that is
Fle,: Ep = Ef(,y is linear for each p € M).

Note that the dimensions of the manifolds M, M’ and of their fibres are
arbitrary, so this is a quite general notion. As usual, we say that a morphism
is an isomorphism if it is invertible on both sides: this is in fact equivalent to
requiring that both maps f and F be diffeomorphisms.

In some cases we might prefer to consider vector bundles on a fixed base
manifold M, and in that setting it is natural to consider only morphisms where
f is the identity map on M.

4.2.3. The zero-section. As opposite to more general fibre bundles, every
vector bundle E — M has a canonical section s: M — E, called the zero-
section, defined as s(p) = 0 where 0 is the zero in the vector space E,, for all
p € M. It is convenient to identify the image s(M) of the zero-section with
M itself.

We will always consider the base space M embedded canonically in E
through its zero-section.

4.2.4. Manipulations of vector bundles. Roughly speaking, every oper-
ation on vector spaces translates into one on vector bundles over a fixed base
manifold M. For instance, given two vector bundles E — M and E/ — M we
may define:

e theirsum E® E' — M,

e the dual E* — M,

e their tensor product £ @ E/ — M.
To do so we simply need to perform these operations fibrewise. If Ep, E;, are
the fibres over p in £, E’, then the fibre of £ @ E' is by definition E, ® Ej,.

Of course, to complete the construction we need to build a natural smooth
structure on E @ E’, and this is done as follows: if U x R¥ and U x R" are
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local trivialisations of £ and E’, then U x (R @ R") is a local trivialisation for
E & E’ and we equip it with the obvious product smooth structure.

The dual and tensor product bundles are defined analogously. More vector
bundles may be constructed by combining these operations.

Example 4.2.2. The vector bundle Hom(E, E’) — M is by definition the
vector bundle E*®E" — M. The fiber over p € M is Hom(E, E},) = E;® E,,
see Corollary 2.1.13.

4.2.5. Subbundle and quotient bundle. The notion of vector subspace
translates into that of subbundle. A h-dimensional subbundle of a given vector
bundle w: E — M is a submanifold £/ C E that is also a h-dimensional vector
bundle over M. That is, we require that E, = E, N E’ be a vector subspace
of E, for every p € M, and the projection 7|z : E' — M be a vector bundle.

Example 4.2.3. The line bundle of Exercise 4.2.1 is a subbundle of the
trivial bundle RP" x R™1,

If E’ is a subbundle of E, we can define the quotient bundle E/g — M,
whose fibre over p € M is the quotient vector space Ep/E;). The smooth
structure may not look obvious at this point: we will return on this later in
Section 4.4. The resulting maps

E/*>E4>E/E/

ol

id id
are bundle morphisms.

4.2.6. Restriction and pull-back. So far we have only described some
manipulations of vector bundles on a fixed base manifold M. Some interesting
operations arise also by varying the base manifold.

For instance we can change the base while keeping the fibres fixed: if
N C M is a submanifold, then every vector bundle E — M restricts to a
vector bundle E|y — N with the same fibres E, in the obvious way. We call
this operation the restriction to a submanifold. We get a bundle morphism

Ely —E
Ne—— M

More generally, let f: N — M be any smooth map and £ — M be a vector
bundle. The pull-back of f is a new vector bundle f*E — N constructed as
follows: the total space is

f*E={(p.v)e NxE|f(p)=m(v)} CNxE.
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The map 7: f*E — N is w(p,v) = p. The fibre (f*E), over p is naturally
identified with Ef(,y and is hence a vector space.

Proposition 4.2.4. The total space f*E is a smooth submanifold of N x E
and f*E — N is a vector bundle.

Proof. By restricting to a trivialising neighbourhood for E it suffices to
consider the case where N = R”, M =R™, and £ = R"” x RX. We get

f*E={(x,y,z) eR" xR" x R¥ | f(x) =y}
Everything now follows from Example 3.7.3. [l

We draw the commutative diagram

f*E > E
|7
A
N——-M
f

The dotted arrows indicate the maps that are induced by pulling-back 7 along
f. The restriction is a particular kind of pull-back where N C M is a subman-
ifold and f is the inclusion map.

Exercise 4.2.5. If f is constant, then 7*E is trivial.

4.3. Tangent bundle

We now introduce the most important vector bundle on a smooth n-
manifold M, the tangent bundle. We will also define some of its relatives,
like the cotangent, the normal, and the more general tensor bundle.

4.3.1. Definition. Let M be a smooth manifold. As a set, the tangent
bundle of M is the union
™= ] T,m
peM
of all its tangent spaces. There is an obvious projection w: TM — M that
sends T,M to p.

The set TM has a natural structure of smooth manifold induced from
that of M as follows: every chart ¢: U — V of M induces an isomorphism
dpp: ToM — R" for every p € U. Therefore it induces an overall identification
0o T HU) =V x R" via

@« (v) = (@(p), dpp(v))

where p = (v), for every v € m~1(U). We define an atlas on TM by taking
all the charts ¢, of this type. We have just defined the tangent bundle

™ — M
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Figure 4.3. The tangent bundle of S* is isomorphic to the trivial one.

of M. If dm M = n, then dim TM = 2n. We think of M embedded in T M as
the zero-section, as usual with vector bundles.

Example 4.3.1. The tangent bundle of an open subset U C R" is canoni-
cally identified with the trivial bundle

TU=UXxR"
because every tangent space in U is canonically identified with R”.

More generally, we can write the tangent bundle TM of a submanifold
M C R" of any dimension m < n quite explicitly:

Example 4.3.2. The tangent bundle of a submanifold M C R" is naturally
a submanifold TM C R” x R" = R?", defined by

TM={(p.v) | peMveT,M}.
For instance, we have
TS"={(x,v) ’ x| =1,ve XJ‘}.

Example 4.3.3. As suggested by Figure 4.3, the tangent bundle of St is
trivial. A bundle isomorphism f: S! x R — T S? is the following:

f(eiO' t) _ (eie' tei(9+g))
Is the tangent bundle of S? also trivial? And that of S3?

Exercise 4.3.4. The tangent bundle T M is always an orientable manifold
(even when M is not!).

Every smooth map f: M — N induces a morphism of tangent bundles

™ o TN

4 |7

M N
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by setting f.(v) = df,(v) where p = w(v) for all v.€ TM. The restriction of
f. to each fibre T,M is the differential dfy: ToM — Tr(,)N.
If fis a diffeomorphism, then £ is an isomorphism.

4.3.2. Cotangent bundle. The cotangent bundle T*M of a smooth man-
ifold M is by definition the dual of the tangent bundle TM. The fibre T ;M
at p € M is the dual of the tangent space T,M and is called the cotangent
space at p.

The cotangent bundle has some curious features that are lacking in the
tangent bundle. One is the following: every smooth function f: M — R
induces a differential df,: T,M — R at every p € M, which is an element

df, € T;M

of the cotangent space. We can therefore interpret the family of differentials
{dfp}pem as a section of the cotangent bundle, and call it simply df.

We have discovered that every smooth function f: M — R induces a
section df of the cotangent bundle called its differential.

Remark 4.3.5. When M = R”, both the tangent and the cotangent space
at every p € M are identified to R"” and the differential df is simply the gradient
V£, that assigns a vector (Vf), € R"” to every point p € R". Note however
that the tangent and cotangent spaces at a point p € M are not canonically
identified on a general smooth manifold M. A map f: M — R induces a
section of the cotangent bundle, not of the tangent bundle!

4.3.3. Normal bundle. Let M be a smooth manifold and N C M a sub-
manifold. We can find two natural vector bundles based on N: the tangent
bundle TN and the restriction T M|y of the tangent bundle of M to N. The
first is naturally a subbundle of the second, since at every p € N we have a
natural inclusion T,N C T,M.

The normal bundle at N is the quotient

yN =TMn/7n.

An interesting feature of the normal bundle is that the total space v/ has the
same dimension of the ambient space M. Indeed if dm M = mand dim N = n,

dmuvN=(m—n)+n=m.

This preludes to an important topological application of vN that will be re-
vealed in the next chapters.

Example 4.3.6. On a submanifold M C R” we may use the Euclidean scalar
product to identify v, M with Tp/\/ll for every p € M. We get an orthogonal
decomposition

ToM & vpM = R”
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for every p. Therefore
vM={(p.v) | p€MvevyM}CR"xR"
For instance we have
vS"={(x,v) | x| =1, v e Span(x)}.

It is easy to deduce that the normal bundle of S” inside R"*1 is trivial. There-
fore we get a connected sum of bundles

TS"@vS"=S" x RM™!

where two of them vS™ and S” x R"*1 are trivial, but the third one TS” may
not be trivial, as we will see.

4.3.4. Tensor bundle. For every h, kK > 0 we may construct the tensor
bundle 777k(M) via tensor products of the tangent and cotangent bundles:

TEM)=TM) @ - @T(M)RT* (M) ®--- @ T*(M).
h k

The fiber over p is the tensor space 777"(Tp/\/l). We define analogously the
symmetric and antisymmetric tensor bundles

SKm), N(M)

whose fibres over p are SK(T,M) and AK(T,M). In particular T1(M) is the
tangent bundle and 71(M) = SY(M) = A'(M) is the cotangent bundle. We
also define the trivial tensor bundle 72(M) = M x R, coherently with the fact
that a tensor of type (0, 0) is just a scalar in R.

4.4, Sections

The most important feature of vector bundles is that they contain plenty
of sections. Sections are not as exoteric as they might look like: in fact, many
mathematical entities that will be introduced in this book — like vector fields,
differential forms, and metric tensors — are sections in some appropriate vector
bundles, so it makes perfectly sense to study them in more detail. The effort
we are making now in treating these abstract objects in full generality will be
soon rewarded.

4.4.1. Vector space. Let m: E — M be a vector bundle. The space of
all sections s: M — E is usually denoted by

r(E).

This space is naturally a vector space: the sum s + s’ of two sections s and
s’ is defined by setting (s + s’)(p) = s(p) + s’(p) for every p € M, using the
vector space structure of Ep, and the product with scalars is analogous. The
zero of ['(E) is of course the zero-section.
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Moreover, for every smooth function f: M — R and every section s we
can define a new section fs by setting (fs)(p) = f(p)s(p). Therefore I'(E)
is also a module over the ring C*°(M).

If E and E’ are two bundles over M, with sections s and s’, then one can
define the sections s @ s’ and s® s’ of E® E’ and E ® E’ in the obvious way,

by setting (s © s')(p) = (s(p),s'(p)) and (s @ ") (p) = s(p) @ s'(p).

4.4.2. Extensions of sections. We now show that vector bundles have
plenty of sections, and we do this by proving that every “locally defined” section
may be extended to a global one.

Let m: E — M be a vector bundle and s be a section. On a trivialising
neighbourhood U, we get a diffeomorphism ¢: 7= 1(U) — U x R¥ and hence

o(s(p)) = (p.s'(p))

for some smooth map s’: U — RK. In other words, every smooth section s
can be read as a function s': U — RK on every trivalising neighbourhood U.

The fact that sections look locally like functions has some interesting con-
sequences: for instance, we now show that sections defined only partially may
be extended globally.

Let S C M be any subset. We say that a smooth map s: S — E is a
partial section if mos = idg. Recall from Definition 3.3.4 the correct meaning
of “smooth” here.

Proposition 4.4.1. IfS C M is a closed subset, every partial sections: S —
E may be extended to a global one M — E.

Proof. We adapt the proof Proposition 3.3.5 to this context. Locally,
sections are like maps U — R¥ and can hence be extended. Therefore for
every p € S there are an open trivialising neighbourhood U and a local extension
9p: U, — E of s. We then proceed with a partition of unity following the same
proof of Proposition 3.3.5. O

Remark 4.4.2. By construction, we may suppose (if needed) that s van-
ishes outside of any given neighbourhood of S.

Exercise 4.4.3. Let E — M be a vector bundle of rank kK > 1. If M is not
a finite collection of points, the vector space I'(E) has infinite dimension.

4.4.3. Zeroes. Let m: E — M be a vector bundle over some smooth
manifold M. We say that a section s: M — E vanishes at a point p € M if
s(p) = 0. In that case p is called a zero of s. The section is nowhere vanishing
if s(p) #0 forall p e M.

Here is one important thing to keep in mind about sections of vector
bundles: although there are plenty of them, it may be hard — and sometimes
impossible — to construct one that is nowhere vanishing. As an example:
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Exercise 4.4.4. The Mobius strip line bundle £ — S has no nowhere-
vanishing section.

4.4.4. Frames. Let m: E — M be a rank-k vector bundle. A frame for
T consists of k sections sy, ..., sk such that the vectors si(p), .. ., sk(p) are
independent, and hence form a basis for Ej, for every p € M.

On a frame, every s; is in particular a nowhere-vanishing section: therefore
finding a frame is even harder than constructing a nowhere-vanishing section.
In fact, the following shows that frames exist only on very specific bundles.

Proposition 4.4.5. A bundle has a frame <= the bundle is trivial.

Proof. On a trivial bundle £ = M x R¥, the sections s;(p) = (p, ) with
I=1,..., k form a frame. Conversely, a frame sy, ..., skonm: E — M
provides a bundle isomorphism F: M x RK — E by writing

F(p, (A, Ak)) = A1s1(p) + - + Mesk(p).

The proof is complete. O

In light of this result, a frame is also called a trivialisation of the bundle.
A nontrivial bundle E — M has no global frame, but it has many local frames:
we define a local frame to be a frame on a trivialising open set U C M. Every
trivialising open set has a local frame, induced by the trivialising chart.

4.4.5. Subbundles demystified. Frames are useful tools, for instance we
use them now to clarify the notion of subbundle.

Lemma 4.4.6. Let E — M be a bundle and E' C E a subset. Define
E, = E,NE'. The following are equivalent:

(1) E’ is a rank-h subbundle;
(2) every p € M has a trivialising neighbourhood U and a frame sy, . . ., Sk
for E|y such that Ej, = Span(sl(q) ..... sh(q)) for all g € U;

Proof. (1)=-(2). Pick a neighbourhood U that trivialises both E and E’.
The bundle E|y is like U x RX. Since E’|y is also trivial, it has a frame
S, ..., sp in U. Choose some fixed vectors spyq, ..., Sk € R" so that the k
vectors s1(p), ..., sh(p), She1, .-, sk are independent. After shrinking U, the
vectors s1(q), ..., sn(q), Sha1, - -, Sk remain independent for all g € U and
thus sy, ..., sk is a frame for E|y.

(2)=(1). The neighbourhood U trivialises also E’. O

This shows in particular that a subbundle £/ C E looks locally like U x
R" x {0} € U x R" x RK=" above U C M. In particular the quotient bundle
E /e looks locally as U xR¥™" and these identifications may be used to assign
a smooth atlas to £/g/, as we mentioned in Section 4.2.5.
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4.4.6. Tensor fields. We now introduce the most important types of sec-
tions in differential topology and geometry: these appear everywhere, and will
be ubiquitous also in this book.

Let M be a smooth manifold. A tensor field of type (h, k) is a section s
of the tensor bundle T;*(M) of M, that is

s e T(THE(M)).

In other words, we have a tensor s(p) € TX(T,M) that varies smoothly with
the point p € M.

Since TP (M) = M xR is the trivial line bundle, a tensor field of type (0, 0)
is just a smooth function s: M — R.

A tensor field of type (1,0) assigns a tangent vector at every point and
is called a vector field: vector fields are extremely important in differential
topology and we will study them in the next chapter with some detail.

A tensor field of type (0, 1) may be called a covector field, but the term
1-form is more often employed. More generally, a k-form is a section of the
antisymmetric tensor bundle AX(M). These are also important objects and we
will dedicate the Chapter 7 to them.

A symmetric tensor field of type (0, 2) assigns a bilinear symmetric form to
every tangent space: this notion will open the doors to differential geometry.

Most of the operations that we defined on tensors apply naturally to tensor
fields. For instance, the tensor product s ® s’ of two tensor fields s and s
of type (h, k) and (K, k") is a tensor field of type (h+ W, k + k'), and the
contraction of a tensor field of type (h, k) is a tensor field of type (h—1, k—1).

4.4.7. Coordinates. Let s be a tensor field of type (h, k) on M and let
©: U — V be achart. We now want to express s in coordinates with respect
to the chart ¢.

As we already noticed, for every p € U the differential dy, identifies the
tangent space T,M with R", and we deduce from that an identification of the
tensor space T,X(T,M) with T,X(R"). The tensor field s, restricted to U, may
therefore be represented as a smooth map

sV — TH(R).

How can we write such a map? The vector space 777’((]1%”) has a canonical
basis that consists of the elements

ei1®"'®eih®ejl®“’®ejk

where 1 <q,..., Ih J1, - o Jk<nandeq,..., e, is the canonical basis of R”,
see Section 2.2.2. Therefore s’ may be written uniquely as

S(x)=sM(x)e, @ Re, 0 @ @ ek
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where the coefficients vary smoothly with respect to x € V. Shortly, the
coordinates of s with respect to ¢ are the coefficients

that depend smoothly on a point x.

4.4.8. Changes of coordinates. If we pick another chart around a point
p € M, the same tensor field s is represented via some different coordinates

alt,...,
*h

and the transformation law relating the two different coordinates is prescribed
by Proposition 2.2.11. It is convenient here to denote the coordinates of the

two charts by xq,..., X, and X1, ..., X, respectively, so that the differential of
the transition map may be written simply as

0X;

ox;

The transformation law says that

sitoin _ 0K, 0%, Oxm, OXmy 11y
T d axh aX/h 8)?]1 a%k f

For instance, for a vector field we have
s 9%
0xj
while for a covector field we get

aX,'
= =<S;.
0%

W

Note that everything is designed so that every two repeated indices stay one
on the top and the other on the bottom, in every formula. This is a conven-
tion that helps us to prevent mistakes; another trick consists of replacing the
notations e; and e/ with the symbols a% and dx/. We will explain this in the
subsequent chapters.

4.5. Riemannian metric

It is sometimes useful to equip a vector bundle with some additional struc-
ture, called Riemannian metric. Not only this structure is interesting in its own
right, but it is also useful as an auxiliary tool.
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4.5.1. Definition. Let m: E — M be a vector bundle. Consider the bun-
dle E*® E* — M. Remember that the fibre above p € M is the space E,Q E]
of all tensors on E, of type (0,2). Remember also that scalar products are
particular kinds of symmetric tensors of type (0, 2).

Definition 4.5.1. A Riemannian metric in T is a section g of E* ® E* such
that g(p) is a positive-definite scalar product on E, for every p € M.

In other words, a Riemannian metric is a positive-definite scalar product
g(p) on each fibre E,, that varies smoothly with p. On a trivialising chart
U the bundle E looks like U x R* and g can be represented concretely as a
positive-definite symmetric matrix g;; smoothly varying with p € U.

Proposition 4.5.2. Every vector bundle has a Riemannian metric.

Proof. We fix an open covering U; of trivialising sets. Above every U, the
bundle is like U; x R¥, so we can identify Ep= R¥ for every p € U; and assign
it the Euclidean scalar product, that we name g(p);.

To patch the g(p); altogether, we pick a partition of unity {p;} subordinate
to the covering. For every p € M we define

g(p) = Zp/(p)g(p)/.

This is a positive-definite scalar product, because a linear combination of pos-
itive definite scalar products with positive coefficients is always a positive-
definite scalar product. O

Example 4.5.3. The Euclidean metric on the trivial bundle M x RX is the
assignment of the Euclidean scalar product on every fibre R¥.

If E — M has a Riemannian metric, then every subbundle and every
restriction to a submanifold also inherits a Riemannian metric.

4.5.2. Orthonormal frames. Let E — M be a vector bundle equipped
with a Riemannian metric. An orthonormal frame is a frame sq, ..., sk where
s1(p), ..., sk(p) form an orthonormal basis for every p € M.

Proposition 4.5.4. Every frame transforms canonically into an orthonormal
frame via the Gram — Schmidt algorithm.

Proof. This sentence already says everything. The Gram — Schmidt al-
gorithm transforms s1(p), ..., sk(p) into k orthonormal vectors in a way that
depends smoothly on p, as one can see on a chart. O

Corollary 4.5.5. A bundle has an orthonormal frame <= it is trivial.

Proof. We already know that a bundle has a frame <= it is trivial. O
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4.5.3. Isotopies. We will soon need an appropriate notion of isotopy be-
tween bundle isomorphisms.

Let E — M and E/ — M be two vector bundles, and f, g: E — E’ be two
isomorphisms. An isotopy between f and g is a smooth map

F:ExR— FE

such that each F; = F(-, t) is an isomorphism, and Fo = f, F1 = g.

4.5.4. Isometries. An isometry between vector bundles E, E’ with Rie-
mannian metrics ¢, ¢’ is an isomorphism F: E — E’ that preserves the metric,
that is with ¢’ (F(v), F(w)) = g(v, w) for all v, w € E,, and all p € M.

The following proposition says that, maybe a bit surprisingly, isometry
between vector bundles is not a stronger relation than isomorphism. This fact
extends the well-known linear algebra theorem that says that two real vector
spaces equipped with positive definite scalar products are isometric if and only
if they are isomorphic.

Proposition 4.5.6. Two isomorphic vector bundles equipped with arbitrary
Riemannian metrics are always isometric, via an isometry that is isotopic to
the initial isomorphism.

Proof. We may reduce to the case where m: E — M is a vector bundle
and g, g’ are two arbitrary Riemannian metrics on it; we must construct an
isomorphism E — E relating g and ¢, isotopic to the identity.

Let U be a trivialising neighbourhood. Pick two orthonormal frames s; and
sf for g and g’ on U. We may represent every isomorphism of E|y with respect
to these frames as a matrix A(p) € GL(n, R) that depends smoothly on p € U.
The isomorphism is an isometry <= A(p) € O(n) for every p € U.

Let A = A(p) represent the identity isomorphism in these basis. Use
Proposition 3.9.8 to decompose A as A= OS with O € O(n) and S € ST (n).
The matrix O(p) defines an isometry relating g and ¢’.

The remarkable aspect of this definition is that, by Proposition 3.9.9, the
isometry defined by O(p) does not depend on the orthogonal frames s; and
s/ chosen above! Therefore by covering M with charts we get a well-defined
global isometry E — E relating g and ¢’.

An isotopy between O and the identity is B(p) = O(p) (t!/ + (1 —t)S(p)),
using that S (n) is convex. This is well defined again by Proposition 3.9.9. [

This shows in particular that every bundle E — M with any Riemannian
metric g is locally Euclidean: for every trivialising subset U C M the bundle
E|y is isometric to U x R¥ equipped with the Euclidean metric.

4.5.5. Unitary sphere bundle. Let m: E — M be a vector bundle. Let
us equip it with a Riemannian metric g. Every fibre E, has a positive-definite
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scalar product g(p) and hence every vector v € E, has a norm

vl = vg(v,v).

The associated unitary sphere bundle is the submanifold
S(E) = {v cE \ vl = 1}.

The projection T restricts to a projection m: S(E) — M whose fibre S(E), is
the unitary sphere in Ep.

Proposition 4.5.7. The projectionT: S(E) — M is indeed a sphere bundle.
It does not depend, up to isotopy, on the chosen metric g.

By “isotopy” we mean that the sphere bundles constructed from two met-
rics g and ¢’ are related by a self-isomorphism of £ — M isotopic to the
identity.

Proof. We have to prove the local triviality. On a trivialising open set U
the bundle E is isometric to the Euclidean U x R, so S(E)|y is like U x Sk71.
If we pick another metric ¢’, we get an E’ isometric to E by Proposition
4.5.6. Therefore S(E’) is isotopic to S(E). O

4.5.6. Orthogonal bundle. Let E — M be a vector bundle equipped with
a Riemannian metric. For every subbundle E/ — M we have an orthogonal
bundle (E")* — M, whose fiber (E")7 is the orthogonal subspace to E,, C E,
with respect to the metric.

The orthogonal bundle is canonically isomorphic to the normal bundle £/ g
and may be seen as a realisation of it as a subbundle of E.

Example 4.5.8. If the tangent bundle TM of a manifold M is equipped
with a Riemannian metric, the normal bundle vN of any submanifold N C M
may be seen (using the metric) as a subbundle of T M|y, so that we have an
orthogonal sum

TM|/\/ =TN®UN.

4.5.7. Dual vector bundle. Here is another instance where a Riemannian
metric may be used as an auxiliary tool, to prove theorems.

Proposition 4.5.9. Every vector bundle E — M is isomorphic to its dual
E* — M.

Proof. Pick a Riemannian metric on M. The scalar product on E, may
be used to identify E, with its dual £ as described in Section 2.3.3. This
furnishes the bundle isomorphism. O

Example 4.5.10. A Riemannian metric on the tangent bundle T M deter-
mines an identification of the tangent and the cotangent bundle over M. More
generally, it furnishes some bundle isomorphisms

To'(R") = Thk(R") 2 TR,
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4.5.8. Shrinking vector bundles. A Riemannian metric may be used to
shrink a vector bundle as follows. We will need this technical operation in the
next chapters.

Lemma 4.5.11. Let E — M be a vector bundle. For every neighbourhood
W C E of the zero-section M, there is an embedding g: E — W with

® glm =idum,
e g(E,) C E, for every p e M.

Proof. Fix a Riemannian metric on E. Using a partition of unity, we can
prove (exercise) that there is a smooth positive function €: M — R such that
W contains all the vectors v € E,, with |lv|| < e(p), for all p € M. Define

v
g(v) =e(m(v)) —F—-
( )\/1+ Iv][
This map fulfills the requirements. O

4.5.9. Trivialising sums. The tangent bundle TS” of a sphere is often
non-trivial, but it suffices to add the normal bundle of S” in R™! to get a
trivial bundle, that is:

TS"@uS"=S" x R
This is in fact an instance of a more general phenomenon:

Exercise 4.5.12. For any vector bundle E — M there is another vector
bundle E' & M such that E & E' — M is trivial.

4.6. Homotopy invariance

We have encountered in the previous pages a formidable tool for creating
new vector bundles from old ones, the pull-back, that transports a bundle
E — M back to f*E — N along any smooth map f: N — M. We now show
that (if NV is compact) the resulting bundle depends only on the homotopy class
of f. This homotopy invariance of pull-backs has important consequences.

4.6.1. Bundle isomorphism. Let E — M and F — M be two vector
bundles of the same rank r on the same manifold M. How can we tell if the
two bundles are isomorphic? This is a fairly non-obvious problem in general,
so for the moment we just rephrase it in a different form.

Recall that Hom(E, F) — M is the vector bundle whose fiber over p € M
is the space Hom(E,, Fp) of all homomorphisms E, — Fp. Let Isom(Ep, Fp) C
Hom(E,, Fp) be the open dense subset consisting of all invertible homomor-
phisms. Set

Isom(E, F) = U Isom(Ep, Fp).
peM

TBD
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Proposition 4.6.1. The subset Isom(E,F) C Hom(E, F) is open and
dense. The restriction Isom(E, F) — M is a fibre bundle with fibre GL(r, R).

Proof. On a trivialising set U C M for both E and F the two bundles are
both like U x R" and Isom(E, F) is like U x GL(r, R). 0

Note that Isom(E, F) is just a fibre bundle, not a vector bundle. Here is
a rephrasing of the isomorphism problem. The proof is obvious.

Proposition 4.6.2. The bundles E — M and F — M are isomorphic <=
the fibre bundle Isom(E, F) has a section.

4.6.2. Homotopy invariance. We can now prove the invariance of pull-
backs under smooth homotopies. Let f,g: N — M be two smooth maps
between manifolds, and £ — M a vector bundle.

Theorem 4.6.3. If N is compact and the maps f, g are smoothly homo-
topic, the pull-back vector bundles f*E and g*E are isomorphic.

Proof. Let ®: N x R — M be a smooth homotopy between f and g. Set
fr = ®(-,t) and consider the pull-back vector bundle fE — N. We now
show that for every to € R there is an € > 0 such that the bundles fE for
t € (to — €, to + €) are all isomorphic to fE. By the compactness of [0, 1]
we then conclude that 7 E and f"E are isomorphic.

Consider the bundles ®*E and 7*(f; E) over N xR, where m: NxR — N
is the projection. Their restrictions to N = N x {t} are f;"E and f; E, hence
they are isomorphic at t = ty. Finally, consider the fibre bundle

lsom (®*E, m*(fE)) — N x R.
This fibre bundle clearly has a section on N x {tg}. Since N is compact, the

section extends to some neighbourhood N X (tg — €, tg+¢€). To show this, we
can pick any extension to a global section in the vector bundle

End(®*E, 7 (f2E)) — N x R

and note that since Isom is open in End this extended section lies entirely in
Isom for small €. By Proposition 4.6.1, the vector bundles f"E and fi E are
isomorphic Vt € (ty — €, tg + €). O

4.6.3. Vector bundles over contactible manifolds. Here is an important
consequence of Theorem 4.6.3.

Corollary 4.6.4. Every vector bundle over a contractible manifold is trivial.

Proof. Let M be contractible, that is a constant map f: M — M is ho-
motopic to the identity id: M — M. Let E — M be a vector bundle. Then
E = f*E is trivial by Exercise 4.2.5. O

This shows in particular the following.
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Corollary 4.6.5. Let E — M be a vector bundle. Any contractible open
set U C M is trivialising, that is, E|y = U x R".

For instance, every open subset U C M that is diffeomorphic to R” trivi-
alises the bundle.






CHAPTER 5

The basic toolkit

We now introduce some fundamental notions that apply to every context
in differential topology: we start with vector fields, their flows and Lie brackets;
then we turn to distributions, foliations, and the Fobenius Theorem; finally, we
introduce the two most important tools to understand embedded submanifolds,
namely tubular neighbourhoods and transversality.

5.1. Vector fields

5.1.1. Definition. Let M be a smooth manifold. A section X: M — TM
of the tangent bundle is called a vector field: it assigns a tangent vector
X(p) € Tp(M) to every point p € M that varies smoothly with p.

Some vector fields on the torus are drawn in Figure 5.1. Recall that a zero
of X is a point p such that X(p) = 0. Note that the vector fields in the figure
have no zeroes.

Example 5.1.1. When n = 2m — 1 is odd, the following is a nowhere-
vanishing vector field on S” C R?™:

Exercise 5.1.2. Write a smooth vector field on S” that vanishes only at
the poles (£1,0, ..., 0).

We denote by X(M) the set of all the vector fields on M. Recall from
Section 4.4 that X(M) = (T M) is a vector space and also a C*>°(M)-module.

Figure 5.1. Nowhere-vanishing vector fields on the torus.

105
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5.1.2. Diffeomorphisms. Many of the mathematical objects that we de-
fine are naturally transported along smooth maps f: M — N, either from M
to N or vice-versa from N to M, but this is not the case with vector fields:
there is no meaningful way to transport a vector field along a generic map f,
neither forward from M to N nor backwards from N to M.

On the other hand, every intrinsic (that is, coordinates-independent) no-
tion can be transported in both directions if f: M — N is a diffeomorphism.
In that case, every vector field X in M induces a vector field Y on N via
differentials, that is by imposing:

Y (f(p)) = dfy(X(p)) for every p € M.

This gives an isomorphism between X(M) and X(N).

5.1.3. On charts. If X is a vector field on M and o: U -V CR"is a
chart, we can restrict X to a vector field on U and then transport it into a
vector field in V. As we noticed in Section 4.4.7, the transported vector field
assumes the familiar form of a smooth map V' — R” because T (V) =V xR",
and we may write it as a vector

(Xl(x) ..... X"(x))

in R” that varies smoothly on x € V. Here X' is the i-coordinate of X in the
chosen chart, a real number that depend smoothly on x € V. We can use the
Einstein notation and write the transported vector field in VV more concisely as

X’e,-.

It turns out that it is more comfortable to use the symbol 6%/ instead of e;,
and we write instead

0

6X,‘.

Why do we prefer the awkward notation a% to e;7 The partial derivative
symbol is appropriate here for three reasons: (i) it is coherent with the inter-
pretation of tangent vectors as derivations, (ii) there is no risk of confusing it
with anything else, and more importantly (iii) it helps us to write the coordi-
nate changes correctly via the chain rule. Indeed, if we pick another chart we
get different coordinates

Xi

0

O%;

and we know from Section 4.4.8 that the coordinates of a vector change
contravariantly, hence

Xi

_ B%;
) I J
(6) X=X e
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Thanks to the partial derivative notation, there is no need to remember the
formula by heart: it suffices to apply formally the chain rule and we get
o _ %0
Ox; 0x; OX;
This gives (6). Beware that one possible source of confusion is that the
coordinates of a vector change contravariantly, while the vectors themselves
of the basis change covariantly: indeed we have

0 0x; 0

0% 0% 0x;
and the change of basis matrix here is the inverse of the one that we find in
(6). Luckily, we can relax: the partial derivative notation helps us to write the

correct form in any context.

Xi

5.1.4. Vector fields on subsets. Let M be a smooth manifold. It is
sometimes useful to have vector fields defined not on the whole of M, but only
on some subset S C M. By definition, a vector field in S is a smooth partial
section S — T M of the tangent bundle, see Section 4.4.2. The following
example may be quite common.

Example 5.1.3. If f: N < M is an embedding, every vector field X in N
induces a vector field Y on the image S = f(N) by setting

Y (f(p)) = dfp(X(p)).
We now rephrase Proposition 4.4.1 in this context:

Proposition 5.1.4. If S C M is a closed subset, every vector field on S
may be extended to a global one on M.

We may also require that the extended vector field vanishes outside of an
arbitrary neighbourhood of S.

Corollary 5.1.5. Let N C M be a compact submanifold. Every vector
field in N extends to a vector field in M that vanishes outside of any given
neighbourhood of N.

5.1.5. Straightening. Let X be a vector field on a smooth manifold M,
and p € M a point. Among the infinitely many possible charts near p, is there
one that transports X into a reasonably nice vector field in R"? The answer
is positive if X does not vanish at p.

Proposition 5.1.6 (Straightening vector fields). If X(p) # O, there is a
chart U — V with p € U that transports X into 8%1.

Proof. By taking a chart we may suppose that M = R"”, p = 0, and
X(p) = 8%1' We now use the flow F(x, t) to construct a chart that straightens
the field X. We set

"-/}(Xl ----- Xn) = F((OrX2 ----- Xn):Xl)-
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The differential dvqg is the identity, because ¥(0, x2, ..., xn) = (0, X2, ..., Xn)

and y(t) =(t,0,...,0) is an integral curve of X, hence vy/'(0) = 8%1.
Therefore 1 is a local diffeomorphism that sends the lines x + te; to

integral curves of X, so it sends the vector field 8%1 to X. O

5.2. Flows

It is hard to overestimate the importance of vector fields in differential
topology: they appear naturally everywhere, not only as intrinsically interesting
objects, but also as very powerful tools to prove deep theorems.

In this section, we show that a vector field X on a smooth manifold M
defines an infinitesimal way to deform M through a flow which moves every
point of p along an integral curve, a curve that is tangent to X at every point.

Flows are powerful tools, and we will use them here to promote isotopies
to ambient isotopies on every compact manifold.

5.2.1. Integral curves. Let M be a smooth manifold and X a given vector
field on M. An integral curve of X is a curve «v: | — M such that

Y (t) = X (v(1))
forall t e l.

Example 5.2.1. The curve «y(t) = (cost,sint,...,cost,sint) is an inte-
gral curve of the vector field in S” described in Example 5.1.1.

An integral curve «v: | — M is maximal if there is no other integral curve
n: J— M with | C J and y(t) = n(t) for all t € . Every integral curve can
be extended to a maximal one by enlarging the domain as much as possible.
A straightforward application of the Cauchy — Lipschitz Theorem 1.3.5 proves
the existence and uniqueness of maximal integral curves:

Proposition 5.2.2. Let X be a vector field in M. For every p € M there is
a unique maximal integral curve «y: | — M with v(0) = p.

Proof. Pick a chart ¢: U — R" and translate locally everything into R".
The vector field X transforms into a smooth map R” — R”, that we still
denote by X for simplicity. An integral curve =y satisfies /(t) = X(’y(t)).
The local existence and uniqueness of <y follows from the Cauchy — Lipschitz
Theorem 1.3.5. The maximal integral curve is also clearly unique. O

5.2.2. Flows. One very nice feature of the Cauchy — Lipschitz Theorem
is that the unique solution depends smoothly on the initial data. In this topo-
logical context, this implies that all the integral curves on a fixed vector field
may be gathered into a single smooth family, as follows.

Let X be a vector field on a smooth manifold M.
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Theorem 5.2.3. There is a unique open neighbourhood U of M x {0} inside
M x R and a unique smooth map ®: U — M such that the following holds:
for every p € M the set I, = {t eR | (p, t) € U} Is an open interval and
Yp: lp = M, vp(t) = P(p, t) is the maximal integral curve with «y,(0) = p.

Proof. For every p € M there is a maximal integral curve 7y,: [, — M
with v,(0) = p. We define

U={(p.t) | telp},  @(pt)=(t).

The Cauchy —Lipschitz Theorem 1.3.5, applied locally at every point (p, t),
implies that U is open and ® is smooth. O

The map @ is the flow associated to the vector field X. If the open maximal
set U is the whole of M x R we say that the vector field X is complete.

Example 5.2.4. Pick M = R" and X = % constantly. In this case we
have U = M x R and ®(x,t) = x + te, so X is complete. If we remove
from M a random closed subset, the resulting vector field X is probably not
complete anymore.

Here is a simple completeness criterion.
Lemma 5.2.5. If M x (—¢,€) C U for some € > 0, then X is complete.

Proof. We fix an arbitrary point p € M and we must prove that /, = R.
Pick any t € /5. The integral curves emanating from p and ®(p, t) differ only
by a translation of the domain: hence I, = g, 1) + t and

(7) ®(d(p, t),u) = d(p, t + u)

for every u € Ig(p+). By hypothesis (—€, €) C lg(p,+) and hence (t—¢, t+¢€) C
Ip. Since this holds for every t € /, we get [, = R. O

Corollary 5.2.6. Every vector field on a compact M is complete.

Proof. By compactness any neighbourhood U of M x {0} in M x R must
contain M x (—¢, €) for some € > 0. (I

Let now X be a complete vector field on a smooth manifold M and & be
its flow. We denote by ®;: M — M the level map ®+(p) = P(p, t).

Proposition 5.2.7. The map ®; is a diffeomorphism for all t € R. Moreover
d_; = (Dt_ly Prys = Do
for all t,s € R.

Proof. The equality (7) implies that ®;s = &0 for all t, s € R. This
in turn gives ®_; = CID;1 and hence ®; is a diffeomorphism. O
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A smooth map ®: M x R — M with these properties is also called a one-
parameter group of diffeomorphisms. Indeed we may consider this family as a
group homomorphism R — Diffeo(M), t — & where Diffeo(M) is the group
of all diffeomorphisms M — M.

It is indeed a remarkable fact that by constructing vector fields on a com-
pact manifold M we get plenty of one-parameter families of diffeomorphisms
for M.

Example 5.2.8. The vector field on S” constructed in Example 5.1.1 gen-
erates the flow

D(xq, ..., Xom, t) = (xpcost — xasint, xocost + xqsint,...).

5.3. Ambient isotopy

The previous discussion on flows and diffeomorphisms leads us naturally
to define a stronger form of isotopy, called ambient isotopy, that involves a
smooth distortion of the ambient space.

5.3.1. Definition. Let M be a smooth manifold.

Definition 5.3.1. An ambient isotopy in M is an isotopy F between the
identity id: M — M and some diffeomorphism ¢: M — M, such that every
level F+: M — M is a diffeomorphism.

For instance, every flow @ generated by some complete vector field X on
M is an ambient isotopy between the identity ®g and the diffeomorphism ®;.

Let now M, N be two manifolds. We say that two embeddings f,g: M —
N are ambiently isotopic if there is an ambient isotopy F on N wth Fy = id
and F; = ¢ such that g = p o f. We check that this notion is indeed stronger
than that of an isotopy.

Proposition 5.3.2. If f, g are ambiently isotopic, they are isotopic.

Proof. An isotopy G¢ between f and g is G(x) = F(f(x)). O

Informally, two embeddings f and g are ambiently isotopic if they related
by an isotopy that “moves the whole of N". We now use the flows to show
that, if M is compact, the two notions actually coincide.

Theorem 5.3.3. If M is compact, any two embeddings f,g: M — N are
isotopic <= they are ambiently isotopic.

Proof. Let F: M x R — N be an isotopy relating f and g. We define
G:MxR—NxR

by setting G(p,t) = (F(p,t),t). We note that G is time-preserving and
proper (because M is compact). Moreover

d(Fe)p
dG(p,t) = < 0 p 1>
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M

Figure 5.2. The vertical vector field X on M x [0, 1] is transported via
G into a vector field Y defined only on the compact set B.

and hence G is an injective immersion. Being proper, the map G is an embed-
ding (see Exercise 3.8.5) and therefore its image G(M x R) is a submanifold
of N x R.

The vertical vector field X = % on M x [0, 1] is transported via G into a
vector field Y defined only on the compact set B = G(M x [0, 1]), by setting
Y(G(p. 1)) = dGpr)(Z) as in Example 5.1.3. See Figure 5.2.

The vector field Y is defined only on the compact subset B € N x R, but
we may extend it to a vector field Y on the whole of N x R with the property
that Y = % outside of some compact neighbourhood V' of B. To show this,
we first extend Y to a vector field that vanishes outside V/, and then modify
everywhere its t-coordinate to be constantly 1.

We now consider the flow ® of Y in N xR. The vector field Y is complete:
to show this, we note that V' is compact and ®¢+(p, u) = (p, u+ t) outside V,
and these two facts easily imply that there is an € > 0 such that @ is defined
at every time |t| < g, so Lemma 5.2.5 applies.

Since the t-component of Y is constantly 1 we get

®¢(p,0) = (H(p. 1), t)

for some smooth map H: NxR — N. We write H¢(p) = H(p, t) and note that
Hy: N — N is diffeomorphism for every t, since ®; is. Moreover Hy = id and
hence H furnishes an ambient isotopy. Finally, we have H(f(p), t) = F(p, t)
for every (p, t) € M x [0,1] because Y = dG(Z) on B. Therefore H is an
ambient isotopy relating f and g. ([

Corollary 5.3.4. Every connected smooth manifold M is homogeneous,
that is for every two points p, q € M there is a diffeomorphism f: M — M
isotopic to the identity such that f(p) = q.

Proof. There is a smooth arc v: R — M with v(0) = p and y(1) = g
(exercise). This arc may be interpreted as an isotopy between two embeddings
{pt} — M that send a single point to p and to g, respectively. This isotopy
may be promoted to an ambient isotopy, that sends p to q. O
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Figure 5.3. The trivial and the trefoil knot are not isotopic. This is
certainly true... but how can we prove it?

How can we prove that two given homotopic embeddings are actually not
isotopic? For instance, how can we prove the intuitive fact that the two knots
in Figure 5.3 are not isotopic? If they were isotopic, they would also be ambient
isotopic, and hence in particular they would have homeomorphic complements.
One can then try to calculate the fundamental groups of the complement and
prove that they are not isomorphic: this strategy actually works for the two
knots depicted in the figure.

5.4. Lie brackets

We now introduce an operation on vector fields called Lie bracket. The
Lie bracket [X, Y] of two vector fields X and Y in M is a third vector field that
measures the "lack of commutativity” of X and Y.

5.4.1. Vector fields as derivations. Let X be a vector field on a smooth
manifold M. For every open subset U C M and every smooth function f €
C*(U) we may define a new function Xf € C*(U) by setting

(XF)(p) = X(p)(F)

for every p € U. Recall that X(p) € T,M is a derivation and hence transforms
any locally defined function f into a real number X(p)(f), so the definition of
Xf makes sense.

In coordinates, the vector field X is written as
-0
X' —
aX,‘

and the new function Xf is simply

; Of
ox;’
This shows in particular that Xf is smooth.

We have just discovered that we can employ vector fields to “derive” func-
tions. We use the term “derivation” here, because the Leibnitz rule

X(fg) = (Xf)g+ f(Xg)

X
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is satisfied by construction for every functions f and g defined on some com-
mon open set U C M. Of course the derived function Xf depends heavily on
the vector field X.

Another way of seeing X is as the result of a contraction of the differential
df, a tensor field of type (0, 1), with X, a tensor field of type (1,0). The result
is a tensor field Xf of type (0, 0), that is a smooth function.

5.4.2. Lie brackets. Let X and Y be two vector fields on a smooth man-
ifold M. The Lie bracket [X,Y] of X and Y is a new vector field, uniquely
determined by requiring that

[X,Y]f = XYf -YXf
for every function f defined on any open subset U C M.
Proposition 5.4.1. The vector field [X,Y] is well-defined.

Proof. For the moment, the bracket [X, Y] = XY —Y X is just an operator
on smooth functions defined on any open subset U C M. For every f,g €
C>®(U) we get

XY (fg) =X((Yf)g) + X(f(Y9g))
= (XYF)g+ (YF)(Xg) + (XF)(Yg) + f(XYg),
YX(fg) = (YXF)g+ (X)(Yg) + (Y)(Xg) +f(YXg)
from which we deduce that
(X, Y1(fg) = ([X.Y1f)g+ f([X,Y]g).

We have proved that [X, Y] is also a derivation. This allows us to define [X, Y]
as a vector field, by setting

[X.Y1(p)(F) = [X. YI(£)(p)
for every p € M and every f defined near p. The proof is complete. O

5.4.3. Lie algebra. We introduce an important concept.

Definition 5.4.2. A Lie algebra is a real vector space A equipped with an
antisymmetric bilinear operation [, ] called Lie bracket that satisfies the Jacobi
identity

[,y 2) + [y, 2. x] + [[z.x].y] = 0O
for every x,y,z € A.

Let M be a smooth manifold. Recall that X(M) is the vector space con-
sisting of all the vector fields in M.

Exercise 5.4.3. The space X(M) with the Lie bracket [,] is a Lie algebra.
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5.4.4. In coordinates. The definition of the Lie bracket is quite abstract
and is now due time to write an explicit formula that is valid in coordinates
with respect to any chart.

Exercise 5.4.4. In coordinates we get
Yo)d i BX’.
ox; ox;

X, Y] =X

The reader may also wish to define [X, Y] directly via this formula, but in
that case she needs to verify that this definition is chart-independent, a fact
that is not immediately obvious: for instance if we eliminate one of the two
members then the definition is not chart-independent anymore.

In the definition of the Lie bracket of two vector fields we have seen the
appearance of a recurrent theme in differential topology and geometry: the
eternal quest for intrinsic (that is, chart-independent) definitions. One may ful-
fil this task either working entirely in coordinates, or using some more abstract
arguments as we just did. As usual, both viewpoints are important.

The following exercises may be solved working in coordinates.

Exercise 5.4.5. For every X,Y € X(M) and f, g € C*°(M) we have
[fX,gY] =fg[X, Y]+ f(Xq)Y —g(YF)X.

Exercise 5.4.6. On an open set of R”, for every /,j we have

o 0
515 =
More generally, we have
[8 -8]_8\”8_8\/

Lol | = L _“r
ox;' 0x; ox; Ox;  Ox;’

Exercise 5.4.7. Let A, B be two n x n matrices. Consider the vector fields
in some open subset of R"” defined as
X(x) = Ax, Y(x) = Bx.

Their Lie bracket is
[X,Y](x) = (BA— AB)x.
Exercise 5.4.8. Let N C M be a submanifold. If X,Y are vector fields on

N, and X, Y are any extensions of X, Y to some open subset U C M containing
N, then at every point p € N we get

[X.Y1(p) = [X.Y](p).

The previous exercise is in fact a special case of the following. If f: M —
N is any smooth map between manifolds, two vector fields X € X(M) and
Y € X(N) are f-related if df,(X(p)) =Y (f(p)) forall p € M.
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Exercise 5.4.9. If X1, X5 are f-related to Y;, Y5 respectively, then [ X1, X5]
is f-related to [Y1, Y2].

We now introduce a more geometric interpretation of the Lie bracket.

5.4.5. Non-commuting flows. Let X and Y be two vector fields on a
smooth manifold M, and let F, G be their corresponding flows. Consider a
point p € M. In general, the two flows do not commute, that is Fs o G¢(p)
may be different from G; o Fs(p) whenever they are defined. We now show
that the Lie bracket [X, Y] at p measures this possible lack of commutation.

Proposition 5.4.10. On any chart, we have
Gt o Fs(p) — Fs o Ge(p) = st[X, Y1(p) + o(s® + ).

Note that the whole expression makes sense only on a chart, that is on
some open subset V C R” with p € V. On a general smooth manifold M the
points G¢(Fs(p)) and Fs(G¢(p)) are probably distinct points in M and there is
no way of estimating their “distance”. The expression is however very useful
because it holds on every possible chart.

Proof. We fix p and consider the smooth function
V(s, t) = Gro Fs(p) — Fs o Ge(p).
Consider its Taylor expansion
V(s, t) =V(0, O)—I—s—(O 0) + t (O 0)

2 2\ 2 42
s %f(o O)+sts 5:(0.0)+ = ! 6t\2u(o 0) + o(s2 + ).
The crucial fact here is that W(s,0) = W(0,t) =0 for all s, t. Since W =0on
the axis s =0 and t = O all the terms in the Taylor expansion above vanish
except the mixed one asat(o 0), that we now calculate. We have

0 (Gt o Fs(p )) = Y(Gt © FS(P))

at
and hence
0
(55602 Fl0)) (5.0 =¥ (F.(9)
which gives
0? 8 aY
(25261 F(9)) (0.0) = LY (RO = X5
Therefore )
o\ oY oX
(AR bl
557 (0.0 =X/ 5 =Y/ = IX.Y(p)

by Exercise 5.4.4. The proof is complete. O
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We say that two vector fields X and Y commute if [X, Y] = 0 everywhere.
The corresponding flows F and G commute if

Fs o Gt(p) = Gt o Fs(p)

for every p, s, t such that both members are defined. These two notions of
commutativity coincide:

Proposition 5.4.11. Two vector fields commute <= their flows do.

Proof. If the flows commute, then [X,Y] = 0 because of Proposition
5.4.10. Conversely, suppose that [X,Y] = 0.

Consider a point p € M. If X(p) =Y (p) =0, we get Fs(p) = Ge(p) = p
and we are done. Otherwise, suppose that X(p) # 0. On a chart we can
straighten X and get X = 8%1 and Fs(p) = p+ se;.

Now [X, Y] = 0 and Exercise 5.4.6 imply that
L

8x1
The field Y is hence invariant by translations along e;. Therefore G¢(p+se;) =
G¢(p) + seq, that is G; commutes with Fs.

We have proved that the flows commute for every p € M when the times
s and t are sufficiently small. This implies easily that they commute at all
times s, t such that the flows are defined (exercise). O

5.4.6. Multiple straightenings. Can we straighten two or more vector
fields simultaneously? It should not be a surprise now that the answer depends
on their Lie brackets. Let Xy,..., Xk be vector fields on a smooth manifold
M, and p € M be a point.

Proposition 5.4.12. Suppose that X1(p), ..., Xk(p) are independent vec-
tors. There is a chart U — V that transports X1, ..., Xk Into a% ..... —
< [X;, X;] =0 for all i, j on some neighbourhood of p.

Proof. If there is a chart of this type, then clearly [X;, X;] = 0. We now
prove the converse and suppose [X;, X;] = 0 for all /, ;.

By taking a chart we may suppose tha.t M is an open set in R", p = 0,
and X;(0) = a% foralli=1,..., k. Let F{ be the flow of X;. Define

Y(x, ..., Xp) = kak 0---0 F)}I(O ..... 0, Xk1, -+ - Xn).
The differential dibg is the identity, because

PO, ..., 0, Xk+1, - - -, xp) =(0,..., 0, Xkt+1, - - -, Xn)
and vi(t) = ¢Y(te) withi =1, ..., k is an integral curve for Xj, so y/(0) = a%-
We deduce that 9 is a local diffeomorphism. It is clear that ¢ sends the
lines x+tek to integral curves for Xy, so it sends a%( to Xk. Since [X;, X;] =0,
the flows F} commute and we can permute them in the definition of ¢ at our
pleasure: so the same argument shows that 1 sends a%, to X; for all /. O
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5.4.7. Lie derivative. We have just noted that a vector field X may be
used to derive functions. Can we also use X to derive other objects, for
instance another vector field Y or more generally any tensor field s? The
answer is positive, and this operation is called the Lie derivative.

We first recall that every diffeomorphism f: M — N induces an isomor-
phism between the corresponding tensor bundles

for TAM — TN

induced from that of the tangent bundles f,: TM — TN, and we may use f,
to transfer tensor fields from M to N and viceversa.

Let now X be a vector field on a smooth manifold M, and let s be any
tensor field on M, of some type (h, k). The Lie derivative Lxs is a new tensor
field of the same type (h, k), morally obtained by deriving s along X, and
defined as follows.

Let F; be the flow generated by X. For every point p € M, there is a
sufficiently small € > 0 such that Fi(p) is defined on a neighbourhood of p
and F; is a local diffeomorphism at p for all |[t| < €. Therefore (Ft).(s) is
another tensor field defined on a neighbourhood of F;(p), that varies smoothly
in t, and we now want to compare s and (F)«(s).

We note that (F_;). transports the tensor s(F¢(p)) that lies in the tensor
space at F:(p) into the tensor space at p and can hence be compared with
s(p). More specifically the tensor

(F=t)« (S(Ft(P)))

lies in ﬁk(Tp/\/l) for every t and varies smoothly in t, so it makes sense to
define its derivative

(Lxs)(p) =
We have defined a linear map
Lx: T(TM)) — T(T(M))

that “derives” any tensor field along X.

4

dt ’t:o(F_t)* (S(Ft(P))).

Exercise 5.4.13. The following holds:
o if f € C®(M), then Lxf = Xf;
e if Y is a vector field, then LxY = [X,Y];
e for every tensor fields S and T of any types we have

Lx(S®T)=(LxS)®T +S(LxT).

The Lie derivative Lxs measures how s changes along X, in fact it follows
readily from the definition that £Lxs = 0 on M <= the tensor field s is
invariant under the flow F; wherever it is defined.

It is important to note here that, as opposite to the directional derivative
in R", the value of Lxs at a point p depends on the local behaviour of X near
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p, but not on the directional vector X(p) alone! To get a derivation that, like
the directional derivative in R”, depends in p only on the directional vector
based at p, we need to introduce a new structure called connection. We will
do this later on in this book.

5.5. Foliations

We now introduce some higher-dimensional analogues of vector fields and
integral curves, where we replace vectors with k-dimensional subspaces, and
integral curves with k-dimensional submanifolds.

5.5.1. Foliations. Let M be a smooth n-manifold. An immersed subman-
ifold in M is the image of an immersion S — M.

Definition 5.5.1. A k-dimensional foliation is a partition .# = {X;} of
M into injectively immersed k-dimensional connected submanifolds A\; C M
called leaves, such that the following holds: for every p € M there is a chart
p: U — R" with p € U such that ¢(X\; N U) is the union of some parallel
horizontal affine k-planes (that is, of type {xxt+1 = Ckt1,..., Xn = Cn}), for
every |.

In other words, at every point p there is a chart ¢ that transforms the
partition .% near p into the standard one of parallel horizontal k-planes in R”.
We say that such a chart ¢ is compatible with the foliation.

Remark 5.5.2. For a fixed leaf \;, the image ¢(A\;NU) along a compatible
chart ¢ may consist of infinitely many k-planes. These are countable, because
A;j is the image of an immersed submanifold S — M and S is second countable.

We also note that a foliation contains uncountably many leaves: this is
a consequence of the previous remark, or of the more general fact that the
union of countably many immersed manifolds of smaller dimension than M has
measure zero.

Example 5.5.3. The following are foliations:

(1) the partition of R" into all the affine spaces parallel to a fixed vector
subspace L C R";

(2) if E — B is a fibre bundle, the partition of E into the fibres Ep;

(3) for a fixed slope v € R, the family of all curves a: R — S! x St of
type a(t) = (€™, 2™V as  varies.

Exercise 5.5.4. In the last example, the leaves are compact <= X € Q.
If A € R\ Q every leaf is dense.

We now furnish an equivalent definition of foliation.
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Definition 5.5.5. A k-dimensional foliation in M is an atlas {¢;: U; — R"}
compatible with the smooth structure of M whose transition maps y;; are all
locally of the following form:

0ii(x.y) = (}(x.¥), 07 (¥)).
Here we represent R” as RX x R~ both as a domain and as a codomain.

In other words, we require that the last n — k coordinates of ¢;; should
depend locally only on the last n — k coordinates of the point. By “locally” we
mean as usual that every point p in the domain of ¢;; has a neighbourhood
such that ¢;; is of that form.

The two definitions look very different but are indeed equivalent! If % is a
foliation in the partition sense, by considering only charts that are compatible
with .% we get an atlas as in Definition 5.5.5 (exercise). Conversely, given an
atlas {¢;} of this kind, the transition maps preserve locally the k-dimensional
affine horizontal subspaces {y = ¢} which hence glue to form immersed sub-
manifolds in M.

To construct the immersed manifolds rigorously, we proceed as follows. We
assign to R and R~ respectively the Euclidean and the discrete topology,
and we give the product topology to R¥ x R"~K. Note that this topology is
finer than the Euclidean one. We now use this model to define a finer topology
on M, by declaring a set in M to be open if it intersects every chart U; into a
subset whose image in @;(U;) C R¥ x R"¥ is open in the new finer topology.

The manifold M with the finer topology decomposes into (uncountably
many) connected components {M;}. The atlas {y;: Ui — R"} furnishes
to every M; a structure of smooth manifold: the only tricky part here is to
prove second countability, and is left as an exercise. Hint: Select a countable
sub-atlas {¢;} and prove that every leaf “propagates” only to countably many
nearby ones at each step.

5.5.2. Distributions. Let M be a smooth n-manifold. Here is another
natural geometric definition.

Definition 5.5.6. A k-distribution in M is a rank-k subbundle D of the
tangent bundle T M.

In other words, a distribution is a collection of k-subspaces D, C T,M
that varies smoothly with p. See Lemma 4.4.6.

Example 5.5.7. If .% is a k-dimensional foliation on M, the k-spaces tan-
gent to the leaves of .% form a k-distribution.

A distribution that is tangent to some foliation % is called integrable.
Note that a diffeomorphism @: M — M’ transforms a distribution D on M
into one D’ on M’ in the obvious way, by setting Dfp(p) = dp,(Dpy) Vp € M.
The integrability condition may also be expressed without using foliations:
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Proposition 5.5.8. A distribution D is integrable <= Yp € M there is a
chart p: U — R" with p € U that transforms D into a constant distribution.

A constant distribution in R" is D, = L for some fixed subspace L C R".

Proof. (=). If D is tangent to a foliation .%, any chart compatible with
& transforms D into a constant one.
(<=). All these charts define a foliation in the sense of Definition 5.5.5. [

5.5.3. The Frobenius Theorem. We now state and prove a theorem that
characterises the integrable distributions via the Lie bracket of vector fields.

A vector field X on a manifold M is tangent to a distribution D if X(p) €
Dy for all p € M. A distribution D is involutive if whenever X,Y are two
vector fields tangent to D, their Lie bracket [X, Y] is also tangent.

Theorem 5.5.9 (Frobenius Theorem). A distribution D on a manifold M
Is integrable <= it is involutive.

Proof. If D is integrable, it is tangent to a foliation .%#. For every p €
M, a chart U — R" compatible with % transforms the leaves of .# into
horizontal leaves {xx+1 = Ck+1,...,Xn = Cn} and hence it transforms D into
the constantly horizontal distribution Dp = {xx11 = ... = x, = 0}. If X, Y
are vector fields tangent to D, then read on U they are of the form

Koop kK.
X:ZXG—X’_, Y:;Y&q

=1
and by Exercise 5.4.4 we get [X, Y]’ = 0 for all i > k. Therefore [X, Y] is also
tangent to D and D is involutive.

Conversely, suppose that D is involutive. For every p € M we pick a
chart ¢: U — R" that transforms p in 0 and D, into the horizontal space

Do = {xk11 = ... = x, = 0}. We can suppose that U is small enough so
that for every p € U the chart ¢ transports D), into a k-space Dy, that is
transverse to the vertical space V = {x3 = ... = xx = 0}. Therefore we can
find a local frame on D that read on U is of the type
0 & o 0 ;0
Xl_ailerZXiai, Xk_aTkJFZX’I‘ETX,
i=k+1 i=k+1

Exercise 5.4.4 gives [X;, X;]' = 0 for all i,j,/ = 1,...,k, hence [X;, X|] is
tangent to the vertical space V' at every point. Since D is involutive, the
vector field [X;, X;] must be tangent to D and this implies that [X;, X;] = 0.

We have discovered that X, ..., Xk are commuting vector fields and by
Proposition 5.4.12 we can transform them via a chart into the coordinate ones
X; = a%. In this chart the distribution is constant so Proposition 5.5.8 applies.
The proof is complete. O
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Figure 5.4. A non-integrable plane distribution in R>.

As an example, the vector fields in R3

-~ Ox’ 27 5y oz
do not commute since [ X1, X»] = a%- Therefore they generate a non-integrable
plane distribution in R3, drawn in Figure 5.4.

The following criterium may be useful in some cases.

X1

Exercise 5.5.10. A distribution D in M is involutive <> for every p € M
there is a local frame X4, ..., Xy for D such that [Xj, X] is tangent to D Vi, j.

Hint. Use Exercise 5.4.5 O

5.6. Tubular neighbourhoods

Let M be a compact smooth m-manifold. Among all the open neighbour-
hoods of a given point p € M, the simplest ones are undoubtedly those that
are diffeomorphic to R™. These are certainly not unique, and there is no
canonical way to choose a preferred one; however, we will prove in this section
that these are unique up to isotopy, thus answering to Question 3.10.7.

More generally, we will show that not only points, but any submanifold N C
M has a similar kind of nice open neighbourhood, called tubular neighbourhood.
The idea that we have in mind is that, for a curve on the plane, a tubular
neighbourhood should look like in Figure 5.5, and for a knot K C R it should
be a little open tube around K. As in Figure 5.5, a tubular neighbourhood
should be a bundle over N.

We prove here the existence and uniqueness (up to isotopy) of tubular
neighbourhoods for any submanifold N C M.

5.6.1. Definition. Let M be a m-manifold and N C M a n-submanifold.
A tubular neighbourhood for N is a vector bundle E — N together with an
embedding i: E < M such that:
e /|y =idy, where we identify N with the zero-section in E;
e /(E) is an open neighbourhood of N.



122 5. THE BASIC TOOLKIT

Figure 5.5. A tubular neighbourhood of a curve on the plane.

We usually call a tubular neighbourhood simply the image i(E) of E in N, but
keeping in mind that it has a bundle structure with base N.

The second hypothesis implies that dim E = dim M, so E must have rank
m — n. Recall that the normal bundle vN of N inside M has precisely that
rank, so it seems a promising candidate.

5.6.2. Existence. We now prove the existence of tubular neighbourhoods
in two steps: in the first we only consider the case M = R™.

Proposition 5.6.1. Every submanifold N C R™ has a tubular neighbour-
hood with E = vN.

Proof. As shown in Example 4.3.6, we have
vN={(p,v) | peNvey,N} CNxR”CR"xR".
We have identified v, N with T,N+. We now define the smooth map
f: vN—R",
(p,v) — p+v.
See Figure 5.6. We now study the differential df, oy at each p € N. We have
TpoyVN=TpN®vpN

and with this identification the differential df(, o) is just the identity. In par-
ticular, it is invertible, so f is an immersion at every point in V.

There is (exercise) a continuous positive function r: N — R such that f
is an embedding on B(p, r(p)) NvN, for every p € N. Define

U={(p.v) €vN | |Iv]| < 3r(p)}.

One checks easily that f|y is an embedding. By shrinking vN as in Lemma
4.5.11 we can embed /: vN — U keeping N fixed, and the composition f o/
is a tubular neighbourhood for N. O

We now turn to a more general case.

Theorem 5.6.2. Let M be a manifold. Every submanifold N C M has a
tubular neighbourhood with E = vN.
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Figure 5.6. To construct a tubular neighbourhood, we map the normal
bundle in R” and pick a sufficiently small neighbourhood so that this map
is an embedding.

Proof. We may embed M in some RX thanks to Whitney’'s Theorem
3.11.8. Now for every p € N we have the vector space inclusions

ToN C T,M C R,
We identify v, /N with the orthogonal complement of T,N inside T,M, so that
ToN @ vpN = T,M C R¥.
We consider the smooth map
f: vN— RK
(pv)—p+v.

Let W be a tubular neighbourhood of M in R¥, with bundle projection m: W —
M. We set U = f~1(W) and define the map

f: U—M,
(p,v) —m(p+v).

As above, the differential is just the identity and we conclude that f o/ is a
tubular neighbourhood for N for some appropriate bundle shrinking ;. O

5.6.3. Uniqueness. It is a remarkable and maybe surprising fact that, de-
spite their quite general definition, tubular neighbourhoods are actually unique
if one considers them up to isotopy.

We first clarify what we mean by “isotopy” here. Let M be a manifold
and N C M a submanifold. Two tubular neighbourhoods ig: E° — M and
ii: EY = M are isotopic if there are a bundle isomorphism ¥ : E® — E! and
an isotopy F relating the embeddings iy and /1 o 9 that keeps N pointwise
fixed, that is such that F(p,t) = p for all p € N and all t.
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Note that each embedding F; = F (-, t) is a tubular neighbourhood of N,
so F indeed describes a smooth path of varying tubular neighbourhoods.

Theorem 5.6.3. Let M be a manifold and N C M a submanifold. Every
two tubular neighbourhoods of N are isotopic.

To warm up, we start by proving the following.

Proposition 5.6.4. Every embedding f: R" — R" with f(0) = 0 is isotopic
to its differential dfy via an isotopy that fixes O at each time.

Proof. The isotopy for t € (0, 1] is simply defined as follows:

Flx.t) = f(ix).

We extend it to the time t = 0 by writing the first-order Taylor expansion

f(x)=h(x)x1+ ...+ ha(x)xn
where h;(0) = a—)’;(O) for all i. For every t € (0, 1] we get
F(x,t) = hi(tx)x1 + ...+ ha(tx)xp

and this expression makes sense also for t = 0, yielding the equality F(x,0) =
dfy(x). The proof is complete.t O

We can now prove Theorem 5.6.3.

Proof. Let E% and E! be two tubular neighbourhoods of N. We see E*! as
embedded directly in M, and we want to modify the embedding f: E® — M
via an isotopy so that matches it with E1.

We first prove that after an isotopy we may suppose that f(E°) C E*.
Indeed, Lemma 4.5.11 provides a shrinkage g: E9 — E° with fog(E®%) C E?,
and we may construct an isotopy F between f and f o g simply by writing
F(v,t) =1f((1—t)v+tg(v)).

Now that f(EY) C E*, we can construct the isotopy F: E% x [0,1] = M
by mimicking the proof of Proposition 5.6.4: we simply write

Flv.t) = 1Y)
t
Here f(tv) is a particular vector in E* and hence its division by t makes sense.
This is certainly an isotopy for t € (0, 1], and we now extend it to t = 0
similarly to what we did above.

Consider a v € EY with p = m(v) € N. The point p has an open

neighbourhood U above which E? is trivialised as U x R™~". There are also

175 be precise, we should substitute t with p(t) via a transition function p to get an
isotopy defined for all t € R. We will tacitly assume this in other points in this book.
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Figure 5.7. By continuity, we can find two neighbourhoods V' C U of
p above which both E® and E* trivialise, and a r > 0 such that f(V x
B(0,r)) C U x R™" (the yellow zone).

a smaller neighbourhood V' C U and a r > 0 such that E°| is also trivialised
as V x R™" and moreover

f(VxB(0,r) CcUxR"".

This holds by continuity. See Figure 5.7. We may represent f on V x B(0, r)
as a map

f(x,y) = (A(x.y), R(x,y)).
We have f(x,0) = (x,0). Since f(x,0) = 0 we can write

HL(x,y) =M y)y1+ ...+ hmen(X, ¥)Ym—n

with 55
_ -2
hi(x,0) = 3y, (x,0).

We can then represent F as
1
Fx. ) = (Rl ), 1alx )
= (A(x, ty), h(x, ty)ys + ...+ hpen(X, tY)Ym—n).
This map is well-defined and smooth also at t =0. The mapatt=0is

Folx,y) = F(x,y,0) = (x, P, o>y> |

It sends every fibre of EC to a fibre of E! via a linear map, which is in fact an
isomorphism because f is an embedding and hence

df </n * )
0= R0 %&(x,0)

is an isomorphism. Therefore Fy: E? — E1 is a bundle isomorphism. O

We have proved that the tubular neighbourhood of a submanifold N ¢ M
is unique up to isotopy and bundle isomorphisms: in particular, this shows that
every tubular neighbourhood of N is isomorphic to the normal bundle v/N.
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5.6.4. Embedding open balls. The uniqueness theorem for tubular neigh-
bourhoods is quite powerful, and it has some remarkable consequences already
when N is a point.

Proposition 5.6.5. Let M be a connected smooth n-manifold. Two em-
beddings f,g: R" < M are always isotopic, possibly after pre-composing g
with a reflection in R".

Proof. We may see both f and g as tubular neighbourhoods of f(0) and
g(0). Since connected manifolds are homogeneous (Corollary 5.3.4), after
an ambient isotopy we may suppose that f(0) = g(0). By the uniqueness
of the tubular neighbourhood, the map f is isotopic to g o ¢ for some linear
isomorphism 9 : R” — R". By Corollary 3.9.11 we may isotope 9 to be either
the identity or a reflection. O

The oriented case is more elegant:

Proposition 5.6.6. Let M be an oriented connected smooth n-manifold.
Two orientation-preserving embeddings f, g: R" < M are always isotopic.

5.6.5. Hypersurfaces. Let M be a smooth manifold. A hypersurface in
M is a submanifold N C M of codimension 1.

Proposition 5.6.7. Let M be orientable. The normal bundle of a hypersu-
face N C M is trivial <= N s also orientable.

Proof. Fix an orientation for M. The normal bundle is a line bundle, and
it is trivial <= it has a nowhere-vanishing section.

If N is orientable, we fix an orientation. The two orientations of M and
N induce a locally coherent orientation on the normal line v/, for every p €
N, which distinguishes between “positive” and “negative” normal vectors, see
Exercise 2.6.2. Fix a Riemannian metric on vN, and pick all the positive
vectors of norm one: they form a nowhere-vanishing section.

On the other hand, if the normal bundle is trivial, the normal orientation
and the orientation of M induce an orientation on N. O

5.6.6. Continuous maps are homotopic to smooth maps. By combin-
ing the tubular neighbourhoods and Whitney's Embedding Theorem, we may
now prove that every continuous map between smooth manifolds is homotopic
to a smooth map. Let M and N be two smooth manifolds.

Proposition 5.6.8. Let f: M — N be a continuous map, whose restriction
to some (possibly empty) closed subset S C M is smooth. The map f is
continuously homotopic to a smooth map g: M — N with f(x) = g(x) for all
x € S, via a homotopy that fixes S pointwise.

Proof. By Whitney's Embedding Theorem 3.11.8 we may suppose that
N C R” for some n. Let vN be a tubular neighbourhood of N. For every
p € N we let r(p) be the distance from p to the boundary of the open set vN.
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® | (=

Figure 5.8. Transversality depends on the ambient space: the two curves
are transverse in R?, not in R3.

By Proposition 3.3.8 there is a smooth map h: M — R” with |h(p) —
f(p)| < r(f(p)). The homotopy H(p,t) = (1 — t)f(p) + th(p) lies entirely
in vN and hence can be composed with the projection m: vN — N to give a
homotopy G(p, t) = m(H(p, t)) between f and the smooth g = 7o h. 0

The proof shows also that g may be chosed to be arbitrarily close to f,
but to express “closeness” rigorously we need to see N embedded in some R”.

Corollary 5.6.9. Two smooth maps f,g: M — N are continuously homo-
topic <= they are smoothly homotopic.

Proof. Every continuous homotopy F: M x [0,1] — N can be extended
to a continuous map F: M x R — N and then be homotoped to a smooth
map G: M xR — N by keeping F|yx o} and Flpx 1y fixed. O

5.7. Transversality

We now show that any two smooth maps (and in particular, submanifolds)
can be perturbed to cross nicely. The notion of “nice crossing” is surprisingly
simple to define and is called transversality.

5.7.1. Definition. Let f: M — N and g: W — N be two smooth maps
between manifolds, sharing the same target N.

Definition 5.7.1. We say that f and g are transverse if for every p € M
and g € W with f(p) = g(q) we have

Im df, +1mdgq = Trp)N.
In this case we write f h g.

If M C N is a submanifold and f is the inclusion map, we say that g is
transverse to M and we write g h M. Similarly, if both f and g are inclusions,
we say that M is transverse to W and we write M h W.

Set m=dmM, w =dimW, and n = dmN. Note that if m+w < n
then f M g <= the maps f and g have disjoint images. See Figure 5.8.

If W = {q} is a point, then f i g <= g(q) is a regular value for f.
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5.7.2. Fibre bundles. Here is a basic example.

Proposition 5.7.2. Let m: E — M be a fibre bundle. A map f: N — E is
transverse to a fibre Eq <= q Is a regular value for wo f.

Proof. Pick p € N with f(p) € Eq. We have T¢(p,)Eq = ker dm¢(p), sO
Im df, + Tf(p)Eq = Tf(p)E <= Imd(mo f)p = T4N.
The proof is complete. O

Exercise 5.7.3. A submanifold W C E is the image of a section of a bundle
E — M <= it intersects transversely every fibre Eg in a single point.

5.7.3. Intersections. \We now extend a theorem from the context of reg-
ular values to the wider one of transverse maps.

Proposition 5.7.4. Let M C N be a submanifold and g: W — N a smooth
map. If gh M then X = g=*(M) is a submanifold of codimension n — m.

Proof. Pick p € X. We look only at a neighbourhood of g = g(p) € M and
after taking a chart we may suppose that N =R", g =0, and M =R™ C R”
embedded as the first m coordinates.

Consider the projection w: R" — R"~ onto the last coordinates. Near p
we have X = (mo g)~1(0) and by transversality 7 o g is a submersion at p.
Therefore X is a submanifold in W, of codimension n — m. O

In particular, the intersection X = M N W of two transverse submanifolds
MW C N is a submanifold with codim X = codim M + codimW. We may
write X = M th W. The intersection looks locally as expected:

Proposition 5.7.5. Every point p € X has a neighbourhood U and a chart
©: U — R" that transforms UN M and UNW into the linear subspaces of the
first m and last w coordinates.

Proof. We work locally, so we can suppose N =R" and p=20. Ifdm X =
0, themap f: M x W — R", (x,y) — x+y has dfg,0) = id and hence is a
local diffeomorphism, whose local inverse furnishes the desired chart.

In general, we follow a different proof. Locally, we may suppose that M =
R™ C R" is the space of the first m coordinates. Then we can straighten N
keeping M and all its affine translates fixed: details are left as an exercise. [

5.7.4. Thom’s Transversality Theorem. \We now state a general theo-
rem, that will easily imply that every map can be perturbed to be transverse.

Theorem 5.7.6. Let F: M xS — N be a smooth map between manifolds.
If F is transverse to some submanifold Z C N, then Fs = F(-,s): M — N is
also transverse to Z for almost every s € S.

We mean as usual that the thesis holds for all the values s € S that lie
outside of some zero measure subset.
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Proof. Since F i Z, the preimage W = F~1(Z) C M x S is a smooth
submanifold. Consider the projection m: M x S — S and particularly its
restriction 7|y : W — S. We now claim that if s is a regular value for |y,
then Fs M Z. From this we conclude: by Sard’'s Lemma almost every s € S is
a regular value for 7|y .

Consider a point (p,s) € W. Since s is regular for 7|, we have

T(p’S)W + T(p,s)(/\/l X {S}) = T(pys)(/w X S)
Since F th Z we have
dF(p.5)(T(p5)(M % S)) + Te(p.9)Z = Tr(ps)N.
By combining the two equations we get
Teps)N = dF(p.5) (Tp )W) + dF(p.5) (T(p.5)(M x {s})) + Tr(p5)Z

= dF(p5)(T(p.s)(M x {s})) + T (p5)Z

= d(FS)p(TpM) + 7—F(p,s)Z-
In the second equality we have eliminated the first addendum since it is equal

to the third. We have proved that Fs M Z. O

5.7.5. Consequences. \We now draw some consequences from Thom's
Transversality Theorem. Here is an amazingly simple application.

Corollary 5.7.7. Let M be a manifold and f: M — R" be a smooth map.
Let Z C R" be a submanifold. For almost all s € R", the translated map

fs(p) =f(p) +s
is transverse to Z.

Proof. The map F: M x R" — R", F(p,s) = f(p) + s is a submersion
and is hence clearly transverse to any submanifold Z C R”. So Thom’'s
Transversality Theorem applies. O

Corollary 5.7.8. Let M, N C R" be any two submanifolds. For almost
every s € R" the translate M + s and N are transverse.

This is interesting already in the case M = N. Here is a perturbation
theorem for a map between two arbitrary manifolds.

Corollary 5.7.9. Let f: M — N be a smooth map between manifolds and
W C N be a submanifold. There is a g: M — N homotopic to f that is
transverse to W.

Proof. Consider N embedded in some R" and pick a tubular neighbourhood
vN C R" of N with projection m: vN — N. Using a partition of unity, pick
a smooth positive function r: N — R such that B(q, r(q)) C vN for every
g € N. We define the map

F: MxB"— N, F(p,s)=mn(f(p)+r(f(p))s).
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Here B" C R" is the unit ball as usual. The map F is a submersion and is
hence transverse to any W C N. Therefore for some s € B"” the map g = Fs
is transverse to W and is homotopic to f through Fis. O

5.7.6. Perturbations. We now show that two maps can always be per-
turbed to be transverse. We will use tubular neighbourhoods as an essential
tool: we start with the following case.

Lemma 5.7.10. Let m: E — M be a vector bundle and f: N — E a
smooth map. There is a section s: M — E transverse to f.

Proof. The product case £ = M x RX is particularly simple. Consider a
constant section s(p) = v with v € RK. We know that s h f <= v is a
regular value for the map 7 o f where 7 : M x RX — RX is the projection
onto the second factor. By the Sard Lemma, there is a regular value v.

We have covered the product case and we now prove the lemma in general.
Exercise 4.5.12 furnishes a bundle n’: E’ — M such that E®E’ — M is trivial.
We consider E @ E’ as a bundle over E, and construct the pullback bundle
f*(E®E'") — M and its induced map F: f*(E® E') - E® E'.

Since E & E/ — M s trivial, we know by the previous discussion that
there is a section s: M — E & E’ transverse to F. We get the commutative
diagram:

FEGE)—>EBE <~—M

N L

N E

It only remains to prove that s’ = 7 o s is transverse to . Suppose that
f(p) = s'(q) for some p € N and g € M. Now s(q) = (f(p), v) for some v in
the fibre of f(p), and we also have F(p, v) = s(q). By hypothesis F h s so

Im dFpyy +Imdsqg = Tirpy ) (E @ E').
By projecting with the differential of ™ we get
Im df, +Im ds, = T¢(p)E.
Therefore f th s’. The proof is complete. O
We immediately get the following. Let M, N, and W be some manifolds.

Corollary 5.7.11. Let i: M — N be an embedding and f: W — N a
smooth map. There is an embedding j: M — N isotopic to i and transverse
to f.

Proof. Let vM be a tubular neighbourhood of i(M). By the previous
lemma there is a section j: M — vM transverse to f, isotopic to I. O
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If M is compact we can promote the isotopy between i and j to an am-
bient isotopy of N, as usual. (Actually, it is possible to construct an ambient
isotopy between two sections of a tubular neighbourhood even without this
compactness hypothesis.) Here is a case of a particular interest:

Corollary 5.7.12. Any two submanifolds N, W C M can be made transverse
after modifying the embedding of anyone of them by an isotopy.

We can also prove a similar theorem when both maps f and g are arbitrary.
Of course we must replace “isotopy” by “homotopy” since these maps are
arbitrary and need not be embeddings.

Corollary 5.7.13. Letf: M — N and g: W — N be any two smooth maps
between manifolds. The map g is homotopic to a map h transverse to f.

Proof. Consider the commutative diagram:

MxW e Nx W <2 W

1A

M N

where fi(p, q) = (f(p). q), 91(q) = (9(q). g), and each 7 is a projection onto
the first factor. The map g; is an embedding and can hence be isotoped to
a map hy that is transverse to f;. By composing with ™ we get a homotopy
between g and a map h = 7 o hy that is transverse to f. [l






CHAPTER 6
Cut and paste

Cutting and gluing are simple geometrical constructions which, given
some smooth manifolds (possibly with boundaries or corners) and
additional data where necessary, give rise to new manifolds. On
account of their perspicuity, these methods were much used in the
days of topology of surfaces, and they remain a very powerful tool

C. T. C. wall, 1960

In this chapter we address the following question: how can we construct
new smooth manifolds? The most effective techniques known consist in build-
ing more complicated smooth manifolds out of simpler pieces, glued altogether
along smooth maps. A piece is usually a manifold with boundary, and the
pieces are glued along (portions of) their boundaries. We introduce here the
most important decompositions of this kind, the triangulations and the handle
decompositions. We then use these to classify all compact surfaces.

6.1. Manifolds with boundary

We introduce a variation of the definition of smooth manifold that allows
the presence of some particular boundary points. This is a very natural notion
and is present everywhere in differential topology and geometry.

Most of the definitions and theorems about smooth manifolds also apply
to manifolds with boundary, with appropriate modifications.

6.1.1. Definition. Consider the upper half-space
i:{XER"!x,,ZO}

in R". Its boundary is the horizontal hyperplane ORl = {x, = 0}, while its
interior is the open subset R \ OR/ = {x, > 0}.

We now redefine the notions of charts and atlases in a more general context
that allows the presence of boundary points: everything will be like in Section
3.1.1, only with R’ instead of R".

Let M be a topological space. A R -chart is a homeomorphism ¢: U — V
from an open set U C M onto an open set V. C R!l. A smooth R -atlas in
M is a set {@;} of R’ -charts with UU; = M such that the transition maps ;;
are smooth where they are defined. Note that the domain of @;; is an open

133
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subset of R and may not be open in R", so the correct notion of smoothness
is that stated in Definition 3.3.4.

Definition 6.1.1. A smooth manifold with boundary is a topological space
M equipped with a smooth R/} -atlas.

We will drop the symbol R’} from the notation. As in Section 3.1.1, two
compatible atlases are meant to give the same smooth structure.

6.1.2. The boundary. Let M be a smooth manifold with boundary. The
points p € M that are sent to OR!] via some chart form the boundary OM.
There is no possible ambiguity here, since if one chart sends p inside OR/],
then all charts do (exercise).

The boundary OM is naturally a (n — 1)-dimensional smooth manifold
without boundary. Indeed by restricting the charts to OM we get an atlas for
OM with values onto some open sets of the hyperplane OR!, that we identify
with R"—1.

Example 6.1.2. Every open subset U C Rl is a smooth manifold with
boundary OU = U N OR!].. The atlas consists of just the identity chart.

The interior of M is int(M) = M\ OM. It is a manifold without boundary.
The notions of smooth maps and diffeomorphisms extend to this new boundary
context without any modification.

6.1.3. Regular domains. \We now describe one important source of ex-
amples. Let M be a smooth n-manifold without boundary.

Definition 6.1.3. A regular domain is a subset D C M such that for every
p € D thereis a chart ¢: U — V with p € U and V C R” that sends UN D
onto an open subset of R’ .

Every regular domain D has a natural structure of manifold with boundary,
obtained by taking as an atlas all the charts ¢ of this type.

Exercise 6.1.4. For every a < b, the closed segment [a, b] is a domain in
R and hence a manifold with boundary consisting of the points a and b.

Here is a concrete way to construct regular domains:

Proposition 6.1.5. Let M be a manifold without boundary and f: M — R
a smooth function. If yg is a regular value, then D = f~1(—o0, yo| is a regular
domain with D = f~1(yp).

Proof. Consider a point p € D. If f(p) < yo, the point p has an open
neighbourhood fully contained in D that can be sent inside the interior of R/}
via some chart.

If f(p) = yo, by Proposition 3.8.10 there are charts ¢: U — R” and
¥: W — R with p € U and f(U) C W such that o fop t(xg,..., Xp) =
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X, and we may also require that ¢(p) = 0 and % is orientation-reversing.
Therefore (UN D) =R O

Corollary 6.1.6. The unit disc
D"={xeR"| x| <1}
is a domain in R" with boundary D" = S"~1.

Proof. We pick f(x) = ||x||? and get D" = f~!(—o0, 1]. Every non-zero
value is regular. ([l

Remark 6.1.7. The square [—1,1] x [~1, 1] is not a regular domain in R?,
because it has corners. More generally, the product M x N of two manifolds
with boundary is not necessarily a manifold with boundary, because if 9M # &
and ON # @ then some corners arise. However, if OM = & then M x N is
naturally a manifold with boundary and

(M x N) =M x ON.

For instance, the cylinder S x [—1,1] is a surface with boundary, and the
boundary consists of the two circles S* x {£1}. More generally S™ x D" is a
manifold with boundary and

9(S™x D") =SMx S"L.

6.1.4. Tangent space. The definition of tangent space via derivations
also extends verbatim to manifolds with boundary. For every point p € R,
included those on the boundary, we get T,R’l = R". For a general n-manifold
M with boundary, the space T,M is a n-dimensional vector space at every
p € M, included the boundary points.

At every boundary point p € OM the tangent space T,0M is naturally a
hyperplane inside T,M, that divides T,M into two components, the “interior”
and “exterior” tangent vectors, according to whether they point towards the
interior of M or the exterior. This subdivision between interior and exterior is
obvious in Rl and transferred to M unambiguously via charts.

As in the boundaryless case, every smooth map f: M — N induces a
differential df,: ToM — T¢(,)N at every point p € M. Note that a smooth
map f may send a boundary point to an interior point, or an interior point to
a boundary point.

6.1.5. Orientation. One nice feature of manifolds with boundary is that
an orientation on M induces one on its boundary OM.

Let M be an oriented manifold with boundary of dimension n > 2. Recall
that an orientation on M is a locally coherent way of assigning an orientation
to all the tangent spaces T,M. For every p € OM, we choose an exterior
vector v € T,M and note that

TpM = Span(v) ® T,0M.



136 6. CUT AND PASTE

Figure 6.1. The canonical orientation on the disc (given by the canonical
basis e1, &) induces the counterclokwise orientation on the boundary circle
(left). We may write conveniently the orientations on a surface and on a
curve using (curved) arrows (right)

With this subdivision, the orientation on T,M induces one on T,0M: we
say that a basis vy. .. .. vy for T,0M is positive <= the basis v, vo, ..., Vv, Is
positive for T,M. By looking on a chart we see that this is a locally coherent
assignment that does not depend on the choice of the exterior vector v.

We now consider the one-dimensional case, that is slightly different. First,
we define an orientation on a point to be the assignment of a sign 1. When
not mentioned, a point is equipped with the +1 orientation: points are in fact
the only manifolds that have a canonical orientation!

If M1 is an oriented 1-manifold, we orient every boundary point p € OM?*
as 1 or —1 depending on whether the vectors pointing outside in the line T,M
are positive or negative.

Every domain in R" is naturally oriented by the canonical basis ey, . .., é,,
so for instance the disc D" has a canonical orientation. This canonical orien-
tation induces an orientation on the boundary sphere S"~!. The case n = 2
is shown in Figure 6.1.

6.1.6. Immersions, embeddings, submanifolds. Let M, N be manifolds
with boundary. We define an immersion as usual as a map f: M — N
with injective differentials, and then an embedding as an injective immersion
f: M — N that is a homeomorphism onto its image.

Definition 6.1.8. Let N be a manifold. A submanifold is the image of an
embedding f: M — N.

The reader should note that, as opposite to Definition 3.7.1, we are not
saying that a submanifold should look locally like some simple model. This is
by far not the case here: Figure 6.2 shows that many different kinds of local
configurations arise already when one embeds a segment in the half-plane Ri.
In higher dimensions things may also get more complicated.

In some cases, we may require the submanifold to satisfy some require-
ments. For instance, a submanifold M C N is neat if

OM = MNON
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Y IN N AT

Figure 6.2. Different kinds of compact 1-dimensional submanifolds in-
side the half-plane R3.

and moreover M meets ON transversely, that is at every p € OM we have
ToM + T,ON = T,N.

6.1.7. Homotopy, isotopy, ambient isotopy. The notions of homotopy,
isotopy, and ambient isotopy also extend verbatim to manifolds with boundary.

Some important theorems also hold, with the same proofs, for manifolds
with boundary: if M is a manifold with boundary, it may be embedded in R" via
some proper map (Theorem 3.11.8), and if M is compact every two isotopic
embeddings f,g: M — N are also ambiently isotopic, for every N without
boundary (Theorem 5.3.3).

6.1.8. Fibre bundles. The theory of bundles extends to manifolds with
boundary with minor obvious modifications. On a fibre bundle E — M, we
can allow M to have boundary, and in that case the trivialising neighborhoods
will be diffeomorphic to open subsets of R}, or we can allow the fibre F to
have boundary; however, some care is needed if both M and F have boundary,
because some corners would arise and £ would not be a smooth manifold.

We now introduce an important case where the fibre F is a disc.

6.1.9. The unit disc bundle. Let E — M be a vector bundle over a
manifold M without boundary. Fix a Riemannian metric g for E. The unit
disc bundle is the submanifold with boundary

D(E)={veE]|]|v|]<1}
The projection 7 restricts to a projection w: D(E) — M and one sees as in
Proposition 4.5.7 that this is a disc bundle (a fibre bundle with F = D) and
that it does not depend on g up to isotopy (that is, up to an isomorphism of
E — M that is isotopic to the identity).

The boundary of D(E) is the unit sphere bundle S(E). The interior of
D(E) may be given a bundle structure isomorphic to E — M.

6.1.10. Closed tubular neighbourhoods. Let M be a m-manifold and
N C int(M) be a compact submanifold without boundary. Since N avoids
OM, it has a tubular neighbourhood vN C M.

Definition 6.1.9. A closed tubular neighbourhood of N in M is the unit
disc bundle of any tubular neighbourhood of N.
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To better distinguish a tubular neighbourhood from a closed tubular neigh-
bourhood, we can call the first an open tubular neighbourhood. We will use the
notation vN for both; note that the interior of a closed tubular neighbourhood
may in turn be given the structure of an open tubular neighbourhood, so one
can switch easily from open to closed and vice-versa.

The closed tubular neighbourhood of a compact submanifold is also com-
pact: for this reason it is sometimes better to work with closed tubular neigh-
bourhoods; for instance, we may promote isotopy to ambient isotopy:

Proposition 6.1.10. A compact submanifold M C int(N) without boundary
has a unique closed tubular neighbourhood up to ambient isotopy in N.

Proof. We already know that tubular neighbourhoods are isotopic, and
hence also the closed tubular neighbourhoods are. Since these are compact,
the isotopy may be promoted to an ambient isotopy. O

6.1.11. Collar. Let M be a manifold with boundary, and N be the union
of some connected components of OM. A collar of N in M is an embedding

it Nx[0,1)—s M

such that i(p,0) = p for every p € N. The collars should be interpreted as
the tubular neighbourhoods of the boundary.

Proposition 6.1.11. The manifold N has a unique collar up to isotopy.

The proof is the same as that for tubular neighbourhoods, and we omit it.
We can define analogously a closed collar to be an embedding of N x [0, 1] as
above; if N is compact, the closed collar is unique up to ambient isotopy.

Exercise 6.1.12. For every manifold M the inclusion int(M) — M is a
homotopy equivalence.

Hint. Use a collar for @M to define the homotopy inverse. O

6.1.12. One-dimensional manifolds. We leave to the reader to solve the
following exercise, that fully classifies all connected one-dimensional manifolds.

Exercise 6.1.13. Every connected one-dimensional manifold is diffeomor-
phic to one of the following:

st (0,1), [0,1), [0, 1].

In particular St is the unique connected compact one-dimensional manifold
without boundary.
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6.1.13. Discs. Let M be a n-manifold. We define a disc in M to be an
embedding f: D" < int(M). As an example, a closed tubular neighbourhood
of a point is a disc. We can now prove this remarkable theorem.

Theorem 6.1.14 (The Disc Theorem). Let M be a connected smooth n-
manifold. Two discs f,g: D" — M are always ambiently isotopic, possibly
after pre-composing g with a reflection.

Proof. Since B" = int(D") is diffeomorphic to R”, the restrictions f|gn
and g|gn are isotopic by Proposition 5.6.5. Now we can shrink isotopically f
and g to the maps f(v) = f(%) and g(v) = g(¥) and deduce that f and
g are also isotopic. Since D" is compact, isotopy is promoted to ambient
isotopy. O

With a little abuse we sometimes call a disc the image of an embedding
f: D" — M. With this interpretation, which disregards the parametrisation,
two discs are always ambiently isotopic. The reader should appreciate how
powerful this theorem is, already in the only apparently simpler case M = R",
for instance in dimension n = 2.

The Disc Theorem was proved by Palais in 1960.

6.1.14. Spheres. We end this section by describing how every sphere de-
composes beautifully into two simple submanifolds with boundary.

For every 0 < k < n we identify R” = R¥ x R""k and write a point of
R" as (x,y) with x € R and y € R"%. By radial expansion we may easily
construct a homeomorphism between D" and DX x D", which restricts to a
homeomorphism between S"~! and the topological boundary of DX x D"k,
The latter in turn decomposes into two closed subsets

Sk—l % Dn_k, Dk % Sn—k—l

whose intersection is S¥~1 x S"~k=1 Having understood this simple topologi-
cal phenomenon, we write an analogous decomposition of S~ in the smooth
setting. We write

S ={0y) | IxIP+llylI> = 1}.
We now consider the subsets
A={(xy)es" [ IxIP<3} B={(xy)eS" ! |Iyl* <3}

These are both domains, since 3 is a regular value for the maps (x, y) — [|x||?
or |ly||> on S"! (exercise). The common boundary

ANB={(x,y) € S" | IxI* = lyI” =3}
is diffeomorphic to S¥=1 x S" k=1 via the map (x,y) — (vV2x,v2y). We

now identify the domains: the map

k n—k—1 A
A— Dx S , (X,y)»—><\fx Ty ||>
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—

Figure 6.3. A solid torus D? x S'. Its complement inside S* is another
solid torus: can you see it?

is a diffeomorphism, with inverse (x, y) — g (x. 2= xIP)y).

We have discovered that S"~1 decomposes into two domains A = DK x
Sn=k=1 and B = Sk=1 x D"~k with common boundary Sk~=1 x S"~k=1We
also note that A and B are closed tubular neighborhoods of the spheres

S"N{x=0}= s~ S"n{y=0}=st

The 3-manifold ST x D? is a solid torus. The 3-sphere S3 decomposes into
two solid tori ST x D? and D? x S along their common boundary St x S1.
See Figure 6.3.

6.2. Cut and paste

We now introduce some basic cut and paste manipulations that allow to
modify the topology of a smooth manifold.

6.2.1. Punctures. Let M be a connected smooth n-manifold, possibly
with boundary. The simplest topological modification we can make on M is
to remove a point p € int(M). By Corollary 5.3.4, the new manifold M\ {p}
does not depend (up to diffeomorphism) on p, and we say that it is obtained
by puncturing M.

A variation of this modification consists of picking a disc D C M and
removing its interior: the new manifold

M = M\ int(D)

has the same boundary components as M, plus one new sphere 8D. The
manifold M’ does not depend (up to diffeomorphisms) on the chosen disc D
by the Disc Theorem 6.1.14.

Exercise 6.2.1. The manifolds M\ {p} and M"\ 8D are diffeomorphic.
Exercise 6.2.2. If M = S", we get M\ {p} ZR" and M = D".

Exercise 6.2.3. If M = D" then M’ =2 S"1 x [~1, 1].

Exercise 6.2.4. If dim M > 3, then m1(M") Z w1 (M \ {p}) = m (M).
Hint. Use Van Kampen. O
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AN
“2

Figure 6.4. How to cut a manifold along a two-sided hypersurface.

6.2.2. Removing submanifolds. \We now extend the above manipulation
from points to arbitrary compact submanifolds.

Let M be a smooth manifold and N C int(M) a compact submanifold of
some codimension k > 1. The complement M\ N is a new manifold. Again, a
variation consists in taking a closed tubular neighbourhood v/ and considering

M = M\ int(vN).

The manifold M’ has a new compact boundary component dvN, which is a
Sk=1_-bundle over N. The manifold M’ only depends on N and not on the
tubular neighbourhood v N since it is unique up to ambient isotopy.

This operation is particularly interesting if N has codimension 1 and is
two-sided, that is has trivial normal bundle vN = N x R. For instance, this
holds if both M and N are orientable: see Proposition 5.6.7. In this case the
new manifold M’ has two new boundary components, both diffeomorphic to
N. See Figure 6.4. We say that M’ is obtained by cutting M along N.

Example 6.2.5. By cutting S” along its equator S"~! we get two discs.

If M, N are connected and N has codimension one, the new manifold M’
may be connected or not; in the first case, we say that N is non-separating,
and separating in the second.

6.2.3. Pasting along the boundary. Pasting is of course the inverse of
cutting. Let M be a (possibly disconnected) manifold, let Np, N> be two
boundary components of M, and ¢: Ny — N> be a diffeomorphism. We now
define a new manifold M’ obtained by pasting M along .

A naive construction would be to define M" as M/.. where ~ is the equiv-
alence relation that identifies p ~ @(p) for all p € N;. The result is indeed a
topological manifold, but it is not obvious to assign a smooth atlas to M/... So
we abandon this route, and we define M’ instead by overlapping open collars
as suggested by Figure 6.5.

Here are the details. We identify two disjoint closed collars of Ny and N>
in M with Ni x [0, 1] and N> x [0, 1], where N; = N; x {0}. The manifold M" is
obtained from M by first removing N7 and Ny, and then identifying the open
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(DO - (30

Figure 6.5. How to paste two boundary components N; and N- via a
diffeomorphism ¢. To get a new smooth manifold, we pick two collars
and we make them overlap.

SREN IS O

Ny N,

Figure 6.6. If the gluing map g is orientation-reversing, the orientations
extend to the new manifold M’

subsets Ny x (0,1) and N x (0,1) via the map ®: (p, t) — (p(p),1 — t).
The smooth structure on M’ is now easily induced by that of M.

Proposition 6.2.6. The manifold M' depends up to diffeomorphism only
on M and on the isotopy class of .

Proof. Different closed collars are ambiently isotopic and hence produce
diffeomorphic manifolds M. If F is an isotopy between @q = Fg and @1 = Fq,
a diffeomorphism between the resulting manifolds M and Mj is constructed
as follows: it is the identity outside the collar, and (p, t) — (Ft(¢g'(p)). t)
on the collars. ([l

Remark 6.2.7. Suppose that M is oriented. Both N; and N> inherit an
orientation. If ¢ is orientation-reversing, then @ is orientation-preserving and
hence the orientation of M induces naturally an orientation on M’. So, if you
want orientations to extend, you need to glue along orientation-reversing maps
. See Figure 6.6.

Exercise 6.2.8. The smooth manifold M’ is homeomorphic to the topolog-
ical manifold M/ .. obtained from M by identifying p ~ ¢(p) for every p € Nj.

In light of this fact, we will often think of M’ simply as the topological
space M/, equipped with a smooth atlas induced by .
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6.2.4. Self-diffeomorphisms. Proposition 6.2.6 suggests that it is impor-
tant to understand the self-diffeomorphisms of a manifold up to isotopy. We
now state a couple of basic results on this quite difficult problem.

Let N be a connected smooth orientable manifold. We denote by Diffeo(/N)
the group of all self-diffeomorphisms of N. If N is orientable, then the group
decomposes into

Diffeo(N) = Diffeo™ (N) U Diffeo™ (N)

where Diffeo™ (N) is the subset of all self-diffeomorphisms that preserve/invert
the orientation of N. We say that N is mirrorable if Diffeo™ (N) is non-empty.
We say that two self-diffeomorphisms ¢, 1 € Diffeo(NN) are cooriented if they
either both preserve or both invert the orientation.

Exercise 6.2.9. If ¢, 1 are isotopic, they are cooriented.
The converse is also sometimes true.
Proposition 6.2.10. Two cooriented diffeomorphisms of S are isotopic.

Proof. Let g, p1: ST — S be two cooriented diffeomorphisms. They
lift to smooth maps @g, ¥1: R — R between their universal covers, that are
monotone (that is, @(t), @;(t) > 0 (or < 0) Vt) and periodic (that is,
wi(t+2m) = @i(t) + 27 Vt). The convex combination

@r(x) = (1 = t)@o(x) + t@1(x)
is also periodic and monotone, hence it descends to a monotone map @;: St —

Sl Each ¢; is hence a covering, but since it is homotopic to g it is a
diffeomorphism: we get an isotopy between g and 1. O

This fact has important consequences when we want to glue two surfaces
along their boundaries. Let >; and >, be two surfaces with boundary as in
Figure 6.5, and we want to glue them along a diffeomorphism ¢: C; — Cy,
between two connected boundary components C; and Co of 21 and X, both
diffeomorphic to a circle S*. The proposition tells us that there are only two
possible gluing maps ¢ up to isotopy.

6.2.5. Doubles. Here is a simple kind of pasting that applies to every
manifold with boundary.

The double DM of a manifold M with boundary is obtained by taking two
identical copies My, Mo of M and defining ¢: OM; — OM> as the identity
map, that is the one that sends every point in M to its corresponding point
in OM>. Then DM is obtained by pasting M; LI M5 along .

The doubled manifold DM has no boundary. If M is compact, then DM
also is.

Exercise 6.2.11. The double of D" is diffeomorphic to S". The double of
a cylinder St x [0, 1] is diffeomorphic to a torus S* x S'. What is the double
of a Mobius strip?
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6.2.6. Exotic spheres. We now investigate the following apparently in-
nocuous construction: we pick a self-diffeomorphism ¢: S"~! — S"1 and
we glue two copies of D" along ¢, thus getting a new manifold M without
boundary. What kind of smooth manifold M do we get?

Exercise 6.2.11 says that if ¢ = id then M is diffeomorphic to S". More
generally, in the topological category, the answer does not depend on .

Proposition 6.2.12. The manifold M is homeomorphic to S". If @ extends
to a self-diffeomorphism of D", then M is also diffeomorphic to S".

Proof. By Exercise 6.2.8 the manifold M is homeomorphic to the topo-
logical manifold D; U, D obtained by identifying p with ¢(p). We define a
continuous map

F: D1UidD2—>D1UwD2
by coning ¢, that is: if v € Dy then F(v) = v, while if v € D, we set

A ={ vie(ig) i v#0

0 ifv=0
The map F is a homeomorphism. By Exercise 6.2.11 we have Dy Ujqg D> = S”,

and this completes the proof that M is homeomorphic to S”.

If ¢ extends to a diffeomorphism ®: D" — D", we can replace F|p, with
& and get a diffeomorphism. More precisely, to get a smooth map we need
to smoothen it at the equator 8D" like we do when we compose two smooth
isotopies (details are left as an exercise). O

Corollary 6.2.13. If n =2 then M is diffeomorphic to S?.

Proof. Up to isotopy, the gluing map ¢: St — St is either the identity or
a reflection z — Z, and they both extend to self-diffeomorphisms of D2. O

The striking fact here is that when n > 7 the smooth manifold M may
not be diffeomorphic to S”, despite being homeomorphic to it. This implies
in particular that there are some crazy self-diffeomorphisms of S” that are not
isotopic neither to the identity nor to a reflection, and moreover they do not
extend to self-diffeomorphisms of D”.

Remark 6.2.14. A smooth manifold diffeomorphic but not homeomorphic
to S is called an exotic sphere. In dimension n > 7 there are many exotic
spheres, and they are all constructed in this way. On the other hand, there
are no exotic spheres in dimensions n =1, 2,3,5,6. The dimension 4 remains
a total mystery: we do not know if there are exotic spheres, and if there are,
they are certainly not constructed in this way (that is, by gluing two discs).
Even more puzzling, we know that the number of exotic spheres (considered
up to diffeomorphism) is finite in every dimension — for instance these are 27
in dimension 7 — except in dimension four, where the number of exotic spheres
could be any value from 0 to oo, both extremes included, as far as we know.
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M \ /M'

MH#M'

Figure 6.7. The connected sum of two compact surfaces.

6.3. Connected sums and surgery

We now introduce some more elaborate manipulations. The most impor-
tant ones are the connected sum that “connects” two manifolds along a tube,
and the more general surgery that roughly replaces a k-sphere (with trivial
normal bundle) with a (n — k — 1)-sphere. The boundary versions of these
manipulations are also important.

6.3.1. Definition. Let My and M, be two connected oriented n-manifolds,
possibly with boundary. We now define a new oriented manifold My # M- called
the connected sum of My and M>.

We define the orientation-reversing diffeomorphism of the punctured disc

a:int(D")\ {0} — int(D")\ {0}, a(v)= (1 — |V|)|%|'
We pick two arbitrary embeddings
fi: D" — int(My), fr: D" — int(M>)

such that f; is orientation-preserving and f; is orientation-reversing. Then we
glue the punctured manifolds My \ f1(0) and M\ £>(0) via the diffeomorphism

fhoaofit: fi(int(D")\ {0}) — f(int(D")\ {0}).

The resulting smooth manifold is the connected sum of My and M and is
denoted as

Mi#Ms.
Since fhoa o fl_l is orientation-preserving, the manifold M1# M, is naturally
oriented. You may visualise an example in Figure 6.7. By the Disc Theorem
6.1.14 the manifold M1# M- does not depend, up to orientation-preserving
diffeomorphisms, on the maps 1 and 5.

Remark 6.3.1. The connected sum M;# M, may also be described as a
two-steps cut-and-paste operation, where:
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(1) first, we remove f,-(int(D,-)) from M;, thus creating a new boundary
component f;(0D;) for M;, Vi =1,2;
(2) then, we paste the two new boundary components via the diffeomor-
phism f> o fl_l: 0Dy — 0D>.
We leave as an exercise to prove that this definition of M1# Mo is equivalent to
the one given above. In light of the exotic spheres construction, it is important
to require the gluing map to be £ o fl_l and not any map.

We may see # as a binary operation on the set! of all oriented connected
n-manifolds considered up to diffeomorphism.

Proposition 6.3.2. The connected sum is commutative and associative,
and S" is the neutral element. That is, there are diffeomorphisms

M#N 22 N4M, M#(N#P) 22 (M#N)#P, M#S™ 22 M.

Proof. Commutativity is obvious. Associativity holds because we can sep-
arate the discs using isotopies, so that both connected sums can be performed
simultaneously.

To construct M#S" we follow Remark 6.3.1. We choose @,: D" — S"
to be the standard parametrisation of the upper hemisphere. The two-steps
operation consists of substituting the upper hemisphere with the lower one
along the same map, and this does not change the manifold M. O

The connected sum may be defined also for non-oriented manifolds, but in
this case the resulting manifold M#N is not unique: there are two possibilities,
and these may produce non-diffeomorphic manifolds in some cases. We have
used orientations here only to simplify the theory.

6.3.2. Compact surfaces. Enough for the theory, we need examples.
One-dimensional manifolds are not very exciting, so we turn to surfaces. We
already know some compact connected surfaces:

S2, RP?, D? S'x[0,1], S'xS! ™

where M is the compact Mobius strip, considered with its (connected!) bound-
ary. Can we add more surfaces to this list?

Definition 6.3.3. The genus-g surface Sy is the connected sum
Sqg=TH#.. . #T
~—_——
g
of g copies of the torus T = St x St
1The suspicious reader may object that smooth manifolds do not form a set. However,

if we consider them up to diffeomorphism, we may use Whitney's embedding theorem and
see them as subsets of some R”, and the subsets of R" of course form a set.
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4 p - &=

Figure 6.8. The 8-connected sum of two manifolds.

By convention, the surface of genus zero Sq is the sphere S2, and that of
genus one S; is the torus. We have

Sg#Sh = Sgin.

Figure 6.7 shows that S,#S; = S3. Note that the torus T is mirrorable, so
each time we make a connected sum with T it is not really important which
orientation we put on T.

6.3.3. O-connected sum. A O-connected sum is an operation similar to
the connected sum, where a bridge is added to connect two portions of the
boundaries as in Figure 6.8.

The construction goes as follows. We consider the half-disc D! = D" N
R7. We define D"~! = D" N {x, = 0} and int(D7) = D7 N {|x| < 1}. We
consider the same orientation-reversing diffeomorphism as above

. _ v
a:int(D])\ {0} — int(D})\ {0}, a(v)=(1- ||v||)m.
Let M; and M> be two oriented n-manifolds with boundary. Pick two embedded
half-discs

f11Di‘—>M1, fgiDi‘—)MQ
such that f1(8M;) = D"~1 as in Figure 6.8-(left). We require f; to be

orientation-preserving and f> orientation-reversing. Then we glue the manifolds
My \ f1(0) and M, \ £2(0) via the diffeomorphism

froao i A (int(D7)\ {0}) — A(int(D2)\ {0}).

The resulting oriented smooth manifold with boundary is the 8-connected sum
of My and M> and is denoted as

Mi#aMo.

See Figure 6.8. As above one proves that the resulting manifold depends only
on the connected components of 9M; and M, intersecting the half-discs.
In particular, if both M; and M, have connected boundary, then My#asM> is
uniquely determined.
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1

e —

Figure 6.9. The 8-connected sum with a disc does not change the man-
ifold up to diffeomorphism.

Proposition 6.3.4. [f OM; and OM> are connected, we have
O(Mi#oMa) = OM1#0OMs.
In general we have M#5D" = M.

Proof. The manipulation restricted to the boundaries is a connected sum,
so the first isomorphism holds. The second is sketched in Figure 6.9, and
we leave the tedious exercise of writing the correct diffeomorphism to the
courageous reader. O

6.3.4. Pasting manifolds along submanifolds. \We now introduce a gen-
eralisation of the connected sum, in which we glue manifolds along disc bundles
instead of just discs.

Pick 0 < k < n. Let M; and M, be two n-manifolds, and let N; C
int(My) and Ny C int(Ms) be two diffeomorphic compact k-submanifolds
without boundary, with closed tubular neighbourhoods vN; C int(M;) and
vNy C int(M>). We suppose that the two tubular neighbourhoods are also
isomorphic, and we fix a disc bundles isomorphism

©o: UNy — vN>.

As above, we define the self-diffeomorphism
. . v
a:int(vNy) \ N — int(vN1) \ Np, a(v)=(1- HVH)M

We now glue the manifolds M; \ N1 and M, \ N> via the diffeomorphism
pooa:int(vNy) \ Ny — int(vNa) \ Na.

The resulting manifold M is obtained by pasting M; and M, along the sub-
manifolds N; and N,. It is an operation that can be done as soon as the
submanifolds Ny and N, have isomorphic tubular neighbourhoods; note how-
ever that, as opposite to connected sum, the choice of the isomorphism ¢
is important here, because two different isomorphisms may not be isotopic in
many interesting cases, not even if they are co-oriented.

Remark 6.3.5. Asin Remark 6.3.1, the construction of M may be described
alternatively as a two-steps cut-and-paste operation, where:
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(1) first, we remove from M, the open submanifold int(vN;), thus creat-
ing a new boundary component ovN;;
(2) then, we paste the two new boundary components via .

6.3.5. Surgery. There is a particular type of pasting that is so important
to deserve a separate name.

Let M be a n-manifold, and S C M be a k-sphere (that is, a submanifold
diffeomorphic to S¥) with trivial normal bundle, for some 0 < k < n—1. Asin
Section 6.1.14, we see S” inside R¥*1 x R"~* and consider S¥ = S"N{y = 0}.
We have seen that the normal bundle S C S is also trivial.

We can therefore paste M and S” along the k-spheres S and Sk. To do
so, we must choose a disc bundle isomorphism ¢: vS — vS¥. This operation
is called a surgery along the sphere S. The resulting manifold M’ depends on
the chosen .

Remark 6.3.6. We have seen in Section 6.1.14 that S" decomposes into
Sk x D"k and D¥t1 x S"—k=1  Therefore, by Remark 6.3.5, a surgery may
also be described as follows: whenever we find a domain in M diffeomorphic
to SK x D"k, we first remove its interior, thus creating a new boundary
Skx S"=k=1 and then glue D¥*1 x S"=k=1 to it via the identity map. Shortly:
we substitute a SK x D" K inside M with DK+1 x §n—k=1,

Remark 6.3.7. A surgery along a O-sphere is like a connected sum: we
replace SO x D", that is two disjoint discs, with D! x S"~1, that is a tube.
When both points in S° are contained in the same connected component, this
may be interpreted as a self~-connected sum of that component.

The inverse operation of a surgery along a k-sphere is naturally a surgery
along a (n — k — 1)-sphere.

6.3.6. Pasting along submanifolds in the boundary. There is of course
a boundary version of pasting along submanifolds, where the submanifolds lie
in the boundary. This operation generalises the 0-connected sum and will be
fundamental in the next section.

Let My and M, be two n-manifolds with boundary, and let N; C OM; and
N> C OM» be two compact k-submanifolds of the boundary. We require that
N1 and N> have no boundary, and that they have isomorphic closed tubular
neighbourhoods ¢: vN; — vN» in OMy and OM;.

We now define a new manifold M’ obtained by pasting My and M, along
the submanifolds N; and N>. The operation is the same as above, only with
half-discs instead of disc bundles.

Each vN; C M; is a D""*~1-bundle over N;, and using collars we may
extend it to a half-disc Dj’;k—bundle DN; that is a "half"-tubular neighbourhood
of N; in M;. The diffeomorphism ¢ also extends to ¢: UNy — UN>. We glue
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the manifolds My \ Ny and M, \ N via the diffeomorphism
woa:int(INy)\ Ny — int(IN2) \ Na

where o and int(vN;) are defined on every fibre Dj’:k as we did for 0-connected
sums.
The 8-connected sum corresponds to the case where Ny and N» are points.

6.4. Handle decompositions

We now show that every compact manifold M decomposes into finitely
many simple blocks, called handles. This important procedure is called a handle
decomposition.

6.4.1. Handles. We have described in the previous section the operation
of pasting two manifolds along submanifolds in their boundaries. We now
introduce a particular, but very important, case.

Let M be a n-manifold with boundary. Let S C OM be a (k—1)-sphere with
trivial normal boundary vS C M, with 0 < k < n. A k-handle addition on M
is the operation that consists of pasting M with D", along the (k — 1)-spheres
S and S¥71 € S"1. As in Section 6.1.14, we see D" inside R” = R¥ x Rk
with coordinates (x, y), and Sk~ = S"~1n {y = 0}.

The result is a new smooth manifold M’. As in Section 6.1.14, we may
identify vSK=1 with SK=1 x D"~k so that M’ depends on the diffeomorphism

0: Sl x DK s,

We also define the extremal cases k = 0 and kK = n. The addition of a 0-
handle to M is simply the addition of a disjoint connected component D", with
no attachment. On the contrary, on a n-handle the n-sphere S is a connected
component of @M, and we attach D" along a diffeomorphism ¢: S"~1 — S.

6.4.2. Alternative description. To better visualise what is going on, we
furnish an alternative description of a k-handle addition, drawn in Figure 6.10.

Let S C OM be a (k — 1)-sphere with trivial normal boundary. It has a
half-tubular neighbourhood in M is diffeomorphic to S x R"™% x R, and we
identify it with the manifold with boundary

U={(xy) eR"™ xR |y| > 1}
via the map (u, v, t) — (v, (t + 1)u). Now we have
S={x=0lyl=1}, ou=uUnom={|yl =1}.
Let p: [-1,1] — R4 be a continuous positive function that is smooth on
(=1, 1) and such that all derivatives of p tend to +00 as t — 41 (correspond-

ing signs). We define a bigger manifold M’ by substituting U with the bigger
set

U =Uudllyll <1 lIxll < e(llyllD }-
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Figure 6.10. An alternative description of the attachment of a k-handle
to M.

Exercise 6.4.1. The manifold M’ is diffeomorphic to M with a k-handle
attached to S.

See Figure 6.10. Note that with this description the original manifold M
is naturally a submanifold of M.

6.4.3. Topological handles. We can make one further step towards visu-
alization and intuition by using topological handles. These capture the topo-
logical structure of M’ while being a little bit imprecise on its smooth structure.
See Figure 6.11.

A topological handle is what we get if we take p(t) = 1 constantly in
the previous construction. The result is not smooth, but it still works up to
homeomorphisms.

In other words, we use DX x D"~k instead of D”. This is not a smooth
manifold because of its corners; its topological boundary decomposes into the
horizontal DX x S"~k=1 and the vertical SK=1 x D"~k For every embedding

0: S x DK oM
we define a new topological space
M = MU, (D" x D"¥)

obtained by attaching DX x D"~k to M along . This operation is the at-
tachment of a topological k-handle to M. The attaching of a handle or a
topological handle along the same map ¢ produce homeomorphic manifolds
M'’: the only difference between the two constructions is that in the topo-
logical setting the smooth structure on M’ is not obvious to see — some new
corners arise that should be smoothened, see Figure 6.11. From now on, we
will always think as a handle as a topological handle whose corners have been
smoothened.
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&
71\ 71\
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Figure 6.11. The attachment of a 1-handle and of a topological 1-
handle along the same map . The resulting topological manifold is the
same in both constructions, but the smooth structure is well-defined only
with the first. For practical purposes, we usually think of a handle as a
topological handle whose corners have been somehow “smothened.”

belt belt

N &

—

attach attach

Figure 6.12. A three-dimensional topological 1-handle (left) and 2-
handle (right), with the attaching and belt spheres in blue.

One should think of a topological k-handle DX x D"~k as a thickened k-
dimensional disc. Here is some useful terminology: the number k is the index
of the handle; the sphere SK=1 x {0} is the attaching sphere, while the sphere
{0} x S"~k~1 s the belt sphere. The discs DX x {0} and {0} x D"~ are the
attaching and belt discs. See some examples in Figure 6.12.

Remark 6.4.2. If M’ is obtained from M by the attachment of a k-handle
to the (k — 1)-sphere S C M, the new boundary M’ is obtained from the old
OM by surgery along the sphere S. This follows readily from the definition.

6.4.4. Handle decomposition. Let M be a compact smooth n-manifold,
possibly with boundary. A handle decomposition for M is the realisation of M
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¢ L &Y

Figure 6.13. Some handle decompositions in dimension two and three.
On the left, we have two 0-handles (yellow), one 1-handle (orange), and
one 2-handle (red) in dimension two. On the right, we have two 0-handles
(yellow) and one 1-handle (orange) in dimension three.

as the result of a finite number of operations
=My~ My~ oo Me=M

where each M, is obtained by attaching some handle to M;. Since the only
handle that can be attached to the empty set is a 0-handle, the manifold M;
is the result of a 0-handle attachment to @ and is hence a n-disc.

Example 6.4.3. The sphere S, and more generally each of the exotic
spheres described in Section 6.2.6, decomposes into two n-discs. We may
interpret this decomposition as a n-handle attached to a 0-handle. Therefore
5™ has a handle decomposition with one 0-handle and one n-handle.

Conversely, if a compact manifold M without boundary decomposes into
two handles only, then these must be a 0- and a n-handle, and so M is either
S or an exotic sphere (in all cases, it is homeomorphic to S").

6.4.5. Reordering handles. More examples are shown in Figure 6.13. In
both examples in the figure the handle decomposition goes as follows: we first
attach some O-handles (that is, we create discs out of nothing), then we attach
some 1-handles, then we attach some 2-handles. We think at the 1-handles in
the (left) figure as attached simultaneously. We now show that every handle
decomposition can be modified to be of this type.

Proposition 6.4.4. Every handle decomposition can be modified so that we
first attach all 0-handles, then all 1-handles, then all 2-handles ... and so on.

Proof. Suppose that M; ;1 is obtained from M; by attaching a k-handle
Hk . and M, is obtained from M;,; by attaching a h-handle H". We write

Mit1 = M; Uy Hk, Mito = Miyq Uy H".
We show below that if h < k then H" can be slid away from H* as in
Figure 6.14. After this move, the handles H” and H* are disjoint and hence
we can obtain the same manifold M, by first attaching H” and then H*.

By applying finitely many exchanges of this type we transform every handle
decomposition into one where handles are attached with non-decreasing index.
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Figure 6.14. If h < k, we can always slide a k-handle away from a
previously attached h-handle. Here h=k = 1.

Moreover, the handles with the same index can be slid to be disjoint, and hence
can be thought to be attached simultaneously. This proves the proposition.

We now show how to slide H" aways from HX. The attaching sphere of
H"is a (h—1)-sphere S C &M, 1, while the belt sphere of H* isa (n—k—1)-
sphere S’ € OMi41. If h < k, we have (h— 1)+ (n—k—-1) < n—1. By
transversality, we may isotope S away from S’.

The handles H* and H" intersect M into two closed tubular neighbour-
hoods of S” and S. Since S'NS = @, we can isotope the tubular neighbourhood
of S to be disjoint from that of S’. That is, we can slide the handle H" away
from HX, as stated. O

As stressed in the proof, the handles of the same index are disjoint and
can be attached simultaneously, as in Figure 6.13.

Our next goal is to show that every compact smooth manifold decomposes
into handles. To this purpose we study the critical points of functions M — R
and we introduce the Morse functions, that are of independent interest.

6.4.6. Hessian at the critical points. Let M be a manifold without
boundary and f: M — R be a smooth function. We know that its differ-
ential df is a section of the cotangent bundle, that is a tensor field of type
(0,1) on M. On a chart, the differential is just the gradient.

Can we define a kind of second derivative of f, that behaves like the
Hessian when read on a chart? For instance, this might be some tensor field
of type (0,2)? The answer is unfortunately negative in general: there is no
way to define a Hessian unambiguously; to get a Hessian we need to equip M
with some additional structure, like the connections introduced in Chapter 9.

Despite these premises, a Hessian is however defined at the critical points
of f. If pis a critical point, then we can define a symmetric bilinear form

Hess (f)p: ToM x T,M — R
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as follows. Given v, w € T,M, extend them to two arbitrary vector fields X, Y
in some neighbourhood of p. Then we set
Hess (f)p(v, w) = X(Y(F))(p).
Exercise 6.4.5. The map Hess (f), is well-defined, bilinear, and symmetric.
It is crucial here that df, = 0. Alternatively, we can also define the Hessian
in coordinates: we pick p = 0 for simplicity and get
f(x) = f(0) + 2 xHx + o(||x]?).
On some other chart with variables X, we get x = Jx+ o(||%||) where J is the
differential of the coordinates change at x = 0 and therefore
t = — — —
f(x)=f(0)+ 2 (Ux+ o(IIx])) H(Ix + o(IxI1)) + o(lIx]I)
= £(0) + 3 X UHJIR + o(|Ix[]?).
Therefore H changes to "JHJ and hence describes a chart-independent bilinear

form on T,M. Of course the two definitions given coincide (exercise).

6.4.7. Non-degenerate critical points. Let M be a manifold without
boundary and f: M — R a smooth function. We say that a critical point
p € M for f is non-degenerate if the bilinear form Hess (f), on T,M is non-
degenerate. We now study the non-degenerate critical points. We start by
exhibiting an alternative definition.

Proposition 6.4.6. A critical point p is non-degenerate <= the section df
of T*M s transverse to the zero-section at p.

Proof. On a chart, we have f: U — R for some open set U C R". We see
df as the gradient Vf: U — R". Now Vf is transverse to the zero-section at
p € U < the differential of Vf is invertible in p. The differential of Vf is
Hess (f)p, so we are done. O

Corollary 6.4.7. Non-degenerate critical points are isolated.

If p is a non-degenerate critical point, then Hess (f), is a scalar product
on T,M and has some signature (k, n — k) for some 0 < k < n. The integer
n — k is the index of the critical point p. The Morse Lemma determines the
behaviour of f near p, according to its index.

Lemma 6.4.8 (Morse Lemma). Let p be a non-degenerate critical point of
index n — k. On some appropriate chart near p the function f is read as

F(X) = F(P) + X2+ .+ X — Xy — o — X2

Proof. On a chart we get f: R” — R with p = 0. Since 0 is a critical
point, Taylor's Theorem 1.3.1 gives

f(x)=f(0)+ % Z hij(x)xix;

ij=1
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for some smooth maps h;;. After substituting both h;; and hj; with %(h,ﬂ- h;i)
we get h;; = h;;. Now h;;(0) is non-degenerate with signature (k, n — k).

To transform f into the desired form, we follow the usual procedure to
diagonalise scalar products, and extend it smoothly on a neighbourhood of O.
We proceed by induction: suppose that on some coordinates we write

fFx)=4x?+---£x2 + Z hij(x)xix;.
ij=>r
Since hj;(0) has maximal rank, after a linear change of coordinates we may

suppose that h,(x) # 0 at x = 0 and hence on some small neighbourhood
around 0. We pick new coordinates

yi =x; fori#r,
/ hir (X)X
Yro = |hrr(X)| (Xr + Zi>r hrf)(:)())(> :
With these new coordinates we easily get

Fy)=dy £ £y2+ > W)y

iJj>r

for some functions hf-j defined near p, and we conclude by induction. O

6.4.8. Morse functions. Let M be a manifold without boundary. A Morse
function on M is a function f: M — R whose critical points are all non-
degenerate. That is, the differential df is transverse to the zero-section.

We now prove that there are plenty of Morse functions. Via the Whitney
embedding theorem, we may suppose that M C R™ for some m.

Proposition 6.4.9. Let M C R™ be a submanifold and f: M — R any
smooth function. For almost every a € R™, the modified function

fo: M — R, fa(x) = f(x) — (a, x)
is a Morse function.
Proof. For a € R", we define the maps
Ly M — R, La(x) = (a, x).
T MxR" — T*M, (p,a) — (p, (dLa)p).

Of course (dL;)p(v) = (a,v). The map 7 is a fibre bundle (exercise). For
every a € R" we get a commutative diagram

E- % MxR <" M
|
| J/ﬂ'
¥ dL,
M——T*M

df

where E — M is the pull-back of 7 along df, and h,(p) = (p, a).
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Figure 6.15. On this torus, the height function f(x, y, z) = z is a Morse
function with four non-degenerate critical points of index 0, 1, 1, and 2.
The level sets f~!(t) are manifolds, except when t is a critical value.

By Proposition 5.7.2, the maps g and h;, are transverse <= a is a regular
value for my o g where m(p, a) = a. By Sard’s Lemma, this holds for almost
every a and hence g rh h,. As in the end of the proof of Lemma 5.7.10, this
implies that df th dL,. Therefore d(f — L,) is transverse to the zero-section,
that is f, = f — L, is a Morse function. O

Corollary 6.4.10. Let f: M — R a smooth function. For every € > 0 there
is a Morse function g: M — R with |f(p) — g(p)| < e forall p € M.

Proof. Embed M in a small ball of R"” and apply Proposition 6.4.9. ([l

We have proved in particular that every M has some Morse function
f: M — R. Itis sometimes useful to add the following requirement.

Proposition 6.4.11. Every manifold M without boundary has a Morse func-
tion f: M — R where distinct critical points have distinct images.

Proof. Pick a Morse function f: M — R. At a critical point p € M,
choose a bump function p: M — R that is constantly ¢ > 0 on a small
neighbourhood of p and is 0 outside a slightly bigger neighbourhood, disjoint
from all the other critical points. Modify f to f 4+ p. If ¢ is small and dp is
uniformly small, the function f + p is still Morse with the same critical points.
However, the value of p has changed by c. By choosing appropriate ¢ we can
separate the images of all the critical points. O

6.4.9. Existence of handle decompositions. \We have introduced Morse
functions as a fundamental tool to prove the following remarkable theorem.

Theorem 6.4.12. Every compact manifold M without boundary has a han-
dle decomposition.

Proof. Let f: M — R be a Morse function, where critical points have
distinct images. Since M is compact, it has finitely many critical points. For
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Figure 6.16. Each time a non-degenerate critical point of index k is
crossed, a k-handle is added. We show here the two critical points of
index 1, and the core segment of the 1-handle in each case.

instance, Figure 6.15 shows a Morse function on the torus with four critical
points. For every a € R we define

M, = f (-0, al.

When a is regular, M, is a domain in M, that is a submanifold with boundary.
Consider two regular values a < b. We now prove two facts:

(1) If [a, b] contains no critical values, then M, and M}, are diffeomorphic.
(2) If [a, b] contains a single critical value, image of a critical point of
index k, then My is diffeomorphic to M, with a k-handle attached.

An example is shown in Figure 6.16. When a crosses a critical point of index
k, a k-handle is attached to M,. So the torus decomposes into one 0-handle,
two 1-handles, and one 2-handle. The claims (1) and (2) clearly imply that M
decomposes into handles, one for each critical point of M.

We first prove (1). Fix an arbitrary Riemannian metric on M, that is on
the tangent bundle TM. Every T,M is equipped with a scalar product (,),
and we use it to transform the covector field df into a vector field V£ in the
usual way, by requiring that

df,(v) = (Vf(p), v).
The field V£ vanishes at the critical points. On a curve «y: | — M we get
(Fo)(t) = dfyy (V'(1) = (VF.¥(1)).

Let p: M — R be a smooth function that equals 1/(Vf, V) on the compact
set f~1[a, b] and which vanishes outside some bigger compact subset. We
define a new vector field

X(p) = p(P)VF(p).

Since M is compact, the vector field X is complete and generates a flow ®.
Consider an integral curve y(t) = ®(p, t). If v(t) € f~1[a, b] then

(Fo)(t) = (VF.¥(t)) = (VF,X)=1.
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M!

Figure 6.17. The manifolds M. and M_. intersect the chart R x R*
as shown here (left). We replace M, with a diffeomorphic submanifold M’,
still containing M_¢, so that the yellow zone M’ \ M_. lies entirely in this
chart (right).

Therefore the flow defines a diffeomorphism
My — My, p+— d(p, b— a).

We turn to (2). Let p € M be the unique critical point in f~*[a, b]. We
suppose for simplicity that f(p) = 0. By (1) we may choose a= —cand b=¢
for some small € > 0. By the Morse Lemma, on a chart U = R" = Rk x Rk
the function f is

F(x) = IIxII* = lly|I?

where (x, y) € R"™¥xR* and p = (0,0). The manifolds M, and M_, intersect
the chart R"~% x R¥ as in Figure 6.17-(left).

We now substitute M, with a diffeomorphic submanifold M’ that still con-
tains M_¢, and which has the additional property that M’ \ M_. lies entirely
in the chart R"~k x Rk as shown in Figure 6.17-(right). To this purpose, we
pick a function ¢: R — R such that

$(0) >¢e, ¢(t)=0Vt>2e, —1<¢(t) <0Vt

We now define another function F: M — R, by requiring that F(p) = f(p)
outside the chart, and

Flx,y) = fx,y) = o(2lxI + lIv1%)
inside the chart. We then define
M = F1(—oc0, —¢].
Clearly M" > M_¢ and M’ \ M_¢ is contained in the chart. We show that
M = F71(—o0, €].
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9 o

Figure 6.18. A 1-handle attached to two distinct 0-handles: the result
is diffeomorphic to a disc.

Indeed, we obviously have M, C F~1(—o0, €], and conversely if F(x,y) < €
and @(2||Ix||2 + |ly||?) > 0 we get 2||x||% + |ly||?> < 2; therefore

FOxy) = X2 = Iyl < lIxI? + 3llylI* <e.

We verify easily that dF = 0 <= df = 0, hence F has the same critical
points as f. Since F(p) < —¢, the function F has no critical values in [—¢, €]
and (1) implies that M’ and M, are diffeomorphic.

Finally, we need to show that M’ is diffeomorphic to M_, with a (yellow)
k-handle attached, as suggested by Figure 6.17-(right). To this purpose we
fix yop € R¥ and study the horizontal slice

Moy =y} ={(xy) |y =y, IXIP < llyoll* + &(2lIxII* + llvol?) — €}

This is easily seen to be a disc with radius r(yp) > 0 depending smoothly on
Yo. When [lyol[* > 2¢ we get r(yo) = /Ilv0l]> — €.

One concludes by showing that Figure 6.17-(right) is in fact diffeomorphic
to Figure 6.10-(right). Therefore M" is M_, with a k-kandle attached. The
explicit diffeomorphism is left as an exercise. O

6.5. Classification of surfaces

In the previous section we have shown a powerful construction that allows
to decompose every compact smooth manifold without boundary into simple
pieces called handles. We now use this construction to classify all compact
surfaces.

6.5.1. The main theorem. We start by solving the most interesting case.
Recall from Section 6.3.2 that we defined the genus-g surface Sy as the con-
nected sum of g tori.

Theorem 6.5.1. Every compact connected and orientable surface S with-
out boundary is diffeomorphic to Sy, for some g > 0.

Proof. We pick a handle decomposition of S. This consists of some 0-
handles, then 1-handles attached to these O-handles, and finally 2-handles
attached to the result.

We first make an observation that is valid in all dimensions: if we attach
a 1-handle to two distinct 0-handles as in Figure 6.18, this is equivalent to
making a boundary connected sum of two discs, so the result is again a disc.
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Figure 6.19. The 0-handle and some 1-handles (left). Two interlaced
1-handles (centre). Two interlaced handles form a handle decomposition
of a holed torus, seen here as a square with opposite edges identified, with
the white hole removed (right).

Therefore we can replace the two 0-handles and the 1-handle altogether with
a singe 0-handle, thus simplifying the handle decomposition.

After finitely many such moves, we may suppose that in the handle decom-
position of S every 1-handle is attached twice to the same 0-handle. Since S
is connected, this easily implies that there is only one 0-handle.

A dual argument works for the 2-handles. Note that every 1-handle is
incident to two 2-handles, attached to the two long sides of the 1-handle. If
the 2-handles are distinct, then the 1-handle together with the two incident
2-handles form again a picture like in Figure 6.18, and can thus be replaced by
a single disc, that is a single 2-handle. After finitely many moves of this type,
we easily end with a single 2-handle.

We have simplified the handle decomposition of S so that it has only one
0- and one 2-handle. If there are no 1-handles, then S decomposes into a 0-
and a 2-handle and is hence diffeomorphic to S2 by Corollary 6.2.13.

Suppose that there are 1-handles. Every 1-handle is a topological rectangle
attached to the O-handle along its short sides, as in Figure 6.19-(left). Up to
diffeomorphism, there are two ways of attaching a 1-handle: with or without
a twist. However, twists produce Mobius strips, which are excluded since S is
orientable. So every 1-handle is attached without a twist, as in the figure.

Since there is only one 2-handle, the union of the 0- and 1-handles is a
surface with connected boundary. This implies that every 1-handle must be
interlaced with some other 1-handle as in Figure 6.19-(centre). Let S’ C S
be the subsurface consisting of the 0-handle and these two 1-handles. Figure
6.19-(right) shows that S’ is diffeomorphic to a torus with a hole. Therefore if
we substitute S’ with a single 0-handle, that is a disc, we find a simpler handle
decomposition of a new surface S” such that

S =S"#T.
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We conclude by induction on the number of 1-handles that S is a connected
sum of some g tori. [l

In the next chapters we will prove that Sy is not diffeomorphic to Sy
if g # ¢, so the genus of a surface fully characterises the surface up to
diffeomorphism.



CHAPTER 7

Differential forms

In a smooth manifold there is no notion of distance between points, angle
between intersecting curves, volume of domains, etc. To get all these natural
geometric concepts, we need to equip the manifold with an additional struc-
ture: as we will see in the next chapters, it suffices to choose a metric tensor
to recover them all. Here we study a somehow weaker, and quite different,
structure called differential form.

A differential form may be used to talk about volumes, but not yet about
distances or angles. This apparently weaker structure has however some im-
portant applications that go beyond volumes and integration: it may be ma-
nipulated quite easily — for instance, it can be pulled back via any smooth
maps, whereas metric tensors cannot — and can also be “differentiated” in a
very natural way. This differentiation will lead in the next chapter to a rich
and beautiful algebraic theory called De Rham cohomology.

7.1. Differential forms
We introduce the differential k-forms.

7.1.1. Definition. Let M be a smooth n-manifold. A differential k-form
(shortly, a k-form) is a section w of the alternating bundle

N<(M)
over M, see Section 4.3.4. In other words, for every p € M we have an
antisymmetric multilinear form
w(p): ToM x -+ x TyM — R
k

that varies smoothly with p € M.

Example 7.1.1. A 1-form is a section of AY(M) = T*M, that is a field of
covectors. As an important example, the differential df of a smooth function
f: M — Risa l-form, see Section 4.3.2. This example is not exhaustive: we
will see that some 1-forms are not the differential of any function.

By Corollary 2.4.10, every k-form with k > n is necessarily trivial. The
vector space of all the k-forms on M is denoted by

QK(M) = T (AN*M).

163
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7.1.2. Exterior product. Recall from Section 2.4.3 that the exterior al-
gebra A*(V) of a real vector space V is equipped with the exterior product A.
Let now w and 1 be a k-form and a h-form on a manifold M. Their exterior
product is the (k + h)-form w A m defined pointwise by setting

(wAnM)(p) =wlp) An(p).

As in Section 2.4.3, the space

(M) = P (M)

k>0

is an anticommutative associative algebra, that is

wAn=(-1)"*nAw
and if k is odd we get

wAw=0.

This holds in particular for every 1-form w.

7.1.3. In coordinates. As usual, differential forms may be written quite
conveniently in coordinates.

Let U C R" be an open set. Recall that for some notational reasons it is
preferable to denote the canonical basis of R" by

0 0

ox T Oy

For similar reasons, we will now write the dual basis of (R")* = R" as
dxt, ..., dx".

We have seen in Section 2.4.4 that the vector space AX(R") has dimension
(Z) and a basis consists of all the elements

dx A A dxe
where 1 < /1 < ... < iy < nvary. Therefore we can write any k-form w in U
in the following way:
w = Z foyo i dXT A A dx

<<
where f; ; is some smooth function on U. The notation is appropriate
because we can also interpret dx' as the differential of the linear map x — X;.

Example 7.1.2. The differential of a function f: U — R is

df—ﬁdx1+...+ or

= dx".
0xq Oxp X
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Example 7.1.3. The following are 1-forms in R3:
x%dy — xe¥dz, xdx + ydy + zdz
and the following are 2-forms:
xdx A dy +x3dy A dz, xdy Ndz —ydx Ndz+ zdx ANdz.
Remark 7.1.4. Every n-form in U C R" is of type
Fdxt A A dx"

for some smooth function f: U — R. Therefore n-forms on open sets U C R"
are somehow like smooth functions on U, but one should not go too far with
this analogy, because forms and functions are intrinsically different objects!

It is sometimes useful to write a form as a linear combination of elements
dx A --- A\ dx'* without the hypothesis 7 < ... < Ix. One has to take care
that the notation is not unique in this case, for instance

w=dxNdy=—dyNdx= %dx/\dy—%dy/\dx.
It suffices to keep in mind the following relations:
dx' A dx = —dx! A dx', dx' A dx' = 0.
Example 7.1.5. With these rules in mind, it is also easy to write the wedge
product of two differential forms. For instance:

(xz22dy + xdz) A (e dx A dz) = —xe¥Z?dx A dy A dz.

7.1.4. Change of coordinates. On a chart, every form w may be ex-
pressed uniquely as a linear combination

w = Z fiyo i dXT A A dx
i <<l

If we use another chart, with variables X, we get

.....

for some new functions f. How can we pass from one expression to the other?
The differentials dx' are elements of (R")* and hence change contravariantly,
that is we have

The notation dx’ is designed to help us to write this equation correctly. We can
then plug this expression in the linear combination to pass from one notation
to the other.
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Example 7.1.6. Consider the 2-form w = zdx A dy on the open set U =
{x,y,z > 0}. We change the coordinates via x = X°, y = y+Z, z=y. Then

dx = 2xdX, dy =dy+dz, dz =dy
and by substituting we see that w in the new coordinates is read as
w = (¥)(2xdx) A (dy + dZ) = 2XydX A dy + 2xydx A dZ.

An interesting case occurs when we consider n-forms in a n-dimensional
manifold. Here on a chart we have

w=fdx*A---Adx"
and Proposition 2.4.15 yields the following simple formula:

axi =1 =n

This equality is very much similar to the change of coordinates formula for
integration given in Section 1.3.8, and this is in fact the most important feature
of differential forms: they can be meaningfully integrated on manifolds, as we
will soon see.

7.1.5. Support. Let M be a n-manifold and w be a k-form on M. We
define the support of w to be the closure in M of the set of all the points p
such that w(p) # 0. Using bump functions, one can easy construct plenty of
non-trivial k-forms in R” having compact support.

Moreover, for every k-form w on M and every open covering U; of M, we
can pick a partition of unity p; subordinate to the covering and write

w= Zp,-w.
i

The support of pjw is contained in U; for every i, and this possibly infinite sum
makes sense because it is finite at every point p € M. One can in this way
write every k-form w as a (possibly infinite, but locally finite) sum of compactly
supported k-forms p;w. If w is already compactly supported, the sum is finite.

7.1.6. Pull-back. When we introduced tensors in Chapter 2, the roles
of covariance and contravariance were somehow interchangeable, because one
can switch the spaces VV and V* thanks to the canonical isomorphism V = V**.
This symmetry is now broken when we talk about manifolds and tensor fields,
and it turns out that contravariant tensor fields are sometimes preferable.

We explain this phenomenon. Let f: M — N be any smooth map between
two manifolds. We have already alluded to the fact that a covariant tensor field
like a vector field cannot be transported along f in general, neither forward from
M to N nor backwards from N to M. On the other hand, every contravariant



7.2. INTEGRATION 167

tensor field a of some type (0, k) on N may be transported back to a tensor
field f*a of the same type (0, k) on M, by setting

(9) fra(p)(v. ..., vi) = a(f(p)) (dfp(va). - - dfp(vi))

for every p € M and every vy, ..., vk € TpM. The tensor field f*a is the
pull-back of a along f. If a is (anti-)symmetric, then f*a also is.

In particular, the pull-back of a k-form w in N is a k-form f*w in M. We
get a morphism of algebras

*: Q(N) — Q*(M).
In particular, we have
(10) f(wAn)=Ff(w)AFf ().

As usual, we can describe this operation in coordinates: let f: U — V be a
smooth map between two open subsets U C R™ and V C R”, and

be a k-form in V. We get
Fw— S (nn o ) A A dE

n<..<lg

where f;: U — R is the j-th coordinate of f and df; its differential. This
equality is proved (exercise) by showing that it satisfies (9), using (10).

Example 7.1.7. Consider f: R® — R?, f(x,y,z) = (xy,yz) and the 2-
form w = xdx A dy on R2. We get

f*w = xydfi A dfy = xy(ydx + xdy) A (zdy + ydz)
= xy2zdx ANdy + xy3dx ANdz + x2y2dy ANdz.

7.2. Integration

We now show that k-forms are designed to be integrated along k-submanifolds.

7.2.1. Integration. Consider a n-form
w=Ffdx* A Adx"

on some open subset V C R”, having compact support. We define the integral
of w over V simply and naively as

Ju=[r

Let now 9 : V — V' be an orientation-preserving diffeomorphism between open
sets in R”, and denote by 9,w = (1 ~1)*w the n-form transported along .
Here is the crucial property that characterises differential forms:
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Proposition 7.2.1. We have

/ w= Y.
v %

Proof. Combine (8), where det > 0 since 9 is orientation-preserving, with
the change of coordinates law for multiple integrals, see Section 1.3.8. O

It is really important that ¢ be orientation-preserving: if 1 is orientation-
reversing, then a minus sign appears in the equality. Encouraged by this result,
we now want to extend integration of forms from open subsets of R” to
arbitrary oriented manifolds.

Let M be an oriented n-manifold and w be a n-form over M with compact
support. We now define the integral of w over M, that is a number

I

as follows. If the support of w is fully contained in the domain U of a chart

@: U—=V, then we set
/w:/w*w.
M v

The definition is well-posed because it is chart-independent thanks to
Proposition 7.2.1. More generally, if the support of w is not contained in
the domain of any chart, we pick an oriented atlas {¢,: U; — V;} on M and a
partition of unity p; subordinated to the covering U;. We decompose w as a
finite sum w = ), pjw and define

o e

Proposition 7.2.2. This definition is well-posed.

Proof. Let {¢}: Ul — V/} be another compatible oriented atlas and p} a
partition of unity subordinated to UJ’-. For every i we find

/Mp,-wz/lw<§:pj->p/w=§:/ﬂﬂpjpzw

) — ! .
Z/Mp,w lZJ:/MpJp,w-

and therefore

Analogously we get
> [ ow=3 [ dow
j M ij ’M

and therefore the definition is well-posed. O
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The following properties follow readily from the definitions. Let w be a
compactly supported n-form on an oriented n-manifold M. We denote by — M
the manifold M with the opposed orientation.

Proposition 7.2.3. We have

[ =] w

If f: M — N is an orientation-preserving diffeomorphism, then

/w:/f*w.
M N

Remark 7.2.4. In Remark 7.1.4 we observed that on a chart a n-form
looks like a function, but we warned the reader that the two notions are quite
different on a general manifold M. As opposite to n-forms, functions in M
cannot be integrated in any meaningful way; conversely, the value w(p) of a n-
form w at p € M is not a number, in any reasonable sense. Shortly: functions
can be evaluated at points, and n-forms can be integrated on sets, but not
the converse.

7.2.2. Examples. In practice, nobody uses partitions of unity to integrate
a n-form on a manifold, because the formulas get too complicated. Instead,
we prefer to subdivide the manifold into small pieces where the n-form may be
integrated easily. We explain briefly the details.

Let M be a smooth n-manifold. Recall the notion of Borel subset from
Section 3.11.1. If w is a compactly supported n-form on M, we can define
the integral fsw over a Borel set S C M using a partition of unity as we did
above.

Proposition 7.2.5. If the support of w is contained in a Borel set S that is
a countable disjoint union of Borel sets S;, then

/Swzg/&w_

Proof. The equality holds for Borel sets in R” because it is a property of
Lebesgue integration; via a partition of unity we can extend it to M. O

Recall that having measure zero is a well-defined property for Borel subsets
of any smooth manifold. If the complement of S C M has measure zero, then

o= Jee

because the integral over M \ S is zero. So we can remove from M any
zero-measure set to get a more comfortable domain S and integrate w there.
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Example 7.2.6. Consider the n-dimensional torus T = S! x --- x S where
every point has some coordinates (6%, ...,6"), and the n-form

w=do"A--- A do".

/w:/w:/ 1=(2m)"
T U (0,2m)x--x(0,27)

by using the open chart U = (0,27) x --- x (0,27) whose complement has
measure zero.

We have

In all our discussion we have implicitly considered only manifolds of dimen-
sion n > 1. However, it will be soon important to consider also points: we
define the integral of a O-form, that is of a function f, over an oriented point
p to be £f(p) according to the orientation of p.

7.2.3. Integration on submanifolds. By combining pull-backs and inte-
gration, we get a nice new tool: we can integrate k-forms along k-submanifolds.

Let M be a smooth manifold and w be a fixed compactly supported k-form
on M. For every oriented submanifold S C M of dimension k, we may define
the integral of w along S as follows:

/w://*w
s s

where /: S — M is the inclusion map. Quite remarkably, we can use w to
assign a real number to every k-submanifold S C M.

Remark 7.2.7. More generally, the k-form w needs not to have compact
support: it suffices that the intersection of the support of w with S is compact,
and in that case the integral makes sense. For instance, this holds for every
w € QK(M) if S is itself compact.

Shortly: functions can be evaluated at points, and k-forms can be inte-
grated along oriented k-submanifolds.

Exercise 7.2.8. Consider the torus T = St x S! with coordinates (6%, §2)
and the 1-form w = d6'. Consider the 1-submanifold y; = {6’ = 0} for
i = 1,2, oriented like S*. We have

/wzo, /w:27r.
Y1 Y2

7.2.4. Volume form. As we anticipated in the introduction of this chap-
ter, a smooth manifold is not equipped with any canonical notion of “volume”
for its Borel subsets. We can add this geometric structure to the manifold, by
selecting a preferred differential form called a volume form.

Let M be an oriented n-manifold.
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Definition 7.2.9. A volume form in M is a n-form w such that

w(p)(vi,...,vn) >0
for every p € M and every positive basis vy, ..., v, of T,M.

Let w be a volume form on M and S C M be a Borel set with compact
closure. It makes sense to define the volume of S as

Vol(S) = / w.
S
Here is the crucial property of volume forms:

Proposition 7.2.10. We have Vol(S) > 0. If S has non-empty interior,
then Vol(S) > 0.

Proof. If we use only orientation-preserving charts, the form w transforms
into n-forms fdx! A ---dx" with f(x) > 0 for every x. O

As in ordinary Lebesgue measure theory, we can now define Vol(S) for
every Borel set S, as the supremum of the volumes of the Borel sets with
compact closure contained in S. The volume may (or may not) be infinite if
S has not compact closure. We have obtained a measure on all the Borel sets
in M, that is we have the countable additivity

Vol(S) = Vol(S))
whenever S is the disjoint union of countably many Borel sets S;.
Of course different selections of the volume form w give rise to different

measures, and there is no way to choose a “preferred” volume form w on an
arbitrary oriented manifold M.

Proposition 7.2.11. If w is a volume form and f: M — R is a strictly
positive function, then w' = fw is another volume form. Every volume form
w’ may be constructed from w in this way.

Proof. The first assertion is obvious, and the converse follows from the
fact that A"(T,M) has dimension 1 and hence for every w,w’ we may define
f(p) as the unique positive number such that w/(p) = f(p)w(p). O

We also note that volume forms always exist:
Proposition 7.2.12. If M is oriented, there is always a volume form on M.

Proof. Pick an oriented atlas {®;: U; — V;} and a partition of unity p;
subordinate to the covering {U;}. We define

w(p) =D pilp)@} (dx* A+ A dx”)

and get a volume form w. Indeed for every p € M and positive basis v1, ..., v,
at T,M the number w(p)(v1, ..., vy) is a finite sum of strictly positive numbers
with strictly positive coefficients p;(p), so it is strictly positive. O



172 7. DIFFERENTIAL FORMS

7.2.5. Euclidean volume form. The Euclidean volume form on R” is
WE:dxl/\.../\dx”
which acts as
we(p)(vi, ..., Vp) = det (Vl . Vn)

at every p € R”. It has the characterising property that wg(p)(v1, ..., vp) =1
for every positive orthonormal basis vy, .. ., Vp. The measure it defines in R”
is of course the ordinary Lebesgue measure.

More generally, we may define a Euclidean volume form w on every oriented
k-submanifold M C R" as follows: for every p € M we set

w(p)(vi, ..., Vi) = we(ve, ..., Vp) = det (Vl e Vn)

where vk41, ..., v, is any orthonormal basis of the normal space N,M. Again
w(p) is characterised by the property that w(p)(va1,...,vk) = 1 on every
positive orthonormal basis v, ..., vk for T, M.

Note that we are using the Euclidean scalar product here to define w. A
volume form on a smooth manifold N does not induce in general a volume
form on lower-dimensional submanifolds M. Some scalar product is needed
here, as we will see in the next chapters.

Example 7.2.13. Consider the n-form w in R™1\ {0} given by
n+1

1 . —
w:?Z(—l)’ LidxE Ao Adxi Ao A dxTE
i=1
where
r=a/xX¢+ .. X2

Consider the sphere S(0, r) centred in 0 and of radius r > 0. We consider r
as a function on R™1\ {0}, so dr is a 1-form, and we discover easily that

dr Aw=dx*A--- Adx™T

This fact implies that the restriction of w to S(0, r) is the Euclidean volume
form on the sphere, for every r > 0. So, the Euclidean volume form on S2 is

w=dyNdz+dzNdx+dxNdy.

7.3. Stokes’ Theorem

At various places in this book we introduce some objects, typically some
tensor fields, and then we try to “derive” them in a meaningful way. We now
show that differential forms can be derived quite easily, through an operation
called exterior derivative, that transforms k-forms into (k 4+ 1)-forms and ex-
tends the differential of functions (that transform functions, that is 0-forms,
into 1-forms).
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We end up by proving Stokes' Theorem, that relates elegantly exterior
derivatives and integration along manifolds with boundary.

7.3.1. Exterior derivative. Let w be a k-form in a smooth manifold M.
We now define the exterior derivative dw, a new (k + 1)-form on M.
We start by considering the case where M is an open set in R”. We have

and we define

hemgic
Recall that df;,, j is a 1-form, hence dw is a (k + 1)-form. When w is a
0-form, that is a function w = f, then dw is the ordinary differential.

Example 7.3.1. Consider the form w = xydx + xydz in R3. We get
dw = xdy Ndx+ ydx ANdz+ xdy N dz.

We now extend this definition to an arbitrary smooth manifold M, as usual
by considering charts: we just define dw on any open chart as above.

Proposition 7.3.2. The definition of dw using charts is well-posed. The
derivation induces a linear map

d: QK(M) — Q< (m)
such that, for every w € QX(M) and n € Q"(M) the following holds:
(11) d(wAn) =dwAn+ (=1 w A dn,
(12) d(dw) = 0.
Proof. We first prove the properties on a fixed chart, and later we use
these properties to show that the definition of dw is chart-independent and
hence well-posed.

Linearity of d is obvious, and using it we may suppose that w = fdx’ and
n = gdx? where I, J are some multi-indices. We get

dwAn) =d(fg) Adx' Adx? = df Adx! A gdx? +dg A Fdx! A dx?
=dwAn+ (1) w A dn.

If w= fdx' then

d(d S azfd’df dx' =
(w)—ZaXianx/\ X Ndx' =0
ij=1

because dx' A dx) = —dx/ A dx' so the terms cancel in pairs.
Finally, we can prove that the definition is chart-independent, via the fol-
lowing trick: on open subsets U C R”, the derivation d may be characterised
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(exercise) as the unique linear map d: Q%(U) — Q¥*1(U) that is the ordi-
nary differential for k = 0 and that satisfies (11) and (12). Therefore two
definitions of d on overlapping charts must coincide in their intersection. [

The following exercise says that the exterior derivative commutes with the
pull-back.

Exercise 7.3.3. If ¢: M — N is smooth and w € Q*(N), we get
d(¢*w) = p*(dw).
Hint. Prove it when w = f is a function, and when w = df is the differ-

ential of a function. Use Proposition 7.3.2 to extend it to any w = fidx/. O

7.3.2. Action on vector fields. \We may characterise the exterior deriva-
tive of k-forms by describing their actions on vector fields. For instance, the
differential df of a function f acts on vector fields X € X (M) as

df (X) = X(f).
Concerning 1-forms, we get the following:

Exercise 7.3.4. If w € Q'(M) is a 1-form and and X, Y € X (M) are vector
fields, we get

dw(X,Y) = X(w(Y)) = Y (w(X)) —w([X, Y]).
Hint. Again, everything is local, so work in coordinates. O
A similar formula holds also for the differential dw of a k-form.

7.3.3. Gradient, curl, and divergence. \We now show that the inspiring
formula d(dw) = 0 generalises a couple of familiar equalities about functions
and vector fields in R3.

Let U C R3 be an open set. Recall that the gradient of a function f: U —

R is the vector field of of of
f=— =—,—.
v (8X1' 8><2' 8X3>
If X is a vector field in U, its divergence is the function

divx = 2 9X° | 90X
N 8X1 aXQ 8X3

while its curl is the vector field
<8X3 X2 axl oax3 ox2 8X1>
rotX = — — )

Oxo Ox3 ' Ox3 Ox1 ' 0x1  Ox
In U we may interpret a vector field X as a 1-form
w = Xtdx! + X?dx? + X3dx>
and vice-versa. We can also interpret a vector field X as a 2-form
w =X dx® A dx® 4+ X2dx3 A dxt + X3dxt A dx?
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and viceversa. Finally, we can interpret a 3-form as a function. Beware that
this interpretation is not allowed in an arbitrary smooth manifold.

Exercise 7.3.5. With this interpretation, the equality d(df) = 0 for every
function f in U is equivalent to

rot(Vf) =0

while the equality d(dw) = 0 for every 1-form w is equivalent to
div(rotX) =0

for every vector field X on U.

7.3.4. Stokes’ Theorem. We first note that the whole theory of differ-
entiable forms and integration applies also to manifolds with boundary with
no modification. Then we remark a fascinating analogy: when we talk about
forms w we have

d(dw) =0
while when we deal with manifolds M with boundary we also get

8(dM) = 0.

Note also that d transforms a k-form into a (k 4+ 1)-form, while 0 transforms
a (k + 1)-manifold into a k-manifold. The operations d and 0 are beautifully
connected by the Stokes’ Theorem.

Let M be an oriented (n + 1)-manifold with (possibly empty) boundary,
and equip OM with the orientation induced by M.

Theorem 7.3.6 (Stokes' Theorem). For every compactly supported n-form
w in an oriented (n+ 1)-manifold M possibly with boundary, we have

/dw:/ w.
M M

Proof. We first prove the theorem for M = Rfl. We have

n+1

w = E Wi
i=1

with
wi=fdx* A Adxi A Adx"TE

where the hat indicates that the /-th term is missing. By linearity it suffices
to prove the theorem for each w; individually. We have

- 1 Of;
dwj = dfi A dx* A NdxT A NdxTTE = (1) A A dxT
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If 1 < n, we have

- of;
/ dw; = (—1)’_1/ —Ldxt Ao A dxTE
R+ R ox;

— (_1)1—1/ %dxl . deH-l
R

T—l aX,'
- of; | —
= (—1)'_1/ ( ax'dx’) dxt-dxi - dx™ = 0.
r? \Jr OX;

When the A is not present in the expression, it means that we are just doing
the usual Lebesgue integration of functions on some Euclidean space. In the
last equality we have used that

of; .
/R@XI,-dXI :tILmOO [f,-(xl ..... Xi—1, t, Xi41, .-, Xn+1)
— f,‘(Xl, e Xim1, X1, - ,Xn+1)] =0-0=0

because f; has compact support. On the other hand, we also have

1
ORTF

because w; contains dx"*1 whose pull-back to ORI vanishes.
If i=n+1, we get

oo B,
/ dwpi1 = (—1)”/ </ a"“dx”“) dxt - dx"
R n \Jo Xn+1

= (—1)”/Rn (0= foy1(x, ..., Xn, 0))dx' - dx"

= (_1)n+l/R fop1(xa, ... ,X,,,O)dxl---dx”

= / » foprdxt A--- A dxT = / L, Wl
n n
ORT BRT

We must justify the suspicious disappearance of the (—1)"*! sign in the
last equality. The space R” is identified naturally to GR’jfl via the map
(x1,...,Xp) = (x1,...,x7,0). However, the orientation on GRQH induced
by that of Riﬂ coincides with that of R” only when n is odd, as one can
easily check. This explains the sign cancelation.

We have proved the theorem for M = Rfl. In general, we pick an atlas
{p;: Ui — Vi} with V; C Rfl and a partition of unity p; subordinate to U;,
so that w = ), pjw is a finite sum (because w has compact support). By
linearity, it suffices to prove the theorem for each addendum p;w, but in this
case via (; we can transport it to a form in ]R'fl and we are done. O
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Corollary 7.3.7. If M is an oriented n-manifold without boundary, for every
compactly supported (n — 1)-form w we have

/dw:O.
M

7.3.5. Some consequences. Some familiar theorems in multivariate anal-
ysis in R, R2, or R3 may be seen as particular instances of Stokes' Theorem.

In the line R, Stokes’ Theorem is just the fundamental theorem of calculus.
A bit more generally, we may consider an embedded oriented arc vy C R3 with
endpoints p and g and a smooth function f defined on it. Stokes says that

[ df =@~ 1)
v

So in particular the result depends only on the endpoints of «y, not of -y itself.
In the plane R?, we may consider a 1-form

w = fdx+ gdy
and calculate 5 oF
_ (99 _¢°f
dw = <6X 6y> dx ANdy.

For every compact domain D C R? bounded by a simple closed curve C = 8D,
Stokes" Theorem transforms into Green's Theorem:

dg Of
fdx + gd :/<—>dxd.

In the space R3, the boundary D of a compact domain D C R3 is some
surface, and we pick a vector field X on D. After interpreting X as a 2-form as
in Section 7.3.3, we apply Stokes’ Theorem and get the Divergence Theorem:

/divX: X-n
D aD

where n is the normal vector to 0D.

Finally, we can also consider an oriented surface S ¢ R with some (pos-
sibly empty) boundary 8S, and a vector field X in R® supported on S. By
interpreting X as a 1-form and applying Stokes’ Theorem we get the Kelvin —

Stokes Theorem:
/ rotX -n= X -t
S as

where n is the unit normal field to S and t is the unit tangent field to 85,
both oriented coherently with the orientations of S and R3.
We have proudly proved all these theorems (and many more!) at one time.






CHAPTER 8

De Rham cohomology

We now exploit the relation d(dw) = 0 on differential forms to build an al-
gebraic construction called De Rham cohomology. This algebraic construction
has some similarities with the fundamental group: it assigns groups to mani-
folds, and it is functorial, that is smooth maps induce groups homomorphisms.
It can be used in particular to distinguish manifolds.

Cohomology is however different from fundamental groups, and may be
used to fulfill some tasks that the fundamental group is unable to accomplish.
For instance, we will use it to prove that the smooth manifolds

sS4 52 x S2 CP?

are pairwise non-homeomorphic, and not even homotopy equivalent, although
they are all simply-connected compact four-manifolds.

8.1. Definition

In all this chapter, manifolds are allowed to have boundary even when not
mentioned. When we want to consider manifolds without boundary, we will
say it explicitly.

8.1.1. Closed and exact forms. Let M be a smooth n-manifold.

Definition 8.1.1. A k-form w on M is closed if dw = 0, and is exact if
there is a (k — 1)-form 7 such that w = dn.

Since d(dn) = 0, every exact form is also closed, but the converse does
not always hold, and this is the key point that motivates everything that we
are going to say in this chapter. We now list some motivating examples.

Example 8.1.2. Every n-form w in M is closed, since dw is a (n+ 1)-form,
and every (n+ 1)-form is trivial on M. On the other hand, if M is compact,
oriented, and without boundary, and w is a volume form, then w is not exact:
if w= dn by Stokes'" Theorem we would get

/w:/ dn=20
M M

but the integral of a volume form is always strictly positive, a contradiction.

179
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Example 8.1.3. On the torus T = S x S! with coordinates 61,62, the
1-form w = d@' of Exercise 7.2.8 is closed but is not exact: indeed note that
6! is only a locally defined function (whose value has a 2 indeterminacy);
this suffices for getting closeness d(d8') = 0 but not for exactness. If we had
w = df for a true function f, then the integral of w over the curve y» would
vanish by Stokes’ Theorem, a contradiction.

Example 8.1.4. Pick U = R?\ {0}. Using polar coordinates p, 8 we may
define the closed non-exact form w = df on U, like in the previous example.
In Euclidean coordinates the form is

_ xdy —ydx

=TT
and the skeptic reader may check that dw = 0 via direct calculation. As above,
the 1-form is not exact because its integral above the curve St C U is 21 # 0.

In the last example, it is tempting to think that w is not exact because
there is a "hole” in U where the origin has been removed (note that w does not
extend to the origin). We will confirm this intuition in the next pages: closed
non-exact forms detect some kinds of topological holes in the manifold M,
and this precious information is efficiently organised into the more algebraic
De Rham cohomology.

8.1.2. De Rham cohomology. Let M be a smooth manifold. We define
ZK(m), B (M)

respectively as the vector subspaces of Q*(M) consisting of all the closed and
all the exact k-forms.

As we said, we have the inclusion BX(M) C ZX(M) and hence we may
define the De Rham cohomology group as the quotient

H (M) = Z*(M)/ gr -

This is actually a vector space, but the term “group” is usually employed in
analogy with some more general constructions where all these spaces are mod-
ules over some ring.

An element in H%(M) is usually denoted as a k-form w, and sometimes as
a class [w] of k-forms when we feel the need to be more rigorous.

8.1.3. The Betti numbers. The k-th Betti number of M is the dimension
bk (M) = dim HX(M).

Of course this number may be infinite, but we will see that it is finite in the
most interesting cases. This is a remarkable and maybe unexpected fact, since
both ZX(M) and BX(M) are typically infinite-dimensional.

The Betti number b¥(M) depends only on M and is hence a numerical
invariant of the smooth manifold M. That is, two diffeomorphic manifolds
have the same Betti numbers.
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Proposition 8.1.5. For every k > dim M we have b*(M) = 0.
Proof. There are no k-forms on M for k > n. (]

8.1.4. The Euler characteristic. Let M be a smooth n-manifold whose
Betti numbers b* are all finite. The Euler characteristic of M is the integer

n
X(M) = (=1)'b'(M).
i=0
This is an ubiquitous invariant, defined also for more general topological spaces.
8.1.5. The zeroest group. As a start, we may easily identify HO(M) for
any smooth manifold M.
We first make a general remark: if M has finitely many connected com-
ponents My, ..., My, we naturally get

HK(M) = HX(My) @ - - @ HX(M).
For this reason, we usually suppose that M be connected.
Proposition 8.1.6. If M is connected, there is a natural isomorphism
HO(M) = R.
Proof. The space Z%(M) consists of all the functions f: M — R such that
df =0, and B%(M) is trivial. By taking charts, we see that df = 0 <= f is
locally constant (that is, every p € M has a neighbourhood where f is constant)

<= f is constant, since M is connected. Therefore H°(M) = Z°(M) consists
of the constant functions and is hence naturally isomorphic to R. O

For a possibly disconnected M, we get the following.

Corollary 8.1.7. The Betti number b°(M) equals the number of connected
components of M.

8.1.6. The cohomology algebra. Let M be a smooth manifold. We may
define the vector space

H* (M) = €D H (M)
k>0

Proposition 8.1.8. The exterior product A\ descends to H*(M) and gives
it the structure of an associative algebra.

Proof. If w € Z¥X(M) and n € Z"(M) then
dwAn) =dwuAn+ (-1 wAdn=0
and hence wAn € ZKTh(M). If moreover w € BX(M), that is w = d(, we get
wAn=d{An=d(An) — (1) Adn=d(An)

and hence w An € B¥*"(M). Therefore the product passes to the quotients
H*X(M) and H"(M). O
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If w e HP(M) and n € HI(M), then w Am € HPTI(M). As for Q*(M),
the algebra H*(M) is anticommutative, that is

wAn=(-1)PInAw.
In particular, if p is odd we get

wAw=0.

8.1.7. Functoriality. Every smooth map f: M — N induces a linear map
£ QK(N) — QX(M)

by pull-back. The map commutes with d and hence it sends close forms to
close forms, and exact forms to exact forms. Therefore it induces a map

£ HK(N) — HK(M)
and more generally a morphism of algebras
f*: H*(N) — H*(M).

We may say that cohomology is a contravariant functor, where contravariant
means that arrows are reversed (we go backwards from HX(N) to HX(M)),
and functor means that (f o g)* = g* o f* and id}, = idy«(ps).

The reader should compare this functor with the covariant functor fur-
nished by the fundamental group, that sends pointed topological spaces (X, xp)
to groups 1 (X, Xp).

8.1.8. The line. The De Rham cohomology of R can be calculated easily.
Proposition 8.1.9. We have H°(R) = R and H*(R) = 0 for all k > 0.

Proof. There are no k-forms with k > 2, so the only thing to prove is that
HY(R) = 0. Given a 1-form w = f(x)dx, we can define

X
Flx) = / F(t)dt
0
and we get w = dF. Therefore every 1-form is exact and H!(R) = 0. O

We say that the cohomology of a manifold M is trivial if H°(M) = R and
H*(M) = 0 for all k > 0. We will soon discover that the cohomology of R” is
also trivial for every n.

8.1.9. Integration along submanifolds. Let M be a n-manifold and S C
M an oriented compact k—submanifold without boundary. Remember that
every k-form w € QX(M) may be integrated over S, so furnishing a linear map

/5: QK(M) — R.
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By Stokes’ Theorem, the integral of an exact form vanishes, and hence this
linear map descends to a map in cohomology

/S: H*(M) — R.

This shows in particular that if the integral of a k-form w is non-zero on some
oriented compact k-submanifold S, then w is non-trivial in H<(M).

8.2. The Poincaré Lemma

One important feature of the fundamental group is that the it is unaffected
by homotopies. We prove here the same thing for the De Rham cohomology.
As a consequence, we will show that the cohomology of R” is trivial, as that
of any contractible manifold. This fact is known as the Poincaré Lemma.

8.2.1. Cochain complexes. Some of the properties of De Rham coho-
mology may be deduced by purely algebraic means, and work in more general
contexts. For these reasons we now reintroduce cohomologies with a purely
algebraic language.

A cochain complex C is a sequence of vector spaces C% C1, C2, ... with
linear maps d*: Ck — Ck*1 such that dk*t! o dk = 0 for all k. We usually
indicate d* by d and write the cochain complex as

d d d
cO St S S

The elements in ZK = ker d¥ are called cocycles, and those in BX = Im dk—1
are the coboundaries. The cohomology of C is constructed as above as HK =
Z¥/ g« for every k > 0. We may indicate it as H*(C) to stress its dependence
on the cochain complex C.

Of course when C* = QK(M) we obtain the De Rham cohomology of M,
but this general construction applies to many other contexts, so it makes sense
to consider it abstractly.

Remark 8.2.1. A chain complex is a sequence of vector spaces Cy, Cq, ...
equipped with maps dx: Cx — Cx_1 such that dod = 0. The theory of chain
complexes is similar and somehow dual to that of cochain complexes: one
defines the cycles as Zy = ker di, the boundaries as By = Im dy41, and the
homology group Hy = Zy /8, -

A morphism between two cochain complexes C and D is a map fK: Ck —
D¥ for all k > 0 such that the following diagram commutes

Ao ck=1 9 ek ek 4

oo

o9 pk—1 4 pk_ 9 pk+1_d .
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We have denoted ¥ simply by f. Since f commutes with d, it sends cocycles
to cocycles and coboundaries to coboundaries, and hence induces a homomor-
phism f,: H*(C) — H¥(D) for every k.

8.2.2. Cochain homotopy. We introduce an algebraic notion of homo-
topy that will reflect the notion of homotopy between maps. Let f,g: C — D
be two morphisms between cochain complexes. A cochain homotopy between
them is a linear map hk: Ck — Dk=1 for all k > 1 such that

Fl_ gk = gk=1 o gk 4 gkt o gk
for all k > 0. Shortly, we may write
(13) f—g=doh+hod.
We may visualise everything by drawing the following diagram:
d

..4d>ckfld4>Ck4d>Ck+14>...
ol e
gl||f gl|lf gl||f
A o pk1 4 pk 9 pker 94

Note that this diagram is not commutative. Two cochain maps f, g are cochain
homotopic if there is a cochain homotopy between them. The relevance of
cochain homotopies relies in the following fact.

Proposition 8.2.2. If two cochain maps f, g are cochain homotopic, they
induce the same maps in cohomology.

Proof. For every a € CK we have
f(a) — g(a) = d(h(a)) + h(d(a)).
If a € ZK(C) we get d(a) = 0 and hence
f(a) - g(a) = d(h(a)) € BX(D).
Therefore f and g induce the same maps on cohomology. O

Having settled the basic algebraic machinery, we now turn back to De
Rham cohomology.

8.2.3. Products with a line. \We now prove that M and M x R have the
same cohomology. Since we already know the cohomology of R, this will imply
that R” and R have the same cohomology.

Let M be a smooth manifold and to € R a point. We have two maps

™ MxR— M, st M— M xR.
The first is the projection, the second is s(p) = (p, tg). These induce
™ H*(M) — H*(M x R), s H*(M x R) — H*(M).

Lemma 8.2.3. The maps s* and ©* are isomorphisms and s* = (w*)~1.
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Proof. We have mos = idy and functioriality gives s* o m* = idy«(p.
However s o # idyxgr, and the map

™ os™ Q" (M xR) = Q"(M x R)
is not the identity in general. We now construct a cochain homotopy
h: QK(M x R) — QK 1(M x R)

between 7* o s* and the identity: this implies by Proposition 8.2.2 that 7* o s*
induces the identity map on cohomology, and concludes the proof.
We define h as follows:

t 0

(hw)(p, t)(v1, ..., Vk—1) =/ w(p, u) ((’Bt Vi, Vk—1> du.
to

Here we have identified the tangent spaces of (p, t) and (p, u) in the obvious

way. We need to prove that h is a cochain homotopy, that is

(dh + hd)(w) = (id — 7 0 s*)(w)

for every k-form w. Since this is a local property, we may pick a chart and
suppose that M = R". We use coordinates (xi, ..., Xpn, t) for M x R. Every
k-form in M x R may be written uniquely as a linear combination of k-forms
of two types:

(1) fdx',
(2) gdt A dx’

where the multi-indices / and J have order k and k—1 respectively. By linearity
we may suppose that w is of type (1) or (2). We get:
(m* o s*)(fdx') = f(x, tg)dx',
(m* 0 s*)(gdt A dx?) =0,
h(fdx') =0,

h(gdt A dx?) = </ttg(x, u)du) dx”.

There are two cases:
(1) We have w = fdx' and hence
(dh+ hd)(w) = hdw = h (df Adx') = h OF t A dx!
ot
= (f(x,t) — f(x, to))dx',
(id = 7% 0 s*)(w) = (f(x, t) — f(x, to))dx/.
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2) We have w = gdt A dx? and hence
( g

dh(w) = d <</t:g(x, u)du> de)

n t

o .
—gdtnd? +3 [ 2Ldx ndx,
= e 0%

n
hd(w) = h (— > %dt Adx' A de>

i=1 !

n t
d _
= —Z/ 99 axi A dx?,
= 0 Oxi
(dh+ hd)(w) = w,
(id = 7" 0s™")(w) = w.
The proof is complete. O

We have proved with some effort that products with lines do not affect
the cohomology. This fact has many nice consequences.

8.2.4. Poincaré Lemma. The first immediate corollary of Lemma 8.2.3
is the following. Let k > 1.

Corollary 8.2.4 (Poincaré’s Lemma). Every closed k-form in R" is exact.

Proof. We know from Proposition 8.1.9 that the cohomology of R is trivial,
and Lemma 8.2.3 applied inductively on n gives H¥(R") = H¥(R) for all k. [

In other words, we have H°(R") = R and H*(R") = 0 for all k > 0.

8.2.5. Homotopy invariance. Lemma 8.2.3 has applications that go far
beyond the Poincaré Lemma. Let M and N be two smooth manifolds of
dimensions m and n.

Corollary 8.2.5. Two homotopic smooth maps f,g: M — N induce the
same homomorphisms f* = g*: H*(N) — H*(M) in De Rham cohomology.

Proof. Let F be the homotopy between f and g. By Corollary 5.6.9 we
may suppose that F is smooth. We have

f=Fosy, g=Fos
where s:(p) = (p, t). In cohomology we have
f*=s50F", g"=sioF"
From Lemma 8.2.3 we get 5§ = (7*)~! = s} and hence f* = g*. O

We discover in particular that cohomology is a homotopy invariant.
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Corollary 8.2.6. Two homotopically equivalent manifolds have isomorphic
De Rham cohomologies.

Proof. If f: M — N and g: N — M are homotopy equivalences, then
fogn~idyand gof =idy and hence f* o g* =id and g* o f* =id. O

In particular, two homeomorphic manifolds have the same De Rham co-
homology. This is a quite remarkable fact: the cohomology groups H*(M)
are defined in an analytic way through k-forms, but the result is in fact in-
dependent of the smooth structure. The following corollary strengthens the
Poincaré Lemma.

Corollary 8.2.7. Every contractible manifold has trivial cohomology.

Proof. The point (or R, if you prefer) has trivial cohomology. O

8.2.6. Closed orientable manifolds. We now use the De Rham coho-
mology to prove a non-trivial topological fact.

Proposition 8.2.8. A compact oriented manifold M without boundary with
dim M > 1 is never contractible.

Proof. The manifold M has a volume form w by Proposition 7.2.12, and
Example 8.1.2 shows that w is closed but not exact. Therefore H"(M) # 0
for n = dim M. In particular the cohomology of M is not trivial. O

Note that the hypothesis “compact” and “without boundary” are both nec-
essary, as the counterexamples R” and D" show. The orientability hypothesis
may be removed, but more work is needed for that (for instance, one may use
a different kind of cohomology).

With the same techniques, we can in fact prove more.

Proposition 8.2.9. A compact oriented manifold M without boundary is
never homotopy equivalent to any manifold N with dim N < dim M.

Proof. If m = dim M, we have H™(M) # 0 and H™(N) = 0. O

8.3. The Mayer — Vietoris sequence

We have calculated the De Rham cohomology of contractible spaces, and
we are ready for more complicated manifolds. The main tool for calculating
H*(M) for general manifolds M is the Mayer — Vietoris sequence, and we
introduce it here.

8.3.1. Exact sequences. We now introduce some algebra. A (finite or
infinite) sequence of real vector spaces and linear maps

fia y, f
o=V BV S Vi —
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is exact if Imf; = kerfj;1 for all / such that f; and fj;; are both defined.
The vector spaces V; may have infinite dimension, although in most cases they
will be finite: see Section 2.1.6 for the appropriate definitions in the infinite-
dimensional case.

For instance, the following sequence

00—V -"w

is exact <= f is injective, and

v w—o

is exact <= g is surjective. The sequence

0—U-"5v -4 w_—o

is exact <= f is injective, g is surjective, and Im f = ker g. An exact sequence
of this type is called a short exact sequence.

Exercise 8.3.1. If a sequence
fi_1 fi
o Vi — Vi — Vi —

is exact, then the following sequences are also exact:

fx "

f’_*
* i—1 x i
A=V =V VT —

fi_1®id - Qi
Vi oW S vew v ew — L

for every vector space W.

Exercise 8.3.2. For every finite exact sequence of finite-dimensional spaces
fi f fy—
0—WV 5V . X Vv,—0

we have
k

Y (-1)'dimV; = 0.

i=1

8.3.2. The long exact sequence. The notion of exact sequence applies
also to other algebraic notions like groups, modules, etc. and also to cochain
complexes: a short exact sequence of cochain complexes is an exact sequence

0—A-5B-%Cc—0

where A, B, C are cochain complexes and f, g are morphisms. Exactness means
that f is injective, g is surjective, and Imf = kerg. That is, we have a big
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planar commutative diagram of morphisms

(14)

d d d

0 > pak-1 T pk-1_9_ k-1 0
d d d

0 Ak gk 9 . ck 0
d d d

0 > A+l T pkt1 9 k4l 0
d d d

where every horizontal line is a short exact sequence of vector spaces.

Theorem 8.3.3. Every short exact sequence of cochain complexes
(15) 0—A-SB-%C—0
induces naturally an exact sequence in cohomology
(16) - — H5(A) L5 HA(B) 25 HK(C) -2 HFFL(A) — - -
for some appropriate morphism 6.

Proof. The morphism

81 HX(C) — HFFL(A)

is defined as follows. Given a cocycle v € CK, by surjectivity of g there is a
B € BX with g(B8) = . We have

9(dB) = dg(B) = dy =0
because 7y is a cocycle. Since Imf = ker g there is an o € A¥*1 such that
f(a) = dB, and we set
o(y) = a.
There are now a number of things to check, and we leave to the reader the
pleasure of proving all of them through “diagram chasing.” Here are they:

e « is a cocycle, that is da = 0;
e the class [a] € H**1(A) does not depend on the choices of 8 and a;
e if v is a coboundary then a also is.

This shows that § is well-defined. Finally, we have to show that the sequence
(16) is exact. Have fun! O
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The induced sequence (16) is called the long exact sequence associated
to the short exact sequence (15).

8.3.3. The Mayer — Vietoris sequence. It is now time to go back to
smooth manifolds and their De Rham cohomology.

Let M be a smooth manifold, and U,V C M be two open subsets covering
M, that is with UUV = M. The inclusions

U
N
unv M
PN
vV
H (V)

induce the morphisms in cohomology

HK(UNV)
‘\

Theorem 8.3.4 (Mayer — Vietoris Theorem). There is an exact sequence

.
\Hk(w
e

H (V)

s HR M) D R0y @ HR (V) T HRUA V) < HRY (M) —
for some canonically defined map §.

Proof. This is the long exact sequence obtained via Theorem 8.3.3 from
the short exact sequence of cochain complexes
0 — (M) )y m r(v) S 9 (UnVv) —s o,
We only need to check that this short sequence is exact. Note that the
morphisms [*, m*, i*, and j* are just restrictions of k-forms to open subsets.
There are three things to check:

e The map (/*, m*) is clearly injective.

o If (o, B) is such that i*(a) = j*(B), then a and B agree on UNV
and hence are restrictions of a global form in M.

e To prove that /* — j* is surjective, pick a partition of unity py, pv
subordinate to {U, V}. Given w € QK(UNV), note that pyw extends
smoothly to U simply by setting it constantly zero on U\V'. Therefore
pyw € QK(U) and pyw € QX(V) and we can write

(" = ") (pvw, —pyw) = (pu + pv)w = w.
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The proof is complete. [l

The exact sequence resulting from Theorem 8.3.4 is called the Mayer —
Vietoris long exact sequence induced by the covering {U, V} of M. Recall that
HX(M) = 0 whenever k > n = dim M, so the Mayer — Vietoris sequence is
finite. It starts and ends as follows:

0 — HY(M) — H(U) ® H°(V) — --- — H"(UN V) — 0.

The morphisms *, j*, I*, m* are simply restrictions of k-forms. The morphism
0 is a bit more complicated, and for many applications we do not really need
to understand it, so the reader may decide to jump to the next section. Just in
case, here is a description of §. Let py, pv be a partition of unity subordinated
to the covering {U,V}. Given a k-form w in U NV, we may consider the
(k + 1)-form

n=—dpy ANw = dpy N w.

The forms dpy and dpy have their support in U NV, hence the support of n
is also in UNV. The two expressions coincide since dpy + dpy = 0.

Proposition 8.3.5. We have §(w) = 7.

Proof. The proofs of Theorems 8.3.3 and 8.3.4 show that d(w) is con-
structed by picking the counterimage (—pyw, pyw) of w, then differentiating

(— d(pvw), d(pyw)) = (—dpy Aw, dpy A w)
using dw = 0, and finally noting that the pair is the image of 7. O

8.3.4. Cohomology of spheres. As a reward for all the effort that we
made with short and long sequences, we can now easily calculate the De
Rham cohomology of spheres.

Proposition 8.3.6. For every n > 1 we have
HO(S™) = H"(S™) = R, HX(S") =0 Yk #0,n.

Proof. Using stereographic projections along opposite poles we may cover
S"as S" = UUV with U=V = R"” and also UNV = S"1 xR. By homotopy
equivalence, we have H*(UNV) = H*(S"71).

We first examine the case n = 1. Remember that HX(M) = 0 whenever
k > dim M. The Mayer — Vietoris sequence is

0 — HO(SY) — HO(RY) ® HO(RY) — HO(S%) -2 HY(SY) — 0
which translates as
0—R-—R®R—R®R — HY(S!) — 0.

since SY has two connected components. Exercise 8.3.2 gives H'(S!) & R.
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We now consider the case n > 2. The Mayer — Vietoris sequence breaks
into pieces since HX(R") @ HX(R™) = 0 for all kK > 0. It starts with

0 — H(S™) — HO(R™) @ HO(R") — HO(S""1) -2 HY(S") — 0
which translates as
0—R-—R&R — R — H}(S") — 0.
Therefore H(S") = 0. Then for every 2 < k < n we get
0 — HKL(sm1) 0y HR(S™) — 0
and therefore H*(S") = Hk=1(S"~1). We conclude by induction on n. O

8.3.5. Complex projective spaces. The De Rham cohomology of the
complex projective spaces is quite different from that of the spheres, and is in
fact very interesting:

Proposition 8.3.7. We have

R if kis even and k < 2n,

k ny __
HA(CPT) = { 0 if n otherwise.

Proof. Consider a complex hyperplane H C CPP” and a point p € CP" not
contained in H. Pick the open sets
U=CP"\ H, V =CP"\ {p}.
We have the diffeomorphisms
U =R, Unv =R\ {p} = S5>" 1 xR.

The pencil of complex lines passing through p gives V' the structure of a C-
bundle over H 22 CP"~!. In particular, we have the homotopy equivalences

U~ {pt}, unv ~ s2n=1 V ~CP" L.
The Mayer — Vietoris sequence gives
HK=1(520=1) _ HK(CP") —s HX(CP™1) — Hk(527—1)
for every k > 1. When k < 2n — 1, we deduce that
H%(CP") = HX(CP" ).
When k =2n— 1 we get
0 = H2M=2(52m=1y . {2r=L(CP") — H2L(CP L) = 0
and therefore H?>"~1(CP") = 0. Finally, the sequence ends with
0 — H21(s21 — H2"(CP") — 0

that gives H?"(CP") = R. We conclude by induction on n, starting with
CP! =~ 52, 0
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Corollary 8.3.8. The manifolds S®" and CP" are not diffeomorphic, and in
fact not even homotopy equivalent, when n > 1.

8.4. Compactly supported forms

We now introduce a variation of De Rham cohomology that considers only
forms with compact supports. We will see that this variation has a somehow
dual behaviour with respect to De Rham cohomology.

8.4.1. Definition. Let M be a smooth manifold. For every k > 0 we

define the vector subspace
Q&(M) € Q5 (M)
that consists of all the k-forms having compact support. Of course if M is
compact we have QX(M) = Q*(M). The differential restrict to a map
d: QK(M) — QKTL(M)
with d? = 0. As above, we get a cochain complex Q%(M), and its cohomology
is called the De Rham cohomology with compact support
HE(M).

Of course when M is compact we get nothing new, but H‘C‘(/\//) may differ
from H*(M) when M is not compact, as we now show.

8.4.2. The zeroest group. We now study H%(M) and notice immediately
a difference between the compact and the non compact case.

As with De Rham cohomology, if M has finitely many connected compo-
nents My, ..., My we get HO(M) = HO(My) & --- @& HO(My), so one usually
considers only connected manifolds.

Proposition 8.4.1. Let M be connected. If M is compact then HY(M) = R,
while if M is not compact then HO(M) = 0.

Proof. The space HS consists of all the compactly supported constant
functions. Non-trivial such functions exist only if M is compact. O

As in the De Rham cohomology, we have HX(M) = 0 for every k > dim M.

8.4.3. The line. As usual we start by considering the line R.

Proposition 8.4.2. We have HL(R) = R and HX(R) = 0 for all k # 1.

Proof. We already know that H5(R) = 0 for k = 0 and k > 2, so we turn
to the case k = 1. The integration map

/R: HY{(R) — R

is surjective. If w = g(x)dx is such that [w = 0, we may define f(x) =
ffoo g(t)dt and get a compactly supported f with w = df. Therefore the
integration map is also injective. O
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We note that H.(R) = H1~/(R). This is not an accident, as we will see.

8.4.4. Functoriality? If f: M — N is a proper map, then the pull-back
f*w of w € QX(N) is compactly supported also in M and we get a morphism

£ QK(N) — QK (M).

However, if f is not proper the pull-back is not defined in this context. So we
can say that contravariant functoriality holds only for proper maps.

On the other hand, the compactly supported cohomology demonstrates
some covariant behaviour: every inclusion map i: U < M of some open
subset U induces the extension morphism

it QK(U) — QK(M)

defined simply by extending k-forms to be zero outside of U. This does not
work for general k-forms (extensions would not be smooth, nor continuous).

8.4.5. Integration along fibres. Let m: M — N be a submersion between
oriented manifolds without boundary of dimension m > n.

For every p € N the fibre F = w=1(p) is a manifold of dimension h = m—n,
with an orientation induced by that of M and N as follows: for every p € M
we say that vy, ..., vp € TpF is a positive basis if it may be completed to a
positive basis v, ..., Vm of TpM such that vpyq,. .., Vm project to a positive
basis of Ty, N.

We now define a map

Tt QN(M) — QK=h(N)

called integration along fibres, as follows. For every p € N and vy, ..., Vk_p €
Tpo(N) we set

@)= [ 8
7 1(p)
where (3 is the k-form on the oriented k-submanifold F = w=1(p) defined as

B(a)(wi, ..., wp) = w(wy, . .., Wh, V1, ..., Vk—n)

where ¥; is any vector in T4(F) such that dmq (V) = v;.
Proposition 8.4.3. The form 3 is well-defined.

Proof. For any other lift 7/ we get ¥/ = V; +Xywq + ...+ AW}, and hence

since w(wi, ..., Wh ..., AjWj,...)=0. O

Proposition 8.4.4. The linear map m. commutes with differentials and
hence descends to a map in cohomology

et HY(M) — HE=I(N).
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Proof. We must prove that m,(dw) = dm.(w) for every w € H5X(M). Via
some charts, the submersion 7 is locally like a projection

m:UxV —U

where U C R" and V C R” are open subsets. As a start, we suppose that
the support of w lies entirely in U x V. We use variables xq, ..., X, for U and
Vi, oo, yp for V. We have

w=Y_fdx Ady’.
)

By linearity we may suppose
w=fdx' Andy’.
If J=A{1,..., h} we get

Te(w) = (/\/ f(x,y)dyJ) dx'

h

) .
dm(w Za—XI (/ x,y)dy ) dx' A dx!

1=

1
= / Zif(x,y)dyJ dx' A dx! = m.d(w).
vz 9%

If J#A{1,..., h} we get m.(w) = 0 and also T.(dw) = 0 (exercise).
For a general form w € Qf_f(/\//), the compact support of w may be covered
by some r charts and one concludes with a partition of unity p; since

and hence

r r
dm(w) = Z dm.(piw) = Zmd(p,w) = M dw.
i=1 =1
We have only used that d and 7, are linear. The proof is complete. O

We have discovered that every submersion f: M — N between oriented
manifolds induces a linear map

et HY(M) — HE=I(N).
The map m, is called integration along fibres.

8.4.6. Smooth coverings. Let M — N be a smooth covering between
smooth n-manifolds. A covering is a submersion, and the integration along
fibres is a map

et HS(M) — HE(N).
In this case the integration along the fibres is just a summation, that is

TP ve) = Y w(@) (T Vo)

m(q)=p
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where v; € T,N and V; = dw;l(v,-). Here is a remarkable application.

Proposition 8.4.5. If m: M — N is a covering of finite degree d, then
™ HX(N) — HX(M) is injective.
Proof. We have 27, o 7* = id on HX(N). O

If the covering has infinite degree the maps in cohomology need not to be
injective, as the universal covering R — S easily shows.

8.4.7. Poincaré Lemma. We now prove the appropriate version of the
Poincaré Lemma for HX(R™).

Let M be a smooth manifold. Let n € QL(R) have [n = 1, so that in
particular it generates H:(R) = R. Consider the morphism

Lt HS (M) — HEFY(M x R)
W wAnN.

Lemma 8.4.6. This morphism is an isomorphism.

Proof. We consider the projection

T MxR— M.

By integrating along fibres we get a map
Tt HETH M x R) — HE(M).
We want to show that 7, inverts t. We have 7, ot = id already in QX(M).
On forms, we have ¢ o m, # id and we construct a chain homotopy to prove
that ¢ o m, = id in cohomology. We need a map
h: Q5(M x R) — QK"1(M x R).

The map is defined as follows:

(hw)(p, t)(vy, ..., Vk—1) :/ w(p, u) (68t Vi, .., Vk—l) du

—00

where

n = e(t)dt, E(t):/t e(u)du.

—00

We now prove that

(17) dh+ hd =id — ¢t o m,.

This will conclude the proof. Since this is a local property, we pick a chart and

use coordinates xi, ..., Xn, t. By linearity, there are two cases to consider:
(1) w= fdx',

(2) w = gdt A dx’.
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We get
(tom)(fdx') =0,

(tom)(gdt Adx?) = (/R g(p, u)du) dx’ Am.

The map h sends the forms of type (1) to zero, and those of type (2) to

h(gdt A dx”) = (/_t 9(p. 1) du — E(t)/Rg(p, u)du) dx.

[e.9]

Here are the two cases:
(1) If w= fdx' we get

(dh + hd)(w) = hdw = h(df Adx') = h <gfdt A dx’>

</ 2 (b u)d /atpudu>

= f(p, t)dx' = w,

(id —tom)(w) = w.

(2) If w= gdt A dx? we get

dh(w) = d </_t 9(p. u)du — E() /Rg(p, u)du> dx’

[e.e]

—w—i-Z(/ (p u)du> dx! A dx?

— (/ g(p, u)du> A dx’

— E( t)z</ ~—(p, u)du> dx) A dx?,

Zh( -dx' A dt A dx )
=1
n t ag ] )
— —Z </ —~(p, u)du> dx! A dx
— \ J oo OX;
Jj=1
+ E(t)zn: </ %(p u)du> dx) A dx?
= \UR Ox; ’

(dh+ hd)(w) =w — (/R g(p, u)du> nAdx”?,
(id—tom)(w) =w — (/Rg(p, u)du) n A dx”.
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The proof is complete. [l

As a corollary, we can compute the compactly supported cohomology of
Euclidean spaces. This result is also known as the Poincaré Lemma.

Corollary 8.4.7. We have H?(R") = R and HX(R") = 0 for all k # n.

We keep observing that HX(R") = H"K(R") for all n and k. We also
note that the compactly supported cohomology is evidently not invariant under
homotopy equivalence.

8.4.8. The Mayer — Vietoris sequence. Proving the Poincaré Lemma in
this compactly supported context was not easy; on the other hand the Mayer
— Vietoris sequence is almost straightforward.

Let M be a smooth manifold, and U,V C M be two open subsets covering

M. The inclusions
U
N

unv M
Vv

induce the extension morphisms in cohomology
HE)
HE(UNV) HE(M)
HE(V)
Theorem 8.4.8 (Mayer — Vietoris Theorem). There is an exact sequence
- HEUAV) ) R yeHE(v) ' HE (M) 2 HE (UnY) — -
for some canonically defined map ¢.
Proof. The sequence of complexes
0 — Q:UNV) Y oruy e Qi(v) " Qi (M) — 0

is easily seen to be exact: use a partition of unity to show that /, + m, is
surjective. O

Note that this Mayer — Vietoris sequence is different in nature from the
one that we obtained from Theorem 8.3.4.
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Exercise 8.4.9. Use the Mayer — Vietoris sequence to confirm that
HAS™) = HO(S") =R,  HI(S")=H"(S") =R,
HX(S™) = HK(S") =0 if k # 0, n.
We cannot refrain from noting again that HX(S") = H"=k(S"). As in

ordinary De Rham cohomology, we can write ¢ explicitly. Let py, py be a
partition of unity subordinate to U, V. Given w € HX(M) we can define

n=dpy Aw=—dpy Aw € HFL(UNV).
Exercise 8.4.10. We have §(w) = n.

8.4.9. Countably many connected components. We end this section
by pointing out another difference between H*(M) and HX(M).

Exercise 8.4.11. Let M have countably many connected components My,
Ms, ... We have

H (M) =TT H M), HE(M) = @D HE(M;).

Remember that []; V; is the space of all sequences (v1, vo, . ..) while &;V;
is the subspace of all sequences having only finitely many non-zero elements.
8.5. Poincaré duality

We have already noted that HX(M) = H?=k(M) on many n-manifolds M,
and we now prove this equality in a much wider generality.

We stress the fact that all the manifolds considered in this section have
no boundary!

8.5.1. The Poincaré bilinear map. Let M be an oriented smooth mani-
fold without boundary. We define the Poincaré bilinear map

HX (M) x H™=K(M) — R
by sending the pair (w,n) to the real number

I

The map is well-defined since w A n has compact support. As every bilinear
form, it induces a map

PD: HX(M) — HI=K(M)*

that sends w to the functional n — (w, n). We dedicate this section to proving
the following.

Theorem 8.5.1 (Poincaré duality). The map PD is an isomorphism.

As usual, we will need a bit of homological algebra.
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8.5.2. The Five Lemma. The following lemma is solved by diagram chas-
ing, and we leave it to the reader as an exercise — there is certainly much more
fun in trying to solve it alone than in reading a boring sequence of implications.

Exercise 8.5.2 (The Five Lemma). Given the following commutative dia-
gram of abelian groups and morphisms

f g

A B C D—sF

O N

A/ B/ C/ D/ El
J k / m

in which the rows are exact, if o, 3, 9, € are isomorphisms then -y also is.

8.5.3. Induction on open subsets. Let M be a smooth manifold. We
want to prove the Poincaré duality Theorem by induction on open subsets of M,
starting with those diffeomorphic to R” and then passing to more complicated
ones in a controlled way. We will need the following.

Let A be the collection of open subsets in M determined by the rules:

e A contains all the open subsets diffeomorphic to R”,

e if UV, UNV €A, then UUV € A,

e if U; € A are pairwise disjoint, then UU; € A.
Note that in the last point there can be infinitely many disjoint sets U; (they
are always countable, since M is second countable).

Lemma 8.5.3. We have M € A.

Proof. The proof is subdivided into steps.

(1) If Uy, ..., Ux € A and all their intersections lie in A, then also U; U
U Uk e A
(2) If {U;} C A's a locally finite countable family, with U; compact for
all /, and such that all the finite intersections also lie in A, then
uU; € A.
(3) If U C M is diffeomorphic to an open subset V C R”, then U € A.
(4) Me A.
Point (1) is a simple exercise (prove it by induction on k). Concerning (2),
we may suppose that U = UU; is connected, and note that every U, intersects
only finitely many U;.

We define some new open subsets by setting Wy = Uy and defining W
as the union of all the U; that intersect W; and are not contained in U,<;W,.
Every W, contains finitely many U; and hence W; € A by (1). Note that
W; N Wiso = @ for all i. We set

Zo = UiWy;, Zy = UiWhiqq.
We have Zy, Z1 € Aand also ZgNZi € A, soU=2Z9UZ; € A.
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About (3), we note that V is covered by products (a1, b1) X -+ X (an, bp)
whose closure is contained in V. Every finite intersection is again a product,
so all these sets and their intersections are diffeomorphic to R” and hence lie
in A. This covering can be made locally finite using an exhaustion of V' by
compact sets. Now (2) applies and we get U € A.

Finally, by taking an adequate atlas for M (see Proposition 3.3.1) we find
a locally finite covering U; such that every U; is diffeomorphic to R"” and has
compact closure. The intersections are diffeomorphic to open subsets of R”
and hence are in A by (3). We conclude again by (2). O

We have also proved that every open subset of M is contained in A.

8.5.4. Proof of the Poincaré duality. \We can now prove Theorem 8.5.1.

Proof. Let B be the collection of the open subsets U of M where Poincaré
duality holds. Our aim is of course to prove that M € B.

If U= R", then U € B. Indeed, we only have to prove that PD: HO(R") —
HZ(R™)* is an isomorphism. Both spaces have dimension one, so it suffices to
check that the map is not trivial: if 7 is a compactly supported n-form over
R" with [ =1 and 1 is the constant function we get (1,m) = 1 and hence
1 € H°(R") is mapped to a nontrivial element PD(1) € HZ(R™)*.

If UV, UNV € B, then UUV € B. To show this, we consider the following
diagram that contains both Mayer — Vietoris sequences:

—— HL(UNV) HK(U U V) HK(U) @ HK(V)

PDi PD\L PD\L
— = HI (U N V) —— HI KU U V)* ——=HIR (U @ H R (V) ——

The bottom row is obtained by dualising the Mayer — Vietoris exact sequence
in the compactly supported cohomology. We leave as an exercise to show that
this diagram commutes up to sign (use Proposition 8.3.5 and Exercise 8.4.10).
By the Five Lemma, if PD is an isomorphism for U,V, and UNV, then it is
so also for UU V.

If U= U;U; and U; € B, then U € B. This is a consequence of Exercise
8.4.11 and of the natural equality (&;V;)" =[], V/*.

By Proposition 8.5.3 we have M € B and we are done. O

8.5.5. Betti numbers. As a first consequence of Poicaré Duality, for ev-
ery orientable manifold M we have

dim HX(M) = dim H?=.
When M is compact, this becomes

b* = dim HX(M) = dim H"~%(M) = b"~*.
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In particular we have b° = b” = 1. In fact we can prove that all these numbers
are finite.

Proposition 8.5.4. If M is compact then b* is finite.
Proof. If M is orientable, we have the canonical Poincaré isomorphisms
HX (M) = H™5 (M), H'K(M) = HK(M)*.

By combining them we deduce that the canonical embedding H*(M) —
H*(M)** is an isomorphism, and we know that this holds if and only if the
vector space is finite-dimensional.

If M is non-orientable, it has an orientable double cover and we conclude
using Proposition 8.4.5. ([l

Proposition 8.5.5. If M is compact orientable and n is odd, then x(M) = 0.

Proof. We have b’ = b"~/, so everything cancels. O

8.5.6. Orientability. We now show that cohomology distinguishes be-
tween orientable and non-orientable manifolds. Let M be a connected smooth
n-manifold.

Proposition 8.5.6. If M is oriented, the map

/ cH(M) — R
M
Is an isomorphism.

Proof. We have R = HO(M) = HX(M)* = H°(M)* so HI(M) = R.
Moreover [,, is surjective. O

Proposition 8.5.7. We have

HE(M) = { R if M is orientable,

0 otherwise.

Proof. If M is not orientable, it has an orientable double cover 7: M — M,
with orientation-reversing deck involution : M — M. The induced map

7 HI(M) — HI(M)

is injective by Proposition 8.4.5. Moreover, for every n-form w € Q"(M), the

pull-back m*w is t-invariant, but since ¢ reverses the orientation of M we get

/N W*w:/ ~L*7I'*UJ=—/~ T wW.
Y] Y Y

Hence this integral vanishes, and by the previous proposition we get m*w = 0
in cohomology. Since 7* is injective, we get HZ(M) = 0. O
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8.5.7. Real projective spaces. We can now easily calculate the De Rham
cohomology of RP”.

Proposition 8.5.8. We have H°(RP") = R, HX(RP") = 0 Vk # 0, n, and

R if nis odd
n ny __ ’
H(RP)_{O if nis even.

Proof. This works for every manifold M that is covered by S". Since the
pull-back 7*: HX(M) — H*(S") is injective, the only indeterminacy is for
k = n and is determined by whether M is orientable or not. O

The proof also shows the following. Remember the lens spaces L(p, q).

Corollary 8.5.9. We have
HO(L(p,q)) = H*(L(p.q)) =R,  HY(L(p,q)) = H*(L(p.q)) = 0.

8.5.8. Signature. If M is an oriented compact manifold of even dimension
2n, Poincaré duality furnishes a non-degenerate bilinear form

H (M) x H"(M) — R

that is symmetric or antisymmetric, according to whether n is even or odd.
This is because of the formula w A = (—1)"n A w.

When M has dimension 4m, the non-degenerate bilinear form on H?" is
symmetric and hence has a signature (p, m), see Section 2.3.1. The signature
of M is the integer

o(M)=p—m.
A nice feature of this invariant is that it reacts to orientation reversals.

Proposition 8.5.10. We have o(—M) = —a(M)

Proof. We have [,,w = — [ ,,w, hence the orientation reversal modifies
the bilinear form by a sign and its signature changes from (p, m) to (m, p). O

Recall that an orientable manifold M is mirrorable if it has an orientation-
reversing diffeomorphism.

Corollary 8.5.11. A mirrorable orientable 4m-manifold M has c(M) = 0.

We deduce that for every m > 1 the manifold CP?" is not mirrorable: its
middle Betti number is b™ = 1 and hence its signature is ¢ = +1. In par-
ticular the complex projective plane CP? is not mirrorable (while the complex
projective line CP* 22 S? is mirrorable).
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8.5.9. The Kiinneth formula. We now prove an elegant formula that
relates the cohomology of a product M x N with the cohomologies of the
factors. This formula is known as the Kiinneth formula.

Let M and N be two smooth manifolds. The two projections

T Mx N — M, Ty Mx N— N
give rise to a bilinear map
QK(M) x Q"(N) — QKM x N)
(w, M) — Thyw A TN
that passes to a bilinear map
H (M) x HMN(N) — HKTh(M x ).
By the universal property of tensor products, this induces a linear map
HX(M) @ HMNN) — HKTh(M x ).
These linear maps when k and h vary can be grouped altogether as
V: H* (M) ® H*(N) — H*(M x N).
We will henceforth suppose that the Betti numbers of N are all finite: this
holds for instance if N is compact, but also for many other manifolds.

Theorem 8.5.12 (Kiinneth's formula). The map WV is an isomorphism.

Before entering into the proof, we note that this implies that
HK (M x N)= €5 HP(M) ® HI(N).
p+a=k

Proof. As in the proof of Poincaré Duality, we define B to be the set of all
the open subsets U C M such that the theorem holds for the product U x N.
Our aim is to show that M € B.

If U= R", this is the Poincaré Lemma, more specifically Lemma 8.2.3.

If U, V,UNV € B, then UUV € B. To show this, we fix kK > 0, pick p < k
and consider the Mayer — Vietoris sequence

i HPPL(UNV) — HP(UU V) — HP(U) @ HP(V) — - --

If we tensor it with H*=P(N) and sum over p =0, ..., k we still get an exact
sequence by Exercise 8.3.1. Here it is:
s @K (HPTHUNV) @ HEP(N)) — ko (HP(UU V) @ H*P(N))

— @ _o(HP(U) @ HKP(N)) @ @f_o (HP(V) @ H*P(N)) — - -
We now send via W this sequence to the Mayer — Vietoris sequence for M x N:
o HRELH(UNV) X N) = HE((UUV) x N) = H* (U x N) @ H*(V x N) — - - -

The resulting diagram commutes (exercise) and has two exact rows. Using
the Five Lemma we conclude that UUV € B.
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If U= L;U; and U; € B, then U € B. This is a consequence of Exercise
2.1.16 and of the fact that dim HP(N) < oo for all p.
By Proposition 8.5.3 we have M € B and we are done. U

Remark 8.5.13. When M = N = Z, the map W is not an isomorphism
(exercise). We really need one of the factor to have finite-dimensional coho-
mology here.

Corollary 8.5.14. Let M and N be manifolds with finite cohomology (for
instance, they are compact). For every k we have:

b (M x N) = Zb YBEI(N).

Corollary 8.5.15. The torus T = S x St has Betti numbers
po =1, bt =2, b? = 1.
Exercise 8.5.16. The Betti numbers of T" = St x --- x St are
—_———

BT = (Z) _

Exercise 8.5.17. The Betti numbers of S? x S? are
=1, b =0 b=2 b=0 ©b=1
We deduce from the exercise that the compact four-manifolds
st CP?, S$?xS?

are pairwise not homotopy equivalent (although they are all simply connected)
because their second Betti number is respectively 0, 1, and 2.

Exercise 8.5.18. If M and N are manifolds with finite Betti numbers, then
X(M x N) = x(M) - x(N).

8.5.10. Connected sums. The following exercises can be solved using
the Mayer — Vietoris sequence carefully.

Exercise 8.5.19. Let M be a smooth connected n-manifold without bound-
ary and N be obtained from M by removing a point. We have:

b'(N) = b'(M) Yi<n-—2

() = b= (M) if M is compact and oriented,
b"~Y(M)+1 otherwise,

b(N) = b"(M) —1 if M is compact and oriented,
| bY(M) otherwise,
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Hint. Use the Mayer — Vietoris sequence with M =UUV, U= N, and V
an open ball containing the removed point. [l

Note that in all cases we get x(N) = x(M) — 1 when they are defined.

Exercise 8.5.20. Let M#N be the connected sum of two oriented con-
nected compact manifolds M and N without boundary. We have

b'(M#N)=1 fori=0,n,
b'(M#N) = b'(M) + b'(N) for 0 < i < n.
We can finally calculate the cohomology of a genus-g surface Sy.
Corollary 8.5.21. The Betti numbers of Sy are
B0 =1, bt = 2g, b’ =1.

Therefore x(Sq) =2 — 2g.

8.6. Intersection theory

We now combine transversality and De Rham cohomology to build a geo-
metric theory on submanifolds called intersection theory.

As in the previous section, all the manifolds considered here are without
boundary. We will be mostly interested in compact ones.

8.6.1. Poincaré dual of an oriented subsurface. Let M be an oriented
compact connected smooth n-manifold without boundary. Let S C M be an
oriented compact k-dimensional submanifold. We have already observed that
integration along S yields a linear map

/S: H"(M) — R.

By Poincaré Duality, this linear map corresponds to some cohomology element
ws € H" k(M) called the Poincaré dual of S, characterised by the equality

[ wsnn= [
M S

for every n € HX(M). We have just discovered that we can naturally transform
oriented compact submanifolds S into cohomology classes ws. For example:

e the Poincaré dual of M itself is wy =1 € HO(M) =R,
e the Poincaré dual of a point p e M isw, =1 € H"(M) =R.

We now want to construct the (n — k)-form ws explicitly. To this purpose we
consider vector bundles.
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8.6.2. Thom forms. Let m: E — N be an oriented rank-r vector bundle
over a connected compact n-manifold N. Consider a closed form w € QL(E).

Proposition 8.6.1. The integral

J
Ep

Proof. Two points p, g € N are connected by an embedded arc «a, and
71 (a) is a manifold with boundary E, U E,. Use Stokes. O

is independent of p € N.

The closed form w € QL(E) is a Thom form if

/ w=1.
Ep

Proposition 8.6.2. Thom forms exist.
Proof. We pick
n(x) = p(|Ix|[?)dx* A--- A dx" € Q"(R")

where p is non-negative and compactly supported, rescaled so that fR, n=1.
We fix a Riemannian metric on E. On a trivialising neighbourhood U the
bundle is isometric to U x R" and we equip it with the closed form m3n where
5 is the projection onto R”. Since n is O(r)-invariant, all these r-forms match
to a Thom form w in E. O

We consider as usual N embedded in E via the zero-section i: N — E.
Here is the reason why we are interested in Thom forms:

Proposition 8.6.3. Ifw € QL(E) is a Thom form, then

Jeorn= o
E N

for every closed form m € Q"(E).

Proof. The map i om: E — E is homotopic to the identity, hence in
cohomology we get [n] = (i o m)*[n] and therefore n = 7*/*n + d¢. Then

/wAn:/wAw*/*n+/wAd¢.
E E E

The second addendum vanishes because w A dp = +d(w A ¢) and Stokes
applies. We study the first addendum locally. On a trivialising chart U — V
the bundle is like VV x R" with V € R™. We use the variables x’ and y/ for R
and R". We have

Tt = Z fl(x)dx'.
/
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frwonn= L (L) reo= [

because w is a Thom form, and therefore

/w/\n:/n.
E N

The proof is complete. O

This gives

We now turn back to our oriented compact connected n-manifold M and
compact oriented k-submanifold S C M. Let vS C M be any tubular neigh-
bourhood. Every Thom form in vS is compactly supported and hence extends
to a form in M, thus representing an element in H"~(M).

Corollary 8.6.4. Any Thom form in vS represents the Poincaré dual ws.

Proof. Let w be a Thom form in vS. For every closed n € QX(M) we get

/w/\n:/w/\n:/n.
M E 5

The proof is complete. O

Summing up, the Poincaré dual of a submanifold S C M may be repre-
sented as a (n—k)-form supported in an arbitrarily small tubular neighbourhood
of S, that gives 1 when integrated along any fibre: we should think at this as
a kind of "bump form” concentrated near S.

8.6.3. Transverse intersection. Let N be an oriented connected compact
manifold, and let M, W C N be two oriented compact transverse submanifolds.
Recall that X = M N W is also a submanifold with codim X = codim M +
codimW. We also have

vX =vMo vW.

The manifold X is naturally oriented: the bundles vM and vW are oriented,
and hence so is the bundle v X and finally the manifold X.

The following proposition is the core of intersection theory: it shows that,
via Poincaré duality, transverse intersection of oriented submanifolds corre-
sponds to wedge products of forms:

Proposition 8.6.5. We have wx = wym A wyy.

Proof. If wy, wy are Thom forms in v M, vW, the wedge product wy Awyy
ina Thom form in vX =vM @ vW. O

Example 8.6.6. Let S, T C CP" be two transverse projective subspaces,
of complex codimension s and t. Their intersection is a projective subspace
X =5NT of complex codimension s+ t. All these are naturally oriented and
their Poincaré dual forms are

ws € H**(CP") =R, wr € H**(CP") =R, wx € H*T2(CP") = R.
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Figure 8.1. A symplectic basis for H*(Ss) = R® consists of the Poincaré
duals of the oriented curves o, o, az (red) and B1, B2, Bs (blue).

The proposition says that
Wx = Ws A\ Wr.

If s+t = n then X is a point and therefore wx = 1. This shows in particular
that the class ws is non-trivial, and is hence a generator of H2S(CP").

8.6.4. Algebraic intersection. Let N and M,W C N be as above. The
case where M and W have complementary dimension is of particular interest.
Here X = M NW is a collection of oriented points p, each equipped with a
sign 1 depending on whether the orientation of T,M @ T,W matches with
that of T,N. We define the algebraic intersection i(M, W) of M and W to be
the sum of these values +1.

The n-form wy A wy € HZ(N) = R may be considered canonically as a
real number. Proposition 8.6.5 says that

/(/\//, W) = Wpm N\ Wy .

This relation is of the highest importance when N has even dimension 2k and
dmM = dimW = k, because it furnishes a concrete way to represent and
calculate the intersection form in H*(N).

Example 8.6.7. We examine the genus-g surface Sy. The intersection
form on Hl(Sg) =~ R?9 is non-degenerate and antisymmetric. Consider the 2g
oriented curves ay,...,aq,01,...,Bg, shown in Figure 8.1. Their algebraic
intersections are

(aj, o) =i(Bi.B;) =0VYi#j, (e, B)) =6

The intersection form on their dual 2g classes is antisymmetric, and hence it
forms the antisymmetric matrix J = (_O, é) Since J is an invertible matrix, we
can deduce by elementary linear algebra that these 2g classes form a basis of
HY(Sg4). A basis with such an intersection matrix is called a symplectic basis.

8.6.5. Homotopy invariance. Let M be an oriented connected compact
n-manifold. The Poincaré dual may in fact be defined not only for submani-
folds, but also for every smooth map f: S — M where S is a k-dimensional
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oriented manifold. Every such map f induces a linear functional
H"(M) — R

nM/f*n
S

which is by Poincaré Duality an element ws € H"~%(M). Two homotopic maps
f,g: S — M induce the same functional wr = wy. In particular, we get:

Corollary 8.6.8. Isotopic oriented submanifolds have equal Poincaré duals.

This has some important concrete consequences. Let S, T C M be two
compact submanifolds of complementary dimension. We may isotope them to
some transverse submanifolds S/, T/, and define

i(S,T)=1i(S"T.
This map is independent of the S’, T’ chosen since it equals ws A wr.
Example 8.6.9. The algebra H*(CP") is isomorphic to
H*(CP") = R[x]/ (xn+1)
where x = wy € H>(CP") is the dual form to any hyperplane H C CP".

Example 8.6.10. We know that M = S? x S? has H*(M) = R?. If we
pick S = S? x {p} and S' = {q} x S? oriented as S? we find two transverse
surfaces in M with algebraic intersection +1. The two spheres form a basis of
H?(M) and the intersection form in this basis is (3 ;).



CHAPTER 9

Riemannian manifolds

We have warned the reader multiple times that a smooth manifold M lacks
many natural geometric notions, such as distance between points, length of
curves, volumes, angles, geodesics. It is now due time to introduce all these
concepts, by enriching M with an additional structure, called metric tensor.
The manifold M equipped with a metric tensor is called a Riemannian manifold.

9.1. The metric tensor

It is a quite remarkable fact that all the various natural geometric notions
that we are longing for can be introduced by equipping a smooth manifold with
a single additional structure, that of a metric tensor.

9.1.1. Definition. Let M be a smooth manifold. A metric tensor is a
Riemannian metric g on the tangent bundle T M, see Section 4.5. That is, it
is a section g of the symmetric bundle

So(M)

such that g(p) is positive-definite scalar product for every p € M. Said again
in other words, for every p € M we have a positive-definite scalar product

9g(p): TyM x T,M — R
that varies smoothly with p.

Example 9.1.1. The Euclidean metric tensor ge on R" is
n
ge(x,y) = ZX/)//
i=1

where we have identified T,R"” with R", as usual.

Definition 9.1.2. A Riemannian manifold is a pair (M, g) where M is a
smooth manifold and g is a metric tensor on M.

For instance, the pair (R”, gg) is a Riemannian manifold called the Eu-
clidean space.

Remark 9.1.3. We have shown in Section 4.5 that every bundle carries a
Riemannian metric. Therefore every smooth manifold M has a metric tensor.
The metric tensor is however not unique in any reasonable sense.

211
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9.1.2. In coordinates. Let (M, g) be a Riemannian manifold and ¢: U —
V' a chart. The tensor g on U may be transported along ¢ into a metric tensor
©«g on V, whose coordinates are denoted by

9ii(p).

Here g;j(p) is a positive-definite symmetric matrix that depends smoothly on
p. For instance, the Euclidean metric tensor is g;; = 0;.

9.1.3. Isometries. Every category has its own morphisms; in the presence
of Riemannian metrics, one typically introduces only isomorphisms.

Let (M, g) be a Riemannian manifold. At every point p € M the tangent
space T,M is equipped with the scalar product g(p), that we also denote for
simplicity with the familiar symbol (, ).

Definition 9.1.4. A diffeomorphism f: M — N between two Riemannian
manifolds (M, g) and (N, h) is an isometry if

(v, w) = (dfp(v), dfp(w))
for every p€ M and v,w € T,M.

Two Riemannian manifolds M and N are isometric if there is an isometry
relating them. A smooth map f: M — N is a local isometry at p € M if
there are open neighbourhoods U and V' of p and f(p) such that f(U) =V
and f|y: U — V is an isometry.

9.1.4. Submanifolds. Let (M, g) be a Riemannian manifold. Here is a
simple albeit crucial observation: every submanifold N C M, of any dimension,
inherits a metric tensor g|y simply by restricting g to the subspace T,N C T,M
at every p € N. Therefore every smooth submanifold of a Riemannian manifold
is itself naturally a Riemannian manifold.

In particular, every submanifold S C R” inherits a Riemannian manifold
structure by restricting ge to S. Using Whitney's Embedding Theorem, we
find here another proof that every manifold M carries a Riemannian structure.

A fundamental example is of course the sphere S” c R"*1.

9.1.5. Products. The product Mx N of two Riemannian manifolds (M, g)
and (N, h) carries a natural Riemannian structure g x h. Recall that T, 4y M x
N =T,M x T¢N and define

((vi, 1), (va, w2)) = (v1, v2) + (w1, w2)
for every vi,vo € ToM and wy, wo € TgN.
Example 9.1.5. The torus T = S x ST with the product metric is the flat
torus. It is important to note that the flat torus is not isometric to the torus

of Figure 3.3. The first is flat, but the second is not: we will introduce the
notion of curvature to explain that.
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9.1.6. Length of curves. As we promised, we now start to show how the
metric tensor alone generates a wealth of fundamental geometric concepts.
We start by defining the lengths of smooth curves.

Let v: I — M be a smooth curve in a Riemannian manifold M. We define
its length as

L(y) = /, I () dt.

Here of course the norm of a vector v € T,M is

VIl = v{v. v).

A reparametrisation of the curve -y is obtained by picking an interval diffeo-
morphism ¢: J — [ and setting n =y o o.

Proposition 9.1.6. The length of -y is independent of the parametrisation.
Proof. We have

L(y) = /, I (£)lldt = /J 1 () |19 ()] du = /J I ()lldu = L(n).

The proof is complete. [l

More generally, the length L(vy) is also invariant if we pre-compose <y with a
smooth surjective monotone map ¢: J — [, that is with ¢’(t) > 0 everywhere
(or ¢'(t) < 0 everywhere). With some abuse of language we also call this
change of variables a reparametrisation.

9.1.7. Metric space. A connected Riemannian manifold (M, g) is also a
metric space, with the following distance: for every p, g € M we define d(p, q)
as the infimum of the lengths of all the paths connecting p to g, that is

d(p,q) =inf {L(7) | v: [a b] = M, v(a) = p, 7(b) = q}.
Proposition 9.1.7. This is a distance, compatible with the topology of M.

Proof. We clearly have d(p,p) = 0. We now prove that p # q =
d(p,q) > 0. Pick a small open chart ¢: U — V with p € U, o(p) = 0,
and g € U. Choose a disc D C V of some small radius r centred at the origin.
The transported metric tensor on D is some g;; depending smoothly on x € D.

For every x € D and v € T R", we indicate with |v|[g and ||v||g the
Euclidean and g-norm of v. Since D is compact, there are M > m > 0 with

mlvile <llvllg < Mlvile

for every x € D and every v € T,R". Let a be a curve in V that goes from 0
to some point in 8D. We know that the Euclidean length of a is > r, and we
deduce that the g-length of a is > rm. Since every curve «y connecting p and
g must cross o~ 1(8D), we deduce that L(v) > rm and hence d(p, q) > rm.

We clearly have d(p, q) = d(q, p). To show transitivity, we note that if vy
is a curve from p to g and m is a curve from g to r, we can concatenate vy
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and n to a smooth curve from p to r: to get smoothness it suffices to priorly
reparametrise «y and 7 using transition functions.

In our discussion, we have also shown that for every neighbourhood U of
p there is an € > 0 such that the d-ball of radius € is entirely contained in U.
Conversely, it is also clear that an open d-ball is open in the topology of M.
Therefore d is compatible with the topology of M. O

Remark 9.1.8. The infimum defining d(p, g) may not be a minimum! On
M = R?\ {0} with the Euclidean metric tensor, we have d((1,0), (—1,0)) =2
but there is no curve in M joining (1, 0) and (—1, 0) having length precisely 2.

9.1.8. Volume form. An oriented Riemannian manifold (M, g) has a nat-
ural volume form w, defined as follows. At every point p € M, the tangent
space T,M is equipped with an orientation and a positive-definite scalar prod-
uct g(p), and as in Section 2.6.3 we define w unambiguously by requiring

w(p)(vi, ..., vp) =1
on every positive orthornormal basis vq, . . ., vy of ToM. To show that w varies

smoothly with p, we calculate w on coordinates.

Proposition 9.1.9. If g;; is a metric tensor on U C R", then

w = \/det g;jdx" A... A dx".

Proof. Let vi, ..., v be a positive g-orthonormal basis for (R"”)*. We get
w=viA. AV =detAdx A A dX"

where v/ = Afe/. Now Ajg¥ Al = §'F gives (det A)?det g~! = 1 and hence we

get det A = /detg. O

In particular the volume of a Borel subset S C U is

Vol(S) = / V/det gijdxt -+ dx".
S
This expression is of course chart-independent.

9.2. Connections

We now want to define geodesics. It would be natural to try to define them
as curves that minimise locally the distance; however, differential geometers
usually prefer to take a different perspective: they introduce geodesics as
curves whose tangent vectors do not “deviate” from the trajectory, that is that
go as “straight” as possible.

To formalise this notion of “deviation” we need somehow to connect nearby
tangent vectors via a structure called connection. This structure has many
interesting features that go beyond the definition of geodesics: it is also a
way to derive vector fields along tangent vectors, and for that reason it is also
called with another appropriate name: covariant derivative. The two notions
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— connection and covariant derivative — are in fact the same thing, a powerful
structure that can be employed for different purposes, whose application goes
even beyond the realm of riemannian manifolds.

9.2.1. Definition. As we said in the previous chapters, one of the main
themes in differential topology is the quest for a correct notion of derivation
of vector (more generally, tensor) fields on a smooth manifold M. Without
equipping M with an additional structure, the best thing that we can do is
to derive a vector field Y with respect to another vector field X via the Lie
derivative Lx(Y) = [X,Y].

As we have already noted, the definition of Lx(Y) is local, in the sense that
its value at p € M depends only on the values of X and Y in any neighbourhood
of p, but is not a pointwise definition, in the sense that it does not depend on
the vector v = X(p) alone, as it happens in the usual directional derivative of
smooth functions in R”. We are then urged to introduce a somehow stronger
notion of derivation that depends only on the tangent vector v = X(p).

Let M be a smooth manifold.

Definition 9.2.1. A connection V is an operation that associates to every
v € Tp,M at every p € M, and to every vector field X defined on a neighbour-
hood of p, another tangent vector

VX eT,M
called the covariant derivative of X along v, such that the following holds:
(1) if X and Y agree on a neighbourhood of p, then V, X = V,Y;
(2) we have linearity in both terms:
Vi AX 4+ 1Y) = AV, (X) + uV, (Y),
VavtuwX = AV (X) + uV, (X),

where A, u € R are arbitrary scalars;
(3) the Leibnitz rule holds:

vv(f)<) = V(f)X(p) + f(p)va
for every function f defined in a neighbourhood of p;
(4) V depends smoothly on p.
We explain the last condition. For every two vector fields X,Y defined in a
common open subset U C M, we require
Vy (X

to be another vector field in U. That is we require Vy(,)X to vary smoothly
with respect to the point p € U.

We note that in fact (3) implies (1), as one sees easily by taking f to be
a bump function that is constantly 1 in a neighbourhood of p.
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9.2.2. Christoffel symbols. On a chart, we may consider the coordinate
vector fields ¢; = a%. We get

_rk
veiej — r/jek

where we have used the Einstein summation convention, for some real numbers
I'fj» that depend smoothly on p because of the smoothness assumption (4).

The smooth functions I'fj— are called the Christoffel symbols of the con-
nection. On a chart, these determine the connection completely: indeed, for
every vector field X = X/e; and tangent vector v = v'e; at some point we get

. ) OX/
VX =Vv'Ve(Xeg) =V 5

=6 + V’XJVeiej
Xi

AXJ o
= e O T v’XJI'fj-ek.
1

We may rewrite this equality as
k

00X
18 VX = [V
( ) v < (3X,'
Therefore the covariant derivative V, is the usual directional derivative along
v plus a correction term that is encoded by the Christoffel symbols I'f_‘/ In
particular we have

+ v"Xfr,-kJ-> ex.

Ve X = gi + X T e

Note that the directional derivative is not a chart-independent operation!
You may think at Ffj- as a correction term that transforms it into a chart-
independent one.

Conversely, on any open subset U C R”, for every choice of smooth maps
I'fj»: U — R there is a connection V whose Christoffel symbols are I'f_‘/ The
connection V is defined via (18), and one readily verifies that the axioms (1-4)
are satisfied.

Of course when the connection is read on another chart the Christoffel
symbols modify in some appropriate way:

Exercise 9.2.2. If the coordinates change as
0 Oxx O
a% 0% Ox¢
the Christoffel symbols modify accordingly as follows:

o ¢ 82
e Oxp Oxq _, OXkx  ORk O°Xm
Yo% 0% PTOx.  Oxm O0X0X;

The second derivatives are there to warn us that the Christoffel symbols
I'fj- are not the coordinates of any tensor. A connection is not a tensor field in
any sense.
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9.2.3. Curves suffice. We know that V,X € T,M depends only on the
behaviour of X on any neighbourhood of p. In fact, its restriction to a smaller
subset suffices to determine V, X.

Proposition 9.2.3. The covariant derivative V, X € T,M depends only on
v and the restriction of X to any curve tangent to v.

Proof. On a chart (18) shows that V, X depends only on v, X(p), and the
directional derivative of X along v. This proves the assertion. O

In particular, two vector fields that coincide on some curve tangent to v
have the same covariant derivative along v.

9.2.4. Vector fields along curves. Proposition 9.2.3 leads us naturally
to the following definition.

Definition 9.2.4. Let M be a manifold and v: | — M a curve. A vector
field along <y is a smooth map X: | — TM with X(t) € T;(nyM for all t € /.

The vector field X is tangent to «y if X(t) is a multiple of 4/(t) for all t.
For instance, the velocity field of vy is the vector field v/(t) and is of course
tangent to 7.

If v is an embedding, we may interpret X as a vector field on its support,
but this interpretation fails if 7y is only an immersion.

Let V be a fixed connection on M. Let v: | — M be an immersed curve,
that is we have «/(t) # 0 for all t € /. For every vector field X along vy, we
define another vector field % on 7y called its derivative, as follows.

If / is a compact interval and < is an embedding, we consider X as a
vector field defined on y(/), we extend X arbitrarily to an open neighbourhood
of y(/), and for every t € | we define

DX
ar = VrX

The vector field %—)t( does not depend on the extension of X outside -y thanks
to Proposition 9.2.3.

In general, the curve 7y is an immersion and hence it is an embedding on
every sufficiently small neighbourhood of every point tg € /. Therefore we may
define %(to) as above for every tg € /.

Everything can be written more explicitly on a chart. On an open subset
V C R" we have y(t) = (4*(t), ..., "(t)) and X = X'(t)e;. We get

DX  dX

1 - _ 2
(19) dt dt

+' () X ()T (v(8)) e

Remark 9.2.5. One may use (19) to define % for any smooth curve 7,

not only immersions. We will not need this.
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9.2.5. Parallel transport. We have just defined a way to derive vector
fields along immersed curves, and we now investigate the vector fields whose
derivative vanishes at every point of the curve.

Let M be a smooth manifold equipped with a connection V. Lety: | — M
be an immersed curve. A vector field X along «y is parallel if

DX
at °

for all t € I. Here is a very important existence and uniqueness property:

Proposition 9.2.6. For every ty € | and every v € Tyt)M there is a unique
parallel vector field X on v with X(ty) = v.

Proof. We easily reduce to the case where «y(/) is entirely contained in the
domain U of a chart ¢: U — V. Using (19), the problem reduces to solving a
system of n linear differential equations in X*(t) with k = 1,..., n, that is:

k . .
T +’Y/(f)IXJ(f)rZ'(’Y(t)) =0.

The system has a unique solution satisfying the initial condition X*(ty) = v¥
for all k. The solution exists for all t € | because the system is linear. O

(20)

For every t € [, we think at the vector X(t) as the one obtained from
v = X(tg) by parallel transport along v. We have just discovered a very
nice (and maybe unexpected) feature of connections: they may be used to
transport tangent vectors along curves.

It is sometimes useful to denote the parallel-transported vector X(t) as

X(t) =T(1)gp(v)
to stress the dependence on all the objects involved. We get a map
F(Vie: Tyie)M — TyyM
called the parallel transport map.

Proposition 9.2.7. The parallel transport map is a linear isomorphism.

Proof. The map is linear because (20) is a linear system of differential
equations. It is an isomorphism because its inverse is [(7y)%. O

Note that
F(Mg =TMgor()s
for every triple tg, t1, t> € [. The smooth dependence on initial values tells us
that F(’y)f depends smoothly on t and t/, when read on charts.

We now understand where the name “connection” comes from: the oper-
ator V can be used to connect via isomorphisms all the tangent spaces T,M
at the points p = «y(t) visited by any immersed curve <. It is important to
stress here that the isomorphisms depend heavily on the chosen curve y: two
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Figure 9.1. By parallel-transporting a vector along the edges of a spher-
ical triangle in S2, from A to N to B and back to A, we transform it into a
new one rotated by some angle . Here « is proportional to the area of the
triangle, and in general it is connected to the curvature of the manifold.
The connection V that we are using here is the one naturally associated
to the metric, to be defined in Section 9.3.

distinct immersed curves y; and -y», both connecting the same points p and
g, produce in general two different isomorphisms between the tangent spaces
TpM and TgM. This may hold also if y1 and <y are homotopic. As we will
see, the curvature of V measures precisely this discrepancy. See Figure 9.1.

Remark 9.2.8. A continuous map «v: | — M is a piecewise immersion if it
is a concatenation of finitely many immersions. Parallel transport extends to
piecewise smooth immersed curves in the obvious way, see Figure 9.1.

9.2.6. Connections form an affine space. Does every smooth manifold
admit some connection V7 And if it does, how many connections are there?
The answer to the first question is positive but we postpone it to the next
section. We can easily answer the second one here.

Recall that a tensor field T of type (1,2) on M is a bilinear map

T(p): TyM x TyM — T,M
that depends smoothly on p.

Proposition 9.2.9. If V is a connection on M and T € T (TZ(M)) is a
tensor field of type (1,2), then the operator V' =V + T, defined as

VX =V, X +T(p)(v.X(p))
is also a connection. Every connection V' on M arises in this way.

In the expression we have p € M, v € T,M, and X is a vector field defined
in a neighbourhood of p, as usual.
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Proof. To prove that V’ is a connection, we show that it satisfies the
Leibnitz rule (the other axioms are obvious). We have:

VU (FX) =V (fX) + T (p)(v. f(P)X(p))
=v(HX+f(p)V X+ f(p)T(p)(v, X(p))
= V(F)X + F(p)VX.

Conversely, if V/ is another connection, we consider the expressions in coordi-
nates (18) for both V/, X and V, X and discover that

VX = VX =vX (M) —TF)ex.

The right-hand expression describes a tangent vector at p that depends (lin-
early) only on the tangent vectors v and X(p). If we indicate this vector as
T(p)(v, X(p)), we get a tensor field T of type (1,2). In coordinates, we have

k k k
T = (' i — i
The proof is complete. O

We have just discovered that the space of all connections V on M is
naturally an affine space on the (infinite-dimensional) space ' (7T2(M)).

Remark 9.2.10. We can use Exercise 9.2.2 to confirm that T/ = (") —T'¥
are the coordinates of a tensor (the second partial derivatives cancel).

9.3. The Levi—Civita connection

We have already seen that on a Riemannian manifold M we can talk about
distances between points, length of curves, and volumes. We now show that
M also has a preferred connection, called the Levi-Civita connection. We will
then use it to define geodesics in the next section.

9.3.1. Introduction. As we have seen, a smooth manifold M carries many
different connections, and we are now looking at some reasonable way to
discriminate between them. The main motivation is the following ambitious
question: if M has a metric tensor g, is there a connection V that is somehow
more suited to g7

An elegant and useful way to understand a connection V consists of ex-
amining some tensor fields that are associated canonically to V. We now
introduce one of these.

9.3.2. Torsion. Let V be a connection on a smooth manifold M. The
torsion T of V is a tensor field of type (1,2) defined as follows. For every
p€ Mandv,we T,Mwe set

T(p)(V’ W) =V,Y -V, X — [X, Y](p)
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where X and Y are any vector fields defined in a neighbourhood of p extending
the tangent vectors v and w. Of course we need to prove that this definition
is well-posed, a fact that is not evident at all at first sight.

Proposition 9.3.1. The tangent vector T (p)(v, w) is independent of the
extensions X and'Y .

Proof. In coordinates we have

oYk . OXk :
_ i INITk i _ <
T(p)(v,w) = (v ox + vV —w o w v %, w ox;

= (v/mﬂrf} — Wivjrfj-) ex = viwj(rf} —Ye.

The proof is complete. O

During the proof, we have also shown that in coordinates we have
k k k
Ty =Ty =T

A connection V is symmetric if its torsion vanishes, that is if [';; = [; on
any coordinate chart. The torsion is clearly an antisymmetric tensor, that is
T(p)(v,w) =—=T(p)(w,v) for all v, w. Finally, if we contract the torsion T
with two vector fields X and Y we get the elegant equality of vector fields:

T(X,Y) =VxY — Vy X — [X,Y].

9.3.3. Bilinear operators on vector fields. \We have already encountered
in this book three bilinear operators

(M) x X(M) — X(M)

that are quite dissimilar in nature: these are [,], V, and T. Given two vector
fields X and Y/, then we can define a third one Z by setting it to be equal to

(X, Y], VxY, or T(X,Y).

The main difference between these three operators is the following:

e [X,Y] at p depends on X and Y;
e VxY at p depends on X(p) and Y;
e T(X,Y) at p depends on X(p) and Y(p).

This also expresses the fact that the operator T is the only one that arises
from a tensor field.

Remark 9.3.2. Some authors describe these differences by saying that the
operator T is C*°(M)-bilinear, that is T(f X, gY') = fgT(X,Y) forevery f,g €
C>°(M). Analogously, V is C>°(M)-linear on its left, that is VixY = fVxY.
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9.3.4. Compatible connections. Let (M, g) be a Riemannian manifold.
As we said, we would like to assign an appropriate conection V to g. We start
by defining a reasonable compatibility condition.

We say that a connection V is compatible with g if every parallel transport
isomorphism

F(Me: TyewyM — TyeyM

is actually an isometry, for every immersed curvey: | — M and every tg, t; € /.

We now express this condition in three more equivalent ways.

Proposition 9.3.3. The connection V is compatible if and only if

(21) %<X,Y>: <[2<,Y>+<X,?;>

for every immersed curve «y: | — M and vector fields X,Y on it.

Proof. If (21) holds, for every parallel vector fields X, Y on 7y we get that
(X(t),Y(t)) is constant on t and hence the parallel transport along - is an
isometry. Therefore V is compatible.

Conversely, suppose that V is compatible. Pick an orthonormal basis
€1, ..., en of T,M and parallel-transport it along . Write

X()=X(y(t) =X'e,  Y(&)=Y(y(t) =Y'e
Using the Leibnitz rule we deduce that

dX’ dy’
V'y’(t)X = We/, v'y’(t)y = We/
and hence
d i dx’ ; ,dY’
ZX@Y (1) = (XY = Y X e = (Vy (g XY ) H (X Vy ()Y )
The proof is complete. O

We can easily translate this into a local condition. We interpret v as a
derivation acting on the smooth function (X,Y).

Corollary 9.3.4. The connection V is compatible if and only if
(22) VIX,Y) =(V,X,Y)+ (X, V,Y)
for every tangent vector v € T,M and every vector fields X,Y defined in a
neighbourhood of p.

Expressed in coordinates, this is translated as follows.

Proposition 9.3.5. The connection V is compatible if and only if
99
an
in coordinates at every chart.

(23)

= Tkigy + Tl



9.3. THE LEVI-CIVITA CONNECTION 223

Proof. We pick any chart and write (22). By linearity in v, we may suppose
that v = e,. We have X = X'e; and Y = Y’¢;. The equation transforms into

o iy (09X
aTk(g”X /) = (a
After deriving the left member and simplifying this transforms into

99

ij i .. . | . . |
8Xk XIYJ —le_igg,/y —i—YJrQ(Jg,/X

i

- ay
- Xfr'kj> gy + (

an + le_ﬁ(j) g,-,X’.

Xk

After renaming indices, this holds for every X and Y precisely when
agij
an

The proof is complete. O

= Tigi + Thiii.

The proof also shows that if (23) holds on all the charts of an atlas, then
it also does at any compatible chart.

9.3.5. The Levi-Civita connection. As promised, we now assign to any
Riemannian manifold (M, g) a canonical connection V, called the Levi-Civita
connection.

Theorem 9.3.6. Every Riemannian manifold (M, g) has a unique symmetric
compatible connection V. On any chart, its Christoffel symbols are
1 Ogjk . Ogki  0gj
24 = Zgk J _ 22U
(24) i~ 29 Ox; + ox; Oxy
Proof. We start by proving uniqueness. Let V be a symmetric compat-
ible connection. On a chart, we use (23) three times with the indices i, j, k

permuted cyclically, and using symmetry I'fj- = I'J’-‘,- we get

09k n Ogki  09ij _
ox; ox;  Oxk Y

By multiplying both members with the inverse matrix g%’ we find

1 0gjk . Ogki  0gjj
Y j _0gjj
i 29 (ax,- * oxj  Oxx )

This shows that I'fj and hence V are uniquely determined.

Concerning existence, we now use (24) to define V locally on a chart.
The connection is clearly symmetric and one verifies easily that is also com-
patible using Proposition 9.3.5. Moreover, the resulting V is actually chart-
independent: if not, we would get two different symmetric and compatible
connections on some open set, which is impossible. Therefore all the V con-
structed along charts glue to a global V on M. ([

The unique symmetric compatible connection V is called the Levi-Civita
connection.
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Example 9.3.7. If U C R" is equipped with the Riemannian metric g, the
Christoffel symbols I'fj- = 0 vanish everywhere and the Levi-Civita connection
coincides with the usual directional derivative.

We will since now equip every Riemannian manifold (M, g) with its Levi-
Civita connection V.

Remark 9.3.8. While the compatibility assumption looks natural, the rea-
sons for preferring a symmetric connection may look obscure at this point.
We can single out three arguments in its favour: (i) this seems the only (or at
least the simplest) way to get a canonical connection; (ii) we will see in the
next section that, thanks to symmetry, the Levi-Civita connection extends in a
very simple way to submanifolds; (iii) by picking a compatible connection with
non-vanishing torsion things do not change too much, since (as we will see)
we would get exactly the same geodesics (and defining geodesics is the main
reason for introducing connections).

9.3.6. Submanifolds. Let M be a Riemannian manifold and N C M a
submanifold. The manifold N has an induced Riemannian structure, and we
now investigate the relation between the corresponding Levi-Civita connections
VM and V. It turns out that VV is very easily determined by VM. This is
particularly useful when the ambient space is M = R with the Euclidean met-
ric tensor, since there VM is the usual directional derivative and V" assumes
a simple and intuitive form.

Let p € N be a point and v € T,N a tangent vector. Let X be a vector
field (tangent to V) defined on a neighbourhood of pin N. Extend X arbitrarily
to a vector field on a neighbourhood of p in M. Let w: T,M — T,N be the
orthogonal projection.

Proposition 9.3.9. The following holds:
VX =m(V)X).
Proof. We define a connection V on N by setting V,(X) = m(VMX) for
every vector field X in some open subset of N, using some local extension of

X in M. The vector V,(X) does not depend on the extension (exercise) and
V is indeed a connection on N. It is compatible: by Corollary 9.3.4 we get

VX, Y) = (VMX Y) + (X, VMY) = (V, X, Y) + (X, V,Y)

for every vector fields X, Y on a neighbourhood of p in N, extended arbitrarily
to a neighbourhood in M. The connection is symmetric: analogously we have

T(v,w) = V,Y=Vu X=X Y](p) = n(V)Y-VIX-[X,Y](p)) = 7(0) =0

where we have used that [X, Y](p) is tangent to N since both X and Y are.
By the uniqueness of the Levi-Civita connection we have V = V. O
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Let v: /| — N be an immersed curve and X be a vector field on . We
M N . . .
denote analogously by Dd—tx and % the derivatives of <y with respect to the
two connections VM and V.

Corollary 9.3.10. The following holds:
DNx  (DMX
dt dt

The case where M = R™ is equipped with the Euclidean metric and N C
R" is a submanifold is particularly interesting:

Corollary 9.3.11. A vector field X on«y: | — N is parallel (on N) if and
only if its derivative X'(t) in R™ is orthogonal to T. )N for every t € |.

9.4. Geodesics

We know that every Riemannian manifold (M, g) has a preferred connec-
tion V, and now we use V to define geodesics. We end this section by showing
that geodesics are precisely the curves that minimise the path length, at least
locally (not necessarily globally).

9.4.1. Definition. Let M be a manifold equipped with a connection V.

Definition 9.4.1. A smooth immersed curve vy: | — M is a geodesic if the
velocity field /(t) is parallel along .

Recall that this means that %—'Z/ =0 for every t € |. A geodesic is maximal
if it is not the restriction of a longer geodesic n: J — M with | C J. Geodesics
have many nice properties; the first important one is that they exist, and they
are also unique once a starting point and a direction are fixed:

Proposition 9.4.2. Foreveryp € M andv € T,M there is a unique maximal
geodesic y: | — M with 0 € I, v(0) = p, and v'(0) = v.

In the proposition we also include the trivial constant geodesic v: R — M,
v(t) = p, that corresponds to v = 0 (although this is not strictly speaking a
geodesic according to our definition). The unique maximal geodesic «y tangent
to v at t = 0 is sometimes denoted by y,.

Proof. In coordinates, an immersed curve «y(t) = x(t) is a geodesic if and
only if the following holds for all k, see (19):
d?x; n dx; dx;
dt2 ~ dt dt
This is a second-order system of ordinary differential equations. The Cauchy—

Lipschitz Theorem 1.3.5 ensures that the system has locally a unique solution
with prescribed initial data x(0) = p and %(O) =v. O

rs=0.

(25) iy
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The second-order system of differential equations (25) describe the geodesics
in any coordinate system. Using the dot notation for time derivative, the equa-
tions may be written as

(26) i + XX Tl = 0.

To define geodesics we only need a connection V, not a Riemannian metric.
We are of course mainly interested in the case where V is the Levi-Civita
connection of a Riemannian metric g. In that case the speed [|v/(t)|| of a
geodesic v makes sense, and it is clearly constant along t by (21). One may

wonder if the same geodesic run at a different constant speed is still a geodesic:
this is true thanks to the following fact, that holds for all connections V.

Proposition 9.4.3. If+y is a geodesic, then n(t) = y(ct) is also a geodesic,
for every non-zero ¢ € R.

Proof. If V,X =0, then also
VeveX = c?V X =0.
This concludes easily the proof. O
In particular, we have ¢, (t) = v,(ct).

Example 9.4.4. On U C R" with the Euclidean metric, we have [;; = 0
and hence the geodesics are precisely the straight lines run at constant speed.

Example 9.4.5. Let N C R™ be a submanifold, equipped with the induced
Riemannian metric. By Corollary 9.3.11, an immersion v: | — N is a geodesic
if and only if (t) is orthogonal to TN for all t € /.

Example 9.4.6. By the previous example, every maximal circle on S” run
at constant speed is a geodesic. In other words, for every p € S”, every unitary
vector v € T,S" = p*, and every ¢ > 0, the curve v: R — S” defined as

v(t) = cos(ct) - p+sin(ct) - v

is a geodesic that starts from p in the direction v at speed c. To prove this it
suffices to check that «y(t) € S™ and «y”(t) is parallel to y(t), hence orthogonal
to Tny(t)S”. By Proposition 9.4.2 these are precisely all the maximal geodesics
in the sphere S".

9.4.2. Geodesic flow. Let M be a smooth manifold equipped with a con-
nection V. It would be nice if we could represent all the geodesics in M as the
integral curves of some fixed vector field on M. However, this is clearly im-
possible! On a vector field, there is only one integral curve crossing each point
p, but there are infinitely many geodesics through p, one for each direction
veT,M.

However, this strategy works if we just replace M with its tangent bundle
T M. We can define a vector field X in T M as follows: for every v € TM, let
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vy : I, = M be the unique maximal geodesic with 7/ (0) = v. The derivative
v, : 1, = TMis a curve in T M, that we see as a canonical lift of «y, from M
to TM. We define X(v) = d(7))o.

The resulting vector field X on TM is smooth because the geodesic 7,
depends smoothly on the initial data. It is called the geodesic vector field on
TM. lts maximal integral curves are precisely all the lifts of all the maximal
geodesics in M. The vector field X generates a flow ® on TM called the
geodesic flow. The flow ® moves the points in T M along the lifted geodesics.

The geodesic flow @ is defined on some maximal open subset U of TM xR
containing TM x {0}. We have UN ({v} x R) = {v} x [,. With moderate
effort, mostly relying on theorems proved in the previous chapters, we have
defined a quite general and fascinating geometric flow on (the tangent bundle
of ) every Riemannian manifold.

9.4.3. Exponential map. We now define a useful map that is tightly
connected with the geodesic flow, called the exponential map. We start by
defining the following subset of the tangent bundle:

V={veTM|lel,} CTM.
Recall that /, C R is the domain of «y,. The exponential map is
exp:V — M
vi— v,(1).
For every p € M we define
Vo =VNT,M, exp, = exp |v,.
We see as usual M embedded in T M as the zero-section.

Proposition 9.4.7. The domain V is an open neighbourhood of M and exp
is smooth. Each V), is open and star-shaped with respect to 0. We have

Y (t) = exp(tv)
for every v € TM and t € R such that both members are defined.
Proof. Let U be the open domain of the geodesic flow . We have V =

{ve TM|vx{1} € U} and hence V is open. The map exp(v) = m(P(v, 1)) is
smooth. Star-shapeness and y,(t) = exp(tv) follow by Proposition 9.4.3. [

Here is one important fact about the exponential map:
Proposition 9.4.8. The map exp,, is a local diffeomorphism at 0 € V.

Proof. We determine the endomorphism d(exp,)o: T,M — T,M. For
every v € T,M we have exp,(tv) = v, (t) for all sufficiently small t. Therefore
d(expp)o(v) = ,(0) = v. We have proved that d(exp,)g = id. In particular,
it is invertible and hence exp,, is a local diffeomorphism at 0. O
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Figure 9.2. If we model the Earth as S? and look at the exponential
map from the north pole N, the disc D of radius 7 in TyS? is mapped to
52 as shown here. The points in 8D are all sent to the south pole.

The proposition says that the exponential map exp, may be used as a
parametrisation of a sufficiently small open neighbourhood of p. After many
pages, we recover here a very intuitive idea: the tangent space T,M should ap-
proximate the manifold near the point p. This idea may be realised concretely,
via the exponential map, only after fixing a Riemannian metric on M.

Example 9.4.9. Consider the sphere S". Example 9.4.6 shows that for this
Riemannian manifold we have V =TM and

, v

exp(v) = cos|v|-p+sin|v|- T

for every p € S" and v € T,S". Note that when |v| = m we get exp(v) = —p.

The map exp, sends the open disc D(0, ) C T,M of radius 7 diffeomor-

phically onto S™ \ {—p}, while its boundary sphere dD(0, 1) goes entirely to

the antipodal point —p. See Figure 9.2. Note in particular that exp, is not a

local diffeomorphism at the points in 8D(0, 7). In general, it is guaranteed to

be a local diffeomorphism only at the origin.

9.4.4. Normal coordinates. The exponential map furnishes some nice lo-
cal parametrisations called normal coordinates, that we now investigate. These
are very useful in many computations.

Let M be a Riemannian manifold and p € M a point. We fix an isometric
isomorphism R” = T,M. Let r > 0 be a sufficiently small radius such that
the exponential map exp,: B(0, r) — M is defined and is an embedding. The
image of B(0,r) in M is called the geodesic ball of radius r centred at p
and the coordinates (x, ..., X,) furnished by the parametrisation exp,, are the
normal coordinates of the geodesic ball.
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In normal coordinates, we represent a geodesic ball of radius r as B(0, r) C
R"™ with 0 corresponding to p. The metric gj; varies smoothly in B(0, r). The
following is an immediate consequence of Proposition 9.4.7.

Proposition 9.4.10. The geodesics emanated from the origin with speed
c are Euclidean lines run with speed c. In particular at every x € B(0,r) we
have the equality x'g;;(x)x = x'x".

As a consequence, we get the following.

Proposition 9.4.11. At the origin we have:

toJel
gi;(0) = &jj, J(0)=0

an
ore ork ary
k _ ] J! li _
MO =0 ZHO)+Z 0+ L0 =0.

Proof. The first equality follows from d(expp)o = id. The third and fourth
follow from the geodesic equation (26), that is satisfied by all the lines x(t) =
tv, Yv € R". Plugging x(t) in the equation we get

vivilf(0) =0

for every v € R”, and hence I'fj-(O) = 0. By deriving the geodesic equation we
get the more complicated third order equations
k
o ok ook o e
Xk + X,le’,j + X,XJr,-J' + x,xj—ax x; = 0.
/

If we substitute x(t) = tv again we get

k
]
Vi ViV 0)=0
(Ad] ’Bx/( )
for every v € R", and we easily deduce the fourth equality. We then recover
the second one from (23). O

Of course the Christoffel symbols Ffj— are guaranteed to vanish only at
the origin, and not at the other points of B(0, r). Proposition 9.4.10 can be
upgraded to a stronger statement universally known as the Gauss Lemma.

- Lemma 9.4.12 (Gauss Lemma). At every x € B(0, r) we have the equality
x'gij(x)y! = x'y' for every y € R". In particular the spheres 0B(0, r') with
0 < r' < r are orthogonal to all the geodesics emanated from the origin.

Proof. By the previous proposition, it suffices to consider the case x'y’ =
0, that is y is tangent to 8B(0, x). We can also rescale y so that x'x' = y'y’.
We must prove that (x,y) = x'g;;(x)y/ = 0.

We want to extend x and y to two vector fields as in Figure 9.3. To do
so, we define the curve v: (—¢,€) — B(0, r),

Y(t) =cost-x+sint-y.
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Figure 9.3. The Gauss Lemma says that, in normal coordinates, the
vectors x and y are orthogonal. To prove this, we extend x and y to
two commuting vector fields X (blue) and Y (green) defined on a (yellow)
pencil of radial geodesics. Then we show that (X,Y) is constant along
the rays, and hence vanishes everywhere.

We have ¥(0) = x and 4/(0) = y. Consider the embedding F: (0, 1] x
(—e,e) = B(0,r),
F(s,t) = sy(t).

We extend x and y to the vector fields X = %—’; and Y = %—’; on the image
of F, see Figure 9.3. Note that [X,Y] = 0. We think of both vector fields
depending on (s, t), so that x = X(1,0) and y = Y/(1,0). At every point
(s, t) we get

0

e (X,Y) =(VxX,Y)+ (X VxY).
We have V x X = 0 because X is the tangent field of the geodesic s — sy(t).
Since [X, Y] = 0 and the torsion vanishes, we get VxY = Vy X. Therefore

0 10

B (X,Y)=(X,VyX) = 537 (X, X) =0.

We have proved that %(X, Y) = 0 and hence (X,Y) is constant on the
geodesic s — sx. Since we clearly have lims—o(X,Y) = 0 we deduce that

(X,Y) = 0 everywhere and in particular (x, y) = 0. The proof is complete. [

Every sphere 9B(0, ') with 0 < r’ < r is called a geodesic sphere of
radius r'. The Gauss Lemma says that gj; at every point x # 0 decomposes
orthogonally into a radial part that coincides with the Euclidean metric, and a
tangential part, tangent to the geodesic sphere, that may however be arbitrary.

9.4.5. Minimising curves. \We now start to study the tight connection
between geodesics and distance between points.
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Let M be a Riemannian manifold and p,g € M two points. We are
interested in the smooth curves that connect p to g, thatis the«y: [a, b] = M
with y(a) = p and y(b) = g. Recall that the length L(vy) of -y is independent
of its parametrisation. Recall also that d(p, q) is the infimum of all the lengths
of all the smooth curves connecting p and g. This infimum may not be realised
in some cases; if it does, that is if there is a curve vy with L(y) = d(p, q), then
the curve -y is called minimising.

Let p € M a point. Let B C M be a geodesic ball centred at p with some
radius r, and g € B be any other point. We know that B contains a radial
geodesic ¥p.q: [0, 1] = B connecting p to q.

Proposition 9.4.13. The geodesic 7yp q Is a minimising curve. Every other
minimising curve in M connecting p to q is obtained by reparametrising 7p q.

Proof. Use the normal coordinates for B. Now B = B(0, r) and the points
p, g become 0, x € B(0, r). Every curve v in M connecting p to g contains an
initial subcurve 7y, with support in B(0, ||x||) and connecting 0 to some point
in the sphere 9B(0, ||x]|).

By the Gauss Lemma the velocity «v.(t)" decomposes orthogonally into a
radial and a tangential component. The integral of the norm of the radial
component is at least r, since the radial component coincides with the Eu-
clidean one. Therefore L(v«) > r = L(<p4), and the equality holds if and
only if there is no tangential component and the radial component is never
decreasing, that is if 7.(t) is obtained by reparametrising yp,q- O

Corollary 9.4.14. A geodesic sphere of radius r around p consists precisely
of all the points in M at distance r from p.

For the same reason a geodesic ball centred at p of radius r consists pre-
cisely of the set B(p, r) of all points in M at distance < r from p. Conversely,
if r is sufficiently small, every such set B(p, r) is a geodesic ball.

It is a remarkable fact that the metric balls B(p, r) with sufficiently small
radius r > 0 are precisely the images of the balls B(0,r) C T,M along the
exponential map.

9.4.6. Totally normal neighbourhoods. Let M be a Riemannian mani-
fold. We have discovered that every point p € M has a neighbourhood U that
is nice with respect to p, and now we want to be more democratic and show
that we may pick a U that is also nice with respect to every point g € U.

We say that an open subset U C M is totally normal if for every g € U
there is a geodesic ball centred at g containing U.

Proposition 9.4.15. Every p € M has a totally normal neighbourhood U.



232 9. RIEMANNIAN MANIFOLDS

Proof. Recall that exp: V — M is defined on some open neighbourhood
V C TM of M. We consider the map

F: V—MxM
(p.v) — (P, expp(V)).

We already know that d(exp,)o = id. This implies easily that dF, g is in-
vertible and hence F is a local diffeomorphism at (p, 0). Therefore there are
a neighbourhood W of p and a § > 0 such that the restriction of F to

W' ={(p,v) | p€W,|v| <6}

is a diffeomorphism onto its image F(W’). Pick a neighbourhood U of p such
that U x U c F(W'). O

If U C M is a totally normal neighbourhood, then by Proposition 9.4.13 ev-
ery two distinct points p, g € U are connected by a unique minimising geodesic
Yp,q I M run at unit speed. The geodesic -y, 4 varies smoothly in p, g € U.

9.4.7. Locally minimising curves. \We have defined geodesics as the so-
lution of certain differential equations, and we can finally characterise them
using only the distance between points.

Let M be a Riemannian manifold. We say that a curve v: | — M is locally
minimising if every t € | has a compact neighbourhood [ty, t1] C / such that
the restriction |[4, ] is minimising.

Exercise 9.4.16. If v is minimising, it is also locally minimising.

Theorem 9.4.17. A curvery: | — M is locally minimising <> it is obtained
by reparametrising a geodesic.

Proof. Let v: /| — M be a curve. For every t, pick a totally normal
neighbourhood U containing y(t) and let J C / be a neighbourhood of t such
that y(J) C U. Apply Proposition 9.4.13. O

The theorem is also true for piecewise immersions (see Remark 9.2.8),
since using transition functions these can be reparametrised as smooth curves
that have velocity zero at the angles. Geodesics are precisely the locally min-
imising curves, in a very robust manner.

9.4.8. Convex neighbourhoods. \We now further improve the totally nor-
mal neighbourhoods by adding a quite natural requirement.

Definition 9.4.18. A subset S C M of a Riemannian manifold M is strictly
convex if any two points p, g in the closure S of S are joined by a unique
minimising geodesic 7y in M, and moreover its interior is contained in S.

We will prove that geodesic balls of sufficiently small radius are strictly
convex. To this purpose, we will need the following.
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Lemma 9.4.19. For every point p € M there is a ryp > 0 such that B(p, ro)
is a geodesic ball, and every geodesic tangent to the geodesic sphere 0B(p, r)
stays locally outside B(p, r), for every 0 < r < rp.

Proof. Use normal coordinates, that is represent B(p, r) as B(0,r) C R”
for a small r > 0. For every (x,v) € B(0,r) x S we have a geodesic
Yxv i v — B(0,r) with 0 € Jy, and 7, ,(0) = v. Consider the smooth
map

2

Flav) = 2 (D))

When x = 0, the geodesic is radial 7p,,(t) = tv and hence F(0,v) = 2.
Therefore there is a 0 < rg < r such that F(x,v) > 0, and hence |yx,(t)|?
has a local minimum at t = 0, whenever |x| < ry. This proves the lemma. [

t=0

Proposition 9.4.20. For every point p € M there is a ry > 0 such that
B(p, r) is a strictly convex geodesic ball, for every 0 < r < rp.

Proof. We know that there is a r; > 0 such that B(p, 1) is a geodesic
ball and every geodesic tangent to the geodesic sphere dB(p, r) stays locally
outside the ball, for every 0 < r < ny.

Pick a 0 < rp < r/2 such that every minimising geodesic 4 4 with
endpoints g, ¢ € B(p, ro) has length at most r; /2. (We can do this because on
a totally normal neighbourhood the minimising geodesic, and hence its length,
varies smoothly on the points.) In particular 4 o is contained in B(p, r1).

If we represent B(p, r1) in normal coordinates, we see that the maximum
of |v4,¢(£)|> must be at one of its endpoints, otherwise 7y, 4 (t) would be
tangent to a geodesic sphere locally from inside. Therefore B(p, r) is strictly
convex for every r < ry. O

Convex subsets have two nice properties: they are closed under intersec-
tion, and they are contractible (exercise). These imply the following.

Proposition 9.4.21. Every smooth manifold M has a locally finite covering
{U;} such that every non-empty finite intersection of U;'s is contractible.

Proof. Put an arbitrary metric on M and use convex neighbourhoods. [

9.5. Completeness

A riemannian manifold M is also a metric space, so it makes perfectly sense
to consider whether it is complete or not — a notion that is meaningless for
unstructured smooth manifolds. We prove here the Hopf — Rinow Theorem,
that shows that completeness may actually be stated in equivalent ways, one
of which involves only geodesics.
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9.5.1. Geodesically complete manifolds. Let M be a riemannian mani-
fold. We say that M is complete if its underlying metric space is. We say that
M is geodesically complete if the exponential map exp, is defined on the full
tangent space for all p € M. Equivalently, we are asking that every maximal
geodesic y(t) in M be defined for all times t € R.

Recall that the distance d(p, q) of two points p, g € M is the infimum of
the lengths of all the curves <y joining p and g; if such an infimum is realised by
v, then <y is called minimising and we have discovered in the last section that -y
must be a geodesic (after a reparametrisation). Here is one nice consequence
of geodesical completeness:

Proposition 9.5.1. If M is connected and geodesically complete, every two
points p, g € M are joined by a minimising geodesic.

Proof. Pick a geodesic ball B(p, r) at p, with geodesic sphere 0B(p, r).
If g € B(p,r) we are done. Otherwise, let pg € 0B(p,r) be a point at
minimum distance from g. Let v € T,M be the unique vector with |lv|| =1
and 7, (r) = po.

By hypothesis, the geodesic <, (t) = exp,(tv) exists for all t € R. Set
d = d(p,q). We now show that v,(d) = g. To do so, let | C [0, d] be the
subset of all times t such that d(vy,(t), g) = d —t. This set is non-empty and
closed, and using Theorem 9.4.17 we easily see that it is also open (exercise).
Therefore | = [0, d] and we are done. O

Corollary 9.5.2. If M is connected and geodesically complete, the expo-
nential map exp,: TyM — M is surjective at every p € M.

The exponential map exp,, of a geodesically complete riemannian manifold
M sends the tangent space T,M onto the whole manifold M. Recall that exp,
is a local diffeomorphism at the origin, but it may not be as nice at the other
points.

9.5.2. The Hopf — Rinow Theorem. The following important theorem
says that different notions of completeness are actually equivalent.

Theorem 9.5.3 (Hopf — Rinow). Let M be a connected riemannian mani-
fold. The following are equivalent:
(1) M is geodesically complete,
(2) asubset K C M is compact <= it is closed and bounded,
(3) M is complete.

Proof. (1)=(2). Let K C M be a subset. Compact always implies closed
and bounded, so we prove the converse. Take a point p € M. By hypothesis
exp,: TpM — Missurjective. If K is closed and bounded, thereisa r > 0 such
that K C B(p, r) and hence K is contained in the compact set exp,(B(p, r)).
Since K is closed there, it is also compact.
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(2)=-(3). Every Cauchy sequence is bounded, so it has compact closure.
Therefore it contains a converging subsequence, and hence it converges.

(3)=(1). Let v: I = M be a maximal geodesic. We know that / is open,
and since M is complete it is also closed: if t; € | converges to some t € R,
then y(t;) is a Cauchy sequence and converges to some p € M. Pick a totally
normal neighbourhood V' containing p. Every geodesic in V intersects OV; this
implies that «y can be pursued on and hence t € /. O

Corollary 9.5.4. Compact riemannian manifolds are geodesically complete.

Of course many interesting complete manifolds are not compact, for in-
stance R" and all the closed unbounded submanifolds in R".

Corollary 9.5.5. Every closed submanifold of a geodesically complete rie-
mannian manifold is also geodesically complete.

Corollary 9.5.6. Every smooth manifold has a geodesically complete rie-
mannian metric.

Proof. By Whitney's Embedding Theorem, it is diffeomorphic to a closed
submanifold of R". O

9.6. Curvature

How can we distinguish two riemannian manifolds? Globally, they may
have different topologies — and this is often detected by invariants like the
fundamental group or De Rham cohomology — so we are now interested in
constructing some focal invariants. Can we measure locally how a riemannian
manifold differs from being the familiar Euclidean space?

The answer to all these questions is curvature, and the most complete
answer is a formidable tensor field called the Riemann curvature tensor. This
tensor field is pretty complicated and one sometimes wish to examine some
more reasonable tensor fields obtained from it via appropriate contractions:
these are the Ricci tensor and finally the scalar curvature. A more geometric
invariant which is in fact equivalent to the Riemann curvature tensor is the
sectional curvature.

9.6.1. The Riemann curvature tensor. Let M be a riemannian manifold,
equipped with its Levi-Civita connection V. We have already experienced with
the torsion tensor T that one of the most efficient and natural ways to encode
some information from V is to build an appropriate tensor field. Tensor fields
are lovely because they furnish some precise data at every single point p € M.
Of course the torsion tensor is useless here, since T = 0 by assumption, so we
must look for something else.

Recall that a tensor field of type (1, n) on M is a multilinear map

ToM X - X TyM — TyM

n
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that depends smoothly on p.

Definition 9.6.1. The Riemann curvature tensor R is a tensor field on
M of type (1,3) defined as follows. For every point p € M and vectors
u,v,w e Tp,M we set

R(p)(u, v, W) = vayz — VyVXZ — V[va](p)z
where X,Y, Z are vector fields extending u, v, w on some neighbourhood of p.

Of course it is crucial here to prove that the definition is well-posed:

Proposition 9.6.2. The tangent vector R(p)(u, v, w) is independent of the
extensions X,Y, and Z.

Proof. Armed with patience and optimism, we write everything in coordi-
nates and get
k

07
VxVyZ =V (Y’
8x,-

oY 07k 027K .07
=X/ Xy! Xy!
Ox; Ox; G+ Ox;0x; Gt ox;

ex + Y'Zfl'fj-ek>

k
rjIek

oy’ . 87/ . ark
XM 2Tk e + XY T e+ XY/ 2/ 2
+ 6Xm ij ek + aXm i ek + me €k
+ XY T e
If we calculate the difference VxVy Z — VyV xZ the terms number 2, 3, and
5 cancel, and the terms 1 and 4 form precisely the expression
o0zZk
8x,-
From this we deduce that R(p)(u, v, w) consists only of the terms number 6
and 7 that depend (linearly) on u, v, and w and not on their extensions. The
proof is complete. (]

i

X.vY

ek + XY ZT e = Vixy Z.

The tensor field R is therefore well-defined. To check that it is indeed
smooth, we work on a chart and note that during the proof we have also
found implicitly the coordinates of R in terms of the Christoffel symbols and
their derivatives. After renaming indices we get

27 Ri. =R N ar;l ariﬂ' i m i m

(27) kI = (ekreliej)_aixk_ai)q—"_ kml 1j = il -

In particular R’J-k/ depends smoothly on the point. Note the particular ordering
chosen for the indices: the letters j, k,/ correspond to the vectors w, u, v
respectively. Therefore we have

R(u, v, W)i = Rijk/ukv’wj.

The only example we make for the moment is rather trivial.
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Example 9.6.3. If an open set U C R" is equipped with the Euclidean
metric, then I’E— = 0 and therefore R'j; = 0 vanishes everywhere.

It is important to keep in mind that the definition of R is intrinsic, that is
it only depends on the metric g and on nothing else: this implies for instance
that the tensor field R is preserved by any isometry.

As every tensor field, the Riemann tensor gives a C*°(M)-multilinear map

R: X(M) x X(M) x X(M) — X(M)
that can be written elegantly as
R(X,Y,Z) =VxVyZ —=VyVxZ —VixyZ.

It is sometimes useful to consider another version of the Riemann tensor,
where all the indices are in lower position:

Rijki = R jkiGim.
In this version the Riemann tensor is a tensor of type (0,4). Of course we can

transform it back to the original (1, 3) tensor using g, so there is no loss of
information in using one version instead of the other.

9.6.2. Holonomy along small quadrilaterals. The Riemann tensor has
a simple and intuitive geometric interpretation that we now describe. Let
u,v € T,M be two tangent vectors. It is always possible (exercise: pick
a chart) to extend them locally to two commuting vector fields X and Y.
Extend w to any vector field Z. Now the formula simplifies

R(p)(u,v,w) =VxVyZ —VyVxZ.

For sufficiently small t > 0, let vs+ be the closed loop based in p con-
structed ad in Figure 9.4-(left) as the concatenation of four integral curves of
X, Y, =X, and =Y, lasting precisely the time s, t, s, t respectively. Of course
the loop s ¢+ closes up because the two vector fields (and hence their flows)
commute. We can now parallel-transport the vector w along the curve s+
as shown in the figure, to find at the end a new vector hs +(w) € T,M, called
the holonomy of w along s +.

Exercise 9.6.4. We have
hst(w) = w + R(u, v, w)st + O(s? + t2).
Note the analogies with Proposition 5.4.10. The endomorphism
R(u,v,): ToM — T,M

whose coordinates are R’jk/ukvl measures the second-order deviation (from

the identity) of the holonomy along a small quadrilateral with sides determined
by u and v.

TBD?
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———a = A
Vst T——— Vs, t
U \
>\ Y >
P \ P hs,t(W)

w w

Figure 9.4. Given two commuting vector fields X and Y extending v and
w, for every small s, t > 0 a quadrilateral loop -ys, based in p is defined as
the concatenation of four integral curves of X,Y, —X, and —Y that last
precisely the time s, t, s, t respectively. On a chart we may write X and
Y as two coordinate vector fields, so that -y; is a rectangle of sides s x t
as in the picture. The holonomy along -ys ¢ is the parallel transport along
st (left). The Riemann tensor measures the second-order deviation of
the holonomy along s+ from being the identity (right).

9.6.3. Normal coordinates. Recall from Section 9.4.4 that the expo-
nential map exp, furnishes some nice normal coordinates around each point
p € M, such that g;; = ;; and Ff} = 0 at the point. In these coordinates the
expression (27) simplifies and we get

. ory ory
28 Rk =2 — 2.
(28) = e B
Of course this equation is valid only at the point p. We can also deduce a
reasonable expression for Rjjx directly in terms of the metric tensor:

Proposition 9.6.5. At the point p, in normal coordinates we have

1 ( 029 029k 02g; 329ik>

2 Ox;0x;  Ox;0x B OX;jOX B Ox;0x;

(29) Rijki =

Proof. Recall that in normal coordinates the first derivative of g in p van-
ishes. We get
orm orm
Rijki = GimR™ i1 = gim | =—% — =
ijkl = 9imIX jkI = 9im (Oxk ax;
_ lg- ghm O (Ognj  Ogn  Ogji\ O (Ognj  Ognk  Ogjk
m ox;  Bx;  Ox Oxk  Ox;  Oxp

2 an B aX/
1 [ 82%gj 02 gjk _ 0%g; _ 02 9gik
Oxj0xx  Oxi0x;  OxiOxx  OxiOx; )

T2

The proof is complete. O

Note the absence of repeated indices: the element Rjjy; is just the sum of
four second partial derivatives of the metric g. Of course the use of normal
coordinates is crucial here.
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Recall that in normal coordinates we have g;;(0) = 9;; and gifkf (0) = 0.
The first interesting terms in the Taylor expansion for g;; are the second order
derivatives, and these are determined precisely by the Riemann tensor:

Proposition 9.6.6. In normal coordinates we have

1
gij(x) = 0;j — gRiij(O)XkXI + O(|x]?).

Proof. By Proposition 9.4.11 we have

A oy,
5+ 5 ) =0

ort
Jk
B (0) +
Combining this with (28) we get

1
Rijki(0) + Rikji(0) = R'jxi(0) + R'xi(0) = —36;1;((0)-
Now we write the Taylor expansion
1 8291']
EaX/an
10
2% |

gij(x) = dij + (0)x*x +O(IxI*)

=6+ 5 3 (Mg + Tigmi) | _ x*x + O(IxP)

1 8rjkl ar;U kI 3
=8+ 5 ( 5 (0) + 5 (0) | i+ O(1x?)

=N

=65 — = (Rikin(0) + Rjiki(0) + Rikji(0) + Rijxi(0)) x*x + O(|x|?)

6
1 koI 3
=0 — 6 (Ri1jk(0) + Rikj1(0)) x*x" + O(|x[*)
1
=0 — §Rikj/(0)XkX/ +O(Ix?).
We have used that g;;(0) = §;, gig (0) =0, and the equalities Rjjx/+ Rijx; = 0
and Rk = Rjjjx are easy consequences of Proposition 9.6.5. O

In normal coordinates, the Riemann tensor measures the second-order de-
viation of gj; from the Euclidean metric ¢;;.

9.6.4. Symmetries. Being a (1, 3)-tensor field, we expect the Riemann
tensor R to contain a tremendous amount of information on g, and this is
what really happens. To help mastering this huge amount of data, we start by
unraveling some symmetries.

Proposition 9.6.7. The following symmetries hold in any coordinate chart:
(1) Rijki = —Rjiki = —Rijix,
(2) Rijxr = Raijr
(3) R’jk/ + R’k/j + R'/jk = 0.
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Before entering in the proof, note that these symmetries may be stated
more intrinsically as follows: for every p € M and u,v, w,z € T,M we get

(1) R(p)(u,v,w,z) = =R(p)(v,u,w,z) = =R(p)(u, v, z,w),

(2) R(p)(u,v.w,z) = R(p)(w,z,u,v),

(3) R(p)(u,v.w) + R(p)(v,w,u) + R(p)(w, u,v) =0.
In the first two we interpret R as a (0, 4) tensor field, while in the last we take
the original (1, 3) tensor field. We will use R slightly ambiguously in this way.

Proof. To prove the intrinsic version of the symmetries, we may take some
normal coordinates at p. There R;jx; has the convenient expression (29), which
displays (1) and (2) immediately. Analogously for R, we use (28) to deduce
(3) easily. The proof is complete. O

9.6.5. Sectional curvature. What kind of geometric information can we
get from the Riemann tensor R?7 One answer to this question passes through
the definition of sectional curvature.

Let M as usual be a Riemannian manifold and R be its Riemann curvature
tensor field in the (0,4) version. Let p € M be a point and 0 C T,M be a
two dimensional linear subspace, that is a plane passing through the origin.
We now assign to o a number K(o) called the sectional curvature along o, as
follows.

Let u, v € o be arbitrary generators. We define

R u,v,u,v
Klo) = (pzz\(z(u, V) !

where
A2(u,v) = ulPIvI? = (u, v)?
is the square of the area of the parallelogram spanned by v and v.
Proposition 9.6.8. The sectional curvature K(o) is well-defined.

Proof. The quantity K(o) does not change if we substitute (v, v) with
one of the following:

(v, u), (Au,v), (u+Av,v).
By composing such moves we can transform (u, v) into any other basis. [

The Riemann tensor of course determines the sectional curvatures by def-
inition; we now see that also the converse holds:

Proposition 9.6.9. The sectional curvatures K(o) along planes o C T,M
determine the Riemann tensor R(p).

Proof. The sectional curvatures determine R(p)(u, v, u, v) for all pairs
of vectors u,v € T,M. The vector R(p)(u + w,v,u + w,v) is therefore
determined, and it equals

R(p)(u,v,u,v)+2R(p)(u,v,w,v)+ R(p)(w, v, w, V).
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Therefore the sectional curvatures also determine R(p)(u, v, w,v) Vu, v, w.
Analogously, the vector R(p)(u, v + z, w, v + z) is determined and it equals
R(p)(u,v,w,v)+ R(p)(u,v,w,z)+ R(p)(u,z,w,v)+ R(p)(u,z,w, z)

so the sectional curvatures determine the value of
R(p)(u,v,w,z)+ R(p)(u,z,w,v) = R(p)(u,v,w,z) — R(p)(u,z, v,w)
for all u, v, w, z. If we look at the three numbers
R(p)(u,v,w,z),  R(p)(u,w,z,v), R(p)(u z v w)
we see that their sum is zero and their differences are determined: hence the

three numbers are also determined. O

Therefore we are not losing any information if we consider sectional cur-
vatures instead of the Riemann tensor. Sectional curvatures have a nice geo-
metric interpretation that we will describe soon. For the time being, we keep
on manipulating the Riemann tensor.

9.6.6. Ricci tensor. The Riemann curvature tensor R is a tensor of type
(1,3) and it is of course natural to study its contractions, that are tensor fields
of type (0,2). There are three possible contractions of R'j;, namely:

Rkk,‘j, Rk,‘kj, and Rk,'jk.
Using the symmetries of R we see easily that the first vanishes and the re-

maining two differ only by a sign. Therefore there is essentially only one way
to get a non-trivial tensor by contraction, and this yields the Ricci tensor:

Rij = R,
This is a tensor field of type (2, 0). Since Ricci has the same initial as Riemann,
we still indicate it by R. To distinguish which is which it suffices to look at
the number of indices, or arguments. The Ricci tensor of course also defines
a C°°(M)-bilinear map
R: X(M) x (M) — C*(M).
Proposition 9.6.10. The Ricci tensor is symmetric.
Proof. We have
Rij = R¥ikj = Ruikj9"™ = Rijnig"™ = R"ni = R;i.

The proof is complete. O

Like the metric tensor, the Ricci tensor is a symmetric tensor field of type
(0,2). Note however that the Ricci tensor needs not to be positive-definite and
may also be degenerate: indeed, on an open set U C R” with the Euclidean
metric, all the tensors that we introduce vanish, including Ricci.

What geometric information is carried by the Ricci tensor? In normal
coordinates, it measures the first-order variation of the determinant of g;;.
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Proposition 9.6.11. In normal coordinates we have
1 o
det gjj(x) =1 — gR,-J-(O)X’xJ + O(Ix?).
Proof. Recall that for any n x n matrix A we have
det(/ + A) = 1 +trA+ O(JAP).
Combining this with Proposition 9.6.6 we get

1 _. 1
det g;j(x) =1 — 5R'k,,(O)xkx’ +0(x]®)=1- ng,(O)xkx’ +O(|x[?).
The proof is complete. O

Let w be the volume form determined by g. As a consequence, the Ricci
tensor measures the first-order variation of w.

Corollary 9.6.12. In normal coordinates we have
1 o
w= (1 - gRU(O)X’XJ + O(‘XF’)) dxt Ao A dx".

Proof. This follows by applying the formula

w = \/det g;jdx* A--- A dx"
together with I+t =1+ 4t + O([t[?). O

Remark 9.6.13. By the spectral theorem, at every point p € M we can find
a basis for T,M that is orthonormal for g;; and orthogonal for R;;. Therefore
we can choose normal coordinates at p where g;;(0) = §;; and R;;(0) is a
diagonal matrix.

9.6.7. Scalar curvature. If you think that a tensor of type (0,2) is yet
too complicated an invariant, you can still contract it and get an interesting
number, called the scalar curvature.

The scalar curvature of a Riemannian manifold M at a point p € M is

R=g"Rj.
This is the trace of the Ricci tensor; note that we need the metric g to raise
an index in order to define the trace of a tensor of type (0, 2) unambiguously.
The scalar curvature is still indicated with the same letter R as the Riemann
and Ricci curvature: the number of indices is enough to understand which is
which.

What geometric information carries the scalar curvature? It brings some
information on the volumes of small geodesic balls. Let p € M be a point and
B(p, r) a geodesic ball of radius r centered at p (remember that this notion

is well defined only for sufficiently small r > 0). We recall that the volume of
a Euclidean ball B(0,r) C R" is

Vol(B(0,r)) = Vi(r) = —7—1"
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where [ is Euler's gamma function.
Let p € M be any point in a Riemannian manifold M, and B(p,r) a
geodesic ball.

Proposition 9.6.14. We have
(30)  Vol(B(p,r)) = Va(r) - (1 - 6(nl+2)/?(p)r2 + O(r“)) :

Proof. Following Remark 9.6.13, we work in normal coordinates around
p = 0 where the Ricci tensor R;;(0) is diagonal with entries Ay, ..., An. The
scalar curvature is its trace R(0) = A1 + -+ - + A,p. We have

Vol (B(0,r)) :/

1 o
W= / (1 — —R;(0)x'x + O(|x|3)) dxtA---Adx"
B(0.r) B(0.r) 6

We now compute

/ Rij(0)x'x/dxt A -+ A dx" —/ AxXf + -+ Apxg)dxt A A dx"
B(0,r) B(0.r)

n
—ZX,-/ xdxt A A dx"
i=1 7B

(0.r)

- 1
= (ZA,) / pPdxt A A dx”
) nJe(o,r)

where p? = x? 4+ ---x2. Let dQ be the volume form in the Euclidean S 1.

The last expression equals

R R r
(©) p?-p"Ldp A dQ = RO </ p”+1dp> (/ dQ)
n B(0,r) n 0 sn—1

_ F\’(O) r”+2
n  n+2

Vol(S"™1).

With similar calculations, the volume of the Euclidean ball of radius r is
I,n
Vi(r) = va(s"*l)

and therefore the last expression equals
R(0)

n+2vn(l’)l’2.
Finally, we get
Vol(B(0,r)) = Vi(r) (1 - 6(/:(4(_))2)r2 + O(r4)> .

The proof is complete. O
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The scalar curvature measures (at the second order) the ratio between
volumes of small geodesic balls and Euclidean balls with the same small ra-
dius. Note that this is an intrinsic property of a point p € M, that is not
dependent on a particular coordinate systems. In particular, if R(p) is nega-
tive (respectively, positive), geodesic balls of small radius r centered at p have
larger (respectively, smaller) volume than the Euclidean ones with the same
radius r.

Example 9.6.15. On a surface, the equation (30) becomes

Vol(B(p, r)) = mr? (1 — Rz(f)rz + O(r4)> =7r? — Rz(f)wr4 +O(r).

On a 3-manifold, we get

Vol(B(p, r)) = %Wr?’ (1

RO, 45 2R0)
30 3 45
9.6.8. Flatness. We have already noticed that the Riemann tensor mea-

sures the local deviation of g from the Euclidean metric. We now show that it

does so in a complete way: we prove that a metric tensor g is locally Euclidean

if and only if the Riemann tensor vanishes. Let us first fix some definitions.
We say that a Riemannian manifold M is Euclidean if it is locally isometric

to R”, that is every p € M has an open neighbourhood U(p) C M which is

isometric to some open subset of the Euclidean R”.

We say that M is flat if its Riemann tensor R’jk/ vanishes everywhere.

+ O(r4)> = mr° +O(r").

Theorem 9.6.16. A Riemannian manifold M is Euclidean <= it is flat.

Proof. We already know that Euclidean implies flat, so we prove the con-
verse. Pick a point in M and represent a small neighbourhood of it via normal
coordinates B(0, r) C R". Pick a small cube (—¢, €)" contained in B(0, r).

We now extend the orthonormal basis e1,..., e, at 0 to a frame on the
cube, as follows: we first parallel-transport the basis along x;, then along xo,
and so on until x,. At the /-th step the frame is defined only on the slice S; =
{Xi+1 = ... = x, = 0} of the cube, and at the end it is defined everywhere.
It is smooth because parallel transport depends smoothly on the initial data.
We have thus constructed a frame Xy, ..., X, that is an orthonormal basis at
every point of the cube, such that X;(0) = ¢;. By construction we have

VeXk=0 onS;, Vk.
We now prove that in fact
VeXk =0 onS; VkVj<i

We show this by induction on /. The case i = 1 is done, so we suppose that it
holds for / and prove it for /1 + 1. We already know that Ve, Xx =0on Si; 1.
If j < i, by our induction hypothesis we have Verk = 0 on the hyperplane
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S;. To conclude it suffices to check that Ve,.H(VeJ.Xk) =0on Siy1. The
coordinate fields eq, ..., e, commute, hence flatness gives

Ve, 1 (Ve Xk) = Ve (Ve Xik) = Ve (0) = 0.
The inductive proof is completed and when / = n it shows that
Ve Xk =0 Vk,j
everywhere on the cube. Since V is symmetric we have
[Xi, Xj] = Vx,X; = VxX;=0-0=0.

By Proposition 5.4.12 there is a chart ¢: U — V with U C (—¢,¢)" that
straightens these vector fields, that is that transports X; into ¢;. The map
@ is an isometry between U and V with its Euclidean metric, because it
sends pointwise an orthonormal basis Xi, ..., X, into the orthonormal basis
€1,...,6n. O

9.6.9. Low dimensions. In dimensions 2 and 3 the information carried by
the curvature tensors reduce considerably and is more manageable.

Let S be a surface equipped with a Riemannian metric. At every point
p € S the tangent plane T,S has a sectional curvature K(p), and the whole
Riemann tensor is determined by this number by Proposition 9.6.9. Therefore
all the information encoded by the Riemann tensor reduces to a more comfort-
able smooth function K: S — R, which is in fact equal to the scalar curvature
R: on an orthonormal basis ey, &> for T,S we get

K(p) = Ri212 = R(p).
Let M be a Riemannian 3-manifold. At a point p € M we fix an or-
thonormal basis e, e, e3 for T,M and note that the components R;jx of the
Riemann tensor are determined by the Ricci tensor: at least two of the four

indices 1, J, k, | must coincide and therefore R;ji; is either zero or equal to an
entry of the Ricci tensor R;;. Summing up, we have discovered the following.

Proposition 9.6.17. The Riemann curvature tensor is determined by the
scalar curvature in dimension n = 2 and by the Ricci tensor in dimension n = 3.






CHAPTER 10
Lie groups

A Lie group is a group that is also a smooth manifold. Lie groups are
everywhere: most symmetry groups that one encounters in geometry are nat-
urally Lie groups. The fundamental examples are matrix groups like GL(n, R)
and O(n).

10.1. Basics

We define the Lie groups and start to investigate their properties.

10.1.1. Definition. A Lie group is a smooth manifold G equipped with a
group structure, such that the multiplication and inverse maps

GxG—G, (g, h) — gh,

G — G, g'—>g*1

are both smooth. This is equivalent to requiring the map GxG — G, (g, h) —
gh~! to be smooth.
Here are some important examples.

Example 10.1.1 (Abelian). The first examples of Lie groups are R” with
the sum operation and S! with the product, where we see ST C C as the unit
complex numbers. These Lie groups are abelian.

Example 10.1.2 (Linear and orthogonal groups). A more elaborated and
equally important example is the general linear group GL(n,R) of all n x n
invertible matrices with the product operation. This Lie group contains also
many other interesting Lie groups, such as the special linear group SL(n, R),
the orthogonal group O(n), and the special orthogonal group SO(n). We
studied the topology of these manifolds in Section 3.9.

Example 10.1.3 (Products). The product G x H of two Lie groups is
naturally a Lie group. For instance, the n-torus S' x --- x S! is an abelian
compact Lie group of dimension n.

Example 10.1.4 (Affine transformations). Another example is the group
Aff(R") = GL(n,R) x R" of all affine transformations of R”. As a set, we
have Aff(R") = GL(n, R) x R"” and we use this bijection to assign a smooth
manifold structure to Aff(R"). The group structure is not a direct product,
but the group operations are smooth nevertheless.

247
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A Lie group of dimension 0O is called discrete. Every countable group G
like Z may be given the structure of a Lie group by assigning it the discrete
topology. Of course a discrete Lie group is connected if and only if it is trivial.

10.1.2. Homomorphisms. A Lie group homomorphism is a smooth ho-
momorphism f: G — H between Lie groups. As usual, this is an isomorphism
if f is invertible, that is if f is a diffeomorphism, and an automorphism if in
addition G = H. For instance, every conjugation G — G, x — g~ 1xg by some
fixed element g € G is an auotomorphism of the Lie group G.

Example 10.1.5. The Lie groups S! and SO(2) are isomorphic, via the
map
S14S0(2), e s <C059 _Si”9> _

sin@ cos@

10.1.3. Left and right multiplication. If g € G, the left and right mul-
tiplications by g are the maps

Ly:G—=G, xw gx,
Rg: G — G, X+ xg.

Both maps are diffeomorphisms, with inverses L -1 and Ry-1, but are not Lie
group isomorphisms, unless g = e. The maps Ly and Ry commute for all
9.9 € G. Conjugation by g is just L1 0 Ry.

10.1.4. Lie subgroups. Let G be a Lie group. A Lie subgroup of G is
the image of any injective Lie group homomorphism H — G that is also an
immersion. We identify H with its image and write H < G. For instance, O(n)
is a Lie subgroup of GL(n, R).

We require H to be “injectively immersed” in G instead of the stronger and
nicer “embedded” because we do not want to rule out the following types of
Lie subgroups:

Example 10.1.6. Pick_ A€ _R \ Q and consider the injective immersion
R — S x St t s (e2™t e?™A)  The image is a dense Lie subgroup of
S1 x S!. See Exercise 5.5.4.

The reason for allowing non-embedded Lie subgroups will be apparent in
the next section. We exhibit more examples.

Example 10.1.7. The Lie group Aff(R"”) may be embedded as a Lie sub-
group of GL(n+ 1,R), by representing the affine transformation x — Ax + b

via the matrix
A b
0 1/
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Example 10.1.8. The Heisenberg group is the Lie subgroup of SL(3,R)
formed by all the matrices

1 a ¢
01 b
0 0 1

where a, b, c € R vary. It is diffeomorphic to R3, but it is not abelian.

10.1.5. Identity connected component. Let G be a Lie group. We de-
note by GY C G the connected component of G containing the identity e € G.
The following may be seen as the first interesting result in Lie groups theory.
The proof mixes topological and group theory arguments.

Proposition 10.1.9. The component G° is a normal Lie subgroup.

Proof. For every g € G, the left multiplication Ly is a diffeomorphism and
hence permutes the connected components of G. If g € G°, then Ly sends e
to g and hence sends G° to itself. Therefore gh € G° for all g, h € G°, so G°
is closed under multiplication.

Analogously, the inverse map g — g~! permutes the connected compo-
nents of G and fixes e, hence leaves G invariant. Therefore G° is a subgroup.
Along the same line, for every g € G the conjugation x — g~ 1xg is a diffeo-
morphism that fixes e and hence leaves G° invariant. So G° is normal. [l

The quotient G/go is naturally a discrete Lie group.

Example 10.1.10. We have O(n)® = SO(n), while GL(n, R)® consists of
all invertible matrices with positive determinant.

10.1.6. Identity neighbourhoods. Let G be a Lie group. If U,V C G are
subsets, we construct more subsets as follows:

UV ={uv|uelUveV} Ult={ut|ueUuy.

If U,V are neighbourhoods of the identity, then both UV and U1 also are.
We can use this to prove the following.

Proposition 10.1.11. /f G is connected, any neighbourhood U of the iden-
tity generates G.

Proof. We can suppose that U is open and U = U~1, otherwise we substi-
tute U with UNU™L. The subgroup generated by U is H = U2 ;U". Each U"
is open, so H is an open subgroup of G. Its left cosets are also open. Since G
is connected, we get G = H. O

10.1.7. Universal cover. Let G be a connected Lie group, and GNbe its
universal cover. We show that the Lie group structure lifts from G to G.

Proposition 10.1.12. There is a natural Lie group structure on G such that
the cover m: G — G is a Lie groups homomorphism.
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Proof. We fix an arbitrary identity & € m1(e). Since G is simply con-
nected, both the product G x G — G and the inversion G — G lift to two
smooth maps G x G — G and G — G between the universal covers, such that
(€, &) goes to & and € goes to €, respectively. These define a product and
inverse structure on G. Using the unique lift property of paths we can prove

that these indeed satisfy the group axioms (exercise). O

We have discovered that every connected Lie group has a universal cover.
The universal cover of St is of course R. For n > 3, the spin group is defined
as the universal cover of SO(n):

Spin(n) = S/O\/(n)

10.1.8. Coverings. Let a covering of Lie groups be a homomorphism of
connected Lie groups G — H that is also a smooth covering. The universal
cover G — G constructed above is one example. In general, it is quite easy to
understand when a Lie group homomorphism is a covering.

Proposition 10.1.13. A Lie group homomorphism f: G — H between con-
nected Lie groups is a smooth covering <= df, is invertible.

Proof. The implication = is obvious, so we prove <. Since dfe is invert-
ible, there are open neighbourhoods U and V of e € G and e € H such that f
maps diffeomorphically U to V.

For every h € H, and every g € f~1(h), we define

Vi =Ln(V), Uy =Lg(U).
These are open neighbourhoods of h and g, and one sees easily that
v = || Ve
gef~1(h)

The restriction of f to Uy is a diffeomorphism onto Vj, therefore f is a smooth
covering. O

Here is a concrete way to build coverings of Lie groups:

Proposition 10.1.14. Let G be a Lie group and I < Z(G) be a discrete
central subgroup. The quotient G/ is naturally a Lie group and G — G/r is
a regular covering of Lie groups, with deck transformation group I .

Proof. The action of ' on G by multiplication is smooth, free, and properly
discontinuous (exercise). Proposition 3.5.4 applies. O

We now want to prove a converse of this proposition.

Proposition 10.1.15. Let G be a connected Lie group. Every discrete
normal subgroup I C G is central.
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Proof. Pick «v € I'. For every g € G, choose a path g; € G connecting
go = e and g; = g. By normality g;lfygt is a path in I, that must be constant,
so g lyg = forall g € G. O

Here is a converse for Proposition 10.1.14:

Proposition 10.1.16. Every covering of Lie groups G — H is as in Propo-
sition 10.1.14. That is, I = ker G is discrete and central and H = G /.

Proof. The kernel ' is the fibre of e and is hence discrete. Being also
normal, it is central by the previous proposition. O

By assembling all our discoveries, we obtain the following.

Corollary 10.1.17. Every connected Lie group is a quotient G/ of a simply
connected Lie group G along some discrete central subgroup I .

The classification of connected Lie groups hence reduces to the classifi-
cation of simply connected ones (and their discrete central subgroups). The
classification of simply connected Lie groups is hence a fundamental topolog-
ical problem, that is elegantly transformed into an algebraic one through the
fundamental notion of Lie algebra that we introduce in the next section.

We close our investigation with a corollary.

Corollary 10.1.18. The fundamental group of every Lie group is abelian.

10.2. Lie algebra

One of the most important aspects of Lie groups G is the leading role
played by the tangent space T.G at the identity e € G, that has a natural
structure of Lie algebra, see Definition 5.4.2.

10.2.1. Left-invariant vector fields. Let G be a Lie group. We now
consider the tangent space T.G at the identity e € G. We note that for every
g € G the differential of Ly yields an isomorphism

(dLg)e: TeG — T4G

on tangent spaces. Therefore we can use left-multiplication to identify canon-
ically all the tangent spaces to TG, and this is a crucial aspect of Lie groups.

In particular, every fixed vector v € T.G extends canonically to a vector
field X in G by left-multiplication, as follows:

X(9) = (dLg)e(v).

The vector field X is left-invariant, that is it is invariant under the diffeomor-
phisms Ly, for all h € G. Indeed we have

X(hg) = (dLng)e(v) = (dLn)g o (dLg)e(v) = (dLn)g(X(9))-
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Every left-invariant vector field is clearly constructed in this way. We have
obtained a natural isomorphism between T.G and the subspace of X(G) con-
sisting of all the left-invariant vector fields. (Recall that X(G) is the space of
all vector fields in G.) We will henceforth identify these two spaces along this
isomorphism.

By replacing Ly with Ry in the construction we would get analogously a
natural isomorphism between T.G and the subspace of all right-invariant vector
fields. Note that a left-invariant vector field is not necessarily right-invariant,
so the two subspaces of X(G) may differ.

10.2.2. Parallelizability. The first important consequence that we can
draw form our discovery is the following.

Proposition 10.2.1. Every Lie group G is parallelizable.

Proof. Every basis vy, ..., vy, of TeG extends by left-multiplication to n
left-invariant vector fields Xq, ..., X, on G that trivialise the bundle. O

Corollary 10.2.2. Every Lie group G is orientable.

10.2.3. Lie algebra. Let G be a Lie group. We have identified T.G with
the subspace of left-invariant vector fields in X(G). We now note the following.

Proposition 10.2.3. If X,Y € X(G) are left-invariant, then [X,Y] also is.

Proof. If two vector fields X, Y are invariant under some diffeomorphism,
then their bracket also is. O

This observation shows that the space TG of all left-invariant vector fields
is closed under the Lie bracket [,]. In other words TG is a Lie subalgebra of
X(G), and it is such an important object that it deserves a new symbol:

g=T.G.

This is the Lie algebra of the Lie group G. The Lie algebra of Lie groups like
GL(n,R), O(n), etc. is usually denoted as gl(n, R), o(n), etc.

10.2.4. Examples. On R", a vector field is left-invariant if and only if it
is constant, and the bracket of two constant vector fields is zero. Therefore
the Lie algebra of R" is R" with the trivial Lie bracket. A Lie algebra with
trivial Lie bracket is called abelian.

Analogously, the Lie algebra of S! is R with trivial Lie bracket. The Lie
algebra of a product of Lie groups is just the product of their Lie algebras:
in particular the Lie algebra of S x --- x S! is again R” with the trivial Lie
bracket.

A more interesting example is GL(n,R). Being an open subset of the
vector space M(n) of all n x n matrices, its Lie algebra gl(n,R) is M(n) as a
vector space, and we only need to understand the Lie bracket.
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Proposition 10.2.4. The Lie bracket of A, B € gl(n,R) is
[A, B] = AB — BA.

Proof. Since GL(n, R) is an open subset of M(n), a vector field is simply a
map GL(n,R) — M(n). Every vector A € M(n) tangent at the origin extends
by left-multiplication to the vector field X — XA. Similarly to Exercise 5.4.7,
one can check (exercise) that the bracket of two vector fields X — XA and
X = XBis X — X(AB — BA). O

In particular, the Lie algebra gl(n, R) is non-abelian as soon as n > 2.

10.2.5. Homomorphisms. Every Lie group homomorphism f: G — H
induces a linear map fi: g — b which is just the differential f, = df.

Proposition 10.2.5. The map f. : g — b is a Lie algebra homomorphism.

Proof. The homomorphism f commutes with left-multiplication, that is
foLg:Lf(g)of

for every g € G. This implies that a left-invariant vector field X € g and its
image f.(X) € b are f-related. Exercise 5.4.9 says that for every X,Y € g
the vector fields [X, Y] and [fi(X), f.(Y)] are also f-related, so £ ([X,Y]) =
[f(X), f(Y)] as required. O

During the proof we have also discovered that for every X € g the vector
fields X and £.(X) are f-related.

10.2.6. Lie subgroups. A Lie subgroup H < G is by definition the image
of an injective immersion and homomorphism, so by the previous discussion
the Lie algebra h of H is naturally a Lie subalgebra of g.

This implies in particular that the Lie algebra of any Lie subgroup of
GL(n,R) is completely determined as soon as we know its tangent space at
the identity: there is no need of computing the Lie bracket again since it will
always be [A, B] = AB — BA.

For instance, we know from Propositions 3.9.1 and 3.9.2 that

sl(n,R) = {Ae€ M(n,R) | trA=0},
o(n,R) =s0(n,R) ={Ae M(nR)| ‘A=—-A},

where both sl(n, R) and o(n, R) are subalgebras of gl(n, R). One verifies easily
they are indeed both closed under the Lie bracket multiplication.

10.2.7. From Lie subalgebras to Lie subgroups. Here is a striking ap-
plication of the Frobenius Theorem.

Theorem 10.2.6. Let G be a Lie group. For every subalgebra  C g there
Is a unique connected Lie subgroup H < G whose Lie algebra is by.
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Proof. A subalgebra h C g is in particular a subspace of g = TG, and by
left-multiplication it extends to a distribution D in G, defined as

(31) Dy = (dLg)e(h) C T,G

for every g € G. Since b is a subalgebra, the distribution D is involutive.
To prove this, pick k left-invariant vector fields Xi, ..., Xk generating h. By
construction they are tangent to D. Since b is a subalgebra, their brackets
[Xi, Xj] are still in i and hence are also tangent to D. Now Exercise 5.5.10
shows that D is involutive.

By the Frobenius Theorem 5.5.9, there is a foliation .%# of G tangent to
D. Let H be the leaf of % containing the identity e. It is an injectively
immersed manifold in G, with tangent space TeH = . For every g € G, the
diffeomorphism L4 preserves D and hence permutes the leaves of 7. If h € H,
then L,-1 sends h € H to e € H and hence preserves the leaf H. This implies
that H is a subgroup, and hence a Lie subgroup.

If H < G is connected and its Lie algebra is b, then H in fact must be
obtained from b in the way just described. This shows uniqueness. ([l

We have discovered a beautiful natural 1-1 correspondence:
{connected Lie subgroups of G} <— {Lie subalgebras of g}.

We note that the subgroup H < G corresponding to b is not guaranteed to be
embedded, and there is no easy way to understand from  alone whether H < G
is embedded or not. In fact, the pleasure of obtaining such a powerful and
elegant theorem is the main reason for allowing non-embedded Lie subgroups
in our definition.

10.2.8. Foliations. The proof of Theorem 10.2.6 also displays a nice geo-
metric phenomenon that is worth emphasising. Let G be a Lie group. Given a
subalgebra fh C g, by left-multiplication we get an integrable distribution D as
in (31), and hence a foliation .# of G. We write .% to stress its dependence
on h. The construction implies easily the following fact.

Proposition 10.2.7. Let H < G be a Lie subgroup with Lie subalgebra
h C g. The left cosets of H are unions of leaves of the foliation Fy.

Corollary 10.2.8. Every embedded Lie subgroup H < G is closed.
Proof. Every embedded union of leaves in a foliation is closed. O

10.2.9. Local homomorphisms. We now pass from subgroups to homo-
morphisms; that is, we ask ourselves if every Lie algebra homomorphism should
be induced by some Lie group homomorphism. This is true only locally.

A local homomorphism between two Lie groups G and H is a smooth map
f: U — H defined on some neighbourhood U of e € G, such that

f(ab) = f(a)f(b) Va,b,abe U.
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Here is a partial converse to Proposition 10.2.5.

Theorem 10.2.9. Let G, H be Lie groups and F: g — b be a Lie algebra
homomorphism. There is a local homomorphism f: U — H with dfe = F.

Proof. The graph of the map F is

f={(X F(X)) | Xeg}cgxh
and it is a Lie subalgebra of g x b, the Lie algebra of G x H. By Theorem
10.2.6 there is a Lie subgroup K C G x H with Lie algebra §.

The projections m1: K — G and m: K — H are Lie group homomor-
phisms. The differential of 1 at (e, e) € K is invertible (it is (X, F(X)) — X)
so 71 is a local diffeomorphism at (e, ). Thus we can define on some open
neighbourhood U of e € G the local homomorphism

frU—H, f=mon"
Its differential is clearly F. O
With similar techniques we obtain also a uniqueness result.

Proposition 10.2.10. Let G, H be Lie groups. If G is connected, two ho-
momorphisms f, f': G — H with the same differentials f, = f] must coincide.

Proof. Following the previous proof, the graphs of f and f’ are two con-
nected Lie subgroups K, K’ C G x H with the same Lie subalgebra §, and
hence must coincide, that is f = /. O

If G is simply connected, existence is also achieved.

Proposition 10.2.11. Let G, H be Lie groups. If G is simply connected,
every Lie algebra homomorphism g — b is the differential of a unique Lie group
homomorphism G — H.

Proof. In the proof of Theorem 10.2.9, the map m;: K — G is a smooth
covering by Proposition 10.1.13. Being G simply connected, the map 71 is an
isomorphism, so we can define f =m0 ': G — H and conclude. O

10.2.10. Simply connected Lie groups. The results just stated have the
following important consequence.

Corollary 10.2.12. Two simply connected Lie groups are isomorphic <=
their Lie algebras are.

Proof. Every isomorphism g — b gives rise to two homomorphisms G — H
and H — G, whose composition is the identity because its differential is. [

Remember that Corollary 10.1.17 reduces the problem of classifying con-
nected Lie groups to the simply connected ones. Now Corollary 10.2.12 in turn
translates this task into the purely algebraic problem of classifying all the Lie
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algebras (to be precise, only the Lie algebras that arise from some Lie groups
are important for us).

Two Lie groups G, H are locally isomorphic if there are neighbourhoods
Uand V of e € G and e € H and a diffeomorphism f: U — V such that
f(ab) = f(a)f(b) whenever a, b, ab € U.

Corollary 10.2.13. Let G, H be two connected Lie groups. The following
are equivalent:

e G and H are locally isomorphic;
e G and H have isomorphic universal covers;
e g and by are isomorphic Lie algebras.

10.2.11. Abelian Lie groups. We now apply the techniques just intro-
duced to classify all the abelian Lie groups. We will need the following.

Proposition 10.2.14. The differentials of the multiplication m: GxG — G
and the inverse i: G — G are

gxg—g9 (X Y)— X+Y, g—g X— =X

Proof. For the first, by linearity it suffices to prove that (X, 0) — X, which
is obvious since ge = g. The second follows from m(g,i(g)) = g. O

Here is a smart application.

Proposition 10.2.15. If a Lie group G is abelian, then g also is.

Proof. Since G is abelian, the map G — G, g — g~ ! is an endomorphism.
Therefore its derivative g — g, X — —X is a Lie algebra endomorphism.
Hence for every X,Y € g we get

—[X, Y] =[-X,=Y] =[X,Y]
which implies [X, Y] = 0. O

Recall that in every dimension n there is a unique abelian Lie algebra R".
We will also need the following.

Exercise 10.2.16. Let ' < R” be a discrete subgroup. There is a basis
Vi, ..., vy of R™ where vq, ..., Vi generate . In particular I = Zk.

Here is a complete classification of abelian Lie groups.
Theorem 10.2.17. Every abelian Lie group is isomorphic to
Stx .o x STxRMk
N———
k

for some 0 < k < n.

Proof. By Proposition 10.2.15 the Lie algebra of an abelian group G is
R", which is also the Lie algebra of the Lie group R". By Corollary 10.2.12
then G = R”, and by Corollary 10.1.17 we have G = R" /- for some discrete
I < R". Now Exercise 10.2.16 applies. O
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10.3. Examples

Having proved a number of general theorems, it is due time to exhibit and
study more examples of Lie groups.

10.3.1. Complex matrices. We introduce some Lie groups using com-
plex matrices. To this purpose we identify C” with R2” in the usual way, by
sending (z1, ..., zp) to Rz, Sz1, .. ., Rz,, Sz,). We consider every complex
endomorphism of C” as a particular real endomorphism of R2” and thus see
M(n, C) as a linear subspace of M(2n, R), and more than that as a subalgebra
with respect to matrix multiplication.

Our first example is the complex general linear group

GL(n,C) ={A € M(n,C) | detA+#0}.

This is an open subset of M(n, C) and hence a Lie group of dimension 2n°. It
is a Lie subgroup of GL(2n, R), with Lie algebra

gl(n,C) = M(n,C)

where we see M(n,C) as a Lie subalgebra of M(2n,R), with the same Lie
bracket [A, B] = AB — BA. Note the Lie subgroup inclusions:

GL(n,R) € GL(n,C) C GL(2n, R).

These Lie groups have dimensions n?, 2n?, and 4n? respectively. When n =1
these reduce to

R* C C* C GL(2,R).
In the second inclusion, every element pe® € C* is interpreted as the product
of a p-dilation with a 6-rotation:

cosf —sinf
P\sing coso |-
The determinant is a Lie group homomorphism det: GL(n,C) — C*. As
in the real case, the complex special linear group is its kernel
SL(n,C) = {A € GL(n,C) | detA= 1}.
This is a Lie subgroup, with Lie algebra
sl(n,C) = {A€ M(n,C) | trA=0}.

The Lie group GL(n, C) contains the unitary group U(n), that consists of
all unitary matrices:

U(n) = {A€GL(n,C) | "AA=1}.

Exercise 10.3.1. The unitary group is a Lie subgroup of GL(n, C) of dimen-
sion n?, whose Lie algebra consists of all the n x n skew-Hermitian matrices:

u(n) = {Ae M(n,C) | A+ A=0}.
Hint. Adapt the proof of Proposition 3.9.2 to the complex case. O
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Finally, the special unitary group is
SU(n) = {A € GL(n,C) | "AA=1,detA=1}.
Exercise 10.3.2. This is a Lie subgroup of dimension n®—1 with Lie algebra
su(n) = {A€ M(n,C) | A+A=0,trA=0}.
We note that
SU(n) = U(n)NSL(n,C).
Exercise 10.3.3. The Lie groups GL(n, C), SL(n, C), U(n), and SU(n) are

all connected.

10.3.2. More matrix Lie groups. We further introduce some Lie sub-
groups of GL(n, R) that are widely used in geometry.

Example 10.3.4 (Indefinite orthogonal groups). Let RP9 be the vector
space RPT9 equipped with the standard scalar product with (p, g) signature:
(X.y)=xw1+ ...+ XpYp — Xpr1Vpt1 — - — Xn¥n.

Here n = p+q. Let O(p, q) C GL(n, R) be the subgroup of all the isometries
of RP9, that is the isomorphisms that preserve the scalar product. That is,

O(p.q) = {A€GL(nR) | "Al,qA=Ipq}

l, 0
ba={¢ 1)

Similarly to the proof of Proposition 3.9.2, we check that O(p, q) is indeed a
submanifold of GL(n, R) of dimension %) with Lie algebra

o(p.q) = {A€ M(n) | Alpq+ lpqA=0}.

Every matrix in O(p, q) has determinant £1, and SO(p, q) is the index-two
subgroup consisting of those with determinant 1. We have so(p, q) = o(p, q).

The Lie groups O(p, g) and O(q, p) are isomorphic. If p, g > 0, the Lie
group O(p, q) is not compact (exercise).

where

Example 10.3.5 (Indefinite unitary groups). Proceeding exactly as above
with the standard hermitian product of signature (p, g) on CP™9, we construct
the Lie groups

U(p,q) = {A€ GL(n,C) | AlpgA=1pq}
with Lie algebra
u(p, q) = {A€ M(n,C) | Alpq+ lpqA=0}.

The matrices of U(p, g) with unit determinant form a Lie subgroup SU(p, q),
with Lie algebra

su(p, q) = {A€ M(n,C) | "Alpq+lpqA=0,trA=0}.
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We have dimU(p, g) = n? and dimSU(p, g) = n®> — 1, with n=p+q.

Example 10.3.6 (Symplectic groups). Let R?” or C2” be equipped with the
standard symplectic (that is, antisymmetric and non-degenerate) form

w(x,y) = xJy

(0 =1,
J= < - ) |
Let Sp(2n,R) or Sp(2n, C) be group of all linear isomorphism preserving the

symplectic form. That is,

Sp(2n,R) = {A € GL(n,R) | "AJA = J}.

where

The Lie algebra is
sp(2n,R) = {A € M(n) | "AJ+ JA=0}.

The complex case is analogous. The dimensions of Sp(2n,R) and Sp(2n, C)
are n(2n+ 1) and 2n(2n+ 1) respectively.

Example 10.3.7 (Affine extensions). For every Lie subgroup G < GL(n, R)
we may consider its affine extension

GxR"={x— Ax+b|A€G,beR"} CAFf(R").

This is a Lie subgroup of Aff(R™), which is in turn a Lie subgroup of GL(n +
1,R), recall Example 10.1.7. Its Lie algebra is the subalgebra of gl(n+ 1, R)

consisting of all matrices
A b
0 0

10.3.3. Low dimensions. We now try to embark on a more systematic
classification of connected Lie groups with increasing dimension. We use the
powerful Lie groups — Lie algebra correspondence proved in the previous pages,
which can be reassumed as follows:

where A€ gand b € R".

(i) Every connected Lie group is the quotient G/ of a simply connected
Lie group G by a discrete central subgroup ' < G.
(i) Every simply connected Lie group G is totally determined by its Lie
algebra g.
An optimistic strategy to produce all connected Lie groups would be the
following:

(1) Classify all Lie algebras g.
(2) Try to build a simply connected Lie group G for each Lie algebra g.
(3) Quotient G by its central discrete subgroups.
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Dimension one. The only one-dimensional Lie algebra is the abelian R,
so the 1-dimensional connected Lie groups are R and S'.

Dimension two. In dimension two, we find two Lie algebras:

e The abelian R2.
e The Lie algebra aff(R) of Aff(R).

Proposition 10.3.8. These are the only two 2-dimensional Lie algebras up
to isomorphism.

Proof. Let a be a 2-dimensional Lie algebra. Pick a basis X,Y € a and note
that the whole structure is determined by the element [X,Y]. If [X,Y] =0
then a is abelian. Otherwise, after changing the basis we easily reduce to the
case [X,Y] =Y and we get aff(R). Indeed, We see Aff(R) C GL(2,R) as the

set of all matrices
a b
01

with a, b € R. Its Lie algebra is generated by the matrices

10 01
A:<0 o)' BZ(O 0)'
We have [A, B] = B, so aff(R) = a. O

The simply connected Lie group with algebra aff(R) is Aff(R)°. We can
easily classify the two-dimensional connected Lie groups up to isomorphism:

Proposition 10.3.9. The two-dimensional connected Lie groups are
R? SR, S!xS! Aff(R).

Proof. Since the centre of Aff(R)? is trivial, there is no other connected
Lie group with Lie algebra aff(R) except Aff(R)? itself. O

Dimension three. In dimension three we find many more Lie algebras.
Here are some:

(1) The abelian R3.
(2) The Heisenberg algebra, which is the subalgebra of sl(3,R) formed
by the matrices
0 a c
0 0 b
0 0 O
with a, b, c € R. This is the Lie algebra of the Heisenberg group.
(3) The direct product R & aff(R).
(4) The Lie algebra of the affine isometries of R?.
(5) The Lie algebra of the affine isometries of R'1.
(6) The Lie algebra sl(2, R).
(7) The Lie algebra so(3).
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Each of these seven algebras is the Lie algebra of some Lie group. Unfortu-
nately, this is not the end of the story: the are uncountably many Lie algebras
in dimension three, as the following exercise shows. to be checked

Exercise 10.3.10. Consider R® with basis X,Y, T and Lie bracket defined
by
[T, X] =X, [T.Y] =tY, [X,Y] =0.
This defines a Lie algebra g; for all t € R. If tu # 1 then g: and g, are not
isomorphic. Every g; is a subalgebra of gl(n, R) for some n and is hence the
Lie algebra of some Lie subgroup of GL(n, R).

It is actually possible to classify all the three-dimensional Lie algebras: this
was done by Bianchi in 1898 who subdivided them into 11 classes, two of
which are continuous families. However, these examples already suggest that
it is practically impossible to classify all connected Lie groups without adding
further assumptions like, for instance, that the Lie group should be compact,
or abelian, or some weaker assumption.

We now write some isomorphisms between some notable three-dimensional
Lie algebras. Let x be the cross product of vectors in R3.

Proposition 10.3.11. The Lie algebras s0(3) and su(2) are both isomorphic
to the algebra (R3, x).

Proof. A basis for s0(3) is given by the matrices

0 0 O 0 01 0 -1 0
A=10 0 —-1], B=10 0 0], C=11 0 O
01 O -1 0 0 0 0 O

We have

—_—

A B] =C, [B,C] = A, [C, Al = B.
Therefore s0(3) = (R>, x). Analogously su(2) is generated by the matrices
1/0 1 1/0 i 1/i 0
A_2<—1 0)’ B_2</ 0)’ C‘z(o —/>
whose Lie brackets are again as above. O

This implies that SO(3) and SU(2) have the same universal cover. In fact,
we will write an explicit double cover SU(2) — SO(3) soon.

Proposition 10.3.12. The Lie algebras sI(2,R) and so(2, 1) are isomorphic.
Proof. A basis for sl(2,R) is
1/1 0 1/0 1 1/0 1
A_z(o 4)' B_2<1 0)' C_2<~1 0)'

We have
[A B] =C, [B,C] = —A, [C, Al = —B.
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The Lie algebra so(2, 1) consists of matrices of the form

(% o)

with 'M + M = 0. A basis is

0 01 0 0O 0 1 0
A=110 0 0], B=|0 0 1], C=1[]-1 00
1 00 010 0O 0 0
Their Lie brackets are as above. O

The derived algebra [g, g] of a Lie algebra g is the subalgebra generated by
all the brackets [X, Y] as X,Y € g varies. The derived algebra is trivial <= g
is abelian.

Exercise 10.3.13. In the seven Lie algebras listed above, the dimension of
[g, g] is zero for (1), one for (2, 3), two for (4,5), and three for (6,7).
10.4. The exponential map

Similar to Riemannian manifolds, Lie groups G are equipped with an expo-
nential map g — G. For matrix groups, this is the usual matrix exponential,
and this finally explains the reason for adopting this name...

10.4.1. Definition. Let G be a Lie group. Pick an arbitrary left-invariant
vector field X € g.

Proposition 10.4.1. The vector field X is complete.

Proof. Let «v4: g — G be the maximal integral curve of X at g. Since X
is left-invariant, we have vg = Lgo7e and /g = /¢ for all g € G. By Lemma
5.2.5 the vector field is complete. O

Being complete, the vector field X € g induces a flow ®x: G xR — G.
Definition 10.4.2. The exponential map exp: g — G is
exp(X) = dx(e, 1).

The map exp is smooth because ®x (e, 1) depends smoothly on the initial
values X of the system.

10.4.2. One-parameter subgroups. In the Riemannian case, the restric-
tions of the exponential map to the vector lines are geodesics; here, these are
“one-parameter subgroups.”

Let G be a Lie group. For every X € g we consider the curve yx: R — G,

Yx(t) = exp(tX).

As in the Riemannian case, by construction we have v x(t) = vx(At).
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Proposition 10.4.3. The map vx: R — G is the integral curve of the
left-invariant field X with yx(0) = e. It is a Lie group homomorphism.

Proof. We have
Yx(t) = exp(tX) = Prx(e, 1) = dx(e, )
so 7vx is the integral curve for X with vx(0) = e. Since X is left-invariant,
Ix($)x(t) = Loy (s)(7x (1)) = x (s + t).
Therefore vx is a Lie groups homomorphism. O

A Lie group homomorphism R — G is called a one-parameter subgroup of
G. It turns out that every one-parameter subgroup arises in this way.

Proposition 10.4.4. Every one-parameter subgroup of G is a yx for some
element X € g.

Proof. Given f: R — G, we set X = f.(1). Since fi = (7yx)«, We have
f = vx by Proposition 10.2.10. O

The Lie algebra g thus parametrises all the one-parameter subgroups in G.
10.4.3. Properties. We now list some properties of the exponential map.

Proposition 10.4.5. Let G be a Lie group. The following holds.

e The differential d expy: g — g Is the identity. Hence the exponential
map is a local diffeomorphism at 0.
o Iff: G — H is a Lie group homomorphism, the following diagram

commutes:
f.
g—=b
expl \Lexp
Proof. Everything follows readily if we interpret g and h as sets of one-
parameter subgroups. O

In particular, if H C G is a subgroup, the exponential map h — H is just
the restriction of the exponential map g — G.

10.4.4. Matrix exponential. We finally motivate the use of the term
“exponential map”. Recall that the exponential of a square matrix A is

If Aand B commute, then eAt8 = eAeB = eBeA. |n particular e? is invertible

with inverse e~ .
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Proposition 10.4.6. The exponential map exp: gl(n,R) — GL(n,R) is
exp(A) = e”.

Proof. For every A € gl(n,R) consider the curve a: R — GL(n, R),
a(t) = e We can differentiate it and find a/(t) = Aet”. So a is a
smooth curve and in fact a one-parameter subgroup of GL(n, R). By Propo-
sition 10.4.4 we have a = Y4/ (o) = Ya. In particular e = exp(A). O

By restriction, the same exponential map works for all the Lie subgroups of
GL(n, R) like SL(n, R) or O(n). We discover in particular that the exponential
of an antisymmetric matrix is orthogonal, and that of a traceless matrix has
determinant one; these facts follow also from the following exercise.

Exercise 10.4.7. We have e = Y(e?) and det e? = et

From these examples we discover that, as in the Riemannian case, the
exponential map needs not to be surjective, not even if G is connected.

Proposition 10.4.8. The exponential map sl(2, R) — SL(2,R) is not sur-
Jective.

Proof. If g = exp(A), it has a square root /g = exp (5). However

-4 0
=5 )
has no square root (exercise: use Jordan normal form). (]

10.4.5. Applications. In the rest of this section we will use the exponen-
tial map to prove these remarkable non-trivial facts. Let G be a Lie group.
Then:

(1) Every closed subgroup H < G is a Lie subgroup.

(2) If H< G is closed and normal, the quotient G/ 4 is a Lie group.

(3) The kernel and the image of any homomorphism G — H of Lie
groups are Lie subgroups of G and H.

10.4.6. The closed subgroup theorem. As promised, we start by proving
the following powerful theorem, which transforms a purely topological condi-
tion (closeness) into a much stronger differential one (being a smooth embed-
ded submanifold).

Theorem 10.4.9. Let G be a Lie group. Every closed subgroup H C G is
an embedded Lie subgroup.

To prove this theorem we need a lemma. Recall that exp(X +Y) #
exp(X) exp(Y') in general.

Lemma 10.4.10. Let G be a Lie group. For every X,Y € g we have

X Y\"
exp(X +Y) = nIme <exp o exp n) .
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Proof. When t is sufficiently small we have

exp(tX) exp(tY) = exp (¥(1))
where 1 is the smooth map

-1
PRV 6x 6162 g.
Here m is the multiplication and exp~! is defined only in a neighbourhood of

e. The map ¥ is defined only near 0 and 9/(0) = X + Y. Therefore we have
P(t) = t(X +Y) + t2Z(t)
for some smooth map Z defined only near 0. This implies
exp(tX) exp(tY) = exp (Y(t)) = exp (t(X +Y) + t2Z(t)).
If nis sufficiently big, we deduce that

(sen) = (oo com 52 ()
= exp <X+Y+,172 (:,)) -

This completes the proof. O

We can now turn back to the proof of Theorem 10.4.9

Proof. We must prove that H C G is an embedded submanifold. Leth C g
be the subset defined as
h={Xeg| exp(tX) € HVt € R}.

We first prove that b is a subspace of g. To do so, we pick X,Y € b, and prove
that X +Y € b. We know that exp X, exp ¥ € H, hence (exp X exp )" €
H. Since H is closed, by the previous lemma we get exp(t(X + Y)) € H for
every t € R and therefore X +Y € b.

We now construct neighbourhoods U and W of 0 € g and e € G such that
exp|y: U — W is a diffeomorphism and
(32) exp(hNU)=HNW.

This shows that H is an embedded submanifold near e, and hence everywhere
by left multiplication.

Let §f C g be a complementary subspace for . We leave as an exercise to
prove that there is an open neighbourhood U; of O € § such that

(33) Hnexp (Ui \ {0}) = @.
Instead of the exponential map, it is now convenient to consider the map
fihpxf—g, f(X,Y) = exp(X)exp(Y).
We still have dfy = id, so there are neighbourhoods Uy, U; of 0 € b, § such that
folUyxUj—G
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is a diffeomorphism onto its image. We suppose that U also satisfies (33).
We now set U = Uy x U; and prove that

(34) f(hnU)=HnNFU).
We have hNU = Uy and exp(Uy) C H, therefore f(hnU) C HN f(U). On
the other hand, if h € HN f(U) then h = exp(X)exp(Y) with X € U, and
Y € U;. Now h,exp(X) € H implies that exp(Y') € H and hence by (33) we
get Y = 0. Therefore h € exp(Uy).

We have proved (34), which in turn implies (32) by taking W = exp(U).
This concludes the proof. O

By combining the theorem with Corollary 10.2.8 we get

Corollary 10.4.11. Let G be a Lie group. A subgroup H < G is an embed-
ded Lie subgroup <= it is closed.

10.4.7. Kernel. Here is an immediate application of the closed subgroup
theorem.

Proposition 10.4.12. Let f: G — H be a homomorphism of Lie groups.
The kernel ker f is an embedded Lie subgroup of G.

Proof. It is closed since f is continuous. Theorem 10.4.9 applies. O

We want to prove an analogous theorem for the image. It is more conve-
nient to first study the quotients of Lie groups.

10.4.8. Quotient of Lie groups. We now recycle the proof of the closed
subgroup theorem to obtain the following.

Theorem 10.4.13. Let G be a Lie group and H < G a closed subgroup. The
quotient G/ has a natural structure of smooth manifold such that m: G —
G/n is a fibre bundle.

Proof. We know that G is foliated into the the cosets of H. Since H is
closed, it is embedded, and hence its cosets also are. We now need to show
that the cosets fit like fibers in a bundle.

As in the proof of Theorem 10.4.9 we pick a complementary subspace f
for h C g and consider the map

frifxh—g, f(X,Y) = exp(X)exp(Y).
Let U}, Uy be neighbourhoods of 0 € f, b such that
f: Uf X Uh — G

is a diffeomorphism onto its image and Imf N H = f(0 x Uy) = exp(Uy). We
now pick a smaller neighbourhood U{ C Uy such that uy, u € U{ = U] — b €
U;. This implies that

exp(Up) ( exp(Uf’))_1 C exp(U}).
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We consider the multiplication map
m: exp(U;) x H — G, m(g, h) = gh.

The map m is injective: if g1hy = goho, then gggl_1 = h2_1h1 € H, but since
9291_1 € exp(U;) we deduce that gle_l =e,50 g1 =g and hy = ho.

The map m is an open embedding, after replacing U{ with a smaller open
neighbourhood: we have dmyc ) = id, S0 dm(e 4) is invertible for every g € Uf/
up to taking a smaller Uf’. Hence dmyg py is invertible by right-multiplication
for every h e H.

Finally, we assign to G/ its quotient topology. The map

Ui — G/n, X — exp(X)H

is a homeomorphism onto its image. More generally, for every g € G the map
Uf’ — G/, X — gexp(X)H is a homeomorphism onto its image and we use
these maps as charts to give G/ a smooth structure.

The space G/ is now a smooth manifold and the map G — G/y is a
fibre bundle, with fibre diffeomorphic to H. O

When H is a normal subgroup, things of course improve.

Corollary 10.4.14. Let G be a Lie group and H< G a closed normal sub-
group. The quotient G/ has a natural structure of Lie group, and G — G/
is a Lie group homomorphism.

10.4.9. Image. After taking care of kernels and quotients, we can finally
consider images of Lie group homomorphisms. It is remarkable how many
non-trivial theorems are necessary to prove this reasonable-looking fact.

Proposition 10.4.15. Let f: G — H be a homomorphism of Lie groups.
The image Im f is a Lie subgroup of H.

Proof. Since ker f is closed and normal, the quotient G/ f is a Lie group.
The induced map G/ker f — H is an injective immersion: hence its image is an
injectively immersed manifold and a subgroup of H, that is a Lie subgroup. [

The image is of course not guaranteed to be embedded.

Remark 10.4.16. The use of the term one-parameter subgroup in Section
10.4.2 for any Lie group homomorphism R — G is now fully legitimated, since
its image is indeed a Lie subgroup of G.

10.5. Lie group actions

Lie groups arise often as symmetry groups, and are more generally designed
to act on spaces of various kind.
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10.5.1. Definition. Let M be a smooth manifold and G a Lie group. A
Lie group action of G on M is a homomorphism

G — Diffeo(M)
that is also smooth in the following sense: the induced map
GxM— M, (9, x) — g(x)

should be smooth. A manifold M equipped with a Lie group action of G is
sometimes called a G-manifold.
Here are some important examples:

The group GL(n, R) or Aff(R") acts on R".

The group O(n) acts on S"~1 C R".

The group U(n) acts on S2"~1 ¢ C".

Every Lie group G acts on itself by left-multiplication g(x) = gx, by

right-multiplication g(x) = xg~1, and by conjugation g(x) = gxg~*.

An action of R on M was called a one-parameter group of diffeomorphisms
in Section 5.2.2.

10.5.2. Lie algebras. As usual, Lie algebras are there to help us, by en-
coding elegantly the infinitesimal side of the story. Let p: G — Diffeo(M) be
a Lie group action on M. This induces a homomorphism

o g — X(M)
as follows. For every p € M we have a map
G — M, g+— g(p)

whose image is the orbit of p. The differential of this map at e € G is a linear
map g — T,(M). By collecting all these linear maps as p € M varies we get
our homomorphism p,: g = (TM) = X(M).

Exercise 10.5.1. For every X € g, the vector field p.(X) on M is complete
with flow ®;: M — M. We have &.(p) = exp(tX)(p) for every p € M.

In some sense Diffeo(M) is an infinite-dimensional Lie group and X(M) is
its Lie algebra. A morphism p of Lie groups should then induce one p, of Lie
algebras: we leave a rigorous proof of this fact as an exercise.

Exercise 10.5.2. The homomorphism p, is a Lie algebra homomorphism.

Exercise 10.5.3. Let p be the action of GL(n,R) on R". For every A €
gl(n,R) = M(n) the vector field p«(A) is R" — R", X — AX.
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10.5.3. Stabilisers and orbits. \When dealing with group actions, the first
thing to do is always to investigate stabilisers and orbits. Let a Lie group G
act on a smooth manifold M.

Proposition 10.5.4. For every p € M the stabiliser G, < G is an embedded
Lie subgroup, whose Lie algebra is

gp = {X €9 | p(X)(p) = 0}.
Moreover the induced map

G/, — M, g—g(p)
Is an injective immersion, whose image is the orbit of p.

Proof. The stabiliser G, is closed (exercise), so it is an embedded Lie
subgroup. By Exercise 10.5.1 we have p.(X)(p) = 0 for every X € gp.
Conversely, if px(X)(p) = 0 then p = &(p) = exp(tX)(p) for all t and hence
exp(tX) € G, for all t, so X € gp.

The map G/g, — M is smooth because G — M is. Its differential at e
is injective because if X € g\ gp then p.(X)(p) # 0. It is hence injective
everywhere by left-multiplication. O

We have discovered that stabilisers are Lie subgroups, and orbits are im-
mersed submanifolds. The manifold M is hence partitioned into immersed
submanifolds (the orbits) that may have varying dimension.

Example 10.5.5. Let ST act on R? by rotations. The orbits are the circles
centered at the origin, and the origin itself.

Example 10.5.6. Every similarity or congruence class of matrices in the
space M(n) of all n x n real matrices is an immersed submanifold. This holds
because each such class is an orbit of the action of GL(n, R) by conjugation
or congruence.

For the same reason, every conjugacy class in a Lie group G is an immersed
submanifold.

As usual, one wonders whether injective immersions can be promoted to
embeddings. The usual counterexample shows that non-embedded orbits may
occur: the action

R — Diffeo(S! x S1), s (e, ey = e/(tFs) gilutAs))
has dense orbits if A € Q. Things improve if an additional hypothesis is fulfilled.
10.5.4. Proper actions. Let G be a Lie group acting on a manifold M

Definition 10.5.7. The action is proper if the following map is:
GXxM— Mx M, (9.p) — (9(p). p).
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If the action is proper, the stabilisers G, < G are compact for every p € M.
The orbits are also nicer.

Proposition 10.5.8. If the action is proper, orbits are embedded and closed.

Proof. The induced map G/Gp — M, g — g(p) is proper. By Exercise
3.8.5 A proper injective immersion is an embedding and has closed image. [

If G is compact, then every action of G is proper.

10.5.5. Homogeneous spaces. Recall that a G-manifold is a manifold M
equipped with the action of a Lie group G.

Definition 10.5.9. If the action is transitive, the G-manifold M is called a
homogeneous space.

Example 10.5.10. Let G be a Lie group and H < G a closed subgroup.
The left action of G on G/ 4 is transitive: hence G/ is a homogeneous space.

It turns out that every homogenous space is precisely of this form.

Proposition 10.5.11. If G acts transtitively on M, for every p € M the
map

G/Gp—>/\//

is a G-equivariant diffeomorphism.
Proof. This is a corollary of Proposition 10.5.4. O

In other words, a homogeneous space is just a quotient G/ of a Lie group
G by a closed subgroup H. A homogeneous space is one where “all points look
the same”, since G act transitively on them.

10.5.6. Examples. There are many interesting examples of homogeneous
spaces, and we list some here.

Example 10.5.12. The group SO(n) acts transitively on S"~1 with sta-
biliser isomorphic to SO(n — 1). Therefore we get the homogeneous space

SO(n)/so(n-1) = S" .

By Theorem 10.4.13 we have a fibre bundle SO(n) — S~ with fibre SO(n —
1.

Example 10.5.13. The group Isom+(R”) of the orientation-preserving Eu-
clidean affine isometries acts transitively on R"” with stabiliser isomorphic to
SO(n). We get the homogeneous space

Isom™(R") /so(m) = R"
and a fibre bundle Isom™(R") — R" with fibre SO(n).
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Example 10.5.14. The group O(n) acts on the grassmannian Grg(R") with
stabiliser isomorphic to O(k) x O(n — k). We get the homogeneous space

O(n)/owyxo(n—k) = Gre(R™)
and a fibre bundle O(n) — Grg(R"™) with fibre O(k) x O(n — k).
In fact, we could have used this construction to define a natural smooth

manifold structure on the grassmannian. We do this with another interesting
set. A flag on a n-dimensional vector space V is a nested sequence

ocvic...cV,=V

of i-dimensional subspaces V; C V. In the following example we build a natural
smooth manifold structure on the set of all flags in V.

Example 10.5.15. The group GL(n, R) acts on the space F of all the flags
in R™. The stabiliser of the coordinate flag V; = Span(ey, .. ., ej) is the closed
subgroup H < GL(n,R) of all upper triangular invertible matrices. There-
fore the space of all flags in R" is naturally identified with the homogeneous
manifold GL(n, R)/4.

Exercise 10.5.16. The group SL(2, C) acts transitively on P*(C) as follows:

p<i 3) w, z] — [aw + bz, cw + dz].

The stabiliser is a Lie group diffeomorphic to C* x C. We get a fibre bundle
SL(2,C) — P(C) with fibre C* x C.



