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Introduction

The aim of this book is to introduce hyperbolic geometry and its ap-
plications to two- and three-manifolds topology. Chapter 1 includes all the
preliminaries we will need, all the material in the subsequent chapters is
self-contained.

The book is still incomplete and all references are missing. Most of the
topics presented here have their origin in Thurston’s notes and papers and
are of course already covered by other books, which we have shamelessly and
widely used. These include Lectures on hyperbolic geometry by Benedetti
and Petronio, Foundations of hyperbolic manifolds by Ratcliffe, Travaux de
Thurston sur les surfaces by Fathi, Laudenbach and Poenaru, and A primer
on the mapping class group by Farb and Margalit. For the theory of currents
we have consulted Bonahon’s original papers and McMullen’s Teichmüller
theory notes.

Copyright notices. The text is released under the Creative Commons-
BY-SA license. You are allowed to distribute, modify, adapt, and even make
commercial use of this work, as long as you correctly attribute its authorship
and keep using the same license.

The pictures used here are all in the public domain (both those that I
created and those that I downloaded from Wikipedia, which were already
in the public domain), except the following ones that are released with a
CC-BY-SA license and can be downloaded from Wikipedia:

• Fig. 4 (tessellation of hyperbolic plane) and Fig. 11 (horosphere)
in Chapter 2, Fig. 13 (pseudosphere), Fig 10 (hyperbolic honey-
combs) in Chapter 3 and Fig. 4 (tessellations of hyperbolic plane)
in Chapter 6 created by Claudio Rocchini,
• Fig. 9-right (dodecahedron) in Chapter 6, created by DTR.
• Fig. 1 in Chapter 9, created by Adam Majewski.
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CHAPTER 1

Preliminaries

We expose in this chapter a quick overview of the basic differential topol-
ogy and geometry that we will use in this book.

1. Differential topology

1.1. Differentiable manifolds. A topological manifold of dimension
n is a paracompact Hausdorff topological space M locally homeomorphic to
Rn. In other words, there is a covering {Ui} of M consisting of open sets Ui
homeomorphic to open sets Vi in Rn.

Topological manifolds are difficult to investigate, their definition is too
general and allows to directly define and prove only few things. Even the
notion of dimension is non-trivial: to prove that an open set of Rk is not
homeomorphic to an open set of Rh for different k and h we need to use non-
trivial constructions like homology. It is also difficult to treat topological
subspaces: for instance, the Alexander horned sphere shown in Fig. 1 is a

Figure 1. The Alexander horned sphere is a subset of R3 homeomor-
phic to the 2-sphere S2. It divides R3 into two connected components,
none of which is homeomorphic to an open ball. It was constructed by
Alexander as a counterexample to a natural three-dimensional general-
ization of Jordan’s curve theorem. The natural generalization would be
the following: does every 2-sphere in R3 bound a ball? If the 2-sphere is
only topological, the answer is negative as this counterexample shows. If
the sphere is a differentiable submanifold, the answer is however positive
as proved by Alexander himself.

3



4 1. PRELIMINARIES

subspace of R3 topologically homeomorphic to a 2-sphere. It is a complicate
object that has many points that are not “smooth” and that cannot be
“smoothened” in any reasonable way.

We need to define some “smoother” objects, and for that purpose we
can luckily invoke the powerful multivariable infinitesimal calculus. For this
purpose we introduce the notions of chart and atlas. Let U ⊂ Rn be an open
set: a map f : U → Rk is smooth if it is C∞, i.e. it has partial derivatives
of any order.

Definition 1.1. Let M be a topological manifold. A chart is a fixed
homeomorphism ϕi : Ui → Vi between an open set Ui of M and an open set
Vi of Rn. An atlas is a set of charts

{
(Ui, ϕi)

}
such that the open sets Ui

cover M .
If Ui ∩ Uj 6= ∅ there is a transition map ϕji = ϕj ◦ ϕ−1

i that sends
homeomorphically the open set ϕi(Ui ∩ Uj) onto the open set ϕj(Ui ∩ Uj).
Since these two open sets are in Rn, it makes sense to require ϕij to be
smooth. A differentiable atlas is an atlas where the transition maps are all
smooth.

Definition 1.2. A differentiable manifold is a topological manifold
equipped with a differentiable atlas.

We will often use the word manifold to indicate a differentiable manifold.
The integer n is the dimension of the manifold. We have defined the objects,
so we now turn to their morphisms.

Definition 1.3. A map f : M → M ′ between differentiable manifolds
is smooth if it is smooth when read locally through charts. This means that
for every p ∈ M and any two charts (Ui, ϕi) of M and (U ′j , ϕ

′
j) of N with

p ∈ Ui and f(p) ∈ U ′j , the composition ϕ′j ◦ f ◦ ϕ
−1
i is a smooth map from

Vi to V ′j .

A diffeomorphism is a smooth map f : M → M ′ that admits a smooth
inverse g : M ′ →M .

A curve in M is a smooth map γ : I →M defined on some interval I of
the real line, which may be bounded or unbounded.

Definition 1.4. A differentiable manifold is oriented if it is equipped
with an orientable atlas, i.e. an atlas where all transition functions are
orientation-preserving (that is, the determinant of their differential at any
point is positive).

A manifold which can be oriented is called orientable.

1.2. Tangent space. Let M be a differentiable manifold of dimension
n. We may define for every point p ∈M a n-dimensional vector space TpM
called the tangent space.

The space Tp may be defined briefly as the set of all curves γ : ]−a, a[→
M such that f(0) = p and a > 0 is arbitrary, considered up to some equiv-
alence relation. The relation is the following: we identify two curves that,
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Figure 2. The tangent space in x may be defined as the set of all
curves γ with γ(0) = x seen up to an equivalent relation that identifies
two curves having (in some chart) the same tangent vector at x. This
condition is chart-independent.

read on some chart (Ui, ϕi), have the same tangent vector at ϕi(p). The
definition does not depend on the chart chosen.

A chart identifies TpM with the usual tangent space at ϕi(p) in the open
set Vi = ϕi(Ui), which is simply Rn. Two distinct charts ϕi and ϕj provide
different identifications with Rn, which differ by a linear isomorphism: the
differential dϕji of the transition map ϕij . The structure of Tp as a vector
space is then well-defined, while its identification with Rn is not.

Every smooth map f : M → N between differentiable manifolds induce
at each point p ∈ M a linear map dfp : TpM → Tf(p)N between tangent
spaces in the following simple way: the curve γ is sent to the curve f ◦ γ.

Definition 1.5. A smooth map f : M → N is a local diffeomorphism
at a point p ∈ M if there are two open sets U ⊂ M e V ⊂ N containing
respectively p and f(p) such that f |U : U → V is a diffeomorphism.

The inverse function theorem in Rn implies easily the following fact, that
shows the importance of the notion of tangent space.

Theorem 1.6. Let f : M → N be a smooth map between manifolds of
the same dimension. The map is a local diffeomorphism at p ∈ M if and
only if the differential dfp : TpM → Tf(p)N is invertible.

In the theorem a condition satisfied at a single point (differential invert-
ible at p) implies a local property (local diffeomorphism). Later, we will see
that in riemannian geometry a condition satisfied at a single point may even
imply a global property.

If γ : I → M is a curve, its velocity γ′(t) in t ∈ I is the tangent vector
γ′(t) = dγt(1). Here “1” means the vector 1 in the tangent space TtI = R.
We note that the velocity is a vector and not a number: the modulus of
a tangent vector is not defined in a differentiable manifold (because the
tangent space is just a real vector space, without a norm).
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1.3. Differentiable submanifolds. Let N be a differentiable mani-
fold of dimension n.

Definition 1.7. A differentiable submanifold M ⊂ N of dimension m 6
n is a subset such that for every p ∈ M there is an open set U ⊂ M and a
diffeomorphism ϕ : U → V onto an open set V ⊂ Rn that sends U ∩M onto
V ∩ L where L is a linear subspace of dimension m.

The pairs {U ∩M,ϕ|U∩M} form an atlas for M , which then inherits a
structure of m-dimensional differentiable manifold. At every point p ∈ M
the tangent space TpM is a linear subspace of TpN .

1.4. Fiber bundles. The following notion is fundamental in differen-
tial topology.

Definition 1.8. A smooth fiber bundle is a smooth map

π : E −→M

such that every fiber π−1(p) is diffeomorphic to a fixed manifold F and π
looks locally like a projection. This means that M is covered by open sets
Ui equipped with diffeomorphisms ψi : Ui×F → π−1(Ui) such that π ◦ψi is
the projection on the first factor.

The manifolds E and B are called the total and base manifold, respec-
tively. The manifold F is the fiber of the bundle. A section of the bundle is
a smooth map s : B → E such that π ◦ s = idB.

A smooth vector bundle is a smooth fiber bundle where every fiber π−1(p)
has the structure of a n-dimensional vector space which varies smoothly with
p. This smoothness condition is realized formally by requiring that F = Rn
and ψ(p, ·) : F → π−1(p) be an isomorphism of vector spaces for every ψ as
above.

The zero-section of a smooth vector bundle is the section s : B → E that
sends p to s(p) = 0, the zero in the vector space π−1(p). The image s(B) of
the zero-section is typically identified with B via s.

Two vector bundles π : E → B and π′ : E′ → B are isomorphic if there
is a diffeomorphism ψ : E → E′ such that π = π′ ◦ ψ, which restricts to an
isomorphism of vector spaces on each fiber.

As every manifold here is differentiable, likewise every bundle will be
smooth and we will hence often drop this word.

1.5. Tangent and normal bundle. Let M be a differentiable mani-
fold of dimension n. The union of all tangent spaces

TM =
⋃
p∈M

TpM

is naturally a differentiable manifold of double dimension 2n, called the
tangent bundle. The tangent bundle TM is naturally a vector bundle over
M , the fiber over p ∈M being the tangent space TpM .



1. DIFFERENTIAL TOPOLOGY 7

Let M ⊂ N be a smooth submanifold of N . The normal space at a point
p ∈ M is the quotient vector space νpM = TpN/TpM . The normal bundle
νM is the union

νM =
⋃
p∈M

νpM

and is also naturally a smooth fiber bundle over M . The normal bundle is
not canonically contained in TN like the tangent bundle, but (even more
usefully) it may be embedded directly in N , as we will soon see.

1.6. Immersion and embedding. A smooth map f : M → N be-
tween manifolds is an immersion if its differential is everywhere injective:
note that this does not imply that f is injective. The map is an embedding
if it is a diffeomorphism onto its image: this means that f is injective, its
image is a submanifold, and f : M → f(M) is a diffeomorphism.

Proposition 1.9. If M is compact, an embedding is an injective im-
mersion.

1.7. Homotopy and isotopy. Let X and Y be topological spaces.
We recall that a homotopy between two continuous maps ϕ,ψ : X → Y is a
map F : X × [0, 1] → Y such that F0 = ϕ and F1 = ψ, where Ft = F (·, t).
A homotopy is an isotopy if every map Ft is injective.

An ambient isotopy on a topological space X is an isotopy between idX
and some other homeomorphism ϕ : X → X. When X is a smooth manifold
we tacitly suppose that ϕ is a diffeomorphism. The following theorem says
that isotopy implies ambient isotopy under mild assumptions. The support
of an ambient isotopy is the closure of the set of points that are effectively
moved.

Theorem 1.10. Let f, g : M → N be two smooth isotopic embeddings
of manifolds. If M is compact there is an ambient isotopy relating them
supported on a compact subset of N .

1.8. Tubolar neighborhood. Let M ⊂ N be a differentiable sub-
manifold. A tubolar neighborhoods of M is an open subset U ⊂ N such that
there is a diffeomorphism νM → U sending the zero-section onto M via the
identity map.

Theorem 1.11. Let M ⊂ N be a closed differentiable submanifold. A
tubolar neighborhood for M exists and is unique up to an ambient isotopy
fixing M pointwise.

Vector bundles are hence useful (among other things) to understand
neighborhoods of submanifolds. Since we will be interested essentially in
manifolds of dimension at most 3, two very simple cases will be enough for
us.

Proposition 1.12. A connected closed manifold M has a unique ori-
entable line bundle E →M up to isomorphism.
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The orientable line bundle on M is a product M ×R precisely when M
is also orientable. If M is not orientable, the unique orientable line bundle

is indicated by M ×∼R.

Proposition 1.13. For every n, there are exactly two vector bundles of
dimension n over S1 up to isomorphism, one of which is orientable.

Again, the orientable vector bundle is just S1×Rn and the non-orientable

one is denoted by S1×∼Rn. These simple facts allow to fully understand
the neighborhoods of curves in surfaces, and of curves and surfaces inside
orientable 3-manifolds.

1.9. Manifolds with boundary. A differentiable manifold M with
boundary is a topological space with charts on a fixed half-space of Rn
instead of Rn, forming a smooth atlas. The points corresponding to the
boundary of the half-space form a subset of M denoted by ∂M and called
boundary. The boundary of a n-manifold is naturally a (n− 1)-dimensional
manifold without boundary. The interior of M is M \ ∂M .

We can define the tangent space TxM of a point x ∈ ∂M as the set of all
curves in M starting from x, with the same equivalence relation as above.
The space TxM is naturally a semi-vector space, limited by a hyperplane
naturally identified with TxM . Most of the notions introduced for manifolds
extend in an appropriate way to manifolds with boundary.

The most important manifold with boundary is certainly the disc

Dn =
{
x
∣∣ ‖x‖ 6 1

}
⊂ Rn.

More generally, a disc in a n-manifold N is a submanifold D ⊂ N with
boundary, diffeomorphic to Dn. Since a disc is in fact a (closed) tubolar
neighborhood of any point in its interior, the uniqueness of tubular neigh-
borhoods imply the following.

Theorem 1.14. Let N be a connected manifold. Two discs D,D′ ⊂ N
contained in the interior of N are always related by an ambient isotopy.

A boundary component N of M is a connected component of ∂M . A
collar for N is an open neighborhood diffeomorphic to N × [0, 1). As for
tubular neighborhoods, every compact boundary component has a collar,
unique up to ambient isotopy.

1.10. Cut and paste. If M ⊂ N is an orientable (n − 1)-manifold in
an orientable n-manifold, it has a tubular neighborhood diffeomorphic to
M × R. The operation of cutting N along M consists of the removal of
the portion M × (−1, 1). The resulting manifold has two new boundary
components M × {−1} and M × {1}, both diffeomorphic to M . By the
uniqueness of the tubular neighborhood, the cut manifold depends (up to
diffeomorphisms) only on M ⊂ N .
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Conversely, let M and N be two n-manifolds with boundary, and let
ϕ : ∂M → ∂N be a diffeomorphism. It is possible to glue M and N along ϕ
and obtain a new n-manifold as follows.

A näıf approach would consist in taking the topological space M t N
and identify x with ϕ(x) for all x ∈ M . The resulting quotient space is
indeed a topological manifold, but the construction of a smooth atlas is not
immediate. A quicker method consists of taking two collars ∂M × [0, 1) and
∂N × [0, 1) of the boundaries and then consider the topological space

(M \ ∂M) t (N \ ∂N).

Now we identify the points (x, t) and (ϕ(x), 1 − t) of the open collars, for
all x ∈ ∂M and all t ∈ (0, 1). Having now identified two open subsets of
M \∂M and N \∂N , a differentiable atlas for the new object is immediately
derived from the atlases of M and N .

1.11. Transversality. Let f : M → N be a smooth map between man-
ifolds and X ⊂ N be a submanifold. We say that f is transverse to X if for
any p ∈ f−1X the following condition holds:

Im (dfp) + Tf(x)X = Tf(x)N.

The maps transverse to a fixed X are generic, that is they form an open
dense subset in the space of all continuous maps from X to Y , with respect
to some topology. In particular the following holds.

Theorem 1.15. Let f : M → N be a continuous map and d a distance
on N compatible with the topology. For every ε > 0 there is a smooth map
g transverse to X, homotopic to f , with d(f(p), g(p)) < ε for all p ∈M .

2. Riemannian geometry

2.1. Metric tensor. In a differentiable manifold, a tangent space at
every point is defined. However, many natural geometric notions are not
defined, such as distance between points, angle between tangent vectors,
length of tangent vectors and volume. Luckily, to obtain these geometric
notions it suffices to introduce a single object, the metric tensor.

A metric tensor for M is the datum of a scalar product on each tangent
space Tp of M , which varies smoothly on p: on a chart the scalar product
may be expressed as a matrix, and we require that its coefficients vary
smoothly on p.

Definition 2.1. A riemannian manifold is a differentiable manifold
equipped with a metric tensor which is positive definite at every point.
Typically we denote it as a pair (M, g), where M is the manifold and g is
the tensor.

We introduce immediately two fundamental examples.

Example 2.2. The euclidean space is the manifold Rn equipped with the
euclidean metric tensor g(x, y) =

∑n
i=1 xiyi at every tangent space Tp = Rn.
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Example 2.3. Every differential submanifold N in a riemannian mani-
fold M is also riemannian: it suffices to restrict for every p ∈ N the metric
tensor on TpM on the linear subspace TpN .

In particular, the sphere

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}

is a submanifold of Rn+1 and is hence riemannian.

The metric tensor g defines in particular a norm for every tangent vector,
and an angle between tangent vectors with the same basepoint. The velocity
γ′(t) of a curve γ : I →M at time t ∈ I now has a module |γ′(t)| > 0 called
speed, and two curves that meet at a point with non-zero velocities form a
well-defined angle. The length of γ may be defined as

L(γ) =

∫
I
|γ′(t)|dt

and can be finite or infinite. A reparametrization of γ is the curve η : J →M
obtained as η = γ ◦ϕ where ϕ : J → I is a diffeomorphism of intervals. The
length is invariant under reparametrization, that is L(γ) = L(η).

2.2. Distance, geodesics, volume. Let (M, g) be a connected rie-
mannian manifold. The curves in M now have a length and hence may be
used to define a distance on M .

Definition 2.4. The distance d(p, q) between two points p and q is
defined as

d(p, q) = inf
γ
L(γ)

where γ varies among all curves γ : [0, 1]→M with γ(0) = p and γ(1) = q.

The manifold M equipped with the distance d is a metric space (which
induces on M the same topology of M).

Definition 2.5. A geodetic is a curve γ : I →M having constant speed
k and locally realizes the distance. This means that for any t0 ∈ I there is a
ε > 0 such that d(γ(t), γ(t′)) = L(γ|[t,t′]) = k|t− t′| for any t, t′ ∈ [t−ε, t+ε].

Note that with this definition the constant curve γ(t) = p0 is a geodetic
with constant speed k = 0. Such a geodesic is called trivial. A curve that
realizes the distance locally may not realize them globally.

Example 2.6. The non-trivial geodesics in euclidean space Rn are affine
lines run at constant speed.

The non-trivial geodesics in the sphere Sn are Le geodetiche non banali
nella sfera Sn are portions of great circles, run at constant speed.

If the differentiable manifold M is oriented, the metric tensor also in-
duces a volume form.
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Briefly, the best method to define a volume in a n-manifold M is to
construct an appropriate n-form. A n-form ω is an alternating multilinear
form

ωp : Tp × . . .× Tp︸ ︷︷ ︸
n

→ R

at each point p ∈M , which varies smoothly with p. The alternating condi-
tion means that if we swap two vectors the result changes by a sign. Up to
rescaling there exists only one ωp which fulfills this condition: after identi-
fying Tp with Rn this is just the determinant.

The n-forms are useful because they can be integrated: it makes sense
to write ∫

D
ω

on any open set D. A volume form on an oriented manifold M is a n-form
ω such that ωp(v1, . . . , vn) > 0 for each positive basis v1, . . . , vn of Tp and
for every p ∈M .

The metric tensor defines a volume form as follows: we simply set
ωp(e1, . . . , en) = 1 on each positive orthonormal basis e1, . . . , en. With this
definition every open set D of M has a well-defined volume

Vol(D) =

∫
D
ω

which is a positive number or infinity. If D has compact closure the volume
is necessarily finite. In particular, a compact riemannian manifold M has
finite volume Vol(M).

2.3. Exponential map. Let (M, g) be a riemannian manifold. A ge-
odetic γ : I → M is maximal if it cannot be extended to a geodesic on a
strictly bigger domain J ⊃ I. Maximal geodesics are determined by some
first-order conditions:

Theorem 2.7. Let p ∈ M be a point and v ∈ TpM a tangent vector.
There exists a unique maximal geodesic γ : I → M with γ(0) = p and
γ′(0) = v. The interval I is open and contains 0.

This important fact has many applications. For instance, it allows to
define the following notion.

Definition 2.8. Let p ∈M be a point. The exponential map in p is the
map

expp : Up →M

defined on a subset Up ⊂ Tp containing the origin as follows.
A vector v ∈ Tp determines a maximal geodesic γv : Iv →M with γv(0) =

p and γ′v(0) = v. Let U be the set of vectors v with 1 ∈ Iv. For these vectors
v we define expp(v) = γv(1).
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Theorem 2.9. The set Up is an open set containing the origin. The
differential of the exponential map expp at the origin is the identity and
hence expp is a local diffeomorphism at the origin.

Via the exponential map, an open set of Tp can be used as a chart near
p: we recover here the intuitive idea that tangent space approximates the
manifold near p.

2.4. Injectivity radius. The maximum radius where the exponential
map is a diffeomorphism is called injectivity radius.

Definition 2.10. The injectivity radius injpM of M at a point p is
defined as follows:

injpM = sup
{
r > 0

∣∣ expp |B0(r) is a diffeomorphism onto its image
}
.

Here B0(r) is the open ball with center 0 and radius r in tangent space
Tp. The injectivity radius is always positive by Theorem 2.9. For every
r smaller than the injectivity radius the exponential map transforms the
ball of radius r in Tp into the ball of radius r in M . That is, the following
equality holds:

expp(B0(r)) = Bp(r)

and the ball Bp(r) is indeed diffeomorphic to an open ball in Rn. When r
is big this may not be true: for instance if M is compact there is a R > 0
such that Bp(R) = M .

The injectivity radius injp(M) varies continuously with respect to p ∈M ;
the injectivity radius inj(M) of M is defined as

inj(M) = inf
p∈M

injpM.

Proposition 2.11. A compact riemannian manifold has positive injec-
tivity radius.

Proof. The injectivity radius injpM is positive and varies continuously
with p. �

Finally we note the following. A closed curve is a curve γ : [a, b] → M
with γ(a) = γ(b).

Proposition 2.12. Let M be a riemannian manifold. A closed curve
in M of length smaller than 2 · inj(M) is homotopically trivial.

Proof. Set x = γ(a) = γ(b). Since γ is shorter than 2 · inj(M), it
cannot escape the ball Bx(r) for some r < inj(M) 6 injxM . This ball is
diffeomorphic to a ball in Rn, hence in particular it is contractible, so γ is
homotopically trivial. �
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2.5. Completeness. A riemannian manifold (M, g) is also a metric
space, which can be complete or not. For instance, a compact riemannian
manifold is always complete. On the other hand, by removing a point from
a riemannian manifold we always get a non-complete space. Non-compact
manifolds like Rn typically admit both complete and non-complete riemann-
ian structures.

The completeness of a riemannian manifold may be expressed in various
ways:

Theorem 2.13 (Hopf-Rinow). Let (M, g) be a connected riemannian
manifold. The following are equivalent:

(1) M is complete,
(2) a subset of M is compact if and only if it is closed and bounded,
(3) every geodesic can be extended on the whole R.

If M is complete any two points p, q ∈M are joined by a minimizing geodesic
γ, i.e. a curve such that L(γ) = d(p, q).

Note that (3) holds if and only if the exponential map is defined on the
whole tangent space Tp for all p ∈M .

2.6. Curvature. The curvature of a riemannian manifold (M, g) is a
complicate object, typically defined from a connection ∇ called Levi-Civita
connection. The connection produces a tensor called Riemann tensor that
records all the informations about the curvature of M .

We do not introduce this concepts because they are too powerful for
the kind of spaces that we will encounter here: in hyperbolic geometry the
manifolds have “constant curvature” and the full Riemann tensor is not
necessary. It suffices to introduce the sectional curvature in a geometric
way.

If M has dimension 2, that is it is a surface, all the notions of curvature
simplify and reduce to a unique quantity called gaussian curvature. If M
is contained in R3 the gaussian curvature is defined as the product of its
two principal curvatures. If M is abstract the principal curvatures however
make no sense and hence we must take a different perspective.

We have seen in the previous section that on a riemannian manifold
(M, g), for every p ∈M there is an ε > 0 such that the ball Bp(ε) centered
in p with radius ε is really diffeomorphic to an open ball in Rn.

The volume of this ball Bp(ε) is not necessarily equal to the volume of
a euclidean ball of the same radius: it may be bigger or smaller, and this
discrepancy is a measure of the curvature of (M, g) at p.

Definition 2.14. Let (M, g) be a surface. The gaussian curvature at a
point p is defined as

K = lim
ε→0

((
πε2 −Vol(Bp(ε))

)
· 12

πε4

)
.
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Figure 3. Three surfaces in space (hyperboloid of one sheet, cylin-
der, sphere) whose gaussian curvature is respectively negative, null, and
positive at each point. The curvature on the sphere is constant, while the
curvature on the hyperboloid varies: as we will see, a complete surface
in R3 cannot have constant negative curvature.

In other words, the following formula holds:

Vol(Bp(ε)) = πε2 − πε4

12
K + o(ε4).

The coefficient π/12 normalizes K so that the curvature of a sphere of
radius R is 1/R2. We note in particular that K is positive (negative) if
Bp(ε) has smaller (bigger) area than the usual euclidean area.

If (M, g) has dimension n > 3 we may still define a curvature by evalu-
ating the difference between Vol(Bp(ε)) and the volume of a euclidean ball:
we obtain a number called scalar curvature. gaussiana. The scalar curvature
in dimension > 3 is however only a poor description of the curvature of the
manifold, and one usually looks for some more refined notion which contains
more geometric informations. The curvature of (M, g) is typically encoded
by one of the following two objects: the Riemann tensor or the sectional
curvature. These objects are quite different but actually contain the same
amount of information. We introduce here the sectional curvature.

Definition 2.15. Let (M, g) be a riemannian manifold. Let p ∈ M
be a point and W ⊂ TpM a 2-dimensional vector subspace. By Theorem
2.9 there exists an open set Up ⊂ TpM containing the origin where expp
is a diffeomorphism onto its image. In particular S = expp(Up ∩W ) is a
small smooth surface in M passing through p, with tangent plane W . As a
submanifold it has a riemannian structure induced by g.

The sectional curvature of (M, g) along (p,W ) is defined as the gaussian
curvature of S in p.

The sectional curvature is hence a number assigned to every pair (p,W )
where p ∈M is a point and W ⊂ TpM is a 2-dimensional vector space.

Definition 2.16. A riemannian manifold (M, g) has constant sectional
curvature K if the sectional curvature assigned to every p ∈ M and every
2-dimensional vector space W ⊂ TpM is always K.
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Remark 2.17. On a riemannian manifold (M, g) one may rescale the
metric of some factor λ > 0 by substituting g with the tensor λg. At every
point the scalar product is rescaled by λ. Lengths of curves are rescaled by√
λ and volumes are rescaled by λ

n
2 . The sectional curvature is rescaled by

1/λ.

By rescaling the metric it is hence possible to transform a riemannian
manifold with constant sectional curvature K into one with constant sec-
tional curvature −1, 0, or 1.

Example 2.18. Euclidean space Rn has constant curvature zero. A
sphere of radius R has constant curvature 1/R2.

2.7. Isometries. Every honest category has its morphisms. Riemann-
ian manifolds are so rigid, that in fact one typically introduces only isomor-
phisms: these are called isometries.

Definition 2.19. A diffeomorphism f : M → N between two riemann-
ian manifolds (M, g) e (N,h) is an isometry if it preserves the scalar product.
That is, the equality

〈v, w〉 = 〈dfp(v), dfp(w)〉
holds for all p ∈ M and every pair of vectors v, w ∈ TpM . The symbols 〈, 〉
indicate the scalar products in Tx and Tf(x).

As we said, isometries are extremely rigid. These are determined by
their first-order behavior at any single point.

Theorem 2.20. Let f, g : M → N be two isometries between two con-
nected riemannian manifolds. If there is a point p ∈M such that f(p) = g(p)
and dfp = dgp, then f = g everywhere.

Proof. Let us show that the subset S ⊂ M of the points p such that
f(p) = g(p) and dfp = dgp is open and closed.

The locus where two functions coincide is typically closed, and this holds
also here (to prove it, take a chart). We prove that it is open: pick p ∈ S.
By Theorem 2.9 there is an open neighborhood Up ⊂ TpM of the origin
where the exponential map is a diffeomorphism onto its image. We show
that the open set expp(Up) is entirely contained in S.

A point x ∈ expp(Up) is the image x = exp(v) of a vector v ∈ Up and
hence x = γ(1) for the geodetic γ determined by the data γ(0) = p, γ′(0) = v.
The maps f and g are isometries and hence send geodesics to geodesics: here
f ◦ γ and g ◦ γ are geodesics starting from f(p) = g(p) with the same initial
velocities and thus they coincide. This implies that f(x) = g(x). Since f
and g coincide on the open set expp(Up), also their differentials do. �

The isometries f : M →M from a manifold M to itself form the isometry
group of M , denoted Isom(M).
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2.8. Riemannian manifolds with boundary. Many geometric no-
tions in riemannian geometry extend easily to manifolds M with boundary:
a metric tensor on M is a positive definite scalar product on each (semi-
)space Tx that varies smoothly in x ∈M . The boundary ∂M of a riemannian
manifold M is naturally itself a riemannian manifold without boundary.

The exponential map and the injectivity radius injxM of a boundary
point x ∈ ∂M are still defined as in Section 2.3, taking into account that
the tangent space Tx is actually only a half-space.

3. Measure theory

We will use some basic measure theory only in two points in this book.

3.1. Borel measure. A Borel set in a topological space X is any set
obtained from open sets through the operations of countable union, count-
able intersection, and relative complement. Let F denote the set of all Borel
sets. A Borel measure on X is a function µ : F → [0,+∞] which is additive
on any countable collection of disjoint sets.

The measure is locally finite if every point has a neighborhood of finite
measure and is trivial if µ(S) = 0 for all S ∈ F .

Exercise 3.1. If µ is a locally finite Borel measure then µ(X) < +∞
for any compact Borel set K ⊂ X.

Example 3.2. Let D ⊂ X be a discrete set. The Dirac measure δD
concentrated in D is the measure

δD(S) = #(S ∩D).

Since D is discrete δD is locally finite.

The support of a measure is the set of all points x ∈ X such that µ(U) >
0 for any open set U containing x. The support is a closed subset of X. The
measure is fully supported if its support is X. The support of δD is of course
D. A measure can be defined using local data by the following.

Proposition 3.3. Let {Ui}i∈I be a countable, locally finite open covering
of X and for any i ∈ I let µi be a locally finite Borel measure on Ui. If
µi|Ui∩Uj = µj |Ui∩Uj for all i, j ∈ I there is a unique locally finite Borel
measure µ on X whose restriction to Ui is µi for all i.

Proof. For every finite subset J ⊂ I define XJ =
(
∩j∈J Uj

)
\
(
∪i∈I\J

Ui
)
. The sets XJ form a countable partition of X into Borel sets and every

XJ is equipped with a measure µJ = µj |Xj for any j ∈ J . Define µ by
setting

µ(S) =
∑
j∈J

µ(S ∩Xj)

on any Borel S ⊂ X. �

When X is a reasonable space some hypothesis may be dropped.
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Proposition 3.4. If X is paracompact and separable, Proposition 3.3
holds for any open covering {Ui}i∈I .

Proof. By paracompactness and separability he open covering {Ui} has
a refinement that is locally finite and countable: apply Proposition 3.3 to
get a unique measure µ. To prove that indeed µ|Ui = µi apply Proposition
3.3 again to the covering of Ui given by the refinement. �

If a group G acts on a set X we say that a measure µ is G-invariant if
µ(g(A)) = µ(A) for any Borel set A and any g ∈ G.

3.2. Topology on the measure space. In what follows we suppose
for simplicity that X is a finite-dimensional topological manifold, although
everything is valid in a wider generality. We indicate by M (X) the space
of all locally finite Borel measures on X and by Cc(X) the space of all
continuous functions M → R with compact support: the space Cc(X) is not
a Banach space, but is a topological vector space.

Recall that the topological dual of a topological vector space V is the
vector space V ∗ formed by all continuous linear functionals V → R. A
measure µ ∈M (X) acts like a continuous functional on Cc(X) as follows

µ : f 7−→
∫
µ
f

and hence defines an element of C∗c (X). A functional in C∗c (X) is positive
if it assumes non-negative values on non-negative functions.

Theorem 3.5 (Riesz representation). The space M (X) may be identi-
fied in this way to the subset in Cc(X)∗ of all positive functionals.

The space M (X) in Cc(X)∗ is closed with respect to sum and product
with a positive scalar.

Definition 3.6. Let V be a real topological vector space. Every vector
v ∈ V defines a functional in V ∗ as f 7→ f(v). The weak-* topology on V ∗ is
the weakest topology among those where these functionals are continuous.

We give Cc(X)∗ the weak-* topology. With this topology a sequence of
measures µi converges to µ if and only if

∫
µi
f →

∫
µ f for any f ∈ Cc(X).

This type of weak convergence is usually denoted with the symbol µi ⇀ µ.

Exercise 3.7. Let xn be a sequence of points in X that tends to x ∈ X:
hence δxn ⇀ δx.

3.3. Lie groups. A Lie group is a smooth manifold G which is also a
group, such that the operations

G×G→ G, (a, b) 7→ ab

G→ G, a 7→ a−1

are smooth.
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A non-trivial group G is è simple if it has no normal subgroups except
G and {e}. The definition on Lie groups is a bit different.

Definition 3.8. A Lie group G is simple if it is connected, non abelian,
and has no connected normal groups except G and {e}.

3.4. Haar measures. Let G be a Lie group.

Definition 3.9. A left-invariant Haar measure on G is a locally finite
fully supported Borel measure µ on G, invariant by the left action of G.

Theorem 3.10 (Haar theorem). A Lie group G has a left-invariant Haar
measure, unique up to rescaling.

A right-invariant Haar measure is defined analogously and is also unique
up to rescaling. The group G is unimodular if a left-invariant Haar measure
is also right-invariant.

If µ is right-invariant and g ∈ G is an element, the measure µg(A) =
µ(g−1A) is also right-invariant, and by uniqueness µg = λgµ for some λg > 0.
The modular function g 7→ λg is a continuous homomorphism λ : G→ R>0.
The group G is unimodular if and only if its modular function is trivial.

Proposition 3.11. Compact, abelian, discrete, and simple groups are
unimodular.

Proof. If G is compact every continuous homomorphisms to R>0 is
trivial. If G is simple, the normal subgroup kerλ is trivial or G, and the
first case is excluded because G is not abelian. If G is abelian, left- and
right-measures obviously coincide. If G is discrete every singleton has the
same measure and hence left- and right- measures coincide. �

Example 3.12. The group Aff(R) = {x 7→ ax + b | a ∈ R∗, b ∈ R} of
affine transformations in R is not unimodular.

4. Cell complexes and handle decompositions

4.1. Cell complex. Recall that a finite cell complex of dimension k
(briefly, a k-complex) is a topological space obtained iteratively in the fol-
lowing manner:

• a 0-complex X0 is a finite number of points,
• a k-complex Xk is obtained from a (k−1)-complex Xk−1 by attach-

ing finitely many k-cells, that is copies of Dk glued along continuous
maps ϕ : ∂Dk → Xk−1.

The subset Xi ⊂ Xk is a closed subset called the i-skeleton, for all i < k.

Proposition 4.1. The inclusion map i : Xi ↪→ X induces an isomor-
phism i∗πj(X

i)→ πj(X) for all i.

Proof. Maps Sj → X and homotopies between them can be homo-
toped away from cells of dimension > j + 2. �
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In particular, the space X is connected if and only if X1 is, and its
fundamental group of X is captured by X2.

Recall that a finite presentation of a group G is a description of G as

〈g1, . . . , gk | r1, . . . , rs〉

where g1, . . . , gk ∈ G are the generators and r1, . . . , rs are words in g±1
i

called relations, such that

G ∼= F (gi)/N(rj)

where F (gi) is the free group generated by the gi’s and N(rj) / F (gi) is the
normalizer of the rj ’s, the smallest normal subgroup containing them.

A presentation for the fundamental group of X can be constructed as
follows. If x0 ∈ X0, we fix a maximal tree T ⊂ X1 containing x0 and give
the k arcs in X1 \T some arbitrary orientations. These arcs determine some
generators g1, . . . , gk ∈ π1(X,x0). The boundary of a 2-cell makes a circular
path in X1: every time it crosses an arc gi in some direction (entering from
one side and exiting from the other) we write the corresponding letter g±1

i
and get a word. The s two-cells produce s relations. We have constructed
a presentation for π1(X).

Theorem 4.2. Every differentiable compact n-manifold may be realized
topologically as a finite n-complex.

4.2. Aspherical cell-complexes. A finite cell complex is locally con-

tractible and hence has a universal covering X̃; if X̃ is contractible the
complex X is called aspherical.

Theorem 4.3. Let X,Y be connected finite cellular complexes with base-
points x0 ∈ X0, y0 ∈ Y 0 and f : π1(X,x0)→ π1(Y, y0) a homomorphism. If
Y is aspherical there is a continuous map F : (X,x0)→ (Y, y0) that induces
f , unique up to homotopy.

Proof. We construct f iteratively on Xi, starting from i = 1. Let T
be a maximal tree in X1. The oriented 1-cells g1, . . . , gk in X1 \ T define
generators in π1(X,x0): we construct F by sending each gi to any loop in
Y representing f(gi).

The map F sends homotopically trivial loops in X1 to homotopically

trivial loops in Y and hence extends to X2. Since Ỹ is aspherical, the
higher homotopy groups πi(Y ) with i > 2 vanish and hence F extends to
X3, . . . , Xk = X step by step.

We prove that F : (X,x0) → (Y, y0) is unique up to homotopy. Take
another F ′ that realizes f , and construct a homotopy F ∼ F ′ iteratively
on Xi. For i = 1, we can suppose that both F and F ′ send T to y0, then
use F∗ = f = F ′∗ to homotope F ′ to F on X1. The maps F and F ′ on a
i-cell for i > 2 are homotopic because they glue to a map Si → Y which is
null-homotopic because πi(Y ) is trivial. �
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Corollary 4.4. Let X and Y be connected finite aspherical complexes.
Every isomorphism f : π1(X) → π1(Y ) is realized by a homotopic equiva-
lence, unique up to homotopy.

Corollary 4.5. Two aspherical closed manifolds of distinct dimension
have non-isomorphic fundamental groups.

Proof. Two closed manifolds of different dimension cannot be homo-
topically equivalent because they have non-isomorphic homology groups. �

We cite for completeness this result, which we will never use.

Theorem 4.6 (Cartan-Hadamard). A complete riemannian manifold
M with sectional curvature everywhere 6 0 has a universal covering diffeo-
morphic to Rn and is hence aspherical.

Sketch of the proof. Pick a point x ∈ M . Since M is complete,
the exponential map expx : Tx → M is defined on Tx. The fact that the
sectional curvatures are 6 0 imply that (d expx)y is invertible for any y ∈ Tx
and expx is a covering. �



CHAPTER 2

Hyperbolic space

We introduce in this chapter the hyperbolic space Hn.

1. The models of hyperbolic space

In every dimension n > 2 there exists a unique complete, simply con-
nected riemannian manifold having constant sectional curvature 1, 0, or −1
up to isometries. These three manifolds are extremely important in rie-
mannian geometry because they are the fundamental models to construct
and study non-simply connected manifolds with constant curvature.

The three manifolds are respectively the sphere Sn, euclidean space Rn,
and hyperbolic space Hn. As we will see, every complete manifold with
constant curvature has one of these three spaces as its universal cover.

In contrast with Sn and Rn, hyperbolic space Hn can be constructed
using various models, none of which is prevalent.

1.1. Hyperboloid. The sphere Sn consists of all points with norm 1
in Rn+1, considered with the euclidean scalar product. Analogously, we may
define Hn as the set of all points of norm −1 in Rn+1, considered with the
usual lorentzian scalar product. This set forms a hyperboloid of two sheets,
and we choose one.

Definition 1.1. Consider Rn+1 equipped with the lorentzian scalar
product of segnature (n, 1):

〈x, y〉 =
n∑
i=1

xiyi − xn+1yn+1.

A vector x ∈ Rn+1 is time-like, light-like or space-like if 〈x, x〉 is negative,
null, or positive respectively. The hyperboloid model In is defined as follows:

In =
{
x ∈ Rn+1

∣∣ 〈x, x〉 = −1, xn > 0
}
.

The set of points x with 〈x, x〉 = −1 is a hyperboloid with two sheets,
and In is the connected component (sheet) with xn+1 > 0. Let us prove a
general fact. For us, a scalar product is a real non-degenerate symmetric
bilinear form.

Proposition 1.2. Let 〈, 〉 be a scalar product on Rn. The function
f : Rn → R given by

f(x) = 〈x, x〉
21
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Figure 1. The hyperboloid with two sheets defined by the equation
〈x, x〉 = −1. The model In is the upper connected component.

is everywhere smooth and has differential

dfx(y) = 2〈x, y〉.

Proof. The following equality holds:

〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉.
The component 〈x, y〉 is linear in y while 〈y, y〉 is quadratic. �

Corollary 1.3. The hyperboloid In is a riemannian manifold.

Proof. The hyperboloid is the set of points with f(x) = 〈x, x〉 = −1;
for all x ∈ In the differential y 7→ 2〈x, y〉 is surjective and hence the hyper-
boloid is a differential submanifold of codimension 1.

The tangent space TxI
n at x ∈ In is the hyperplane

Tx = ker dfx =
{
y
∣∣ 〈x, y〉 = 0

}
= x⊥

orthogonal to x in the lorentzian scalar product. Since x is time-like, the
restriction of the lorentzian scalar product to x⊥ is positive definite and
hence defines a metric tensor on In. �

The hyperboloid In is a model for hyperbolic space Hn. We will soon
prove that it is indeed simply connected, complete, and has constant curva-
ture −1.

1.2. Isometries of the hyperboloid. The isometries of In are easily
classified using linear algebra.

Let O(n, 1) be the group of linear isomorphisms f of Rn+1 that preserve
the lorentzian scalar product, i.e. such that 〈v, w〉 = 〈f(v), f(w)〉 for any
v, w ∈ Rn. An element in O(n, 1) preserves the hyperboloid of two sheets,
and the elements preserving the upper sheet In form a subgroup of index
two in O(n, 1) that we indicate with O∗(n, 1).
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Proposition 1.4. The following equality holds:

Isom(In) = O∗(n, 1).

Proof. Pick f ∈ O∗(n, 1). If x ∈ In then f(x) ∈ In and f sends x⊥ to
f(x)⊥ isometrically, hence f ∈ Isom(In).

To prove Isom(In) ⊆ O∗(n, 1) we show that for every pair x, y ∈ In and
every linear isometry g : x⊥ → y⊥ there is an element f ∈ O∗(n, 1) such that
f(x) = y and f |x⊥ = g. Since isometries are determined by their first-order
behavior at a point x, they are all contained in O∗(n, 1).

Simple linear algebra shows that O∗(n, 1) acts transitively on points of
In and hence we may suppose that x = y = (0, . . . , 0, 1). Now x⊥ = y⊥ is
the horizontal hyperplane and g ∈ O(n). To define f simply take

f =

(
g 0
0 1

)
.

�

Two analogous results hold for Sn and Rn:

Proposition 1.5. The following equalities hold:

Isom(Sn) = O(n+ 1),

Isom(Rn) =
{
x 7→ Ax+ b

∣∣ A ∈ O(n), b ∈ Rn
}
.

Proof. The proof is analogous to the one above. �

We have also proved the following fact. A frame at a point p in a
riemannian manifold M is an orthonormal basis for TpM .

Corollary 1.6. Let M = Sn, Rn, or In. Given two points p, q ∈ M
and two frames in p and q, there is a unique isometry that carries the first
frame to the second.

The corollary says that Sn, Rn e In have the “maximum possible num-
ber” of isometries.

1.3. Subspaces. Each Sn, Rn, and Hn contains various subspaces of
smaller dimension.

Definition 1.7. A k-dimensional subspace of Rn, Sn, In is respectively:

• an affine k-dimensional space in Rn,
• the intersection of a (k+1)-dimensional subspace of Rn+1 with Sn,
• the intersection of a (k+ 1)-dimensional subspace of Rn+1 with In,

when it is non-empty.

Concerning non-emptyness, elementary linear algebra shows that the
following conditions are equivalent for any (k + 1)-dimensional subspace
W ⊂ Rn+1:

(1) W ∩ In 6= ∅,
(2) W contains at least a time-like vector,
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(3) the segnature of 〈, 〉|W is (k, 1).

A k-subspace in Rn, Sn,Hn is itself isometric to Rk, Sk,Hk. The non-
empty intersection of two subspaces is always a subspace. An isometry of
Rn, Sn,Hn sends k-subspaces to k-subspaces.

A 1-subspace is a line. We now show that lines and geodesics are the
same thing. We recall the hyperbolic trigonometric functions:

sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.

Proposition 1.8. A non-trivial complete geodesic in Sn, Rn and Hn is
a line run at constant speed. Concretely, let p ∈M be a point and v ∈ TpM
a unit vector. The geodesic γ exiting from p with velocity v is:

• γ(t) = cos(t) · p+ sin(t) · v if M = Sn,
• γ(t) = p+ tv if M = Rn,
• γ(t) = cosh(t) · p+ sinh(t) · v if M = In.

Proof. The proof for Rn is trivial. If M = Sn or In let W ⊂ Rn+1 be
the vector subspace generated by p and v. Let f ∈ O(n) or f ∈ O∗(n, 1) be
the isometry such that f |W = id and f |W⊥ = −id. This induces an isometry
of Sn or In that fixes p and v, and hence fixes γ. Therefore γ is contained
in the line W ∩ Sn or W ∩ In.

To prove that γ(t) has the form described above we only need to check
that it has constant unit speed. The velocity in In is indeed

γ′(t) = cosh′(t) · p+ sinh′(t) · v = sinh(t) · p+ cosh(t) · v

which has squared norm sinh2(t)− cosh2(t) = 1. �

Corollary 1.9. The spaces Sn, Rn e Hn are complete.

Proof. The previous proposition shows that geodesics are defined on
R, hence the space is complete by Hopf-Rinow. �

Finally, it is easy to show that two points in Hn are contained in a unique
line.

Remark 1.10. Euclid’s V postulate holds only in R2: given a line r and
a point P 6∈ r, there is only one line passing through P and disjoint from r
(in R2), there is noone (in S2), or there are infinitely many (in H2).

1.4. The Poincaré disc. We introduce two models of Hn (the disc and
half-space) that are easier to visualize especially in the dimensions n = 2, 3
we are interested in. The first model is the Poincaré disc

Dn =
{
x ∈ Rn

∣∣ ‖x‖ < 1
}
.

The metric tensor on Dn is obviously not the euclidean one of Rn, but
it is the one induced by a particular diffeomorfism between In and Dn that
we construct now. We identify Rn with the horizontal hyperplane xn+1 = 0
in Rn+1 and note that the linear projection on P = (0, . . . , 0,−1) described
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Figure 2. The projection on P = (0, . . . , 0,−1) induces a bijection
between In and Dn.

in Fig. 2 induces a bijection between In and the horizontal disc Dn ⊂ Rn,
see Fig. 2. The projection p may be written as:

p(x1, . . . , xn+1) =
(x1, . . . , xn)

xn+1 + 1

and is indeed a diffeomorphism p : In → Dn that carries the metric tensor
on In onto a metric tensor g on Dn.

Proposition 1.11. The metric tensor g at x ∈ Dn is:

gx =

(
2

1− ‖x‖2

)2

· gEx

where gE is the euclidean metric tensor on Dn ⊂ Rn.

Proof. The inverse map p−1 is:

p−1(x) =

(
2x1

1− ‖x‖2
, . . . ,

2xn
1− ‖x‖2

,
1 + ‖x‖2

1− ‖x‖2

)
.

Pick x ∈ Dn. A rotation around the xn+1 axis is an isometry for both In

and (Dn, g). Hence up to rotating we may take x = (x1, 0, . . . , 0) and

p−1(x) =

(
2x1

1− x2
1

, 0, . . . , 0,
1 + x2

1

1− x2
1

)
.

The differential at x acts on the canonical basis ei of Rn as follows:

dp−1
x : e1 7−→

2

(1− x2
1)2

(
1 + x2

1, 0, . . . , 0, 2x1

)
,

dp−1
x : ei 7−→

2

1− x2
1

ei ∀i = 2, . . . , n.

The images are orthogonal vectors (with respect to the lorentzian scalar
product) of norm 2

1−x21
, hence gx = 4

(1−x21)2
gEx . �
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�

�
�

Figure 3. Three lines that determine a hyperbolic triangle in the
Poincaré disc. The angles α, β e γ coincide with the euclidean ones.

The Poincaré disc is a conformal model of Hn: it is a model where the
metric differs from the Euclidean metric only by multiplication by a positive
scalar ( 2

1−‖x‖2 )2 that depends smoothly on x. We note that the scalar tends

to infinity when x tends to ∂Dn. On a conformal model lengths of vectors are
different than the euclidean lengths, but the angles formed by two adjacent
vectors coincide with the euclidean ones. Shortly: lengths are distorted but
angles are preserved.

Let us see how to visualize k-subspaces in the disc model.

Proposition 1.12. The k-subspaces in Dn are the intersections of Dn

with k-spheres and k-planes of Rn orthogonal to ∂Dn.

Proof. Since every k-subspace is an intersection of hyperplanes, we
easily restrict to the case k = n− 1. A hyperplane in In is In ∩ v⊥ for some
space-like vector v. If v is horizontal (i.e. its last coordinate is zero) then
v⊥ is vertical and p(In ∩ v⊥) = Dn ∩ v⊥, a hyperplane orthogonal to ∂Dn.

If v is not horizontal, up to rotating around xn+1 we may suppose v =
(α, 0, . . . , 0, 1) with α > 1. The hyperplane is{

x2
1 + . . .+ x2

n − x2
n+1 = −1

}
∩
{
xn+1 = αx1

}
.

On the other hand the sphere in Rn of center (α, 0, . . . , 0) and radius α2− 1
is orthogonal to ∂Dn and is described by the equation{

(y1 − α)2 + y2
2 + . . .+ y2

n = α2 − 1
}

=
{
y2

1 + . . .+ y2
n − 2αy1 = −1

}
which is equivalent to ||y||2 = −1 + 2αy1. If y = p(x) the relations

y1 =
x1

xn+1 + 1
, ‖y‖2 =

xn+1 − 1

xn+1 + 1

trasform the latter equation in xn+1 = αx1. �

Three lines in D2 are drawn in Fig. 3. Since Dn is a conformal model, the
angles α, β, and γ they make are precisely those one sees from the picture.
In particular we verify easily that α+ β + γ < π.
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Figure 4. A tessellation of S2, R2 o H2 is a subdivision of the plane
into polygons. The tessellation of H2 shown here is obtained by draw-
ing infinitely many lines in the plane. The triangles have inner angles
π
2
, π
10
, π
10

and are all isometric.

1.5. The half-space model. We introduce another conformal model.
The half-space model is the space

Hn =
{

(x1, . . . , xn) ∈ Rn
∣∣ xn > 0

}
.

The model Hn is obtained from Dn through a particular diffeomorphism,
called inversion.

Definition 1.13. Let S = S(x0, r) be the sphere in Rn centered in x0

and with radius r. The inversion along S is the map ϕ : Rn\{x0} → Rn\{x0}
defined as follows:

ϕ(x) = x0 + r2 x− x0

‖x− x0‖2
.

The map may be extended on the whole sphere Sn, identified with
Rn ∪ {∞} through the stereographic projection, by setting ϕ(x0) =∞ and
ϕ(∞) = x0. A geometric description of inversion is given in Fig. 5.

We have already talked about conformal models. More generally, a dif-
feomorphism f : M → N between two oriented riemannian manifolds is
conformal (risp. anticonformal) if for any p ∈ M the differential dfp is the
product of a scalar λp > 0 and an isometry that preserves (risp. inverts) the
orientation.

The scalar λp depends on p. A conformal map preserves the angle be-
tween two vectors but modifies their lengths by multiplication by λp.

Proposition 1.14. The following holds:

(1) an inversion is a smooth and anticonformal map;
(2) an inversion sends k-spheres and k-planes into k-spheres and k-

planes.

Proof. Up to translations we may suppose x0 = 0. The inversion

is ϕ(x) = r2 x
‖x‖2 and we now prove that dϕx is r2

‖x‖2 times a reflection
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Figure 5. The inversion trrough a sphere of center O and radius r
moves P to P ′ so that OP ×OP ′ = r2 (left) and transforms a k-sphere
S into a k-plane if O ∈ S (center) or a k-sphere if O 6∈ S (right).

with respect to the hyperplane orthogonal to x. We may suppose x =
(x1, 0, . . . , 0) and calculate the partial derivatives:

ϕ(x1, . . . , xn) = r2 (x1, . . . , xn)

‖x‖2
,

∂ϕi
∂xj

= r2 δij‖x‖2 − 2xixj
‖x‖4

.

By calculating the partial derivatives at x = (x1, 0, . . . , 0) we get

∂ϕ1

∂x1
= − r

2

x2
1

,
∂ϕi
∂xi

=
r2

x2
1

,
∂ϕj
∂xk

= 0

for all i > 1 and j 6= k. The fact that an inversion preserves sphere and
planes may be easily reduced to the bidimensional case (with circles and
lines), a classical fact of euclidean geometry. �

The half-space model Hn is obtained from the disc model Dn by an
inversion in Rn of center (0, . . . , 0,−1) and radius

√
2 as shown in Fig. 6.

The boundary ∂Hn is the horizontal hyperplane {xn = 0}, to which we add
an point ∞ at infinity, so to have a bijective correspondence between ∂Hn

and ∂Dn through the inversion.

Proposition 1.15. The half-space Hn is a conformal model for Hn.
The k-subspaces in Hn are the k-planes e the k-spheres in Rn orthogonal to
∂Hn.

Proof. The inversion is anticonformal and hence preserve angles, in
particular it transforms k-sfere and k-planes in Dn orthogonal to ∂Dn into
k-spheres and k-planes in Hn orthogonal to ∂Hn. �

Some lines and planes in H3 are drawn in Fig. 7. The metric tensor g
on Hn has a particolarly simple form.
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Figure 6. L’inversione lungo la sfera di centro (0, . . . , 0,−1) e raggio√
2 trasforma il disco di Poincaré nel semispazio.

Figure 7. Rette e piani in H3 visualizzate con il modello del semispazio.

Proposition 1.16. The metric tensor on Hn is:

gx =
1

x2
n

· gE

where gE is the euclidean metric tensor on Hn ⊂ Rn.

Proof. The inversion ϕ : Dn → Hn is the function

ϕ(x1, . . . , xn) = (0, . . . , 0,−1) + 2
(x1, . . . , xn−1, xn + 1)

‖(x1, . . . , xn−1, xn + 1)‖2

=
(2x1, . . . , 2xn−1, 1− ‖x‖2)

‖x‖2 + 2xn + 1
.

As seen in the proof of Proposition 1.14, the inversion ϕ is anticonformal
with scalar

2

‖(x1, . . . , xn−1, xn + 1)‖2
=

2

‖x‖2 + 2xn + 1
.
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The map ϕ hence trasforms the metric tensor
(

2
1−‖x‖2

)2
· gE in x ∈ Dn into

the metric tensor in ϕ(x) ∈ Hn given by:(
2

1− ‖x‖2

)2

·
(
‖x‖2 + 2xn + 1

2

)2

· gE

which coincides with
1

ϕn(x)2
· gE .

�

In the half-space Hn the lines are euclidean vertical half-lines or half-
circles orthogonal to ∂Hn as in Fig. 7. Verticali geodesics have a particularly
simple form.

Proposition 1.17. A vertical geodesic in Hn with unit speed is:

γ(t) = (x1, . . . , xn−1, e
t).

Proof. We show that the speed of γ is constantly one. A vector v ∈
T(x1,...,xn)H

n has norm ‖v‖E
xn

where ‖v‖E indicates the euclidean norm. The

velocity at time t is γ′(t) = (0, . . . , 0, et) whose norm is

|γ′(t)| = et

et
= 1.

�

We can easily deduce a parametrization for the geodesics in Dn passing
through the origin. Recall the hyperbolic tangent:

tanh(t) =
sinh(t)

cosh(t)
=
e2t − 1

e2t + 1
.

Proposition 1.18. A geodesic in Dn starting from the origin with ve-
locity x ∈ Sn−1 is:

γ(t) =
et − 1

et + 1
· x =

(
tanh t

2

)
· x.

Proof. We can suppose x = (0, . . . , 0, 1) and obtain this parametriza-
tion from that of the vertical line in Hn through inversion. �

We obtain in particular:

Corollary 1.19. The exponential map exp0 : T0D
n → Dn at the origin

0 ∈ Dn is the diffeomorphism:

exp0(x) =
e‖x‖ − 1

e‖x‖ + 1
· x

‖x‖
=
(

tanh ‖x‖2

)
· x

‖x‖
.

The exponential maps are then all diffeomorphisms and inj(Hn) =∞.

In the half-space model it is easy to identify some isometries:
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Proposition 1.20. The horizontal translations x 7→ x + b with b =
(b1, . . . , bn−1, 0) and the dilations x 7→ λx with λ > 0 are isometries of Hn.

Proof. Horizontal translations obiously preserve the tensor g = 1
x2n
·gE .

A dilation x 7→ λx sends a vector with eucldean norm 1 in TxH
n to a vector

with euclidean norm λ in TλxH
n. To get the hyperbolic norms we must

divide them respectively by xn and λxn and thus the dilation is norm-
preserving and hence an isometry. �

Corollary 1.21. In the conformal models (disc and half-space) every
isometry of Hn sends k-spheres and euclidean k-planes to k-spheres and
euclidean k-planes.

Proof. With the half-space model, for every pair of points p, q we may
construct an isometry ϕ with ϕ(p) = q which is a composition of a dilation
and a horizontal translation. Since dilations and translations satisfy the
thesis, we may restrict to isometries that fix a point P . We now use the disc
model (the two models are connected by an inversion, which also satisfies
the thesis) and verify it for P = 0, whose stabilizer is just O(n). �

Since inj(Hn) = +∞, the ball B(p, r) ⊂ Hn centered at a point p ∈ Hn

with radius r is diffeomorphic to a euclidean ball. In the conformal models,
it is actually a euclidean ball.

Corollary 1.22. In the conformal models (disc and half-space) the balls
are euclidean balls (with a different center!).

Proof. In the disc model B(0, r) is the euclidean ball of radius ln 1+r
1−r .

The isometries of H2 act transitively on points and send (n− 1)-spheres to
(n− 1)-spheres, whence the thesis. �

2. Compactification and isometries of hyperbolic space

2.1. Points at infinity. In this section we compactify the hyperbolic
space Hn by adding its “points at infinity”.

Let a geodesic half-line in Hn be a geodesic γ : [0,+∞) → Hn with
constant unit speed.

Definition 2.1. The set ∂Hn of the points at infinity in Hn is the set
of al geodesic half-lines, seen up to the following equivalence relation:

γ1 ∼ γ2 ⇐⇒ sup
{
γ1(t), γ2(t)

}
< +∞.

We can add to Hn its points at infinity and define

Hn = Hn ∪ ∂Hn.

Proposition 2.2. On the disc model there is a natural 1-1 correspon-
dence between ∂Dn and ∂Hn and hence between the closed disc Dn and Hn.
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Figure 8. Two vertical lines in the half-space model Hn at euclidean
distance d. The hyperbolic length of the horizontal segment between
them at height xn is d

xn
and hence tends to zero as xn → ∞ (left).

Using as a height parameter the more intrinsic hyperbolic arc-length,
we see that the two vertical geodesics γ1 e γ2 approach at exponential
rate, since d(γ1(t), γ2(t)) 6 de−t (right).

Proof. A geodesic half-line γ in Dn is a circle or line arc orthogonal to
∂Dn and hence the euclidean limit limt→∞ γ(t) is a point in ∂Dn. We now
prove that two half-lines tend to the same point if and only if they lie in the
same equivalence class.

Suppose two half-geodesics γ1, γ2 tend to the same point in ∂Dn. We
can use the half-space model and put this point at ∞, hence γ1 and γ2 are
vertical and point upwards:

γ1(t) = (x1, . . . , xn−1, xne
t), γ2(t) = (y1, . . . , yn−1, yne

t).

The geodesic

γ3(t) = (y1, . . . , yn−1, xne
t)

is equivalent to γ2 since d(γ1(t), γ3(t)) = | ln yn
xn
| for all t and is also equivalent

to γ1 because d(γ1(t), γ3(t))→ 0 as shown in Fig. 8.
Suppose γ1 e γ2 tend to distinct points in ∂Hn. We can use the half-space

model again and suppose that γ1 is upwards vertical and γ2 tends to some
other point in {xn = 0}. In that case we easily see that d(γ1(t), γ2(t))→∞:
for any M > 0 there is a t0 > 0 such that γ1(t) and γ2(t) lie respectively
in {xn+1 > M} and

{
xn <

1
M

}
for all t > t0. Whatever curve connecting

these two open sets has length at least lnM2, hence d(γ1(t), γ2(t)) > lnM2

for all t > t0. �

We can give Hn the topology of Dn: in that way we have compactified
the hyperbolic space by adding its points at infinity. The interior of Hn is
Hn, and the points at infinity form a sphere ∂Hn.

Note that although Hn is a complete riemannian metric (and hence a
metric space), its compactification Hn is only a topological space: a point
in ∂Hn has infinite distance from any other point in Hn.

The topology on Hn may be defined intrinsically without using a partic-
ular model Dn: for any p ∈ ∂Hn we define a system of open neighborhoods
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Figure 9. An open neighborhood U(γ, V, r) of p ∈ ∂Hn (in yellow).

of p in Hn as follows. Let γ be a geodesic that represents p and V be an
open neighborhood of the vector γ′(0) in the unitary sphere in Tγ(0). Pick

r > 0. We define the following subset of Hn:

U(γ, V, r) =
{
α(t)

∣∣ α(0) = γ(0), α′(0) ∈ V, t > r
}⋃{

[α]
∣∣ α(0) = γ(0), α′(0) ∈ V

}
where α indicates a half-line in Hn and [α] ∈ ∂Hn its class, see Fig. 9. We
define an open neighborhoods system {U(γ, V, r)} for p by letting γ, V , and
r vary. The resulting topology on Hn coincides with that induced by Dn.

Proposition 2.3. Two distinct points in ∂H2 are the endpoints of a
unique line.

Proof. Take Hn with one point at∞ an the other lying in {xn+1 = 0}.
There is only one euclidean vertical line connecting them. �

2.2. Elliptic, parabolic, and hyperbolic isometries. Every isom-
etry of Hn extends to the boundary.

Proposition 2.4. Every isometry ϕ : Hn → Hn estends to a unique
homeomorphism ϕ : Hn → Hn. An isometry ϕ is determined by its trace
ϕ|∂Hn at the boundary.

Proof. The extension of ϕ to ∂Hn is defined in a natural way: a bound-
ary point is a class [γ] of geodesic half-lines and we set ϕ([γ]) = [ϕ(γ)]. Since
the topology on Hn may be defined intrinsically, the extension is a homeo-
morphism.

To prove the second assertion we show that an isometry ϕ that fixes the
points at infinity is the identity. The isometry ϕ fixes every line as a set
(because it fixes its endpoints), and since every point is the intersection of
two lines it fixes also every point. �

Proposition 2.5. Let ϕ be an isometry of Hn. Precisely one of the
following holds:
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(1) ϕ has at least one fixed point in Hn,
(2) ϕ has no fixed points in Hn and has exactly one in ∂Hn,
(3) ϕ has no fixed points in Hn and has exactly two in ∂Hn.

Proof. The extension ϕ : Hn → Hn is continuous and has a fixed point
by Brouwer theorem. We only need to prove that if ϕ has three fixed points
P1, P2, P3 at the boundary then it has some fixed point in the interior. The
isometry ϕ fixes the line r with endpoints P1 and P2. There is only line sFigura?

with endpoint P3 and orthogonal to r: the isometry ϕ must also fix s and
hence fixes the point r ∩ s. �

Isometries of type (1), (2), and (3) are called respectively elliptic, para-
bolic, and hyperbolic. A hyperbolic isometry fixes two points p, q ∈ ∂Hn and
hence preserves the unique line l with endpoints p and q. The line l is the
axis of the hyperbolic isometry, which acts on l as a translation.

2.3. Incident, parallel, and ultraparallel subspaces. In the com-
pactification, every k-subspace S ⊂ Hn has a topological closure S ⊂ Hn. In
the two conformal models, the boundary ∂S = S ∩ ∂Hn is a (k − 1)-sphere
(or a (k − 1)-plane plus ∞ in Hn).

The usual distance d(A,B) between two subsets A,B in a metric space
is defined as

d(A,B) = inf
x∈A,y∈B

{
d(x, y)

}
.

Proposition 2.6. Let S and S′ be subspaces of Hn arbitrary dimension.
Precisely one of the following holds:

(1) S ∩ S′ 6= ∅,
(2) S ∩S′ = ∅ and S ∩S′ is a point in ∂Hn; moreover d(S, S′) = 0 and

there is no geodesic orthogonal to both S and S′,
(3) S∩S′ = ∅; moreover d = d(S, S′) > 0 and there is a unique geodesic

γ orthogonal to both S and S′: the segment of γ between S and S′

is the only arc connecting them having length d.

Proof. If ∂S ∩ ∂S′ contains two points then it contains the line con-
necting them and hence S ∩ S′ 6= ∅.

In (2) we use the half-space model and send S ∩ S′ at infinity. Then S
and S′ are euclidean vertical subspaces and Fig. 8 shows that d(S, S′) = 0.
Lines are vertical or half-circles and cannot be orthogonal to both S and S′.

In (3), let xi ∈ S e x′i ∈ S′ be such that d(xi, x
′
i) → d. Since Hn is

compact, on a subsequence xi → x ∈ S and x′i → x′ ∈ S′. By hypothesis
x 6= x′ and hence d > 0 and x, x′ ∈ Hn since 0 < d <∞.

Let γ be the line passing through x and x′. The segment between x and
x′ has length d(x, x′) = d. The line is orthogonal to S and S′: if it had
with S′ an angle smaller than π

2 we could find another point x′′ ∈ S′ near x′

with d(x, x′′) < d. We can draw S, S′, γ as in Fig. 10 by placing the origin
between x and x′: no other line can be orthogonal to both S and S′. �
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Figure 10. Two disjoint subspaces S, S′ and a line γ orthogonal to both.

Two subspaces of type (1), (2) or (3) are called respectively incident,
asymptotically parallel, and ultra-parallel.

2.4. Möbius transformations. IfM is an orientable riemannian man-
ifold. è una varietà riemanniana orientabile, we denote be Isom+(M) the
group of all orientation-preserving isometries of M . We describe Isom+(H2)
and Isom+(H3) conveniently as some groups of 2× 2 matrices.

Recall that the Riemann sphere S = C ∪ {∞} is a fundamental object
in complex analysis and projective geometry. In complex analysis an auto-
morphism of the Riemann sphere is a biolomorphism of S, and one proves
that the automorphisms are precisely the Möbius transformations

z 7→ az + b

cz + d

where a, b, c, d are complex numbers with ad−bc 6= 0. A Möbius transforma-

tion is hence determined by an invertible matrix
(
a b
c d

)
and two transforma-

tions compose as matrices do. Moreover two matrices A and B determine
the same transformation if and only if B = λA for some λ ∈ C∗. The group
of all Möbius transformations is hence isomorphic to

PGL2(C) = PSL2(C) = GL2(C)/{λI} = SL2(C)/±I .

The symbol P before a set of matrices (or other objects) indicate that we
quotient the set by the relation A ∼ λA for any λ 6= 0.

In projective geometry the Riemann sphere is the complex projective line
CP1 = C ∪ {∞} and its automorphisms are the projective transformations

[z, w] 7→ [az + bw, cz + dw]

with (as above) ad− bc 6= 0. Also in this context the automorphisms group
is PSL2(C). We recall that a projective transformation of CPn is determined
by its behaviour on n+ 2 points in general position: when n = 1 we get

Proposition 2.7. Given two triples {P1, P2, P3} and {Q1, Q2, Q3} of
distinct points in CP1 there is a unique Möbius transformation ϕ such that
ϕ(Pi) = Qi for all i.
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The Möbius transformations with a, b, c, d ∈ R and ad− bc > 0 form the
subgroup of PSL2(C) denoted as

PSL2(R) = SL2(R)/±I .

These are the Möbius transformations that preserve the extended real line
R ∪ {∞} and do not interchange the two half-planes in (C ∪∞) \ (R ∪∞).

Exercise 2.8. Given two triples {P1, P2, P3} e {Q1, Q2, Q3} of distinct
points in R∪{∞} with the same cyclic orientation there is a unique Möbius
transformation ϕ ∈ PSL2(R) such that ϕ(Pi) = Qi for all i.

2.5. Isometries of H2. We identify R2 with C and consider the con-
formal models

D2 = {z ∈ C | |z| < 1}, H2 = {z ∈ C | =z > 0}.
The inversion relating them is the Möbius anti-transformation

(1) z 7→ z̄ + i

iz̄ + 1
.

Proposition 2.9. We have Isom+(H2) = PSL2(R).

Proof. The group PSL2(R) is generated by:

(1) translations z 7→ z + b with b ∈ R, corresponding to matrices
(

1 b
0 1

)
,

(2) dilations z 7→ λz with λ ∈ R∗, corresponding to matrices
(√

λ 0
0 1√

λ

)
,

(3) inversion z 7→ −1
z , corresponding to

(
0 −1
1 0

)
.

To prove this, check that with these transformations we can send 0, 1,∞
to any co-oriented triple of points in R ∪ {∞} and use Exercise 2.8. Each
such transformation is an isometry: use Proposition 1.20 and check that the
inversion transforms via the Möbius anti-transformation (1) into a reflection
along the origin in D2. Hence PSL2(R) ⊂ Isom+(H2).

Conversely, take ϕ ∈ Isom+(H2). Since ϕ is orientatio-preserving, it
sends 0, 1,∞ into a co-oriented triple of points in R∪{∞}. Let ψ ∈ PSL2(R)
act on 0, 1,∞ like ϕ. Then f = ψ−1 ◦ϕ is an isometry that fixes 0, 1,∞ and
we easily conclude that f = id and hence ϕ = ψ. To prove that, note that
f has a fixed point x ∈ H2 by Proposition 2.5. The isometry f fixes x and
the three half-lines starting from x and pointing towards 0, 1,∞: therefore
dfx = id and hence f = id. �

The isometry type is determined by the trace of A ∈ PSL2(R), which is
well-defined up to sign:

Proposition 2.10. A non-trivial isometry A ∈ PSL2(R) is elliptic, par-
abolic, hyperbolic if and only if respectively |trA| < 2, |trA| = 2, |trA| > 2.

Proof. Take A =
(
a b
c d

)
with detA = ad − bc = 1. The Möbius trans-

formation z 7→ az+b
cz+d has a fixed point z ∈ C if and only if

az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0
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We find
∆ = (d− a)2 + 4bc = (d+ a)2 − 4 = tr2A− 4.

There is a fixed point in H2 if and only if ∆ < 0; if ∆ > 0 we find two fixed
points in R ∪ {∞} and if ∆ = 0 only one. �

2.6. Isometries of H3. We identify

R3 = C× R = {(z, t) | z ∈ C, t ∈ R}
hence H3 = {(z, t) | =z > 0}. We also identify C × {0} with C. Every
isometry of H3 extends to the boundary

∂H3 = C ∪ {∞}.

Proposition 2.11. The boundary trace induces an identification

Isom+(H3) = PSL2(C).

Proof. The proof is similar to that of Proposition 2.9. We prove anal-
ogously that PSL2(C) is generated by:

(1) translations z 7→ z + b con b ∈ C, corresponding to matrices
(

1 b
0 1

)
,

(2) dilations z 7→ λz with λ ∈ C∗, corresponding to matrices
(√

λ 0
0 1√

λ

)
,

(3) inversion z 7→ −1
z corresponding to

(
0 −1
1 0

)
.

Each such transformation is the trace of an isometry of H3:

(1) the horizontal translations (z, t) 7→ (z + b, t),
(2) if λ = ρeiθ, the composition of a dilation (z, t) 7→ ρ(z, t) and a

rotation (z, t) 7→ (eiθz, t),
(3) inversion with respect to the sphere |z|2 + t2 = 1.

Mettere prima che le in-
versioni sono isometrie?Conversely, we prove as above that the trace of an isometry ϕ lies in PSL2(C),

because an isometry that fixes 3 distinct points P,Q,R ∈ ∂H3 fixes pointwise
the plane π containing them and is hence either the identity or a reflection
along π, but only the first one is orientation-reversing. �

Also in H3 the isometry type is determined by the trace of A ∈ PSL2(C),
well-defined up to sign:

Proposition 2.12. A non-trivial isometry A ∈ PSL2(C) is elliptic,
parabolic, hyperbolic if and only if respectively trA ∈ (−2, 2), trA = ±2,
trA ∈ C \ (−2, 2).

Proof. A non-trivial matrix A ∈ SL2(C) is conjugate to one of:

±
(

1 1
0 1

)
,

(
λ 0
0 1

λ

)
for some λ ∈ C∗ and represents an isometry:

(z, t) 7−→ (z + 1, t), (z, t) 7−→ (λ2z, |λ|2t).
In the first case trA = ±2 and A is parabolic with fixed point ∞, in the
second case A has a fixed point in H3 if and only if |λ| = 1, i.e. trA =
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λ+ λ−1 ∈ (−2, 2), the fixed point being (0, 1). If |λ| 6= 1 there are two fixed
points 0 and ∞ at infinity and hence A is hyperbolic. �

Finally, we note that the orientation-reversing isometries of H2 and H3

may be described analogously as Möbius anti-transformations

z 7→ az̄ + b

cz̄ + d
.

For H2 we only consider anti-trasformations with real coefficients and neg-
ative determinant ad− bc < 0. We may identify the groups

Isom(H2) = PGL2(R)

using the convention that matrices with negative determinant act like Möbius
anti-transformations.

2.7. Horospheres. Parabolic transformations are related to some ob-
jects in Hn called horospheres.

Definition 2.13. Let p be a point in ∂Hn. A horosphere centered in p
is a connected hypersurface orthogonal to all the lines exiting from p.

Horospheres may be easily visualized in the half-space model Hn by
sending p at infinity. The lines exiting from p are the euclidean vertical lines
and the horospheres centered at p are precisely the horizontal hyperplanes
{xn = k} with k > 0.

Remark 2.14. Since the metric tensor g = 1
x2n
gE is constant on each

hyperplane {xn = k}, each horosphere is isometric to the euclidean Rn.
This quite surprising fact is peculiar to hyperbolic geometry: hyperbolic
space Hn contains hypersurfaces isometric to Hn−1 (the hyperplanes), Rn−1

(the horospheres), and Sn−1 (the spheres).

The horospheres centered at p 6=∞ in ∂Hn or in any point p ∈ ∂Dn are
precisely the euclidean spheres tangent in p to the sphere at infinity. The
horospheres in H2 are circles and are called horocycles, see Fig. 11.

Let us go back to the isometries of Hn. In the half-space model Hn we
denote a point as a pair (x, t) with x = (x1, . . . , xn−1) and t = xn.

Proposition 2.15. Let ϕ be an isometry of Hn:

(1) if ϕ is elliptic with fixed point 0 ∈ Dn then

ϕ(x) = Ax

for some matrix A ∈ O(n);
(2) if ϕ is parabolic with fixed point ∞ in Hn then

ϕ(x, t) = (Ax+ b, t)

for some matrix A ∈ O(n) and some vector b;
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Figure 11. A horocycle in H2 centered in p ∈ ∂H2 is a circle tangent
to p. It is orthogonal to all the lines exiting from p.

(3) if ϕ is hyperbolic with fixed points 0 and ∞ then

ϕ(x, t) = λ(Ax, t)

for some matrix A ∈ O(n) and some positive scalar λ 6= 1.

Proof. Point (1) is obvious. In (2) the isometry ϕ fixes ∞ and hence
permutes the horospheres centered at ∞: we first prove that this permu-
tation is trivial. The map ϕ sends a horosphere O0 at height t = t0 to a
horosphere O1 at some height t = t1. If t1 6= t0, up to change ϕ with its
inverse we may suppose that t1 < t0. We know that the map ψ : O1 → O0

sending (x, t1) to (x, t0) is a contraction: hence ϕ◦ψ : O1 → O1 is a contrac-
tion and thus has a fixed point (x, t1). Therefore ϕ(x, t0) = (x, t1). Since
ϕ(∞) = ∞, the vertical geodesic passing through (x, t0) and (x, t1) is pre-
served by ϕ, and hence we have found another fixed point (x, 0) ∈ ∂Hn: a
contradiction.

We now know that ϕ preserves each horosphere O centered at ∞. On
one geodesic it acts like an isometry x 7→ Ax+ b of euclidean space. Since ϕ
sends vertical geodesics to vertical geodesics, it acts with the same formula
on each horosphere and we are done.

Concerning (3), the axis l of ϕ is the vertical line with endpoints 0 and
∞, and ϕ acts on l by translation; hence it sends (0, 1) to some (0, λ). The

differential dϕ at (0, 1) is necessarily
(
A 0
0 λ

)
for some A ∈ O(n) and hence ϕ

is globally as stated. The case λ = 1 is excluded because (0, 1) would be a
fixed point in Hn. �

The minimum displacement d(ϕ) of an isometry ϕ of Hn is

d(ϕ) = inf
x∈Hn

d
(
x, ϕ(x)

)
.

A point x realizes the minimum displacement if d(x, ϕ(x)) = d(ϕ).

Corollary 2.16. The following holds:
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(1) an elliptic transformation has d = 0 realized on its fixed points,
(2) a parabolic transformation with fixed point p ∈ ∂Hn has d = 0

realized nowhere and fixes every horosphere centered in p;
(3) a hyperbolic transformation with fixed points p, q ∈ ∂Hn has d > 0

realized on its axis.

Proof. Point (1) is obvious. Point (2) was already noticed while prov-
ing Proposition 2.15. Concerning (3), let l be the axis of the hyperbolic
transformation ϕ. The hyperplane orthogonal to l in a point x ∈ l is sent to
the hyperplane orthogonal to l in ϕ(x). The two hyerplanes are ultraparallel
and by Proposition 2.6 their minimum distance is at the points x and ϕ(x).
Hence the points on l realize the minimum displacement for ϕ. �

Corollary 2.17. The iterate ϕk of a elliptic, parabolic, hyperbolic trans-
formation is again elliptic, parabolic, hyperbolic.

Proof. Vero per paraboliche? �

3. Geometry of hyperbolic space

We investigate the geometry of Hn.

3.1. Area and curvature. We can verify that Hn has constant sec-
tional curvature−1. It should be no surprise that Hn has constant curvature,
since it has many symmetries (i.e. isometries). To calculate its sectional cur-
vature we calculate the area of a disc.

Proposition 3.1. The disc of radius r in H2 has area

A(r) = π
(
e
r
2 − e−

r
2

)2
= 4π sinh2 r

2 = 2π(cosh r − 1).

Proof. In general, let U ⊂ Rn be an open set with a metric tensor g,
expressed as a square matrix gx depending smoothly on x ∈ U . The induced
volume form on U is √

det g · dx1 · · · dxn.
Let now D(r) be a disc in H2 of radius r. If we center it in 0 in the disc
model, its euclidean radius is tanh r

2 by Corollary 1.19 and we get

A(r) =

∫
D(r)

√
det g · dxdy =

∫
D(r)

(
2

1− x2 − y2

)2

dxdy

=

∫ 2π

0

∫ tanh r
2

0

(
2

1− ρ2

)2

ρ · dρdθ = 2π

[
2

1− ρ2

]tanh r
2

0

= 4π

(
1

1− tanh2 r
2

− 1

)
= 4π sinh2 r

2 .

�

Corollary 3.2. Hyperbolic space Hn has sectional curvature −1.
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Figure 12. Distance between points in disjoint lines is a strictly
convex function in hyperbolic space.

Proof. Pick p ∈ Hn and W ⊂ Tp a 2-dimensional subspace. The image
expp(W ) is the hyperbolic plane tangent to W in p. On a hyperbolic plane

A(r) = 2π(cosh r − 1) = 2π

(
r2

2!
+
r4

4!
+ o(r4)

)
= πr2 +

πr4

12
+ o(r4)

and hence K = −1 following Definition 2.14. �

3.2. Convexity of the distance function. We recall that a function
f : Rn → R is strictly convex if

f(tv + (1− t)w) < tf(v) + (1− t)f(w)

for any pair v, w ∈ Rk of distinct points and any t ∈ (0, 1). The following is
immediate.

Exercise 3.3. A positive strictly convex function is continuous and
admits a minimum if and only if it is proper.

As opposite to euclidean space, in Hn the distance function is strictly
convex on disjoint lines. The product of two line l× l′ is identified to R×R
via an isometry which is unique up to translations.

Proposition 3.4. Let l, l′ ⊂ H2 be two disjoint lines. The map

l × l′ −→ R>0

(x, y) 7−→ d(x, y)

is strictly convex; it is proper if and only if the lines are ultraparallel.

Proof. The function d is clearly continuous, hence to prove its convex-
ity it suffices to show that

d

(
x1 + x2

2
,
y1 + y2

2

)
< d(x1, y1) + d(x2, y2)

for any pair of distinct points (x1, y1), (x2, y2) ∈ l× l′. Suppose x1 6= x2 and
denote by m and n the midpoints x1+x2

2 and y1+y2
2 as in Fig. 12.
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Let σp be the reflection at the point p ∈ H2. The map τ = σn ◦ σm
translates the line r containing the segment mn by the quantity 2d(m,n):
hence it is a hyperbolic transformation with axis r. We draw the points
o = τ(m) and zi = τ(xi) in the figure and note that z1 = σn(x2), hence
d(x2, y2) = d(z1, y1). The triangular inequality implies that

d(x1, z1) 6 d(x1, y1) + d(y1, z1) = d(x1, y1) + d(x2, y2).

A hyperbolic transformation has minimum displacement on its axis r and
x1 6= m is not in r, hence

2d(m,n) = d(m, o) = d(m, τ(m)) < d(x1, τ(x1)) = d(x1, z1).

Finally we get 2d(m,n) < d(x1, y1) + d(x2, y2). The function d is proper,
that is it has minimum, if and only if the two lines are ultraparallel by
Proposition 2.6. �

3.3. Convex combinations. Let p1, . . . , pk ∈ be k points in Hn,Rn
or Sn and t1, . . . , tk be non-negative numbers with t1 + . . . + tk = 1. The
convex combination

p = t1p1 + . . .+ tkpk
is another point in space defined as follows:

in Rn : p = t1p1 + . . .+ tkpk

in In, Sn : p =
t1p1 + . . .+ tkpk
‖t1p1 + . . .+ tkpk‖

where |v| =
√
−〈v, v〉 in the In case. Using convex combination we may

define the barycenter of the points as 1
2p1 + . . . 1

2pk.

3.4. Unimodularity. As a group of matrices O∗(n, 1) the isometry
group Isom(Hn) is naturally a Lie group. Recall that a Lie group is unimod-
ular if it admits a Haar measure that is both left- and right-invariant.

Corollary 3.5. The isometry group Isom(Hn) is unimodular.

Proof. The group Isom(Hn) contains a simple subgroup of index two,
hence the modular function has finite - thus trivial - image. �

Remark 3.6. A Haar measure for Isom(Hn) may be constructed as
follows. Let x ∈ Hn be a fixed point. Define the measure of a Borel set
S ⊂ Isom(Hn) as the measure of S(x) = ∪f∈Sf(x) ⊂ Hn. This measure is
left-invariant, and is hence also right-invariant by Corollary 3.5: in particular
it does not depend on the choice of x.



CHAPTER 3

Hyperbolic manifolds

1. Discrete groups of isometries

1.1. Hyperbolic, flat, and elliptic manifolds. We introduce three
important classes of riemannian manifolds.

Definition 1.1. A hyperbolic (resp. flat or elliptic) manifold is a rie-
mannian n-manifold that may covered by open sets isometric to open sets
of Hn (resp. Rn o Sn).

A hyperbolic (resp. flat or elliptic) manifold has constant sectional cur-
vature −1 (resp. 0 or +1). We show that the model Hn is indeed unique.

A local isometry f : M → N between riemannian manifold is a map such
that every x ∈M has an open neighborhood U such that f |U is an isometry
onto its image.

Theorem 1.2. A complete simply connected hyperbolic n-manifold M is
isometric to Hn.

Proof. Pick a point x and choose an isometry ϕ : Ux → V between
an open ball Ux containing x and an open ball V ⊂ Hn. We show that ϕ
extends (uniquely) to an isometry ϕ : M → Hn.

For every y ∈ M , choose an arc α : [0, 1] → M from x to y. By com-
pactness there is a partition 0 = t0 < t1 < . . . < tk = 1 and for each
i = 0, . . . , k− 1 an isometry ϕi : Ui → Vi from an open set Ui in M contain-
ing α([ti, ti+1]) to an open set Vi ⊂ Hn.

Inductively on i, we now modify ϕi so that ϕi−1 and ϕi coincide on the
component C of Ui−1 ∩ Ui containing α(ti). To do so, note that

ϕi−1 ◦ ϕ−1
i : ϕi(C) −→ ϕi−1(C)

is an isometry of open connected sets in Hn and hence extends to an isometry
of Hn. Then it makes sense to substitute Vi with ϕi−1 ◦ϕ−1

i (Vi), so that the
new maps ϕi−1 and ϕi coincide on C. The curve α now projects to a curve
α̌ : [0, 1]→ Hn. We define ϕ(y) = α̌(1) = ϕk−1(α(1)).

To prove that ϕ(y) is well-defined, we consider another path β connecting
x to y. Since M is simply-connected, there is a homotopy connecting α and
β. The image of the homotopy is compact and is hence covered by finitely
many open balls Ui isometric to open balls Vi ⊂ Hn via some maps ϕi. By
the Lebesgue number theorem, there is a N > 0 such that in the grid in
[0, 1]×[0, 1] of 1

N ×
1
N squares, the image of every square is entirely contained

43
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in at least one Ui. We can now modify as above the isometries ϕi inductively
on the grid, starting from the top-left square, so that they all glue up and
the homotopy can be pushed to a homotopy between α̌ and β̌, showing in
particular that α̌(1) = β̌(1) and hence ϕ(y) is well-defined.

The resulting map ϕ : M → Hn is a local isometry, hence in particular
a local homeomorphism. The fact that ϕ is a local isometry and M is
complete together imply easily that every path in Hn can be lifted to a path
in M . This path-lifting property implies that ϕ is a covering, and since Hn

is simply connected it is a homeomorphism. Hence ϕ is an isometry. �

The isometry ϕ : M → Hn constructed in the proof is called a developing
map. The same proof shows that a complete simply connected flat (or
elliptic) n-manifold is isometric to Rn (or Sn).

1.2. Discrete groups of isometries. Let M be a riemannian mani-
fold. We give Isom(M) the compact-open topology: a pre-basis consists of
the sets of all isometries such that ϕ(K) ⊂ U , where K and U vary among
all (respectively) compact and open sets in M . With this topology Isom(M)
is a topological group.

Proposition 1.3. The following map is continuous and proper:

F : Isom(M)×M →M ×M
(ϕ, p) 7→ (ϕ(p), p)

Proof. Pick two open balls B,B′ ⊂M . We prove that the counterim-
age F−1(B′ ×B) is relatively compact: this implies that F is proper.

The counterimage consists of all pairs (ϕ, p) with p ∈ B and ϕ(p) ∈ B′.
Since an isometry is determined by its first-order action on a point, the pair
(ϕ, p) is determined by the triple (p, ϕ(p), dϕp). The points (p, ϕ(p)) vary
in the relatively compact set B × B′ and dϕp then vary in a compact set
homemorphic to O(n). Therefore F−1(B′ × B) is contained in a relatively
compact space, hence its is relatively compact. �

Corollary 1.4. If M is compact then Isom(M) is compact

A discrete group Γ < Isom(M) is a group which is discrete subset. Let
G be a group acting on a set X. Recall that

• the stabilizer of a point x ∈ X is the subgroup
{
g
∣∣ g(x) = x

}
< G,

• the orbit of x is
{
g(x)

∣∣ g ∈ G} ⊂ X,
• the quotient X/G is defined by quotienting every orbit to a point,
• the action is free if for any non-trivial g ∈ G and any x ∈ X we

have g(p) 6= p.

Proposition 1.5. Let M be a connected riemannian manifold and Γ <
Isom(M) a discrete group acting freely on M . There is a riemannian struc-
ture on M/Γ such that π : M →M/Γ is a local isometry.
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Proof. Since Γ is discrete, Proposition 1.3 easily implies that every
orbit inM is discrete. Pick a point p ∈M/Γ: its counterimageO = π−1(p) ⊂
M is an orbit and is hence discrete. For every q ∈ O we define

D(q) =
{
x ∈M | d(x, q) < d(x, q′) ∀q′ ∈ O, q′ 6= q

}
.

The set D(q) is open and contains q. We have D(q) ∩ DD(q′) = ∅ for
all q 6= q′ and g(D(q)) = D(g(q)) for all g ∈ Γ. Therefore π restricts on
each D(q) to an homeomorphism onto an open set D(p) containing p. Since
π−1(D(p)) = tqD(q), the open set D(p) is well-covered and hence π is a
covering map.

We can give D(p) the metric tensor of D(q): this definition does not
depend on q ∈ O since Γ consists of isometries. If p 6= p′ then the metric
tensors coincide on D(p) ∩ D(p′). We get a riemannian structure on M/Γ

and π is a local isometry by construction. �

The open set D(p) ⊂M/Γ containing p is called a Dirichlet domain and
we will use it again soon.

Corollary 1.6. Let Γ be a discrete group of isometries acting freely on
Hn. Then Hn/Γ is a complete hyperbolic n-manifold.

An analagous corollary holds also for flat and elliptic manifolds. Con-
cerning completeness, we use the following.

Exercise 1.7. Let p : M → N be a covering and local isometry between
riemannian manifolds. Then M is complete if and only if N is.

A converse of Corollary 1.6 holds.

Proposition 1.8. Every complete hyperbolic n-manifold M is isometric
to Hn/Γ for some discrete group Γ < Isom(Hn) acting freely.

Proof. The universal cover of M is complete, hyperbolic, and simply
connected: hence it is isometric to Hn by Theorem 1.2. The deck transfor-
mations of the covering Hn → M are necessarily isometries: they form a
subgroup Γ < Isom(Hn) which acts freely.

The fiber of a point in M is a discrete orbit O ⊂ Hn, and this implies that
Γ is discrete: fix x ∈ O and note that the continuous map Isom(M) → Hn

that sends g to g(x) sends Γ injectively to O. �

Remark 1.9. As usual with universal coverings, the deck transformation
group Γ is isomorphic to the fundamental group π1(M).

The same proof shows that every complete flat or spherical n-manifold
is isometric to Rn/Γ or Sn/Γ for some discrete group Γ of isometries acting
freely on Rn or Sn.

Corollary 1.10. There is a natural 1-1 correspondence{
complete hyperbolic

manifolds up to isometry

}
←→

 discrete subgroups of Isom(Hn)
without non− trivial elliptics

up to conjugation

 .
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Figure 1. A tessellation of S2 into squares, hexagons, and decagons,
and a tassellation of R3 into truncated octahedra.

Proof. A group Γ acts freely on Hn if and only if it does not contain
non-trivial elliptics. The proof of Proposition 1.8 shows how to pass from M
to Γ: the only choice we make is an isometry between the universal covering
of M and Hn. Different choices produce conjugate groups. �

1.3. Polyhedra and tessellations. Another method to construct hy-
perbolic (flat, elliptic) manifolds consists in assembling polyhedra. A half-
space in Hn, Rn, or Sn is the closure of one of the two portions of space
delimited by a hyperplane. A set of half-spaces is locally finite if a compact
set intersects only finitely many of their boundary hyperplanes.

Definition 1.11. A n-dimensional polyhedron in Hn (or Rn, Sn) is the
intersection P = ∩iHi of a locally finite set of half-spaces. We also assume
that P has non-empty interior.

A subspace S ⊂ Hn is convex if x, y ∈ S implies that the segment
connecting x, y is also contained in S. A polyhedron is clearly convex because
it is the intersection of convex sets.

If non-empty, the intersection ∂Hi ∩ P is always a k-dimensional poly-
hedron for some k 6 n, called face. A face of dimension n− 1 is a facet.

Definition 1.12. A tessellation of Hn (or Rn, Sn) is a set of polyhedra
that cover the space and may intersect in pairs only in common faces.

Some examples are shown in Fig. 1.

1.4. Fundamental and Dirichlet domains. Let now Γ be a discrete
group acting freely on Hn.

Definition 1.13. A fundamental domain for Γ is an open connected
set D ⊂ Hn such that D intersects every orbit in at most one point and D
intersects every orbit in at least one point.
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In other words, the open sets {g(D)|g ∈ Γ} are disjoint, while their

closures {g(D)|g ∈ Γ} cover Hn. In presence of a fundamental domain D we
may see M as D with the points in ∂D lying in the same orbit identified.

We have already encountered a fundamental domain in the proof of
Proposition 1.5, the Dirichlet domain. For a point q ∈ Hn we set

D(q) =
{
x ∈M

∣∣ d(x, q) < d(x, g(q)) ∀g ∈ Γ, g 6= id
}
.

Proposition 1.14. Pick q ∈ Hn. The Dirichlet domain D(q) is a fun-

damental domain for Γ. Its closure D(q) is a polyhedron and{
D(g(q))

∣∣ g ∈ Γ
}

is a tessellation of Hn.

Proof. We have g(D(q)) = D(g(q)) and the open sets {D(g(q)) | g ∈ Γ}
are disjoint. Every point x ∈ Hn has at least one nearest point in the
orbit of p: hence x ∈ D(g(p)) for some g ∈ Γ. Therefore the elements{
g(D(q)) | g ∈ Γ

}
cover Hn. Hence D(q) is a fundamental domain.

The domain D(q) is the intersection of the open half-paces

Hg =
{
x ∈ Hn

∣∣ d(x, q) < d(x, g(q))
}
.

Its closure D(q) is the intersection of the same closed half-spaces. Since the
orbit of q is discrete, the intersection of these half-spaces is locally finite and
hence D(q) is a polyhedron.

Two adjacent polyhedra D(g(q)) and D(g′(q)) intersect in the common
face obtained by intersecting each polyhedron with the hyperplane{

x ∈ Hn | d(x, g(q)) = d(x, g′(q))
}
.

Hence they form a tessellation of Hn. �

Everything we said also holds for Rn and Sn.

1.5. Flat manifolds. We show some examples, starting with some sim-
ple (and well-known) flat manifolds. The group of translations in Rn may
be identified with Rn itself. Let Γ = Zn be the integer translations. The
quotient Rn/Γ is naturally diffeomorphic to the n-dimensional torus:

Rn/Zn = (R/Z)n ∼= S1 × . . .× S1︸ ︷︷ ︸
n

which is hence a flat manifold.

Exercise 1.15. For any q ∈ Rn the Dirichlet domain D(q) is a n-
dimensional unit cube centered at q.

The flat n-torus may be seen as the unit n-cube with its opposite facets
identified by a translation. The two-dimensional case is shown in Fig. 2-
(left): by identifying the opposite sides of a square we get a torus.
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Figure 2. A fundamental domain in R2 for the torus (left) and the
Klein bottle (center): opposite sides should be identified as indicated by
the arrows. A fundamental domain in S2 for RP2 (right).

Among flat surfaces we also find the Klein bottle by taking Γ as the
group generated by the following isometries:

τ : (x, y) 7→ (x+ 1, y), η : (x, y) 7→ (1− x, y + 1).

A fundamental domain for the Klein bottle is shown in Fig. 2-(center).

Remark 1.16. The subgroups 〈τ〉 and 〈η〉 generated respectively by τ
and η are both isomorphic to Z. Note however that R2/〈τ〉 is an infinite

cilinder and R2/〈η〉 is an infinite Möbius strip. Being subgroups of Γ, both
spaces cover the Klein bottle.

The subgroup of Γ generated by the traslations τ and η2 is isomorphic
to Z2 and has index 2 in Γ. The Klein bottle has indeed a double covering
isometric to a flat torus. Its fundamental domain is a rectangle with vertices
(0, 0), (1, 0), (0, 2), (1, 2).

The n-torus possesses a continuous family of non-isometric flat metrics.
A lattice Γ < Rn is a discrete subgroup isomorphic to Zn which spans Rn as
a vector space. We see Γ as a group of translations.

Exercise 1.17. The flat manifold Rn/Γ is diffeomorphic to the n-torus.
A fundamental domain is the parallelotope spanned by n generators of Γ.

Remark 1.18. A Dirichlet domain is not necessarily a parallelotope.
For instance, consider the hexagonal torus C/Γ with Γ generated by 1 and

e
πi
3 . The Dirichlet domain of 0 is a regular hexagon.

Mettere figura toro esago-
nale?

1.6. Elliptic manifolds. Every elliptic manifold is covered by Sn and
is hence compact and with finite fundamental group (because the covering
has finite degree).

An important example is real projective space RPn = Sn/Γ where is the
cyclic group of order two generated by the antipodal map ι : v → −v.

Exercise 1.19. For any q ∈ Sn, the Dirichlet domain is the emisphere
centered as q.
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The two-dimensional case is shown in Fig. 2-(right). In dimension n = 3
there are more elliptic manifolds. Let p and q be coprime integers and set

ω = e
2πi
p . We identify R4 with C2 and see S3 as

S3 =
{

(z, w) ∈ C2
∣∣ |z|2 + |w|2 = 1

}
.

The map

f(z, w) = (ωz, ωqw)

is an isometry of R4 because it consists of two simultaneous rotations on the
coordinate planes w = 0 e z = 0. The map f hence induces an isometry
of S3. It has order p and noone of its iterates f, f2, . . . , fp−1 has a fixed
point. Therefore the group Γ = 〈f〉 generated by f acts freely on S3, and is
discrete because it is finite.

The fundamental group of S3/Γ is isomorphic to Γ ∼= Zp. This elliptic
manifold is called a lens space and indicated with the symbol L(p, q).

1.7. Selberg lemma. The reader might now expect to find some ex-
amples of compact hyperbolic manifolds, constructed as above from explicit
discrete subgroups Γ of Isom(Hn) acting freely on Hn. It turns out how-
ever that exhibiting such groups is quite hard, and one usually constructs
hyperbolic manifolds by other means. The method we present here is non-
constructive and based on the following algebraic result, while more geomet-
ric methods will follow in the next chapters.

Lemma 1.20 (Selberg lemma). Let G be a finitely generated subgroup of
GL(n,C). There is a finite-index normal subgroup H /G without non-trivial
finite-order elements.

Corollary 1.21. Let Γ be a finitely generated discrete subgroup of
isometries of Hn. There is a finite-index normal subgroup Γ′ / Γ that acts
freely on Hn.

Proof. The group Isom(Hn) is isomorphic to O(n, 1)∗ < GL(n+ 1,C),
hence Selberg lemma applies to Γ. We get a finite-index normal subgroup
Γ′ / Γ without finite-order elements.

The group Γ′ acts freely unless it contains a non-trivial elliptic element
ϕ which fixes some point x ∈ Hn. The element ϕ would have finite or-
der because Γ is discrete and the stabilizer O(n) of a point is compact: a
contradiction. �

By Selberg lemma we can forget about the “acting freely” hypothe-
sis and concentrate on the construction of discrete subgroups of Isom(Hn).
The isometry group of a tessellation of Hn is the group formed by all the
isometries that fix the tessellation as a set of polyhedra. Here is a source of
discrete groups:

Proposition 1.22. If a tessellation consists of compact polyhedra in Hn,
its isometry group Γ is discrete.
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Figure 3. Le tassellazioni (2, 3, 3), (2, 3, 4) e (2, 3, 5) nella sfera.

Proof. A compact polyhedron is the convex hull of finitely many points,
its vertices. An isometry that fixes the vertices fixes the polyhedron point-
wise. Therefore the isometry group of every polyhedron is finite. A bounded
set B ⊂ Hn contains only finitely many polyhedra of the tessellation, hence
there are only finitely many ϕ ∈ Γ such that ϕ(B) ∩B 6= ∅. �

1.8. Triangular groups. We construct here some discrete subgroups
of isometries. We start with the following.

Exercise 1.23. Given three real numbers 0 < α, β, γ < π there is a tri-
angle ∆ with inner angles α, β, γ inside H2,R2, or S2 depending on whether
the sum α+ β + γ is smaller, equal, or bigger than π.

Let a, b, c > 2 be three natural numbers and ∆ be a triangle with inner
angles π

a ,
π
b ,

π
c . The triangle ∆ lies in H2, R2, or S2 depending on whether

1
a + 1

b + 1
c is smaller, equal, or bigger than 1. In any case, by mirroring

iteratively ∆ along its edges we construct a tessellation of the space.

Example 1.24. The triples realizable in S2 are (2, 2, c), (2, 3, 3), (2, 3, 4),
and (2, 3, 5): the last three tessellations are shown in Fig. 3 and are linked to
platonic solids. Their isometry groups are respectively the isometry group
of the tetrahedron, of the cube (or octahedron), and of the icosahedron
(or dodecahedron). These groups act transitively on the triangles of the
tessellations, and have order 24, 48, and 120 respectively. They are actually
isomorphic to S4, S4 × Z2, and A5 × Z2.

Example 1.25. The triples realizable in R2 are (2, 3, 6), (2, 4, 4), and
(3, 3, 3): the tessellations are shown in Fig. 4.

Example 1.26. There are infinitely many triples realizable in H2, some
are shown in Fig. 5.

The isometry group of this tessellation is called a triangular group.

Exercise 1.27. The triangular group acts transitively on the triangles
of the tessellation and is generated by the reflections x, y, z along the three
sides of ∆. A presentation for the group is

〈x, y, z | x2, y2, z2, (xy)c, (yz)a, (zx)b〉.
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Figure 4. Le tassellazioni (2, 3, 6), (2, 4, 4) e (3, 3, 3) nel piano.

Figure 5. Le tassellazioni (2, 3, 7), (2, 4, 5) e (3, 3, 4) nel piano iperbolico.

We have constructed some discrete groups Γ of H2. Each such contains
infinitely many elliptic elements, such as reflections along lines and finite-
order rotations around vertices of the triangles. However, Selberg lemma
guarantees the existence of a finite-index subgroup Γ′ < Γ that avoids all
the non-trivial elliptics elements and hence acts freely.

Suppose for simplicity that a, b, c are different, hence ∆ has no symme-
tries: the quotient Hn/Γ is isometric to ∆ and the surface Hn/Γ′ is compact
in virtue of the following:

Exercise 1.28. If Γ′ < Γ has index h, the surface H2/Γ′ tessellates into
h copies of ∆.

1.9. Ideal polyhedra. We can try to generalize the triangular groups
in two natural ways: by taking triangles with vertices “at infinity”, or poly-
hedra of higher dimension.

A polyhedron P ⊂ Hn has its closure P ⊂ Hn and its points at infinity
P \ P . An isolated point in P \ P is called a vertex at infinity, while the
ordinary vertices of P in Hn are the finite vertices. An ideal polyhedron is a
polyhedron without finite vertices, whose points at infinity form a discrete
(hence finite) set. Fare figura

For instance, an ideal polygon is shown in Fig. A peculiar aspect of
hyperbolic geometry is that ideal polyhedra are non-compact but have finite
volume, as we now see. Given a horosphere O centered at p and a domain
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Figure 6. The cone C over a domain D ⊂ O has volume proportional
to the area of D (left). If the domain is compact, the cone has finite
volume: therefore an ideal polyhedron has finite volume (right).

D ⊂ O, the cone C of D over p is the union of all half-lines exiting from D
towards p, see Fig. 6.

Proposition 1.29. Let O be a horosphere centered at p ∈ ∂Hn, D ⊂ O
any domain and C the cone over D. The following equality holds:

Vol(C) =
VolO(D)

n− 1

where VolO indicates the volume in the flat (n− 1)-manifold O.

Proof. Consider the half-space model with p = ∞ and O at some
height xn = h as in Fig. 6-(left). We obtain

Vol(C) =

∫
D
dx

∫ ∞
h

1

tn
dt =

1

n− 1

∫
D

dx

hn−1
=

1

n− 1
·VolO(D).

�

Corollary 1.30. A polyhedron P ⊂ Hn with ∂P ⊂ ∂Hn consisting of
finitely many points has finite volume.

Proof. For every p ∈ ∂P , a small horoball centered at p intersects P
into a cone which has finite volume. The polyhedron P decomposes into
finitely many cones and a bounded region, see Fig. 6-(right). �

The area of a polygon with both finite and infinite vertices can be cal-
culated using an extremely simple formula. The sum of the inner angles
of a hyperbolic polygon is strictly smaller than that of a euclidean polygon
with the same number of sides, and the difference is precisely its area. The
interior angle of a vertex at infinity is zero.
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Figure 7. A triangle with at least an ideal vertex (left). The area
of a triangle with finite vertices can be derived as the area difference of
triangles with one ideal vertex (right).

Proposition 1.31. A polygon P with inner angles α1, . . . , αn has area

Area(P ) = (n− 2)π −
n∑
i=1

αi.

Proof. Every polygon decomposes into triangles, and it suffices to
prove the formula on these. Consider first a triangle T with at least one
vertex at infinity. We use the half-plane model and send this vertex to ∞
as in Fig. 7-(left). We suppose that the red dot is the origin of R2, hence

T =
{

(r cos θ, y) | β 6 θ 6 π − α, y > r sin θ
}

and we get

Area(T ) =

∫
T

1

y2
dxdy =

∫ β

π−α

∫ ∞
r sin θ

−r sin θ

y2
dydθ

=

∫ β

π−α
−r sin θ

[
−1

y

]∞
r sin θ

dθ =

∫ π−α

β

r sin θ

r sin θ
dθ

=

∫ π−α

β
1 = π − α− β.

The area of a triangle with finite vertices ABC is deduced as in Fig. 7-(right)
using the formula

Area(ABC) = Area(AB∞) + Area(BC∞)−Area(AC∞).

�

We may construct various tessellations using ideal polygons, a natural
one being the Farey tessellation which is defined as follows. Consider H2

with the half-plane model. For any pair of rational numbers p
q ,

r
s ∈ Q ∪

{∞} ⊂ ∂H2 such that ps− qr = ±1 we draw the geodesic in H2 connecting
them. We obtain a tessellation of H2 in ideal triangles, shown in Fig. 8.
Recall that Isom(H2) = PGL2(R). Fare o trovare figura con

H2.
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Figure 8. The Farey tessellation of H2 ideal triangles.

Figure 9. A hyperbolic regular icosahedron and a euclidean regular dodecahedron.

Exercise 1.32. The Farey tessellation has isometry group PGL2(Z).

1.10. Platonic solids. Each platonic solid P has a nice continuous
family of representations in the three geometries H3,R3, and S3, which at
few discrete points generate a tessellation of the space.

To construct this family pick any point x in H3, R3, or S3 and represent
P centered at x with varying size. To do this, represent P in the tangent
space Tx centered in the origin and with some radius t > 0. Consider the
image of its vertices by the exponential map in H3, R3, or S3 and take
their convex hull. We indicate by P (t) the resulting platonic solid, with this
convention: if t < 0 then P (t) is the solid obtained in H3 with parameter
−t, if t = 0 then P (0) is the usual euclidean solid (unique up to dilations),
if t > 0 then P (t) is the solid obtained in S3.

The platonic solid is defined for all t ∈ [−∞, π2 ]: when t = −∞ we
get an ideal platonic solid with all vertices at infinity, while as t = π

2 the
platonic solid degenerates to a half-sphere in Sn. The dihedral angle θ(t)
varies continuously with t, since when t → 0 the polyhedron shrinks and
every geometry tends to the euclidean one when we shrink objects. It is a
strictly monotone increasing function.
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polyhedron θ = π
3 θ = 2π

5 θ = π
2 θ = 2π

3

tetrahedron ideal H3 S3 S3 S3

cube ideal H3 H3 R3 S3

octahedron ideal H3 S3

icosahedron H3

dodecahedron ideal H3 H3 H3 S3

Table 1. The platonic solids with dihedral angle θ that divide 2π.

The vertex valence of P is the number of edges incident to each vertex
of P .

Proposition 1.33. Let n ∈ {3, 4, 5} be the vertex valence of P . It holds

θ
([
−∞, π

2

])
=

[
n− 2

n
π, π

]
.

Proof. Since θ is continuous and monotone increasing, it suffices to
show that θ(−∞) = n−2

n and θ(π2 ) = π.
By intersecting the ideal polyhedron P (−∞) with a small horosphere O

centered at an ideal vertex v we get a regular n-gon P in the euclidean plane
O, with interior angles n−2

n π. The dihedral angle at an edge e is measured
by intersecting the polyhedron with a hypersurface orthogonal to e: since O
is orthogonal we get θ(−∞) = n−2

n .
The polyhedron P (π2 ) is a semisphere and hence θ(π2 ) = π. �

When θ(t) divides 2π, then by repeatedly mirroring P (t) along its faces
we get a tessellation of the space: these tessellations are listed in Table 1
and some pictures are shown in Fig. 10 and 11.

Every such tessellation of H3 has a discrete isometry group Γ and by
Selberg’s lemma there is a finite-index subgroup Γ′ < Γ acting on H3 without
fixed points. We mention few examples.

Example 1.34. The Seifert-Weber space is a closed hyperbolic 3-manifold
M = H3/Γ′ related to the tessellation into hyperbolic dodecahedra with di-
hedral angle 2π

5 . The manifold M may be obtained from a single such

dodecahedron by identifying the opposite faces after making a 3π
5 -turn.

Example 1.35. The Poincaré homology sphere is a closed elliptic 3-
manifold M = S3/Γ′ related to the tessellation into spherical dodecahedra
with dihedral angle 2π

3 . The manifold M may be obtained from a single
such dodecahedron by identifying the opposite faces after making a π

5 -turn.

Example 1.36. The figure-eight knot complement is a hyperbolic 3-
manifold M = S3/Γ′ related to the tessellation into ideal regular tetrahedra
with dihedral angle π

3 . It is diffeomorphic to the complement in S3 of the
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Figure 10. The tessellation of H3 into regular dodecahedra with
dihedral angle θ = 2π

5
in the disc model.

Figure 11. The tessellation of H3 into regular cubes with dihedral
angle θ = 2π

5
in the disc model.

figure-eight knot shown in Fig. 12 and tessellates into two regular ideal
tetrahedra. It is not compact but has finite volume.

2. Generalities on hyperbolic manifolds

We construct some basic examples and study the basic properties of
hyperbolic manifolds.
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Figure 12. The figure-eight knot. Its complement in S3 may be
tessellated by two ideal regular tetrahedra.

2.1. Tubes. It is typically difficult to construct a hyperbolic manifold
by exhibiting a discrete group Γ of isometries of Hn, except in some elemen-
tary cases.

Consider the cyclic group Γ = 〈ϕ〉 generated by a hyperbolic transfor-
mation ϕ on Hn with axis l and minimum displacement d > 0. The iterates
ϕk are again hyperbolic transformations with axis l and displacement kd.
Therefore Γ acts freely on Hn. The quotient manifold M = Hn/Γ is called
an infinite tube.

Exercise 2.1. Fix q ∈ l. Let q1, q2 be the two points in l at distance d
2

from q and π1, π2 the two hyperplanes orthogonal to l in q1, q2. The Dirichlet
domain U(q) is the space comprised between π1 and π2.

The infinite tube M = Hn/Γ is obtained from U(q) by identifying π1

and π2 along ϕ. Its fundamental group is isomorphic to Γ ∼= Z. The axis l
projects in M onto a closed geodesic γ of length d.

Proposition 2.2. An infinite tube is diffemorphic to S1 × Rn−1 or

S1×∼Rn−1 according to whether ϕ is orientation-preserving or not.

Proof. By projecting Hn orthogonally onto l, we give Hn the structure
of a Hn−1-bundle over l which is preserved by ϕ and hence descends to
a structure of Hn−1-bundle over γ. Therefore M is diffeomorphic to the
normal bundle of γ in M . The conclusion follows from the classification of
vector bundles over S1, see Proposition 1.13 from Chapter 1. �

A tube of radius R is the quotient NR(l)/Γ where NR(l) is the R-
neighborhood of l, the set of all points of distance at most R. It is dif-

feomorphic to S1 × Dn−1 or S1×∼Dn−1: in particular it is compact. Note
that the bounday of a tube is not geodesic. Mettere formule volume?

Da ”volume of tubes in
hyp 3-man”
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Figure 13. The pseudosphere is a surface in R3 isometric to the
union of two truncated cusps, each with constant gaussian curvature

−1.

2.2. Cusps. Let now Γ < Isom(Rn−1) be a discrete group of euclidean
isometries acting freely on Rn−1: the quotient M = Rn−1/Γ is a flat (n−1)-
manifold. If we use the half-space model for Hn with coordinates (x, t), every
element ϕ ∈ Γ acts as a parabolic transformation on Hn by sending (x, t) to
(ϕ(x), t). The whole group Γ is a discrete group of parabolic transformations
of Hn fixing the point ∞.

The quotient Hn/Γ is naturally identified with M × R>0. The metric
tensor on the point (x, t) is

g(x,t) =
gMx ⊕ 1

t2

where gM is the metric tensor of M . The manifold Hn/Γ is called a cusp.

Remark 2.3. The coordinate t may be parametrized more intrinsically
using arc-length. As we have seen in Proposition 1.17 from Chapter 2, a
vertical geodesic with unit speed is parametrized as t = eu. Using u instead
of t the cusp is isometric to M × R with metric tensor

g(x,u) = (e−2ugM )⊕ 1.

When u increases, the M factor shrinks exponentially fast.

A truncated cusp is a portion N = M × [a,+∞), bounded by the eu-
clidean manifold M ×{a}: note that the boundary ∂N is euclidean and not
geodesic. The volume of a truncated cusp is particularly simple.

Proposition 2.4. Let N be truncated cusp. We have

Vol
(
N
)

=
Vol(∂N)

n− 1
.

Proof. It follows from Proposition 1.29. �

Some hyperbolic manifold may contain a portion isometric to a truncated
cusp: in that case we will call it simply a cusp.
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Example 2.5. In dimension n = 2 there is only one cusp. The group
Γ < Isom(R) is the infinite cyclic group generated by a translation x 7→
x + b and up to conjugating in Isom(H2) we may take b = 1. The cusp is
diffeomorphic to S1×R, the circle S1×{u} having length e−2u. A truncated
cusp (but not the whole cusp!) embeds in R3 as shown in Fig. 13.

Pick p ∈ H2. Note that a cusp and H2 \ {p} are diffeomorphic and both
hyperbolic. However, they are not isometric because the cusp is complete
while H2 \ {p} is not.

The injectivity radius of a cusp is zero for general reasons.

Proposition 2.6. Let Γ < Isom(Hn) be a discrete group acting freely
on Hn. If Γ contains parabolics then inj

(
Hn/Γ

)
= 0.

Proof. A parabolic element γ ∈ Γ has minimum displacement zero.
That is, there is a sequence xi ∈ Hn such that di = d(xi, ϕ(xi))→ 0. Since
injπ(xi)

(
Hn/Γ

)
< di we are done. �

Corollary 2.7. If M = Hn/Γ is a compact hyperbolic manifold, every
non-trivial element in Γ is hyperbolic.

Proof. The injectivity radius of a compact manifold is positive. �

2.3. Closed geodesics. A closed curve in a manifold M is a differen-
tiable map α : S1 →M . A (possibly closed) curve is simple if it is injective.

We consider S1 as a subset of C. A closed geodesic in a riemannian
manifold M is a smooth map α : S1 → M whose lift α ◦ π : R → M along
the universal covering π(t) = eit is a non-constant geodesic. Two closed
geodesics α1, α2 that differ only by a rotation, i.e. such that α1(z) = α2(zeit)
for some fixed t ∈ R, are implicitly considered equivalent. By substituting
α(z) with α(z) = α(z̄) we change the orientation of the closed geodesic.

Proposition 2.8. Let γ be a closed geodesic in a riemannian manifold
M . Exactly one of the following holds:

(1) the curve γ is simple,
(2) the curve γ self-intersects transversely in finitely many points,
(3) the curve γ wraps along a curve of type (1) or (2) some k > 2

times.

Proof. If the geodesic is not simple, it self-intersects. If it self-intersects
only with distinct tangents, then (2) holds. Otherwise (1) holds. �

The natural number k in (3) is the multiplicity of the closed geodesic.
A closed geodesic γ of multiplicity k is of type γ(eit) = η(ekit) for some
geodesic η of type (1) or (2).

Exercise 2.9. A closed geodesic on a riemannian manifold M is deter-
mined by its support, its orientation, and its multiplicity.
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2.4. Closed geodesics in a hyperbolic manifold. Closed geodesics
in hyperbolic manifolds have a particularly nice behavior.

Let X,Y be topological spaces: as usual we indicate by [X,Y ] the spaces
of all continuous maps from X to Y seen up to homotopy. Let X be path-
connected. There is a natural map π1(X,x0) → [S1, X], and the following
is a standard exercise in topology.

Exercise 2.10. The map induces a bijection between the conjugacy
classes in π1(X,x0) and [S1, X].

A simple closed curve in X is homotopically trivial if it is homotopic to
a constant. As a corollary, a simple closed curve γ is homotopically trivial
if and only if it represents the trivial element in π1(X, γ(1)).

On M = Hn/Γ we get the correspondence{
conjugacy classes in Γ

}
←→ [S1,M ].

Two conjugate elements in Γ are of the same type (trivial, parabolic, or
hyperbolic) and have the same minimum displacement. Therefore every
element in [S1,M ] has a well-defined type and minimum displacement.

Remark 2.11. The correspondence may be described directly as follows:
given ϕ ∈ Γ, pick any point x ∈ Hn and any arc connecting x with ϕ(x) and
project it to get a closed curve in M and hence an element in [S1,M ].

Proposition 2.12. Let M be a complete hyperbolic manifold. A hyper-
bolic element of [S1,M ] is represented by a unique closed geodesic, of length
d equal to its minimum displacement. Trivial and parabolic elements are not
represented by closed geodesics.

Proof. Take M = Hn/Γ. A hyperbolic isometry ϕ ∈ Γ has a unique
invariant geodesic in Hn, its axis, which projects on a closed geodesic of
length d. Conjugate isometries determine the same geodesic in M .

On the other hand, a closed geodesic in M lifts to a segment connecting
two distinct points x0 and ϕ(x0) for some ϕ ∈ Γ which preserves the line
passing through x0 and ϕ(x0): since ϕ fixes a line, it is hyperbolic. �

We get a bijection{
hyperbolic conjugacy classes in Γ

}
←→

{
closed geodesics in M

}
.

Corollary 2.13. Let M be a compact hyperbolic manifold. Every non-
trivial element in [S1,M ] is represented by a unique closed geodesic.

Proof. Since M is compact there are no parabolics. �

Proposition 2.14. Let M be a compact hyperbolic manifold. For every
L > 0 there are finitely many closed geodesics shorter than L.

Proof. Suppose there are infinitely many. Since M = Hn/Γ is compact
it has finite diameter D and hence we can fix a basepoint x0 ∈ M and
connect x0 to these geodesics with arcs shorter than D. We use this arcs to
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homotope the geodesics into loops based at x0 of length bounded by L+2D,
and lift the loops to arcs in Hn starting from some basepoint x̃0 ∈ Hn.

If two such arcs end at the same point, then the corresponding initial
geodesics are homotopic: this is excluded, hence these endpoints are all
distinct. Therefore the orbit of x̃0 contains infinitely many points in the
ball B(x̃0, L+ 2D), a contradiction because the orbit is discrete. �

The lengths of the closed geodesics in a compact M form a discrete
subset of R called the geodesic spectrum of M . Simple closed geodesics have
nice small neighborhoods, recall the notion of R-tube from Section 2.1.

Proposition 2.15. The R-neighborhood of a simple closed geodesic in
a complete hyperbolic manifold is isometric to a R-tube, for some R > 0.

Proof. By compactness of the simple closed geodesic γ there is a R > 0
such that the R-neighborhood of γ lifts to disjoint R-neighborhoods of its
geodesic lifts in Hn. Hence their quotient is a R-tube. �

2.5. Isometries that commute or generate discrete groups. Two
isometries of Hn that commute or generate a discrete group must be of a
particular kind. We indicate by Fix(ϕ) the fixed points in Hn of ϕ.

Lemma 2.16. Let ϕ1, ϕ2 ∈ Isom(Hn) be two hyperbolic or parabolic
isometries. If they commute then Fix(ϕ1) = Fix(ϕ2).

Proof. If they commute, the map ϕ1 acts on Fix(ϕ2) and viceversa. If
ϕ2 is hyperbolic, then Fix(ϕ2) = {p, q} and ϕ1 fixes the line with endpoints
p and q, hence is again hyperbolic with Fix(ϕ1) = {p, q}. If ϕ1 and ϕ2 are
parabolic then they have the same fixed point Fix(ϕ1) = Fix(ϕ2). �

Lemma 2.17. Let ϕ1, ϕ2 ∈ Isom(Hn) be two isometries that generate a
discrete group Γ < Isom(Hn) acting freely on Hn. The following holds:

(1) if ϕ1 is hyperbolic and ϕ2 is parabolic, then Fix(ϕ1)∩Fix(ϕ2) = ∅.
(2) if ϕ1 and ϕ2 are hyperbolic, then Fix(ϕ1)∩Fix(ϕ2) = ∅ or Fix(ϕ1) =

Fix(ϕ2) and ϕ1, ϕ2 are powers of the same hyperbolic ϕ ∈ Γ.

Proof. We prove (1) using the half-space model, supposing by contra-
diction that Fix(ϕ1) = {0,∞} and Fix(ϕ2) = {∞}.

Proposition 2.15 in Chapter 2 says that

ϕ1(x, t) = λ(Ax, t), ϕ2(x, t) = (A′x+ b, t)

with A,A′ ∈ O(n− 1) and λ 6= 1. Hence

ϕn1 ◦ ϕ2 ◦ ϕ−n1 (x, t) = ϕn1
(
A′(λ−nA−nx) + b, λ−nt)

=
(
AnA′A−nx+ λnAnb, t

)
.

Up to interchanging ϕ1 and ϕ−1
1 we may suppose λ < 1 and get

lim
n→∞

ϕn1 ◦ ϕ2 ◦ ϕ−n1 (0, t) = lim
n→∞

(λnAnb, t) = (0, t).

The subgroup Γ is not discrete, a contradiction.
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We prove (2). Suppose Fix(ϕ1) = {a,∞} and Fix(ϕ2) = {b,∞}. The
isometries ϕ1 and ϕ2 permute the horizontal horospheres and

[ϕ1, ϕ2] = ϕ2 ◦ ϕ1 ◦ ϕ−1
2 ◦ ϕ

−1
1 ∈ Γ

fixes every horizontal horosphere. Hence the commutator is parabolic or
trivial: the first case is excluded by (1), in the second case we have a = b by
Lemma 2.16. Both ϕ1 and ϕ2 have the same axis l, and since they generate
a discrete group Γ they are both powers of some hyperbolic ϕ ∈ Γ with that
axis. To prove this, note that Γ acts effectively on l as a discrete group of
translations, hence Γ ∼= Z. �

Corollary 2.18. Let Hn/Γ be a complete hyperbolic manifold. The axis
in Hn of two hyperbolic isometries in Γ are incident or ultra-parallel (not
asymptotically parallel).

2.6. Isometry group. We study here the isometry group Isom(M) of
a hyperbolic manifold M . Recall that the normalizer N(H) of a subgoup
H < G is the set of elements g ∈ G such that gH = Hg. It is the biggest
subgroup of G containing H such that H /N(H) is a normal subgroup. The
isometry group Isom(M) has an algebraic representation.

Proposition 2.19. Let M = Hn/Γ be a hyperbolic manifold. There is
a natural isomorphism

Isom(M) ∼= N(Γ)/Γ.

Proof. Every isometry ϕ : M →M lifts to an isometry ϕ̃

Hn ϕ̃ //

π
��

Hn

π
��

M ϕ
// M

such that ϕ̃Γ = Γϕ̃: hence ϕ̃ ∈ N(Γ). The lift is uniquely determined up to
left- or right- multiplication by elements in Γ, hence we get a homomorphism

Isom(M)→ N(Γ)/Γ

which is clearly surjective (every element in N(Γ) determines an isometry)
and injective (if ϕ̃ ∈ Γ then ϕ = id). �

Recall that the centralizer of H < G is the set of elements g ∈ G such
that gh = hg for all h. It is a subgroup of G.

Exercise 2.20. Let M = Hn/Γ be a closed hyperbolic manifold. The
centralizer of Γ is trivial.
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2.7. Outer automorphism group. The automorphism group Aut(G)
of a group G is the group of all the isomorphisms G → G. The inner
automorphisms are those isomorphisms of type g 7→ hgh−1 for some h ∈ G
and form a normal subgroup Int(G) /Aut(G). The quotient

Out(G) = Aut(G)/Int(G)

is called the outer automorphism group of G.
If x0, x1 are two points in a path-connected topological space X there

is a non-canonical isomorphism π1(X,x0) → π1(X,x1), unique only up to
post-composing with an inner automorphism. Therefore there is a canon-
ical isomorphism Out(π1(X,x0)) → Out(π1(X,x1)). Hence Out(π1(X))
depends very mildly on the basepoint.

The group Omeo(X) of all homeomorphisms of X does not act directly
on π1(X) because of the inner-automorphism ambiguity, but we get a natural
homomorphism

Omeo(X)→ Out(π1(X))

which is neither injective nor surjective in general.

Exercise 2.21. Two homotopic self-homeomorphisms give rise to the
same element in Out(π1(X)).

We turn back to our hyperbolic manifolds.

Proposition 2.22. If M is a closed hyperbolic manifold the map

Isom(M)→ Out(π1(M))

is injective.

Proof. Set M = Hn/Γ, identify Γ with π1(M) and Isom(M) with
N(Γ)/Γ. With these identifications the map

N(Γ)/Γ → Out(Γ)

is just the conjugacy action that sends h ∈ N(Γ) to the automorphism
g 7→ h−1gh of Γ. This is an inner automorphism if and only if there is f ∈ Γ
such that h−1gh = f−1gf for all g ∈ Γ, that is if hf−1 commutes with g for
all g ∈ Γ. Exercise 2.20 shows that h = f ∈ Γ. The map is injective. �

Corollary 2.23. The isometry group Isom(M) of a closed hyperbolic
manifold is finite. Two distinct isometries are not homotopically equivalent.

Proof. Distinct isometries have distinct images in Out(π1(M)) and are
hence non-homotopic by Exercise 2.21.

The topological group Isom(M) is compact because M is compact. To
show that it is finite it suffices to prove that it is discrete: suppose that a
sequence of isometries ϕi converges to some isometry ϕ. By composing with
ϕ−1 we may suppose that ϕ = id. Hence for any ε > 0 there is a i0 such
that ϕi moves the point at most ε for all i > i0.
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Figure 14. An intersection of (possibly infinitely many) half-planes.
The universal cover of a hyperbolic surface with boundary is isometric
to such an object.

Pick ε < injM : every pair of points x and ϕi(x) is connected by a unique
geodesic γx of length d(x, ϕi(x)). The geodesics γx as x ∈ M may be used
to define a homotopy between ϕi and id: a contradiction. �

2.8. Hyperbolic manifolds with boundary. The boundary version
of hyperbolic (elliptic, flat) manifolds is easy to formulate.

Definition 2.24. A hyperbolic (elliptic, flat) manifold M with geodesic
boundary is a riemannian manifold with boundary such that every point has
an open neighborhood isometric to an open set in a half-space in Hn (Sn,
Rn).

The boundary ∂M of a hyperbolic (elliptic, flat) n-manifold with ge-
odesic boundary is a hyperbolic (elliptic, flat) (n − 1)-manifold without
boundary. Theorem 1.2 extends appropriately to this context.

Theorem 2.25. A complete simply connected hyperbolic n-manifold M
with geodesic boundary is the intersection of half-spaces in Hn with disjoint
boundaries.

Proof. The proof is the same with a little variation: we construct a
developing map D : M → Hn, which is a covering onto its image D(M). A
submanifold D(M) ⊂ Hn with geodesic boundary is necessarily the inter-
section of half-spaces. In particular D(M) is simply connected and hence
the covering D is an isometry. �

An example is drawn in Fig. 14.

Corollary 2.26. A connected hyperbolic n-manifold M with geodesic
boundary is contained in a unique connected hyperbolic n-manifold N without
boundary.

Proof. The proof of Proposition 1.8 applies and shows that M = M̃/Γ

where M̃ is simply-connected and hence an intersection of half-spaces in Hn,

and Γ is a group of isometries of M̃ .
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Every local isometry in Hn extends to a global isometry and hence Γ <
Isom(Hn). Hence N = Hn/Γ contains naturally M . �

Two hyperbolic manifolds with geodesic boundary can sometimes be
glued along their boundary. Let M and N be hyperbolic manifolds with
geodesic boundary and ψ : ∂M → ∂N an isometry. Let M ∪ψ N be the
topological space obtained by quotienting the disjoint union M tN by the
equivalence relation that identifies x to ψ(x) for all x ∈ ∂M .

Proposition 2.27. The space M ∪ψ N has a natural structure of hy-
perbolic manifold.

Proof. Let y be the result of gluing x to ψ(x). The point y has two
neighborhoods on both sides, both isometric to a hyperbolic half-disc of
small radius ε. The isometry ψ tells how to glue these two half-discs to a
honest hyperbolic disc, which induces a hyperbolic metric near x. �





CHAPTER 4

Surfaces

1. Geometrization of surfaces
Mettere anche Jordan lis-
cio?1.1. Classification of surfaces. We prove here the following theorem.

Theorem 1.1 (Classification of surfaces). A compact, connected, ori-
entable surface is diffeomorphic to the surface Sg obtained by attaching g
handles to the sphere S2 as shown in Fig. 1-(left).

We extend our investigation to a larger interesting class of surfaces.

Definition 1.2. Let g, b, p > 0 be three natural numbers. The surface
of finite type Sg,b,p is the surface obtained from Sg by removing the interior
of b disjoint discs and p points.

See Fig. 2. We say that Sg,b,p has genus g, has b boundary components,
and p punctures. Its Euler characteristic is

χ(Sg,b,p) = 2− 2g − b− p.

Figure 1. A sphere with 3 handles may be represented in various ways.

Figure 2. The finite type surface Sg,b,p.

67
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We also use the notation Sg,b to indicate Sg,b,0.

1.2. Gauss-Bonnet theorem. A riemannian surface S is of course a
surface equipped with a metric tensor. For instance, every surface in R3 like
those shown in Fig. 1 has a metric tensor induced from the euclidean one
on R3. Every point p ∈ S has a gaussian curvature Kp ∈ R which varies
continuously in p ∈ S. The famous Gauss-Bonnet theorem connects the
curvature to the Euler characteristic of S:

Theorem 1.3 (Gauss-Bonnet). Let S be a compact surface, possibly with
geodesic boundary. We have ∫

S
Kp = 2πχ(S).

Corollary 1.4. Let S be a compact riemannian orientable surface,
possibly with geodesic boundary, with constant curvature K = −1, 0 or 1.

• if K = 1 then S is a sphere or a disc,
• if K = 0 then S is an annulus or a torus,
• if K < 0 then χ(S) < 0.

When K = ±1 we get Area(S) = 2π
∣∣χ(S)

∣∣.
We have already constructed an elliptic metric on the sphere or the disc

(take a half-sphere), and a flat metric on the torus or the annulus (take
S1 × [0, 1] with the product metric). We will construct in the next sections
a hyperbolic metric for S whenever χ(S) < 0. We cannot do this by finding
a nice embedding S ↪→ R3 in virtue of the following.

Proposition 1.5. A compact surface without boundary in R3 has one
point with positive curvature.

Proof. Consider the closed discs D(0, R) of radius R. Let R be the
minimum value such that S ⊂ D(0, R). The sphere ∂D(0, R) is tangent to
S in some point p, hence all directional curvatures of S in p are bigger or
equal than the directional curvatures 1

R on the sphere: hence Kp >
1
R2 . �

1.3. Hyperbolic pair-of-pants. We prove here the following. A pair-
of-pants is the surface S0,3.

Proposition 1.6. Given three real numbers a, b, c > 0 there is (up to
isometries) a unique hyperbolic pair-of-pants with geodesic boundary, with
boundary curves of length a, b, and c.

When some length in a, b, c is zero, we mean that the geodesic boundary
is actually a puncture, hence S0,3 degenerates to a punctured annulus S0,2,1,
a twice punctured disc S0,1,2, or a thrice-punctured sphere S0,0,3: see Fig. 3.
We require the hyperbolic metric to be complete near the puncture.Spiegare bene come fun-

zia! To prove this proposition we construct some right-angled hexagons as in
Fig. 5-(left). Three alternate sides on a hexagon are three pairwise disjoint
sides, like the a, b, c shown in the figure. A degenerate hexagon is one where
the length of some non-adjacent sides is zero as in Fig. 4.
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Figure 3. A pair-of-pants, an annulus with one puncture, a disc with
two puncutres, and a thrice-punctured sphere.

Figure 4. A right-angled hexagon with parameters a, b, c > 0 degen-
erates to a pentagon, quadrilateral, or triangle with ideal vertices if one,
two, or three parameters are zero.

Figure 5. A right-angled hexagon with alternate sides of length a,
b e c (left) and its construction (right), which goes as follows: take a
line with two arbitrary points A and B in it (bottom black). Draw the
perpendiculars from A and B (red). At distances a and b we find two
points A′ e B′ and we draw again two perpendiculars (black) r and s,
with some points at infinity P and Q. Draw the (unique) perpendiculars
to the initial line pointing to P and Q (blue): they determine two points
T and U . Note that AT and UB have some fixed length depending only
on a and b. We can vary the parameter x = TU : if x > 0 the blue lines
are ultra-parallel and there is a unique segment orthogonal to both of
some length f(x).
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Figure 6. By gluing two identical right-angled hexagons along their
black sides we get a hyperbolic pair-of-pants with geodesic boundary.

Lemma 1.7. Given three real numbers a, b, c > 0 there exists (up to
isometries) a unique (possibly degenerate) hyperbolic right-angled hexagon
with three alternate sides of length a, b, and c.

Proof. Suppose a, b > 0. The construction of the hexagon is depicted
in Fig. 5-(right). If x = 0 the blue lines coincide, hence P = Q and f(0) = 0.
The function f : [0,+∞) → [0,+∞) is continuous, strictly monotonic, and
with limx→∞ f(x) =∞: therefore there is precisely one x such that f(x) = c.

If two parameters are zero, say a = b = 0, then a simpler construction
works: take a segment of length c as in Fig. 4-(center), draw the perpendic-
ulars at their endpoints, and a line connecting the endpoints of these.

If a = b = c = 0, use the half-space model and recall that PSL2(R)
acts transitively on the unordered triples of points in ∂H2, and hence it acts
transitively on ideal triangles. �

The most degenerate case is so important that we single it out.

Corollary 1.8. Ideal triangles in H2 are all isometric.

By gluing two identical (possibly degenerate) hexagons as in Fig. 6 we
construct a (possibly degenerate) hyperbolic pair-of-pants whose geodesic
boundary consists of three curves of length 2a, 2b, and 2c.

Proof of Proposition 1.6. We have proved their existence, we turn
to their uniqueness up to isometry. Let P be a pair-of-pants whose geodesic
boundaries C1, C2, C3 have length 2a, 2b, 2c > 0.

Since C1 and C2 are compact, there are points x1 ∈ C1 and x2 ∈ C2 at
minimum distance d(x1, x2). By Hopf-Rinow there is a geodesic γ3 connect-
ing them with L(γ) = d(x1, x2). This geodesic is simple and orthogonal to
C1 and C2: if not, some other curve connecting x1 and x2 would be shorter.
We construct analogously two orthogeodesics γ1 and γ2 connecting C2 to
C3, and C3 to C1 having minimal length.

The fact that γ1, γ2, γ3 have minimal length easily implies that they are
disjoint (if they intersect, find some shorter curve). The three geodesics
subdivide P into two hexagons, with alternate sides of length L(γ1), L(γ2),
and L(γ3): by Lemma 1.7 they are isometric, and hence the three other
alternating sides also have the same length a, b and c. Hexagons are unique
up to isometry and hence the pair-of-pants too. �Fare caso degenere!
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Figure 7. Every surface of finite type with χ < 0 decomposes into
pair-of-pants. We show here a decomposition of S3.

1.4. Hyperbolic surfaces. The pair-of-pants can be used as building
blocks to construct all finite type surfaces with χ < 0.

Proposition 1.9. If χ(Sg,b,b) < 0 then Sg,b,p decomposes into −χ(Sg,b,p)
(possibly degenerate) pairs-of-pants.

Proof. If b + p = 0 then g > 2 and the surfaces decomposes easily in
many ways, see for instance Fig. 7. If χ < −1, a decomposition for Sg,b,p
may be obtained from a decomposition of Sg,b−1,p or Sg,b,p−1 by inserting
one more (possibly degenerate) pair-of-pants between two adjacent pair-of-
pants. If χ = −1 then the surface is either a pair-of-pants, or a torus with a
puncture or boundary component, which is in turn obtained by glueing two
boundary components of a pair-of-pants. �

Corollary 1.10. If χ(Sg,b,p) < 0 then Sg,b,p admits a complete hyper-
bolic metric with geodesic boundaries of arbitrary length.

Proof. Decompose Sg,b,p in pair-of-pants. Assign an arbitrary length
to all the closed curves of the decomposition (the 6 red curves shown in
Fig. 7) and hence give each pair-of-pants the hyperbolic metric determined
by the three assigned boundary lengths. Everything glues to a hyperbolic
metric for Sg,b,p. �

Exercise 1.11. Prove that a (possibly degenerate) hyperbolic pair-of-
pants with geodesic boundary has area 2π, thus confirming Gauss-Bonnet.

1.5. Riemann surfaces. Recall that a Riemann surface is a surface
equipped with a complex structure, that is an atlas to open sets of C whose
transition functions are biolomorphisms. Although defined in completely
different ways, there is a dictionary translating Riemann surfaces into hy-
perbolic (or flat, elliptic) surfaces and viceversa. The existence of such a
dictionary is quite unexpected, since a complex structure does not induce a
metric tensor on the surface, and viceversa.

We indicate with D ⊂ C the open unit disc and recall the core theorem
of Riemann uniformization.



72 4. SURFACES

Figure 8. La parte interna del fiocco di neve di Koch è biolomorfa
al disco aperto D.

Theorem 1.12 (Riemann uniformization). A simply connected Riemann
surface is biolomorphic to C, CP1, or D.

Corollary 1.13. A simply connected proper open set U ⊂ C is biolo-
morphic to D.

Proof. By uniformization U is biolomorphic to D or C. Suppose there
is a biolomorphism f : C → U : the singularity at infinity is not essential
because f is injective, hence f extends to a meromorphic function f : CP1 →
U ∪ f(∞) ⊂ CP1. The image of f is compact: since U is a proper subset
this is impossible. �

Note that the boundary of U may be particularly wild as in Fig. 8.

Corollary 1.14. A connected Riemann surface S is biolomorphic to
X/Γ where X ∈ {C,CP1, D} and Γ is a discrete group of biolomorphisms
acting freely on X.

Proof. The universal covering is biolomorphic to X by Riemann uni-
formization, and a deck transformation group Γ < Biol(X) is always dis-
crete. �

We now calculate the biolomorphism groups of the three models, recall-
ing that D is also a model for H2 and Isom(D) is its isometry group.

Proposition 1.15. The following identities hold:

Biol(CP1) = PSL2(C),

Biol(C) = {z 7→ az + b | a 6= 0},
Biol(D) = Isom+(D).

Proof. The first two equalities are standard consequences of Liouville
theorem, and the third is a consequence of Schwarz lemma. Note that
Isom+(D) consists precisely of the Möbius transformations that fix D, since
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Isom+(H2) = PSL2(R) and the two models are related by a Möbius anti-
transformation. If f : D → D is a biolomorphism, up to composing with
an isometry we may suppose that f(0) = 0, and Schwarz lemma says that
|f(z)| 6 |z| for all z ∈ D. Since the same result holds for f−1, we get
|f(z)| = |z| and the map f is a rotation around the origin. �

We have found a posteriori that the three models CP1, C, and D for
riemann surfaces are diffeomorphic to the three models S2, R2, and H2

for constant curvature surfaces, and that for the most interesting model
D = H2 biolomorphisms and orientation-preserving isometries are the same
thing. This remarkable fact provides a dictionary between holomorphic and
hyperbolic structures on all orientable surfaces, with very few exceptions.

Corollary 1.16. Let S be an orientable surface not diffeomorphic to
the sphere, the torus, the open disc, or the open annulus. There is a natural
bijection{

complete hyperbolic structures on S
}
←→

{
complex structures on S

}
.

Proof. If S is complete hyperbolic then S = D/Γ for some discrete
group Γ < Isom+(D) = Biol(D) acting freely, and hence inherits a complex
structure. Conversely, if S has a complex structure then either S = D/Γ

and we are done, or S = C/Γ or CP1/Γ for some discrete subgroup Γ of
Biol(C) or Biol(CP1) acting freely. In that case Γ is fully understood and S
is diffeomorphic to one of the exceptions. �

This dictionary can be used to prove some non-trivial facts in hyperbolic
geometry, such as the following.

Proposition 1.17. Every open subset of C admits a complete hyperbolic
structure.

Proof. An open set U ⊂ C has a natural complex structure and hence
a corresponding complete hyperbolic structure unless it is one of the ex-
ceptions above. The two exceptions that can arise (open disc and annulus)
admit a complete hyperbolic structure anyway (H2 and a cusp or tube). �

For instance, the the complement C \K of the Cantor set K admits a
complete hyperbolic structure.

Exercise 1.18. Decompose C\K into infinitely many pair-of-pants and
use them to construct a complete hyperbolic metric.

We stress the fact that the dictionary between complex and hyperbolic
structure uses the universal cover D and is hence not local.

2. Curves on surfaces

In this section we will investigate the closed curves on surfaces and use
them to prove some geometric and topological theorem.
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Figure 9. If (m,n) are coprime the line generated by (m,n) ∈ R2

projects to a simple closed curve in T . Here (p, q) = (3, 2).

Recall that a (possibly closed) curve γ on a differentiable manifold M
is regular if γ′(t) 6= 0 for all t. The image of a regular simple closed curve
is a 1-submanifold of M diffeomorphic to S1. All the curves will be tacitly
assumed to be regular. Moreover, with a little abuse we will sometimes
indicate by γ the support of the curve γ.

2.1. Simple closed curves on the torus. We classify the simple
closed curve on the torus T = S1 × S1. The fundamental group is abelian
π(T ) = Z×Z, hence a closed curve is determined up to homotopy by a pair
(m,n) ∈ Z× Z.

Proposition 2.1. If (m,n) are coprime the closed curve is homotopic
to a simple one, unique up to isotopy. If (m,n) are not coprime the closed
curve is not homotopic to a simple one.

2.2. Preliminaries on simple curves. Two self-diffeomorphisms of
S1 are co-oriented if they both preserve (or invert) the orientation of S1.

Lemma 2.2. Two co-oriented self-diffeomorphisms of S1 are isotopic.

Proof. The lifts f0, f1 : R → R to universal covers are periodic and
monotone, hence ft = (1− t)f0 + tf1 also is and descends to S1. �

The classification of surfaces has some non-obvious consequences.

Proposition 2.3. There are finitely many simple closed curves in Sg
up to diffeomorphism.

Proof. By cutting a simple closed curve along γ we get a surface S′

with the same Euler characteristic as Sg, with and one or two components,
and with the boundary oriented as γ: there are only finitely many diffeo-
morphism types for S′.

We prove that if γ1 and γ2 give two surfaces S′1 and S′2 of the same type
then there is a self-diffeomorphism of Sg sending γ1 to γ2. By hypothesis
there is a diffeomorphism ϕ : S′1 → S′2 that preserves the boundary orienta-
tions. By Lemma 2.2 we may modify ϕ near the boundary so that it extends
to a diffeomorphism ϕ : Sg → Sg sending γ1 to γ2. �
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Fare esempio/disegno di
curve per g = 3 We use hyperbolic geometry to prove some facts on closed curves. Recall

that a non-trivial element g ∈ G in a group is primitive if it cannot be
written as g = hn for some n > 2 and some h ∈ G. This condition is
conjugacy-invariant, hence the following makes sense.

Proposition 2.4. Let γ be a simple closed curve in Sg:

• if γ is homotopically trivial, it bounds a disc;
• if γ is not homotopically trivial, it is primitive in π1(Sg).

Proof. Let S′ be the surface obtained by cutting S along γ. The surface
S′ may have one or two components and has the same Euler characteristic
of S. If one component of S′ is a disc, we are done. If S′ is an annulus, then
S is a torus, γ is non-trivial and we are done. Fare csc nel toro prima.

In all other cases there is a hyperbolic metric on S where γ is a geodesic:
each component of S′ has negative Euler characteristic and hence can be
given a hyperbolic structure with boundary curves of length 1; by glue them
we get the metric.

This implies that γ is not homotopically trivial. If γ = ηk then γ is also
homotopic to the geodesic corresponding to η run k times: a simple closed
curve cannot be homotopic to two distinct geodesics, a contradiction. �

Let the inverse γ∗ of a closed curve γ be γ run with opposite orientation.

Proposition 2.5. A homotopically non-trivial closed curve in Sg is not
homotopic to its inverse.

Proof. If g = 1 the curves γ and γ∗ represent distinct elements (and
hence conjugacy classes) in π1(S1) = Z × Z. If g > 2, give Sg a hyperbolic
metric. The curve γ is homotopic to a geodesic γ and hence γ∗ is homotopic
to its inverse γ∗, which is certainly distinct from γ as a geodesic. Distinct
geodesics are not homotopic. �

Recall that the R-neighborhood of an object in a metric space is the set
of all points of distance at most R from that object. The R-neighborhoods
of the lines in H2 are particularly simple.

Proposition 2.6. The R-neighborhood of a line l ⊂ H2 in a confor-
mal model is bounded by two euclidean lines or circle arcs having the same
endpoints as l as in Fig. 10.

Proof. Put l in the half-space model with endpoints at 0 and ∞. A
R-neighborhood is invariant by the isometry x 7→ λx and is hence a cone
as in the figure. The other cases follow because isometries send lines and
circles to lines and circles. �

We will use the R-neighborhoods to prove the following.

Proposition 2.7. Let Sg have a hyperbolic metric. A simple closed
curve is homotopic to a simple closed geodesic.
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Figure 10. The R-neighborhood of a geodesic l in the half-plane
(left) and disc (right) models.

Figure 11. The lifts of γ (black arcs) and its geodesic representative
(red lines) have the same endpoints in ∂Hn (left). If two lines intersect,
the corresponding arcs do (right).

Proof. A simple curve γ in Sg = H2/Γ is homotopic to a closed geodesic
γ̄, and we need to prove that γ̄ is simple. The counterimage of γ in H2

consists of disjoint simple arcs, while the counterimage of γ consists of lines:
we prove that these lines are also disjoint.

The homotopy between γ and γ lifts to a homotopy between the arcs
and the lines. The homotopy between γ and γ has compact support, hence
there is a R > 0 such that every point is moved to some distance smaller
than R. Therefore the R-neighborhood of each line contains entirely an arc
as in Fig. 11-(sinistra).Fare dei colori rossi più

tenui per la stampa BN This shows that lines and arcs have the same endpoints. If two lines
intersects, their endpoints are linked in the circle ∂H2 and hence also the
corresponding arcs intersect, see Fig. 11-(right): a contradiction.

Since the lifts of γ do not intersect, the geodesic γ is either simple or
wraps some times along a simple geodesic, but the second possibility is
excluded by Proposition 2.4. �
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Figure 12. Two curves γ1 and γ2 are in minimal position if and only
if they do not create bigons.

2.3. Intersections of simple closed curves. We want to study the
intersections of simple closed curves. A homotopy class g ∈ [S1,M ] is simple
if it is represented by a simple closed curve.

Definition 2.8. Let g1, g2 ∈ [S1, S] be two simple homotopy classes on
an orientable surface S. Their geometric intersectioon is the number

i(g1, g2) = min
{

#(γ1 ∩ γ2)
∣∣ γ1 ∈ g1, γ2 ∈ g2

}
where γ1 and γ2 vary among the simple closed curves in the classes g1 and
g2 that intersect transversely.

We indicate for simplicity as i(γ1, γ2) the geometric intersection of the
homotopy classes [γ1] and [γ2]. Two simple closed curves γ1 and γ2 in Sg
are parallel if they are disjoint and cobound an annulus.

Proposition 2.9. We have i(γ, γ) = 0 for any simple closed curve γ.

Proof. A tubular neighborhood of γ is diffeomorphic to S1 × [−1, 1]
because S is orientable, hence γ has two disjoint parallel representatives
S1 ×

{
−1

2

}
and S1 ×

{
1
2

}
. �

2.4. Bigon criterion. Two simple closed curves γ1 and γ2 are in min-
imal position if they intersect transversely in i(γ1, γ2) points. The comple-
ment of two transverse simple curves is the finite disjoint union of open sets
with polygonal boundaries; one such set is a bigon if it is a disc with two
edges as in Fig. 12. The following criterion is a simple and useful tool to
determine the geometric intersection of two curves.

Theorem 2.10 (Bigon criterion). Two transverse simple closed curves
γ1, γ2 in Sg with g > 2 are in minimal position if and only if they do not
create bigons.

Proof. If γ1 and γ2 create a bigon, the homotopy described in Fig. 13-
(left) transforms γ1 and γ2 in two curves that intersect in a smaller number
of points: hence γ1 e γ2 are not in minimal position.

Suppose now that γ1 and γ2 do not form bigons: we need to show that
they are in minimal position. If γ1 is trivial, it bounds a disc as in Fig. 13-
(right). If γ2 intersects γ1, an innermost argument shows that they form a
bigon: the curve γ2 intersects the disc in arcs, each diving the disc into two
parts; if one part contains no other arc it is a bigon, otherwise iterate.
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Figure 13. A bigon can be eliminated via homotopies (left). If γ1
bounds a disc and γ2 intersects γ1, there is a bigon (right).

Figure 14. The lifts of γi and γi have distance bounded by R and
hence have the same endpoints (left). Two curves that intersect in more
than one point form a bigon (right).

Consider the case both γ1 and γ2 are homotopically non-trivial. Fix an
arbitrary hyperbolic metric Sg = H2/Γ. The two curves are homotopic to
two simple geodesics γ1 and γ2. The lifts of γi and γi in H2 are arcs and
lines and there is a R > 0 such that every arc lies in the R-neighborhood
of a line, see the proof of Proposition 2.7. Arcs and lines have the same
endpoints at infinity as in Fig. 14-(left).

Two distinct arcs may intersect at most in one point: if they intersect
more, an innermost argument shows that they form a bigon D as in Fig. 14-
(right), which projects to a bigon in S. The last assertion is actually non-
immediate: the two vertices of the bigon might go to the same vertex, but
this is easily excluded because S is orientable.

We show how to calculate the intersections between γ1 and γ2 directly
on the universal covering. Let C(γi) ⊂ Γ be the conjugacy class of all
hyperbolic transformations corresponding to γi. We know that the lifts of
γi are the axis of the hyperbolic transformations in C(γi).
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By Corollary 2.18 from Chapter 3 the axis are either incident or ultra-
parallel. Hence two lifts of γ1 and γ2 intersect (in a single point) if and only
if the corresponding lifts of γ1 and γ2 intersect (in a single point), and this
holds if and only if the endpoints are linked in ∂H2. Let π : H2 → H2/Γ be
the projection. We have established two bijective correspondences

π−1(γ1) ∩ π−1(γ2)←→ π−1(γ1) ∩ π−1(γ2)←→ X

with

X =
{

(ϕ1, ϕ2) ∈ C(γ1)× C(γ2)
∣∣ Fix(ϕ1) and Fix(ϕ2) are linked

}
.

The bijective correspondences are Γ-equivariant. By quotienting by the
acion of Γ we find

γ1 ∩ γ2 ←→ γ1 ∩ γ2 ←→ X/Γ.

The cardinality N of X/Γ depends only on the homotopy type of γ1 and
γ2. Therefore two curves homotopic to γ1 and γ2 will have at least these N
intersections. Hence γ1 and γ2 are in minimal position. �

In the last part of the proof we have implicitly proved the following.

Corollary 2.11. Let Sg be a hyperbolic surface. Two simple closed
geodesics with distinct supports are always in minimal position.

Proof. Two geodesics do not create bigons: if they do, the bigon lifts
to a bigon between two lines in H2, but lines may intersect at most once. �

Corollary 2.12. If two closed curves γ, η intersect transversely in one
point, we have i(γ, η) = 1. In particular, they are homotopically non-trivial.

Exercise 2.13. If γ is not homotopically trivial there is η such that
i(γ, η) > 0.

Hint. Use Proposition 2.3 to transform γ into a comfortable curve and
draw an η which intersects γ in at most 2 points without bigons. �

Exercise 2.14. Prove the bigon crierion for the torus. Deduce that

i
(
(p, q), (r, s)

)
=

∣∣∣∣det

(
p r
q s

)∣∣∣∣ .
2.5. Homotopy and isotopy of curves. We show here that two sim-

ple closed curves are homotopic if and only if they are ambient isotopic. We
start with a particular case.

Lemma 2.15. Let γ1 and γ2 be two homotopically non-trivial curves in
Sg. If they are disjoint and homotopically equivalent, they are parallel.

Proof. Cut Sg along γ1∪γ2. We don’t obtain discs because the curves
are homotopically non-trivial and if we obtain an annulus the two curves are
parallel. In all other cases we obtain surfaces with negative curvature and
hence we may assign a hyperbolic metric where both γ1 and γ2 are geodesics:
hence they are not homotopic. �
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We now turn to the general case.

Proposition 2.16 (Homotopy implies isotopy). Two homotopically non-
trivial simple closed curves in Sg are homotopically equivalent if and only if
they are ambiently isotopic.

Proof. Recall that isotopy implies ambient isotopy here because S1 is
compact: hence we only need to prove that they are isotopic.

Let γ1 and γ2 be the two curves. Up to perturbing with a little isotopy
we may suppose they intersect transversely. Since i(γ1, γ2) = i(γ1, γ1) = 0
the two curves are disjoint or form a bigon. If they form a bigon, we can
eliminate it via isotopies as in Fig. 13-(left) and after finitely many steps we
get two disjoint curves.

The curves γ1 and γ2 are parallel by Lemma 2.15, and we use the annulus
they cobound to move γ2 isotopically over γ1. The two curves now have the
same support and the same orientation by Proposition 2.5: by Lemma 2.2
they are isotopic. �

This fact is not true in higher dimensions: two homotopically equivalent
simple closed curves may be knotted differently and hence are not isotopic;
the knot theory studies precisely this phenomenon.

Corollary 2.17. Let Sg be equipped with a hyperbolic metric. A homo-
topically non-trivial simple closed curve is ambiently-isotopic to a geodesic.

2.6. Multicurves. We introduce the following objects.

Definition 2.18. A multicurve µ in Sg is a finite set of disjoint homo-
topically non-trivial simple closed curves.

See an example in Fig. 15. A multicurve is essential if it has no par-
allel components. By cutting Sg along an essential multicurve µ we get

finitely many surfaces S1, . . . , Sk of negative Euler characteristic. If each
such surface is a pair-of-pants, then µ is called a pants decomposition.

Proposition 2.19. An essential multicurve µ in Sg with g > 2 has
at most 3g − 3 components, and it has 3g − 3 if and only if it is a pants
decomposition.

Proof. By cutting Sg along µ we get some surfaces S1, . . . , Sk of neg-

ative Euler characteristic such that χ(Sg) = χ(S1) + . . .+ χ(Sk). If each Si

is a pair-of-pants then χ(Si) = −1 and k = −χ(Sg) = 2g− 2; the curves are
3
2(2g − 2) = 3g − 3 because each boundary curve is counted twice. If some

Si is not a pair-of-pants it can be further subdivided into pair-of-pants. �

Let m1 and m2 be two isotopy classes of multicurves. We define their
geometric intersection as

i(m1,m2) = min
{

#(µ1 ∩ µ2)
∣∣ µ1 ∈ m1, µ2 ∈ m2

}
.

where µ1 and µ2 varies among all multicurves in the classes m1 and m2

intersecting transversely. This definition extends the geometric intersection
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Figure 15. A multicurve in a surface of genus two.

of simple closed curves by Proposition 2.16. We still indicate for simplicity
by i(µ1, µ2) the geometric intersection of the classes [µ1] and [µ2]. Two
transverse multicurves µ1 and µ2 are in minimal position if they intersect
in i(µ1, µ2) points: the bigon criterion easily extends to this context.

Proposition 2.20. Let µ1, µ2 ⊂ Sg be transverse multicurves with g >
2. The following equality holds:

i(µ1, µ2) =
∑

γ1 ⊂ µ1

γ2 ⊂ µ2

i(γ1, γ2)

where the sum is taken on all components γ1, γ2 of µ1, µ2. The multicurves
µ1 and µ2 are in minimal position if and only if they do not form bigons.

Proof. If µ1 and µ2 form no bigons, then γ1 and γ2 have no bigons too,
and are therefore in minimal position. This proves the equality and that µ1

and µ2 are in minimal position. �

Note again that i(µ, µ) = 0. We extend Proposition 2.16 to essential
multicurves.

Proposition 2.21 (Homotopy implies isotopy). Let

µ1 = {γ1
1 , . . . , γ

1
n}, µ2 = {γ2

1 , . . . , γ
2
n}

be essential multicurves in Sg. If γ1
j is homotopically equivalent to γ2

j for all

j then there is an ambient isotopy moving µ1 to µ2.

Proof. We adapt the proof of Proposition 2.16. Since i(γ1
j , γ

2
k) =

i(γ1
j , γ

1
k) = 0 we get i(µ1, µ2) = 0 and after an isotopy µ1 ∩ µ2 = ∅. The

Lemma 2.15 implies that γ1
j and γ2

j are parallel and can be superposed
separately for each j. �

Corollary 2.22. Let Sg have a hyperbolic metric. An essential multi-
curve can be isotoped to a (unique) geodesic essential multicurve.

2.7. Uniqueness of the minimal position. We show that the mini-
mal position of two essential multicurve is in fact unique up to isotopy. Given
two multicurves µ1, µ2, we indicate by µ1 ∪ µ2 the union of their supports.
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Figure 16. A bigon between µ2 and η2 intersects µ1 into vertical arcs
and can be removed via an ambient isotopy that preserves the support
of µ1 (left). Per ogni tipo di omotopia esistono k curve in µ2 e k in η2
e tutte queste intersecano µ1 in archi come in figura (destra).

Proposition 2.23 (Uniqueness of the minimal position). Let (µ1, µ2)
and (η1, η2) be two pairs of essential multicurves in minimal position in Sg
with g > 2. If µi and ηi are isotopic for all i = 1, 2, there is an ambient
isotopy that carries µ1 ∪ µ2 to η1 ∪ η2.

Proof. In what follows we will be concerned only with the support of
the multicurves, not their parametrizations.

By hypothesis there is an ambient isotopy carrying µ1 to η1, hence we
can suppose µ1 = η1. We now construct an ambient isotopy that fixes µ1 and
carries µ2 to η2. Up to a little ambient isotopy fixing µ1, we may suppose
that µ2 and η2 intersect transversely.

If µ2 ∩ η2 6= ∅ then µ2 and η2 produce a bigon as in Fig. 16-(left):
the multicurve µ1 intersects the bigon in arcs that join distinct edges as
in the figure (otherwise µ1 = η1 would forf a bigon with µ2 or η2, which
is excluded by their minimal position). We can eliminate the bigon by an
ambient isotopy that fixes µ1 as shown in Fig. 16-(left).

We now have µ1 = η1 and µ2 ∩ η2 = ∅. Since µ2 and η2 are disjoint and
isotopic, every component of µ2 is parallel to a component of η2 through an
annulus which may intersect µ1 = η1 only by arcs as in Fig. 16-(right). A
radial ambient isotopy overlaps the two components keeping µ1 fixed. By
performing this on each component we get µ2 = η2. �Cambiare figura e aggiun-

gere caso µ1 parallelo o
cambiare enunciato! As an example, consider two homotopically non-trivial simple closed

curves γ1, γ2 in Sg. A hyperbolic metric on Sg gives two geodesic represen-
tatives γ1 and γ2 for them, and the following holds:
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Figure 17. Two multicurves (blue and red) in minimal position.

Corollary 2.24. The support γ1 ∪ γ2 in Sg does not depend (up to
ambient isotopy) on the hyperbolic metric chosen.

Proof. The geodesics γ1 and γ2 coincide or are in minimal position for
any metric. �

2.8. The Alexander trick. We have proved that homotopy implies
homotopy for simple closed curves in Sg, now we want to prove an analogous
result for diffeomorphisms of Sg. We start with the disc.

Proposition 2.25 (Alexander trick). Two diffeomorphisms ϕ,ψ : Dn →
Dn that coincide on ∂Dn are linked by an isotopy that fixes ∂Dn at each
time t.

Proof. We take f = ϕ ◦ ψ−1 and idDn and construct an isotopy that
sends f to idDn fixing ∂Dn. The following function does the job:

F (x, t) =

{
x if ‖x‖ > t,

tf
(
x
t

)
if ‖x‖ 6 t.

�

When n = 2 there is also a smooth isotopy that links ϕ and ψ, but the
proof is more complicate; in higher dimension the existence of a smooth iso-
topy is an open problem (for n = 4) and is often false (for infinite values of n,
starting from n = 7: this fact is connected to the existence of exotic spheres,
differentiable manifolds that are homeomorphic but not diffeomorphic to
Sn).

2.9. Homotopy and isotopy between diffeomorphisms. We con-
clude the chapter with this result.

Proposition 2.26 (Homotopy implies isotopy). Two diffeomorphisms
ϕ,ψ : Sg → Sg are hopotopic if and only if they are isotopic.

Proof. Fix two multicurves µ1 and µ2 as in Fig. 10. The complement
of µ1∪µ2 consists of polygons with at least 4 sides: since there are no bigons,
they are in minimal position.

The multicurves ϕ(µ1) and ψ(µ1) are homotopic and hence isotopic by
Proposition 2.21, and so are ϕ(µ2) and ψ(µ2). The pairs

(
ϕ(µ1), ϕ(µ2)

)
and(

ψ(µ1), ψ(µ2)
)

are in minimal position (because µ1 and µ2 are), hence by
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Proposition 2.23 there is an ambient isotopy that carries ϕ(µ1) ∪ ϕ(µ2) to
ψ(µ1) ∪ ψ(µ2).

Up to composing with this isotopy we may suppose that ϕ(µ1 ∪ µ2) =
ψ(µ1 ∪µ2). Note that µ1 ∪µ2 is a graph: the maps ϕ and ψ on µ1 ∪µ2 may
only differ by different parametrizations on the edges, and with an isotopy
these differences disappear. Now ϕ = ψ pointwise on µ1 ∪ µ2.

Pick now a polygon P in Sg \µ1 ∪µ2. The maps ϕ and ψ send P to the
same polygon Q in Sg \ ϕ(µ1 ∪ µ2), because P is determined by the cyclic
order of its edges. They coincide on ∂P and by Alexander trick they are
linked by an isotopy on P . By applying this isotopy on each polygon we
obtain an isotopy transforming ϕ into ψ. �



CHAPTER 5

Teichmüller space

We study in this chapter the hyperbolic metrics that can be assigned to
a fixed surface Sg of genus g > 2.

1. Generalities

We introduce two important definitions.

Definition 1.1. Take g > 2. The moduli space of Sg is the set of all
the hyperbolic metrics on Sg considered up to isometry.

The Teichmüller space Teich(Sg) of Sg is the set of all hyperbolic metrics
on Sg considered up to isometries isotopic to the identity.

At a first sight, the moduli space seems a more natural object to study. It
turns out however that the second space is homeomorphic (for some natural
topology) to an open ball, while the moduli space is topologically more
complicated. It is then better to define and study Teichmüller space first,
and then consider the moduli space as a quotient of Teichmüller space.

Ricordiamo che l’operazione di riscalamento di una metrica riemanni-
ana consiste nel sostituire il tensore metrico g con λg per qualche λ > 0:
in geometria iperbolica questa operazione cambia la curvatura se λ 6= 1 e
quindi non è permessa, in geometria piatta invece la curvatura nulla resta
invariata e questa operazione ha senso (in altre parole, le omotetie esistono
solo nella geometria euclidea e non nelle geometrie iperbolica e sferica). Nel

riscalamento le lunghezze variano di un fattore
√
λ e l’area del toro varia di

un fattore λ: a meno di riscalamento si può quindi sempre chiedere che una
metrica piatta sul toro abbia area unitaria.

1.1. Teichmüller space of the torus. On a torus a flat metric g can
be rescaled by any constant λ > 0 to give another flat metric λg. The
rescaling changes the lengths by a factor

√
λ and the area by a factor λ. Up

to rescaling, we may ask that the torus have unit area.
The moduli space of T is the set of all the flat metrics on T considered

up to isometry and rescaling, and the Teichmüller space is the set of all flat
metrics on T up to isometries isotopic to the identity and rescaling.

The flat metrics on T are easily classified. A lattice is a discrete subgroup
Γ < R2 isomorphic to Z2. The group R2 acts as translations to R2, hence a
lattice is naturally a discrete subgroup of Isom+(R2).

Proposition 1.2. A flat torus is isometric to R2/Γ for some lattice Γ.

85
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Figure 1. Meridiano (in rosso) e longitudine (in blu) sono due gen-
eratori di π1(T ) = Z× Z.

Proof. As a complete flat orientable surface, a flat torus is isometric
to Rn/Γ for some discrete group Γ of orientation-preserving isometries of Rn
acting freely. An orientation-preserving isometry of R2 without fixed points
is a translation. �

Remark 1.3. Every translation x 7→ x + b in R2 commutes with Γ
and hence descends to an isometry on the flat torus T = R2/Γ. Hence
the isometry group Isom+(T ) is not discrete. Moreover, the flat torus is
homogeneus, i.e. for every pair of points x, y ∈ T there is an isometry sending
x to y.

Exercise 1.4. Let T be a flat torus. Every non-trivial element γ ∈
π1(T ) is represented by a closed geodesic, unique up to translations. The
geodesic is simple if and only if γ is primitive.

We have π1(T ) = Z× Z, generated by a meridian m = (1, 0) and longi-
tude l = (0, 1) as in Fig. 1. A flat metric h on T identifies m and l with two
translations w, z ∈ C = R2: the pair (w, z) is well-defined up to an isometry
of C = R2. Hence the ratio z

w ∈ C depends only on h.

Proposition 1.5. We get a bijection:

Teich(T ) −→ H2

h 7−→ z

w
.

Proof. The map is well-defined: an isometry relating h and h′ isotopic
to the identity fixes m and l up to isotopy and hence we get the same pair
(w, z), if we rescale the metric we get (λw, λz) and hence the same z

w .

An inverse H2 → Teich(T ) is as follows: for z ∈ H2 take Γ = 〈1, z〉 and
assign to T the metric of H2/Γ with m and n corresponding to 1 and z. �
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Figure 2. The flat metric on the torus T determined by z ∈ H2 may
be constructed by identifying the opposite sides of the parallelogram
with vertices 0, 1, z, z+ 1. The lattice Γ is generated by 1 and z and the
parallelogram is a fundamental domain.

The flat metric corresponding to z ∈ H2 may be constructed by identi-
fying the opposite sides of a parallelogram as in Fig. 2.

1.2. Mapping class group. A diffeomorphism ϕ : Sg → Sg transforms
the metric h into the metric ϕ∗h, defined as

(ϕ∗h)ϕ(x)

(
dϕx(v), dϕx(w)

)
= hx(v, w).

If h varies through an isotopy, the metric ϕ∗ varies through a corresponding
isotopy: therefore ϕ acts on Teich(Sg) as follows:

Teich(Sg) −→ Teich(Sg)

[h] 7−→ [ϕ∗h]

If we vary ϕ by an isotopy the action is unaffected. It is then natural to
define the following important group.

Definition 1.6. The mapping class group of Sg is the group

MCG(Sg) = Diffeo+(Sg)/∼

where Diffeo+(Sg) indicates the group of all orientation-preserving diffeo-
morphisms Sg → Sg and ϕ ∼ ψ if ϕ and ψ are isotopic.

We have seen that MCG(Sg) acts on Teich(Sg): by definition, the quo-
tient

Teich(Sg)/MCG(Sg)

is the moduli space of Sg.
The group MCG(Sg) acts on the first homology group H1(Sg,Z) di Sg,

since homotopic functions induce the same maps in homology. We get a
group homomorphism

MCG(Sg) −→ Aut
(
H1(Sg,Z)

)
= Aut

(
Z2g
)

= GL2g(Z)

which is neither injective nor surjective in general. Its kernel is called the
Torelli group of Sg.
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Figure 3. A Dehn twist along a curve γ maps a transverse arc µ
onto an arc which makes a complete left turn.

1.3. The mapping class group and moduli space of the torus.
As usual, everything is simple on the torus T . Let Aut+(H1(T )) ∼= SL2(Z)
denote the automorphisms with positive (hence unit) determinant.

Proposition 1.7. The Torelli group of the torus T is trivial and

MCG(T ) ∼= Aut+(H1(T )).

Proof. Consider the meridian m and longitude l of T . A diffeomor-
phism ϕ of T that acts trivially on H1(T ) = π1(T ) = Z2 sends m and l to
two simple closed curves m′ e l′ homotopic and hence isotopic to m and l:
the proof of Proposition 2.26 from Capitolo 4 applies in this simple case to
prove that ϕ is isotopic to the identity.

A diffeomorphism ϕ is orientation-preserving and hence acts on the
group H1(T,Z) = Z2 with positive determinant. Conversely, a matrix
A ∈ SL2(Z) acts linearly on R2 preserving the lattice Z2 and hence descends
to T = R2/Z2 . �

Proposition 1.8. The action of MCG(T ) on Teich(T ) is the following
action of SL2(Z) on H2 as Möbius transformations:(

a b
c d

)
: z 7−→ az − b

−cz + d
.

Proof. The metric z assigns to T the structure R2/Γ with Γ = 〈1, z〉
and (m, l) corresponding to (1, z).

Pick ϕ =
(
a b
c d

)
∈ SL2(Z) = MCG(T ). Since ϕ−1 =

(
d −b
−c a

)
, in the new

metric ϕ∗ the pair (m, l) corresponds to (d− cz,−b+ az). �

The kernel of the action is {±I}: two matrices A and −A act in the
same way on Teich(T ).Add description of moduli

space of the torus.

1.4. Dehn twist. Let γ be a homotopically non-trivial simple closed
curve in an oriented surface Sg. The Dehn twist along γ is an element
Tγ ∈ MCG(Sg) defined as follows.

Pick a tubular neighborhood of γ diffeomorphic to S1 × [−1, 1] where γ
lies as S1 × {0}. Let f : [−1, 1] → R be a smooth function which is zero in
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−1,−1

2

]
and 2π on

[
1
2 , 1
]
. Let

Tγ : Sg −→ Sg

be the diffeomorphism that acts on the tubular neighborhood as Tγ(eiα, t) =

(ei(α+f(t)), t) and on its complementary set in Sg as the identity. We may
visualize Tγ by noting that it gives a complete left turn to any arc that
intersects γ as in Fig. 5.

Proposition 1.9. The element Tγ ∈ MCG(Sg) depends only on the
homotopy class of γ.

Proof. When defining Tγ we have chosen a tubular neighborhood for
γ and a smooth function f . Tubular neighborhoods are ambiently isotopic,
and increasing functions with fixed extremes are isotopic too: this facts
imply easily that Tγ is well-defined up to isotopy. A homotopy of γ can be
promoted to an ambient isotopy by Proposition 2.16. �

Remark 1.10. To define Tγ we needed the orientation of Sg to distin-
guish from “turning left” and “turning right”, but not an orientation for γ.
If we change the orientation of γ the element Tγ is unaffected.

Proposition 1.11. The Dehn twists along m and l in MCG(T ) =
SL2(Z) are (

1 −1
0 1

)
,

(
1 0
1 1

)
.

Proof. In homology we find

Tm(m) = m, Tm(l) = l −m, Tl(l) = l, Tl(m) = m+ l.

�

We have constructed a bijection between Teich(T ) andH2. We now want
to construct for g > 2 some analogous identifications between Teich(Sg) and
some open set of RN for some N depending on g. To this purpose we need
to introduce some concepts.

1.5. Earthquakes. Hyperbolic metrics may be twisted along simple
closed curves: this operation is called an earthquake.

Let h be a complete hyperbolic metric on an oriented surface Sg and γ
a simple closed geodesic. Fix an angle θ ∈ R. Informally, a new metric hθ is
constructed by sliding one of the two components near γ on the left by the
θ. Formally, the new metric is defined as follows.

Recall from Proposition 2.15 in Chapter 3 that γ has a R-neighborhood
isometric to a R-tube for some R > 0. A R-tube here is a R-annulus as in
Fig. 4, defined by quotienting a R-neighborhood of a line l by a hyperbolic
transformation. The R-annulus is naturally parametrized as γ × [−R,R] ∼=
S1 × [−R,R], where x× [−R,R] are geodesic segments orthogonal to γ.

We choose a diffeomorphism ϕ of S1× [−R,R] that curves the segments
by an angle θ as in Fig. 5-(right). More precisely, let f : [−R,R] → R be



90 5. TEICHMÜLLER SPACE

Figure 4. A R-annulus around a geodesic γ is the quotient of a R-
neighborhood of a line l by a hyperbolic transformation. The orthogonal
(green) geodesic segments are parametrized by arc-length as [−R,R],
hence the R-annulus is naturally parametrized as γ × [−R,R].

Figure 5. To define the earthquake we pick a diffeomorphism of the
R-annulus that modifies the orthogonal segments as shown here.

a strictly increasing smooth function which is zero on
[
−R,−R

2

]
and θ on[

R
2 , R

]
. We set ϕ(eiα, t) = (ei(α+f(t)), t).

We define a new metric hθ on Sg as follows: the metric tensor hθ coincides
with ϕ∗h on the R-annulus and coincides with h on the complement of the
R
2 -annulus

[
R
2 ,

R
2

]
× S1.

Proposition 1.12. The metric tensor hθ is well-defined and gives a
complete hyperbolic metric on Sg.

Proof. It is well-defined because h and hθ coincide on S1 ×
[
R
2 , R

]
,

because (eiα, t) 7→ (ei(α+θ), t) is an isometry of the R-annulus. �

Remark 1.13. In the new metric hθ the curve γ is still a geodesic of the
same length as before, and its R-neighborhood is also unchanged.

As for Dehn twists, earthquakes define an action on Teichmüller space.
If γ is a simple closed curve we let hγθ be the result of an earthquake of angle
θ performed along the unique geodesic homotopic to γ in the metric h.

Proposition 1.14. The map

Eγ : R× Teich(Sg) −→ Teich(Sg)

(θ, h) 7−→ hγθ
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is an action of R on Teich(Sg), determined only by the homotopy class of γ.

Proof. We prove that Eγ is well-defined. The only ambiguity in the
definition of hθ is the choice of the function f . If we use another func-
tion f ′ the resulting metric changes only by an isotopy: the diffeomor-
phism of Sg which is the identity outside the R-annulus and sends (eiα, t)

to (ei(α+f(t)−f ′(t)), t) is an isometry between the two metrics, and is isotopic
to the identity.

To prove that Eγ is an action we need to check that

hγθ+θ′ =
(
hγθ′
)γ
θ
.

By Remark 1.13 we can take the same R-annulus to compose two earth-
quakes and hence the equality follows. �

As for Dehn twists, to define the action Eθ we needed the orientation
of Sg but not one for γ. The earthquake action extends continuously the
discrete action of Dehn twists:

Proposition 1.15. We have Tγ(h) = Eγ(2π, h).

Proof. It follows directly from their definitions. �

1.6. Length functions. A homotopically non-trival closed curve γ in
Sg with g > 2 defines a length function

`γ : Teich(Sg)→ R>0

which assigns to a metric h ∈ Teich(Sg) the length `γ(h) of the unique
geodesic isotopic to γ.

Proposition 1.16. The function `γ is well-defined.

Proof. If h′ = ϕ∗h for some isometry ϕ then `γ(h′) = `ϕ(γ)(h). If
ϕ is isotopic to the identity the curves ϕ(γ) and γ are isotopic and hence

`ϕ(γ)(h) = `γ(h) by definition. �

1.7. Earthquakes and length functions on the torus. Most of
what we said extends to the torus case and can be nicely described. On
a flat torus a closed geodesic is unique in its homotopy class only up to
translations, and we fix the convention that the metric h ∈ Teich(T ) is
always rescaled to have unit area. Earthquakes and length functions are
hence well-defined, and can be written explicitly as we now see. As usual
we denote simple closed curves as coprime pairs (p, q) and identify Teich(T )
with H2 ⊂ C.

Proposition 1.17. The formula holds:

`(p,q)(z) =
‖p+ qz‖√
=z

for any curve (p, q) and any metric z ∈ Teich(T ).
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Figure 6. A torus with metric z (left) twisted along the curve γ (right).

Proof. Up to rescaling we have T = R2/Γ with Γ = 〈1, z〉. The trans-
lation in Γ corresponding to (p, q) is p · 1 + q · z and the closed geodesic it
produces has length ‖p+ qz‖. The area of the torus T is =z and hence we

must rescale it by 1/
√
=z. �

We can write the earthquake action along the meridian m of T .

Exercise 1.18. We have:

Em(θ) : z 7→ z +
θ

2π
.

Hint. Draw T and γ as in Fig. 2. �

Corollary 1.19. The earthquake action E(p,q) is the 1-parameter family

of parabolic transformations with fixed point −p
q ∈ ∂H

2.

Proof. We know the case (p, q) = (1, 0) = m, and the general case
follows from Proposition 1.8. �

The orbits of E(p,q) are of course the horospheres centered at −p
q .

Corollary 1.20. If i(γ, γ′) > 0 then `γ is strictly convex along the
orbits of Eγ′

Proof. We may take γ′ = m and note that the function in Proposition
1.17 is strictly convex on the horospheres =z = k. �

1.8. Convexity of the length functions. In higher genus there is no
nice explicit formula for `γ , but we will generalize Corollary 1.20 anyway.
We will use the following.

Exercise 1.21. Let f : Rm × Rn → R>0 be strictly convex and proper.
The function

F : Rn −→ R>0

y 7−→ min
{
f(x, y)

∣∣ x ∈ Rm
}

is well-defined, strictly convex and proper.
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Figure 7. A geodesic η in hγθ is a geodesic outside the annulus and
deviates on the left by an angle θ when crossing it (center) since hγθ is
obtained by twisting a hyperbolic metric (left). We may simplify the
picture by describing η as a broken geodesic line (right).

Length functions are either constant or strictly convex on orbits of earth-
quakes:

Proposition 1.22. Let η and γ be two homotopically non-trivial simple
closed curves in and h be a hyperbolic metric on Sg. The function

R −→ R>0

θ 7−→ `η(hγθ )

is

• constant if i(η, γ) = 0,
• strictly convex and proper if i(η, γ) > 0.

Proof. We can suppose that γ is geodesic with respect to h. If i(η, γ) =
0 the curves η and γ are disjoint geodesics and the length of η is not affected
by the earthquakes we perform near γ.

Consider the case n = i(η, γ) > 0 e g = 1. Denote by ηθ the geodesic
isotopic to η in the twisted metric hγθ : it intersects γ transversely in n points.

Fix a sufficiently small R-annulus around θ and recall that the geodesics
in hγθ are curves that are geodesic outside theR-annulus and deviate smoothly
on the left when crossing it as in Fig. 7-(center). We may represent efficiently
a geodesic by substituting every smooth deviation with a broken jump as
shown in Fig. 7-(right). We get a bijection{

closed geodesics
with respect to hγθ

}
←→

{
broken geodesics
with respect to h

}
where a broken geodesic is a geodesic which at every crossing of γ jumps to

the left at distance θl(γ)
2π . This correspondence is useful because it preserves

the lengths: the length of the closed geodesic for hγθ is equal to the length
of the broken geodesic (which is the sum of the lengths of its components),
because the segments in Fig. 7-(left) and (right) are isometric.

We lift this description to the universal cove H2 and fix a lift l of η0.
Pick n + 1 consecutive intersections r1, . . . , rn+1 of l with the lifts of γ as
in Fig. 7. The hyperbolic transformation τ with axis l corresponding to η
sends r1 to rn+1.
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Figure 8. The (blue) line l is a lift of η. Consider n consecutive
intersections with lifts of γ (in red): the (n + 1)-th lift is equivalent to
the first via the hyperbolic transformation τ having axis l (here n = 2).

The closed geodesic ηθ, represented as a broken geodesic, lifts to a ge-
odesic which starts from some point x1 + θ ∈ r1 and arrives to some point

x2 ∈ r2, then jumps on the left at distance θl(γ)
2π and start again from

x2 + θ, and so on until it reaches the point τ(x1) ∈ τ(r1) = rn+1. As
x1 ∈ r1, . . . , xn ∈ rn vary we get various broken paths, but only one starts
and arrive at the same ri with the same angle, thus representing a closed
geodesics (because it is unique). The other broken paths represent piecewise-
geodesic curves in hγθ and therefore are longer than ηθ. Hence

l(ηθ) = min

{
n∑
i=1

d(xi + θ, xi+1)

∣∣∣∣∣ (x1, . . . , xn) ∈ Rn
}

where xn+1 = τ(x1). It remains to prove that the function θ 7→ l(ηθ) is
proper and strictly convex. The function

ψ : R2n −→ R

(x1, y1, . . . , xn, yn) 7−→
n∑
i=1

d(yi, xi+1)

where xn+1 = τ(x1) is stricly convex and proper by Proposition 3.4. The
auxiliary function

φ : R2n × R −→ R
(x, θ) 7−→ ψ(x)

is only convex, but its restriction to the subspace

H = {yi = xi + θ}



1. GENERALITIES 95

Figure 9. Choose for any component γi of a pants decomposition
µ a curve γ′i that intersect γi in one or two points and is disjoint from
the other components. There are two cases to consider, depending on
whether the two pairs-of-pants adjacent to γi are distinct (left) or not

(right).

is strictly convex and proper, because H is not parallel to the direction
(0, . . . , 0, 1). The coordinates xi and θ identify H with Rn×R. The restric-
tion f = ψ|H is hence a function f : Rn × R→ R and we obtain

l(ηθ) = min
{
f(x, θ)

∣∣ x ∈ Rn
}
.

By Exercise 1.21 the function θ 7→ l(ηθ) is strictly convex and proper. �

1.9. Earthquakes and pants decomposition. The convexity of the
length functions imply easily the following.

Corollary 1.23. For any simple closed curve γ, the earthquake action
Eγ is faithful.

Proof. Suppose by contradiction that h = hγθ , then h = hγnθ for any
n ∈ N. Let η be a simple closed curve with i(η, γ) > 0, see Exercise 2.13
from Chapter 4; the function θ 7→ `η(hγθ ) is strictly convex and periodic: a
contradiction. �

The earthquake action may be define more generally for essential multi-
curves. An essential multicurve µ = γ1 t · · · t γk of Sg determine an action

Eµ : Rk × Teich(Sg) −→ Teich(Sg)

(θ, h) 7−→ hµθ

where θ = (θ1, . . . , θk) and hµθ = hγ1θ1 ◦ · · · ◦h
γk
θk

. This action is again faithful:

Corollary 1.24. For every essential multicurve µ, the earthquake ac-
tion is faithful.

Proof. We may complete µ to a pants-decomposition. Pick for any
i = 1, . . . , 3g − 3 a curve γ′i as in Fig. 9 such that i(γi, γ

′
i) > 0 for all i

and i(γi, γ
′
j) = 0 per ogni i 6= j. Suppose by contradiction that h = hµθ for

some θ 6= 0: hence hµnθ = h for all n ∈ Z. There is a i such that θi 6= 0.

The length function `γ
′
i depends only on θi and not on all coordinates of θ,

because γ′i ∩ γj = ∅ for all i 6= j. This function is convex and periodic in θi:
a contradiction. �
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Figure 10. A frame for Fenchel-Nielsen coordinates consists of a
(red) pants decomposition µ and a (blue) transverse multicurve η that
cuts each pants into two hexagons. The number of components of µ is
3g − 3, that of η can vary.

Figure 11. A geodesic γ1 and the two adjacent pairs-of-pants. The
torsion parameter t1 measures the distance (in the universal covering)
between the two orthogeodesics.

2. Fenchel-Nielsen coordinates

2.1. The coordinates. We want to fix a bijection between Teichmüller
space Teich(Sg) and R6g−6 for all g > 2; as for vector spaces, this bijection
depends on the choice of a “frame”, which consists here of an orientation
for Sg and two essential multicurves µ e ν in minimal position, such that:

(1) the multicurve µ is a pants-decomposition,
(2) the multicurve ν decomposes every pair-of-pants in two hexagons.

A frame is shown in Fig. 10. A induces a map

FN: Teich(Sg) −→ R3g−3
>0 × R3g−3

h 7−→ (l1, . . . , l3g−3, θ1, . . . , θ3g−3)

as follows. The length parameters li = `γi(h) are the length functions on the
curves of µ = γ1t. . .tγ3g−3. The torsion angles θi are defined as follows. Let
γi be the geodesic homotopic to γi in the metric h. The geodesic multicurve
µ = γ1 t . . . t γ3g−3 decomposes Sg into geodesic pair-of-pants.

To definire θi we need the second multicurve ν. Fig. 11-(left) shows
the two geodesic pants adjacent to γ1 (which might coincide). The second
multicurve η intersects these pants in four blue arcs, two of which λ, λ′
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Figure 12. If we pick λ′ instead of λ we find a segment of the same
length s1, since the two right-angled hexagons shown are isometric.

intersect γ1: we pick one, say λ. We fix a lift P̃ ∈ H2 of P = γ1 ∩ λ and

we lift from P̃ the curve γ1 to a line γ̃1 and λ to a (non-geodesic) curve λ̃
that connects two coverings γ̃2 and γ̃3 of the closed geodesics γ2 e γ3. See
Fig. 11-(right).

We draw as in the figure the orthogeodesics connecting γ̃1 to γ̃2 and

γ̃3 and we denote by s1 the signed length of the segment in λ̃i comprised
between the two orhogeodesics, with positive sign if (as in the figure) an
observer walking on a orthogeodesic towards γ̃i sees the other orthogeodesics
on the left (here we use the orientation of Sg).

By repeating this construction for each γi we find some real numbers si.
The torsion parameter θi is

θi =
2πsi
li

.

Theorem 2.1 (Fenchel-Nielsen coordinates). The map FN is well-defined
and a bijection.

Proof. We first note that while defining the torsion parameters we
could have chosen λ′ instead of λ, but we would have obtained the same
length si as shown in Fig. 12. Moreover if h′ is a hyperbolic metric isometric
to h through a diffeomorphism ϕ isotopic to the identity, the parameters li
and θj depend only on the isotopy class of µ and η and hence do not vary.
Therefore FN is well-defined on Teich(Sg).

We prove that FN is surjective. For any vector (l1, . . . , l3g−3) ∈ R3g−3
>0

we may construct a metric on Sg by assigning to each pants of the pants-
decomposition µ the hyperbolic metric with boundary lengths li. We get
some twisted parameters, which can be changed arbitrarily by an earthquake
along µ: an earthquake of angle θ′ changes them from θ to θ+ θ′, hence any
torsion parameter can be obtained.

We prove that FN is injective. Suppose FN(h) = FN(h′). Up to acting
via earthquakes we suppose that FN(h) = FN(h′) = (l1, . . . , l3g−3, 0, . . . , 0).
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Figure 13. Una torsione di un opportuno angolo θ permette di far
combaciare le curve verdi minimizzando le intersezioni con le curve blu.

Since the torsion parameter is zero, the orthogeodesics in Fig. 11-(right)
match, and project in Sg to a geodesic multicurve ν isotopic to ν and or-
thogonal to µ. Therefore Sg \ (µ∪ ν) is a tessellation of Sg into right-angled
hexagons, determined by the lengths li. Both metrics h and h′ have the
same tessellation and are hence isometric, via an isometry which is isotopic
to the identity. �

Remark 2.2. As shown in the proof, the torsion parameters for h are
zero if and only if the geodesic representatives ν and µ of ν and µ are
everywhere orthogonal.

2.2. Length functions of 9g − 9 curves. We show here that a finite
number 9g−9 of length functions suffice to determine a point in Teichmüller
space.

Let µ = γ1 t . . . t γ3g−3 be a pants-decomposition for Sg: for any γi
we choose a curve γ′i as in Fig. 9. We indicate by γ′′i = Tγi(γ

′
i) the curve

obtained by Dehn-twisting γ′i along γi.

Proposition 2.3. The map

L : Teich(Sg) −→ R9g−9
>0

h 7−→
(
`γi(h), `γ

′
i(h), `γ

′′
i (h)

)
is injective.

Proof. We compose L with FN−1 and obtain a map

L ◦ FN−1 : R3g−3
>0 × R3g−3 −→ R9g−9

>0

(li, θi) 7−→ (li, l
′
i, l
′′
i )

We prove that it is injective. It suffices to consider the case where the values
li are fixed and θi vary. Note that γ′i and γ′′i intersect γj if and only if i = j:
hence l′i and l′′i depend only on θi and not on the other torsion parameters θj .
We know that l′i = f(θi) is strictly convex and l′′i = f(θi+2π) by Proposition
1.15. A proper convex function is not injective, but the function

R −→ R× R
θi 7−→

(
f(θi), f(θi + 2π)

)
is injective. Hence L is injective. �
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Figure 14. For every l there is a unique right-angled hexagons with
alternate sides of length l, 0, 0. Let f(l) be the distance between the
opposite sides l and r (left). We draw a geodesic pair-of-pants as the
union of two isometric hexagons: the closed geodesics γ1 and γ2 have
disjoint f(l1) and f(l2)-neighborhoods, colored here in yellow (right).

An analogous result holds for the torus T . Let γ, γ′ be two simple closed
curves with i(γ, γ′) = 1 and γ′′ = Tγ(γ′).

Proposition 2.4. The map

L : Teich(T ) −→ R3
>0

h 7−→
(
`γ(h), `γ

′
(h), `γ

′′
(h)
)

is injective.

Proof. Up to the action of MCG(T ) = SL2(Z) we take γ = (1, 0),
γ′ = (0, 1), and γ′′ = (−1, 1). Exercise 1.17 gives

L(z) =

(
1√
=z

,
‖z‖√
=z

,
‖z − 1‖√
=z

)
which is injective. �

2.3. Collar lemma. Every simple closed geodesic γ has a R-annulus
neighborhood. We show here that we can take an arbitrarily big R if γ is
sufficiently short.

For any l > 0, draw the unique right-angled hexagons with alternate
sides of length l, 0, 0 as in Fig. 14-(left). Let f(l) be the distance between
the side l and the opposite side r.

Exercise 2.5. The function f : R>0 → R>0 is strictly increasing and
liml→0 f(l) =∞.

Lemma 2.6 (Collar lemma). Let Sg have a hyperbolic metric. Disjoint
simple closed geodesics γ1, . . . , γk of length l1, . . . , lk have disjoint f(li)-
annular neighborhoods.
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Proof. We may suppose that the closed geodesics form a pants deom-
position, and it suffices to consider the f(li)-neighborhoods of two curves γ1

and γ2 incident to the same pair-of-pants P .
The geodesic pair-of-pants P subdivide into two isometric hexagons.

We lift a hexagon to the universal cover H2 as in Fig. 14-(right). The l(γi)-
neighborhoods of γ1 and γ2 are drawn in yellow and are disjoint. �

The collar lemma has various consequences.

Corollary 2.7. Let Sg have a hyperbolic metric. Let γ and η be two
simple closed geodesics in Sg. The inequality holds:

l(η) > 2i(γ, η) · f(l(γ)).

Proof. The geodesic γ has an f(l(γ))-annular neighborhood. The geo-
desic η intersecs γ in i(η, γ) points and hence crosses the annular neighbor-
hood i(η, γ) times, each with a segment of length at least 2f(l(γ)). �

2.4. Topology of Teichmüller space. We indicate by S = S (Sg)
the set of all homotopically non-trivial simple closed curves in Sg with g > 2,
seen up to isotopy and change of orientation. Each element γ ∈ S induces
a length function

`γ : Teich(Sg) −→ R>0.

We indicate as usual with RS the set of all functions S → R and give
it the usual product topology (the weakest one where all projections are
continuous). The natural map

Teich(Sg) −→ RS

h 7−→
(
γ 7−→ `γ(h)

)
is injective by Proposition 2.3. We may hence consider Teich(Sg) as a sub-

space RS and give it the subspace topology. This topology on Teich(Sg) is
the weakest one where the length functions `γ are continuous.

Proposition 2.8. The space RS is Hausdorff and has a countable base.

Proof. Product of Hausdorff spaces is Hausdorff, and product of spaces
with countable bases has a countable base. �

We recall the following topological fact.

Proposition 2.9. Let f : X → Y be a continuous and proper map be-
tween topological spaces. If Y is Hausdorff and has a countable base then f
is closed.

Corollary 2.10. Let f : X → Y be a continuous, injective, and proper
map between topological spaces. If Y is Hausdorff and has countable base
then f is a homeomorphism onto its image.

Recall that with the half-space model every isometry in Isom+(H2) =
PSL2(R) is a 2× 2 matrix determined up to sign.
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Proposition 2.11. Let Sg = H2/Γ be a hyperbolic surface. A hyperbolic
transformation ϕ ∈ Γ determines a closed geodesic γ in Sg with

2|trϕ| = cosh
l(γ)

2
.

Proof. Up to conjugacy we have ϕ(z) = el(γ)z. The matrix is

ϕ =

(
e
l(γ)
2 0

0 e−
l(γ)
2

)
hence 2|trϕ| = cosh l(γ)

2 . �

In particular, the length of γ depends continuously on the transformation
ϕ. We will use this to prove the following.

Proposition 2.12. The Fenchel-Nielsen coordinates

FN: Teich(Sg) −→ R3g−3
>0 × R3g−3

are a homeomorphism.

Proof. We consider Teich(Sg) inside RS and examine the inverse map

FN−1 : R3g−3
>0 × R3g−3 −→ RS .

We prove that FN−1 is continuous. The map FN−1 assigns to the parame-
ters (li, θi) a metric on Sg constructed by attaching right-angled hexagons.
Both the hexagons and the attaching maps depend continuously on the pa-
rameters (li, θi) and lift to a tessellation of H2 into hexagons. Since the
tessellation varies continuously, its deck transformations vary continuously
(in the matrix topology of PSL2(R)) and hence the length functions too by
Proposition 2.11. Therefore FN−1 is continuous.

We prove that FN−1 is proper. Take a diverging sequence of parameters
(li, θi) (that is, without converging subsequences) in R3g−3

>0 × R3g−3: we
need to show that its image is also a diverging subsequence. This thesis is
equivalent to show that the length function of some curve goes to infinity.
If li → +∞ for some i we are done. If li → 0, the length of any curve
intersecting essentially γi goes to infinity by Corollary 2.7. Suppose then by
contradiction that every length li is bounded above and below but some θj
goes to infinity: in that case the length of any curve intersecting γj goes to
infinity by Proposizione 1.22.

Finally, the map FN−1 is a homeomorphism onto its image by Corollary
2.10. �

Recall that the action of a topological group G on a topological space
X is continuous if the action map G×X → X is continuous. This implies
that G acts on X by homeomorphisms.

Proposition 2.13. Earthquakes and mapping class group actions on
Teich(Sg) are continuous.
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Proof. The mapping class group acts on S by permutations, hence its
action on the whole RS is continuous. Concerning earthquakes, on Fenchel-
Nielsen coordinates the earthquake action sends θ to θ + θ′. �

The immersion in R9g−9 from Proposition 2.3 is also topologically faith-
ful.

Proposition 2.14. The injective representation Teich(Sg) → R9g−9 is
a homeomorphism onto its image.

Proof. Using Fenchel-Nielsen coordinates the map is clearly continu-
ous. The proof that it is proper is as in Proposition 2.12. �



CHAPTER 6

Orbifolds

An orbifold is an object locally modeled on finite quotients of Rn. It
naturally arises as a quotient of a manifold by a discrete group, whose action
is not free. Orbifolfds behave like manifolds on many aspects.

1. Generalities

1.1. Definition. We introduce the following notion.

Definition 1.1. A n-dimensional orbifold is a topological Hausdorff
space O covered by a collection of open sets {Ui}i∈I closed by finite inter-
section and equipped with the following structure. For every i ∈ I there
is:

(1) a finite subgroup Γi < O(n) and a Γi-invariant open set Vi ⊂ Rn;
(2) a Γi-invariant continuous map ϕi : Vi → Ui which induces a home-

omorphism Vi/Γi → Ui.

The charts must fulfill this compatibility condition:

• for every inclusion Ui ⊂ Uj there is an injective homomorphism
fij : Γi ↪→ Γj and a Γi-equivariant diffeomorfism ψij from Vi and
an open set in Vj compatible with the charts, that is ϕj ◦ψij = ϕi.

Fare figura per ψij
definita solo a meno
di composizione: usare
punto conico fra due
specchi.

Remark 1.2. One should think at the maps ψij e fij as defined only
up to the action of Γj (which acts on ψij by composition and on fij by
conjugation). In particolar, if Ui ⊂ Uj ⊂ Uk then we can verify that the
equalities ψik = ψij ◦ ψjk and fik = fjk ◦ fij hold only up to this ambiguity.

The isotropy group of a point x ∈ O is the stabilizer of x with respect
to the action of Γi on any chart Ui containing x. By definition Γx is a finite
subgroup of O(n). A point x is regular if its isotropy group is trivial, and
singular otherwise.

Example 1.3. A differentiable manifold is an orbifold whose points are
all regular. A differentiable manifold with boundary may be interpreted as
an orbifold whose boundary points have the local structure of type Rn/Γ
where Γ ∼= Z2 is generated by a reflection along a hyperplane. The boundary
should now be interpreted as a mirror.

Proposition 1.4. The regular points in an orbifold form a dense subset.
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Proof. A singular point is locally the fixed point locus of a finite group
in O(n) and is hence closed and contained in a hyperplane. �

Many notions extend from manifolds to orbifolds.

Definition 1.5. A continuous map from a topological space X to an
orbifold O is a continuous map α : X → O together with an explicit lift on
Vi at every chart Vi → Vi/Γi ; these lift must be compatible: if Ui ⊂ Uj the
two lifts αi and αj to Vi and Vj must fulfill αi = αj ◦ψij through a transition
map ψij (which we recall is defined only up to post-composing with Γj).

Two maps whose lift to Vi change only by an action of the groups Γi are
considered equivalent.

Definition 1.6. Pick a basepoint x0 ∈ O. The fundamental group
π1(O, x0) is defined as usual with loops and homotopies using the notion of
continuous map just introduced.

Vedere se la definizione
di rivestimento può essere
migliorata Definition 1.7. A covering π : Õ → O of orbifolds is a continuous map

where every point x ∈ O has a neighborhood U of type V/Γ for some V ⊂ Rn,
whose counterimage π−1(U) is a disjoint union of pieces of type V/Γi for
some subgroups Γi ⊂ Γ. (We mean here that U is isomorphic to V/Γ,
that π−1(U) = ∪iUi with Ui isomorphic to V/Γi , and that all isomorphisms
commute with π.)

An orbifold is good if it is finitely covered by a manifold. A covering

π : Õ → O is universal if it satisfies the following universal property: for

any covering π′ : O′ → O there is a covering q : Õ → O′ such that π = q ◦ π′

Theorem 1.8. An orbifold O has a universal covering, unique up to
isomorphisms. The universal covering is a manifold if a only if O is good.

As for manifolds, the automorphism group of the universal covering is
isomorphic to the fundamental group of the orbifold.

Definition 1.9. The tangent space TxO is an orbifold defined as usual
as classes of curves passing through x, and is hence isomorphic to Rn/Γx .

An orbifold is oriented if Γi < SO(n) for all i and the diffeomorphisms
ψij preserve the orientation of Rn. In an orientable orbifold the reflections
are not admitted in Γi and hence the singular locus has codimension at least
2.

1.2. Riemannian orbifold. A riemannian orbifold is an orbifold with
a positive scalar product on each tangent space Tx which changes smoothly
with x. That is, there is a Γi-invariant riemannian metric on each Vi and
they are compatible.

On a riemannian orbifold we have the notion of length of curves, and
hence of distance between points, of geodesic (a curve whose lift in Vi is a
geodesic) and volume form (the open dens set formed by regular points is a
riemannian manifold).
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Figure 1. The orbifold H2/PGL2(Z) has three mirrors, two of which
are infinite and converge to a cusp, and two cones of angle π

2
and π

3
.

The orbifold has area π
6

. The index-two subgroup PSL2(Z) < PGL2(Z)
that contains only orientation-preserving transformations produce the
orbifold H2/PSL2(Z) (right) of area π

3
, obtained by mirroring the one on

the left. It has a cusp and two cone points with rotational isotropy Z2

e Z3.

Proposition 1.10. If M a riemannian manifold and Γ < Isom(M) is
a discrete subgroup, the quotient M/Γ has a natural orbifold structure.The
projection π : M →M/Γ is an orbifold covering.

Proof. Take a point x ∈M/Γ and x̃ ∈M a lift. Since Γ is discrete, the
stabilizer Γx̃ of x̃ is finite and there is r > 0 such that expx̃(Br(0)) = Br(x̃)
and g(Br(x̃)) intersects Br(x̃) if and only if g ∈ Γx̃. The ball Br(x̃) is clearly
Γx-invariant.

We define an orbifold structure on M/Γ by taking for each x the open
set Ux = Br(x̃)/Γx with chart Vx = Br(x̃) and finite group Γx for some
x̃ ∈ p−1(x). We extend the covering {Ux} thus obtained by taking all the
non-empty intersections. The projection is a covering by construction. �

More generally, if Γ < Γ′ are discrete groups of isometries for some
riemannian manifold M then M/Γ → M/Γ′ is an orbifold covering. In
particular the lattice of discrete groups in Isom(M) transforms into a lattice
of orbifold coverings. A hyperbolic, flat, or elliptic orbifold is the quotient
of Hn (Rn, Sn) by a discrete group Γ of isometries.

1.3. Examples. The triangular group defines an orbifold which is topol-
goically a triangle. By Selberg lemma, these orbifolds are all good. Interior
points have trivial isotropy, those on the sides have Z2 generated by a re-
flection, the vertices have Z2a,Z2b,Z2c generated by rotations.

The index-two subgroup of the triangular group consisting of orientation-
preserving transformations gives an orbifold that double-covers the trian-
gle and consists of a sphere with three points with rotation isotopy groups
Za,Zb,Zc. Fare figura con sfera e tre

angoli conici.





CHAPTER 7

Hyperbolic 3-manifolds

We construct here various hyperbolic 3-manifolds.

1. Cusped 3-manifolds

1.1. Ideal tetrahedra. Ideal tetrahedra play a fundamental role in
the construction of hyperbolic 3-manifolds. They can be described up to
isometry by a single complex parameter z ∈ H2, as we now see.

An ideal tetrahedron is determined by its four ideal vertices v1, v2, v3, v4 ∈
∂H3. We use the half-space modelH3 and recall that Isom+(H3) = PSL2(C),
hence there is a unique orientation-preserving isometry of H3 that sends
v1, v2, v3, v4 respectively to 0, 1,∞, z for some z. Up to mirroring with the
orientation-reversing reflection z 7→ z̄ we can suppose that =z > 0.

Remark 1.1. By definition the number z is the cross-ratio of the four
numbers v1, v2, v3, v4.

A horosphere centered at the vertex at∞ is a euclidean plane and inter-
sects the ideal tetrahedron in a euclidean triangle as in Fig. 1. The triangle

Figure 1. An ideal tetrahedron with three vertices in 0, 1,∞ in the
half-space mode is determined by the position z ∈ C ∪ {∞} of the
fourth vertex. A little horosphere centered in the ideal vertex intersects
the tetrahedron in a euclidean triangle uniquely determined up to simi-

larities.
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108 7. HYPERBOLIC 3-MANIFOLDS

Figure 2. At each ideal vertex we have a euclidean triangle defined
up to similarities: each vertex of the triangle has a well-defined complex
angle (left). A pair of opposite edges in the ideal tetrahedron has an
axis orthogonal to both which is a symmetry axis for the tetrahedron
(center). We can assign the complex angles directly to the edges of the
tetrahedron (right). The argument is the dihedral angle of the edge.

is well-defined up to orientation-preserving similarities since changing the
horosphere results only in a dilation. Hence it has itself a unique represen-
tation as a triangle in C = R2 with vertices at 0, 1, and z as in Fig. 2. The
complex angle of a vertex of the triangle is the ratio of the two adjacent
sides, taken with counterclockwise order and seen as complex numbers. The
three complex angles are shown in Fig. 2 and are

z,
z − 1

z
,

1

1− z
.

The argument is the usual angle, and the modulus is the ratio of the two
lengths of the adjacent sides. We now note that the tetrahedron has some
non-trivial symmetries.

Proposition 1.2. For any pair of opposite edges in an ideal tetrahedron
T there is a symmetry axis r orthogonal to both as in Fig. 2-(center) such
that T is symmetric with respect to a π rotation around r.

Proof. Since T is non-degenerate the opposite sides e ed e′ are ultra-
parallel lines in H3 and hence have a common perpendicular r. A π rotation
around r permutes the vertices of e and e′ but preserves the 4 ideal vertices
of T , hence T itself. �

The symmetries of the tetrahedron then act transitively on its vertices.
It follows that every vertex has the same triangular section as in Fig. 2-
(sinistra), and that all these sections can be recovered by assigning the
complex numbers directly to the edges of T as showin in Fig. 2-(right).
These labels on the edges determine the ideal tetrahedron up toisometries
of H3.

Proposition 1.3. The argument of the complex label is the dihedral
angle of the edge.
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Figure 3. If we manage to glue all the tetrahedra incident to an edge
e inside H3 as shown in the left, the hyperbolic structure is defined also
in e. Let z1, . . . , zh be the complex numbers assigned to the sides of the
h incident tetrahedra (here h = 5). This can be done if z1 · · · zh = 1 and
the arguments sum to 2π (right).

Proof. The dihedral angle of an edge e in a polyhedron is calculated
by intersecting the polyhedron with a hypersurface orthogonal to e, and
calculate the angle in the two-dimensional picture there: one may take a
horocusp as a hypersurface. �

1.2. Ideal triangulations and completeness equations. Let now
∆1, . . . ,∆k be oriented ideal hyperbolic tetrahedra.

Definition 1.4. a face-pairing is a partition of the 4k triangular faces of
the tetrahedra into pairs, and for each pair a bijection between their triples
of ideal vertices.

The face-pairing may be realized isometrically in a unique way in virtue
of the following.

Proposition 1.5. Given two ideal triangles ∆ and ∆′, every bijection
between the ideal vertices of ∆ and of ∆′ is realized by a unique isometry.

Proof. We see the ideal triangles in H2 and recall that for any two
triples of points in ∂H2 there is a unique isometry sending pointwise the
first triple to the second. �

The face-pairing is orientable if all the resulting isometries between tri-
angles are orientation-reversing. Suppose now that we identify all the tetra-
hedra by an orientable face-pairing. In the complement of the edges, we have
constructed an oriented hyperbolic 3-manifold, and we now try to extend its
hyperbolic structure to the edges. We can do this if we manage to glue all



110 7. HYPERBOLIC 3-MANIFOLDS

the h tetrahedra around an edge e inside H3 as in Fig. 3. Let z1, . . . , zh be
the complex numbers associated to the edges of the h tetrahedra incident
to e. As shown in the figure, if z1 · · · zh = 1 and the sum of their argument
is 2π (and not some other multiple of 2π) then all tetrahedra can be glued
simultaneously in H3 and a hyperbolic structure extends also to e.

We can now pick an arbitrary edge for every tetrahedron ∆i and assign
to it the complex variable zi: the other sides of ∆i are automatically labeled
by one of the variables zi,

zi−1
zi

, or 1
1−zi as in Fig. 2. As we have seen, for

every edge we obtain an equation of type w1 · · ·wh = 1 (to which we must
add the condition that the sum of the arguments is 2π), where each wj
equals zi,

zi−1
zi

, or 1
1−zi for some i.

We have thus obtained a system of equations called compatibility equa-
tions, with a variable for each tetrahedron and an equation for each edge.
Our discussion proves the following. A positive solution to these equations
is a solution (z1, . . . , zk) where =zi > 0 for all i.

Proposition 1.6. A positive solution to the compatibility equation iden-
tifies a hyperbolic manifold obtained by gluing the ideal tetrahedra.

The hyperbolic structure is however not necessarily complete: the man-
ifold is not compact because we are employing ideal tetrahedra. To get a
complete hyperbolic manifold we must add some more equations.

1.3. Completeness equations.

1.4. Volumes of ideal tetrahedra. We will express the volume of an
ideal tetrahedron in terms of its complex modulus z, using the following
function.

Definition 1.7. The Lobachevsky function is the function

Λ(θ) = −
∫ θ

0
log |2 sin t|dt.

Draw function.

The function log |2 sin t| is −∞ on πZ but is integrable, hence Λ is well-
defined and continuous on R. Its first derivatives are

Λ′(θ) = − log |2 sin θ|, Λ′′(θ) = − cot θ.

The function Λ has derivative +∞ on πZ and is an odd function, because
its derivative is even.

Proposition 1.8. The function Λ is π-periodic. We have Λ(0) =
Λ
(
π
2

)
= Λ(π) = 0. The function Λ is strictly positive on

(
0, π2

)
, strictly

negative on
(
π
2 , π

)
, and has absolute maximum and minimum at π

6 and 5
6π.

For all m ∈ N the following holds:

Λ(mθ) = m
m−1∑
k=0

Λ

(
θ +

kπ

m

)
.
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Proof. We prove the equality for m = 2:

Λ(2θ)

2
= −1

2

∫ 2θ

0
log |2 sin t|dt = −

∫ θ

0
log |2 sin 2t|dt

= −
∫ θ

0
log |2 sin t|dt−

∫ θ

0
log
∣∣∣2 sin

(
t+

π

2

)∣∣∣ dt
= Λ(θ)−

∫ π
2

+θ

π
2

log |2 sin t|dt

= Λ(θ) + Λ
(
θ +

π

2

)
− Λ

(π
2

)
.

By setting θ = π
2 we get Λ(π) = 0. Since the derivative Λ′ is π-periodic

and Λ(π) = 0, also Λ is π-periodic. Since Λ is π-periodic and odd, we have
Λ
(
π
2

)
= 0. We have also proved the formula for m = 2.

To prove the formula for generic m we use a generalization of the dupli-
cation formula for the sinus. From the equality

zm − 1 =
m−1∏
k=0

(
z − e−

2πik
m

)
we deduce

2 sin(mt) =

m−1∏
k=0

2 sin

(
t+

kπ

m

)
and hence

Λ(mθ)

m
= − 1

m

∫ mθ

0
log |2 sin t|dt = −

∫ θ

0
log |2 sin(mt)|dt

= −
m−1∑
k=0

∫ θ

0
log

∣∣∣∣2 sin

(
t+

kπ

m

)∣∣∣∣ dt
= −

m−1∑
k=0

(∫ θ+ kπ
m

0
log |2 sin t|dt−

∫ kπ
m

0
log |2 sin t|dt

)

= −
m−1∑
k=0

Λ

(
θ +

kπ

m

)
+ C(m)

where C(m) is a constant independent of θ. By integrating both sides we
get

1

m

∫ π

0
Λ(mθ) = −

m−1∑
k=0

∫ π

0
Λ

(
θ +

kπ

m

)
+ C(m)π.

Since Λ is odd and π-periodic, we have∫ π

0
Λ(mθ) = 0
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Figure 4. The dihedral angles α, β, γ of an ideal tetrahedron. Op-
posite edges have the same angle and α+ β + γ = π.

for any integer m. Hence C(m) = 0 and the formula is proved. Finally we
note that Λ′′(θ) = − cot θ is strictly negative in (0, π2 ) and strictly positive in
(π2 , π), hence Λ is strictly positive in (0, π2 ) and strictly negative in (π2 , π). �

Proposition 1.9. An ideal tetrahedron is determined up to isometry by
its dihedral angles α, β, γ as in Fig. 4. The relation α+ β + γ = π holds.

Proof. An ideal tetrahedron is determined by its complex angles as in
Fig. 2, determined by a triangle as in Fig. 2-(left), unique up to similarities.
The triangle is also determined by its inner angles. �

The regular ideal tetrahedron has of course equal angles α = β = γ = π
3 .

Theorem 1.10. Let ∆ be an ideal tetrahedron with dihedral angles α, β
and γ. We have

Vol(∆) = Λ(α) + Λ(β) + Λ(γ).

Proof. We represent ∆ in H3 with one vertex v0 at infinity and three
v1, v2, v3 in C. Let C be the circle containing v1, v2 e v3: up to composing

with elements in PSL2(C) we can suppose that C = S1. The euclidean
triangle T ⊂ C with vertices v1, v2 e v3 has interior angles α, β, and γ.

We first consider the case 0 ∈ T , that is α, β, γ 6 π
2 . We decompose T

into six triangles as in Fig. 4: the tetrahedron ∆ decomposes accordingly
into six tetrahedra lying above them, and we prove that the one ∆α lying

above the yellow triangle has volume Λ(α)
2 . This proves the theorem.

This tetrahedron is the intersection of four half-spaces: three vertical
ones bounded by the hyperplanes y = 0, x = cosα, and y = x tanα, and
one bounded by the half-sphere z2 = x2 + y2. Therefore
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Vol(∆α) =

∫ cosα

0
dx

∫ x tanα

0
dy

∫ ∞
√

1−x2−y2

1

z3
dz

=

∫ cosα

0
dx

∫ x tanα

0
dy

[
− 1

2z2

]∞
√

1−x2−y2

=
1

2

∫ cosα

0
dx

∫ x tanα

0

1

1− x2 − y2
dy.

To solve this integral we use the relation

1

1− x2 − y2
=

1

2
√

1− x2

(
1√

1− x2 − y
+

1√
1− x2 + y

)
and hence Vol(∆α) equals

1

4

∫ cosα

0

dx√
1− x2

([
− log(

√
1− x2 − y)

]x tanα

0
+
[
log(

√
1− x2 + y)

]x tanα

0

)
=

1

4

∫ cosα

0

dx√
1− x2

(
− log(

√
1− x2 − x tanα) + log(

√
1− x2 + x tanα)

)
.

By writing x = cos t and hence dx = − sin t dt we obtain

Vol(∆α) =
1

4

∫ α

π
2

− sin t

sin t

(
− log

sin t cosα− cos t sinα

sin t cosα+ cos t sinα

)
dt

= −1

4

∫ α

π
2

log
sin(t+ α)

sin(t− α)
dt = −1

4

∫ α

π
2

log
|2 sin(t+ α)|
|2 sin(t− α)|

dt

=
1

4

∫ π
2

+α

2α
log |2 sin t|dt− 1

4

∫ π
2
−α

0
log |2 sin t|dt

=
1

4

(
−Λ

(π
2

+ α
)

+ Λ(2α) + Λ
(π

2
− α

))
=

1

4

(
−Λ

(π
2

+ α
)

+ 2Λ(α) + 2Λ
(π

2
+ α

)
− Λ

(π
2

+ α
))

=
1

2
Λ(α)

using Proposition 1.8.
If 0 6∈ T the triangle T may be decomposed analogously into triangles,

some of which contribute negatively to the volume, and we obtain the same
formula. �

Corollary 1.11. The regular ideal tetrahedron is the hyperbolic tetra-
hedron of maximum volume.

Proof. It is easy to prove that every hyperbolic tetrahedron is con-
tained in an ideal tetrahedron: hence we may consider only ideal tetrahedra.
Consider the triangle T = {0 6 α, β, α+ β 6 π} and

f : T −→ R
(α, β) 7−→ Λ(α) + Λ(β) + Λ(π − α− β).
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The continuous function f is null on ∂T and strictly positive on the interior
of T because it measures the volume of the ideal tetrahedron of dihedral
angles α, β, γ = π − α − β. Hence f has at least a maximum on some
interior point (α, β). The gradient

∇f =

(
Λ′(α)− Λ′(π − α− β)
Λ′(β)− Λ′(π − α− β)

)
=

(
− log |2 sinα|+ log |2 sin(π − α− β)|
− log |2 sinβ|+ log |2 sin(π − α− β)

))
must vanish there, and this holds if and only if sinα = sin(π−α−β) = sinβ,
i.e. if and only if the tetrahedron has all dihedral angles equal to π

3 . �



CHAPTER 8

Mostow rigidity theorem

We have defined in Chapter 5 the Teichmüller space Teich(Σg) as the
space of all hyperbolic metrics on Σg, seen up to isometries isotopic to the
identity; we have then proved that Teich(Σg) ∼= R6g−6.

This definition of Teich(M) extends to any closed differentiable mani-
fold M : we show here that if dimM > 3 then Teich(M) is either empty
or consists of a single point. This strong result is known as Mostow rigid-
ity. Thanks to this theorem, every geometric information of a hyperbolic
manifold M of dimension > 3 (volume, geodesic spectrum, etc.) is actually
a topological invariant of M . In its stronget version, Mostow rigidity says
that it depends only on π1(M).

1. Simplicial volume

1.1. Generalities. Gromov has introduced a measure of “volume” of
a closed manifold M which makes use only of the homology of M . Quite
surprisingly, this notion of volume coincides (up to a factor) with the rie-
mannian one when M is hyperbolic.

Let X be a topological space and R a ring. Recall that a singular k-
simplex is a continuous map α : ∆k → X from the standard k-dimensional
simplex ∆k in X. A k-chain is an abstract linear combination

λ1α1 + . . .+ λhαh

of singular k-simplexes α1, . . . , αh with coefficients λ1, . . . , λh ∈ R. The
set Ck(X,R) of all k-chains is a R-module. There is a linear boundary
map ∂k : Ck(X,R) → Ck−1(X,R) such that ∂k−1 ◦ ∂k = 0. The cycles and
boundaries are the elements of the submodules

Zk(X,R) = ker ∂k, Bk(X,R) = Im ∂k+1.

The k-th homology group is the quotient

Hk(X,R) = Zk(X,R)/Bk(X,R).

Consider now the case A = R. We define the norm of a cycle α = λ1α1 +
. . .+ λhαh as follows:

|α| = |λ1|+ . . .+ |λh|.
Definition 1.1. The norm of a class a ∈ Hk(X,R) is the infimum of

the norms of its elements:

|a| = inf
{
|α|
∣∣ α ∈ Zk(X,R), [α] = a

}
.
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Recall that a seminorm on a real vector space V is a map | · | : V → R>0

such that

• |λv| = |λ||v| for any scalar λ ∈ R and vector v ∈ V ,
• |v + w| 6 |v|+ |w| for any pair of vectors v, w ∈ V .

A norm is a seminorm where |v| = 0 implies v = 0. The following is
immediate.

Proposition 1.2. The norm | · | induces a seminorm on Hk(X,R).

Although it is only a seminorm, the function | · | is called a norm for sim-
plicity. Let now M be an oriented closed connected manifold. We know that
Hn(M,Z) ∼= Z and the orientation of M determines one of the two genera-
tors of Hn(M,Z), called fundamental class and denoted by [M ]. Moreover
Hn(M,R) ∼= R and there is a natural inclusion

Z ∼= Hn(M,Z) ↪→ Hn(M,R) ∼= R

hence the fundamental class [M ] is also an element of Hn(M,R) and has a
norm.

Definition 1.3. The simplicial volume ‖M‖ ∈ R>0 of a closed oriented
connected M is the norm of its fundamental class:

‖M‖ = |[M ]|

Since |[M ]| = | − [M ]| the simplicial volume actually does not depend

on the orientation. When M is non-orientable we set ‖M‖ =
∥∥M̃∥∥/2 where

M̃ is the orientable 2-cover of M . The definition of ‖M‖ is relatively simple
but has various non-obvious consequences.

A continuous map f : M → N between closed oriented n-manifolds in-
duces a homomorphism f∗ : Hn(M,Z) → Hn(N,Z). Recall that the degree
of f is the integer deg f such that

f∗([M ]) = deg f · [N ].

Proposition 1.4. Let f : M → N be a continuous map between closed
oriented manifolds. The following inequality holds:

‖M‖ > |deg f | · ‖N‖.

Proof. Every description of [M ] has a cycle λ1α1 + . . . λhαh induces a
description of f∗([M ]) = deg f [M ] as a cycle λ1f ◦α1 + . . . λhf ◦αh with the
same norm. �

Corollary 1.5. If M and N are closed orientable and homotopically
equivalent n-manifolds then ‖M‖ = ‖N‖.

Proof. A homotopic equivalence consists of two maps f : M → N and
g : N → M whose compositions are both homotopic to the identiy. In
particular both f and g have degree ±1. �
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Corollary 1.6. If M admits a continuous self-map f : M → M of
degree > 2 then ‖M‖ = 0.

Corollary 1.7. A sphere Sn has norm zero. More generally we have
‖M × Sn‖ = 0 for any M and any n > 1.

Proof. A sphere Sn admits self-maps of non-zero degree, which extend
to M × Sn. �

Among the surfaces Sg, the sphere and the torus have hence simplicial
volume zero. We will see soon that every surface of genus g > 2 has positive
simplicial volume. When the continuous map is a covering the inequality
from Proposition 1.4 promotes to an equality.

Proposition 1.8. If f : M → N is a covering of degree g we have

‖M‖ = d · ‖N‖.

Proof. The reason for this equality is that cycles can be lifted and
projected along the covering. More precisely, we already know that ‖M‖ >
d · ‖N‖. Conversely, let α = λ1α1 + . . . + λhαh represent [N ]; each αi is a
map ∆n → N . Since ∆n is simply connected, the map αi lfts to d distinct

maps α1
i , . . . , α

d
i : ∆n → N . The chain α̃ =

∑
ij λiα

j
i is a cycle in M and

f∗(α̃) = dα. Hence ‖M‖ 6 d · ‖N‖. �

1.2. Simplicial and hyperbolic volume. In the next pages we will
prove the following theorem only for the dimension n = 3 which is of interest
for us. Let vn be the volume of the regular ideal n-simplex in Hn.

Theorem 1.9. Let M be a closed hyperbolic n-manifold. We have

Vol(M) = vn‖M‖.

The theorem furnishes in particular some examples of manifolds with
positive simplicial volume and shows that Vol(M) depends only on the
topology of M , thus generalizing Gauss-Bonnet theorem to all dimensions.
Mostow rigidity will then strengthen this result in dimension n > 3, showing
that the hyperbolic metric itself depends only on the topology.

Both quantities Vol(M) and ‖M‖ are multiplied by d if we substitute
M with a degree-d covering. In particular, up to substituting M with its
orientable 2-cover, we can suppose that M is orientable.

The proof for general n makes use of the following result:

Theorem 1.10. The regular ideal simplex is the simplex of maximum
volume among all simplexes in Hn.

For the sake of clarity we will prove Theorem 1.9 assuming this result:
our proof is however complete only for n = 2, 3, where Theorem 1.10 was
proved in Chapter 7 as Corollary 1.11 for n = 3 and follows from the formula
for the area of a triangle for n = 2.
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1.3. Cycle straightening. The straight singular k-simplex with ver-
tices v1, . . . , vk+1 ∈ In is the map

α : ∆k −→ Hn

(t1, . . . , tn) 7−→ t1v1 + . . .+ tk+1vk+1

defined using convex combinations. If the k + 1 vertices are not contained
in a (k − 1)-plane the singular k-simplex is non-degenerate and its image is
a hyperbolic k-simplex.

The straightening αst of a singular simplex α : ∆k → Hn is the straight
singular simplex with the same vertices α(e1), . . . , α(ek). The straightening
αst of a singular simplex α : ∆k →M in a hyperbolic manifold M = Hn/Γ is
defined by lifting the singular simplex in Hn, straightening it, and projecting
it back to M by composition with the covering map. Different lifts produce
the same straightening in M because they are related by isometries of Hn.

The straightening extends by linearity to a homomorphism

st : Ck(M,R)→ Ck(M,R)

which commutes with ∂ and hence induces a homomorphism in homology

st∗ : Hk(M,R)→ Hk(M,R).

Proposition 1.11. The map st∗ is the identity.

Proof. We may define a homotopy between a singular simplex σ and
its straightening σst using the convex combination

σt(x) = tσ(x) + (1− t)σst(x).

This defines a chain homotopy between st∗ and id via the same technique
used to prove that homotopic maps induce the same maps in homology. �

The abstract volume of a straightened singular simplex α : ∆n → M is
the volume of its lift in Hn and may also be calculated as∣∣∣∣∫

α
ω

∣∣∣∣
where ω is the volume form on M pulled back along α. The abstract vol-
ume is smaller than vn. If α is non-degenerate, its sign is positive if α is
orientation-preserving and negative otherwise: equivalently, it is the sign of∫
α ω.

We can prove one inequality.

Proposition 1.12. Let M be a closed hyperbolic n-manifold. We have

Vol(M) 6 vn‖M‖.

Proof. As we said above, we can suppose M is orientable. Take a
cycle α = λ1α1 + . . .+λkαk that represents [M ]. By straightening it we get
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another cycle αst = λ1α
st
1 + . . . + λkα

st
k that represents [M ]. Let ω be the

volume form on M . We get

Vol(M) =

∫
M
ω =

∫
α
ω = λ1

∫
α1

ω + . . .+ λk

∫
αk

ω.

The quantity
∣∣ ∫
αi
ω
∣∣ is the abstract volume of αi. Hence

∣∣ ∫
αi
ω
∣∣ < vn and

Vol(M) <
(
|λ1|+ . . .+ |λk|

)
vn.

This holds for all α, hence Vol(M) 6 vn‖M‖. �

1.4. Efficient cycles. Let M = Hn/Γ be a closed oriented hyperbolic
manifold. An ε-efficient cycle for M is a straightened cycle

α = λ1α1 + . . . λkαk

representing [M ] where the abstract volume of αi if bigger than vn − ε and
the sign of αi is coherent with the sign of λi, for all i.

We will construct an ε-efficient cycle for every ε > 0. This will conclude
the proof of Theorem 1.9 in virtue of the following:

Lemma 1.13. If for any ε > 0 the manifold M admits an ε-efficient
cycle we have Vol(M) > vn‖M‖.

Proof. Let α = λ1α1 + . . . λkαk be an ε-efficient cycle and ω be the
volume form on M . Coherence of signs gives λi

∫
αi
ω > 0 for all i. We get

Vol(M) =

∫
M
ω =

∫
α
ω = λ1

∫
α1

ω + . . .+ λk

∫
αk

ω

>
(
|λ1|+ . . .+ |λk|

)
· (vn − ε).

Therefore Vol(M) > ‖M‖ · (vn − ε) for all ε > 0. �

It remains to construct ε-efficient cycles.

Proposition 1.14. If ∆i is a sequence of simplexes in Hn whose vertices
tend to the vertices of a regular ideal simplex in ∂Hn, then

Vol(∆i)→ vn.
Da dimostrare, anche solo
per n = 2, 3.For any t > 0, let ∆(t) be a regular simplex obtained as in Section 1.10

from Chapter 3 as follows. Pick a point x ∈ Hn and a regular simplex in
the euclidean Tx, centered at the origin with vertices ot distance t from it,
and project the vertices in Hn using the exponential map.

A t-simplex is a simplex isometric to ∆(t) equipped with an ordering
of its vertices. The ordering allows to consider it as a straigthened singular
simplex. Let S(t) be the set of all t-simplexes in Hn.

Exercise 1.15. The group Isom(Hn) acts on S(t) freely and transitively.
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Mettere da qualche parte
che Isom(Hn) è unimodu-
lare.

Therefore the Haar measure on Isom(Hn) induces a measure on S(t)
invariant by the action of Isom(Hn).

Let M = Hn/Γ be a closed hyperbolic manifold and π : Hn → M the
covering projection. Fix a point x0 ∈ Hn and consider its orbit O = Γx0.
Consider the set

Σ = Γn+1/Γ

of the (n+ 1)-uples (g0, . . . , gn) seen up to the diagonal action of Γ:

g · (g0, . . . , gn) = (gg0, . . . , ggn).

An element σ = (g0, . . . , gn) ∈ S determines a singular simplex σ̃ in Hn with
vertices g0(x0), . . . , gn(x0) ∈ O only up to translations by g ∈ Γ, hence gives
a well-defined singular simplex σ = π ◦ σ̃s in M , which we still denote by σ.
We now introduce the chain

α(t) =
∑
σ∈Σ

λσ(t) · σ

for some appropriate real coefficients λσ(t) that we now define. Recall that
x determines the Dirichlet tessellation of Hn into domains D(g(x)), g ∈ Γ.
For σ = (g0, . . . , gn) we let S+

σ (t) ⊂ S(t) be the set of all positive t-simplexes
whose i-th vertex lies in D(gi(x)) for all i. The number λ+

σ (t) is the measure
of S+

σ (t). We define analogously λ−σ (t) and set

λσ(t) = λσ(t)+ − λσ(t)−.

Lemma 1.16. The chain α(t) has finitely many addenda and is a cycle.
If t is sufficiently big the cycle α(t) represents a positive multiple of [M ] in
Hn(M,R).

Proof. We prove that the sum is finite. Let d, T be the diameters of
D(x) and of a t-simplex. We write σ = (id, g1, . . . , gn) for all σ ∈ Σ: that is,
all simplexes have their first vertex at x. If λσ(t) 6= 0 then d(gix, x) < 2d+T
for all i: therefore α(t) has finitely many addenda (because O is discrete).

We prove that α(t) is a cycle. The boundary ∂α(t) is a linear combi-
nation of straight (n− 1)-simplexes with vertices in (g0x, g1x, . . . , gn−1x) as
g1, . . . , gn−1 varies. The coefficient one such (n− 1)-simplex is

n∑
j=0

(−1)n−j
∑
g∈Γ

λ(g0,...,gj−1,g,gj ,...,gn−1)(t).

We prove that each addendum in the sum over j is zero; for simplicity we
take the case j = n and get∑

g∈Γ

λ(g0,...,gn−1,g)(t) =
∑
g∈Γ

λ(g0,...,gn−1,g)(t)
+ −

∑
g∈Γ

λ(g0,...,gn−1,g)(t)
−.

The first addendum measures the positive t-simplexes whose first n vertices
lie in D(g0(x)), . . . , D(gn(x)), the second measures the negative t-simplexes
with the same requirement. These two subsets have the same volume in
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S(t) because they are related by the involution r : S(t)→ S(t) that mirrors
a simplex with respect to its first facet.

We show that for sufficiently big t the cycle is a positive multiple of [M ].
Let t be sufficiently big so that two vertices in a t-simplex have distance big-
ger than 2d. This condition implies that if there is a positive t-simplex with
vertices in D(g0(x)), . . . , D(gn(x)), then any straight simplex with vertices
in D(g0(x)), . . . , D(gn(x)) is positive. Therefore in the expression

α(t) =
∑
σ∈Σ

λσ(t) · σ

the signs of λσ(t) and σ are coherent and∫
α(t)

ω =
∑
σ∈Σ

λσ(t) ·
∫
σ
ω > 0.

Therefore α(t) is a positive multiple of [M ]. �

For sufficiently big t we have α(t) = kt[M ] in homology for some kt > 0.
The rescaled ᾱ(t) = α(t)/kt hence represents [M ]. We have found our ε-
efficient cycles.

Lemma 1.17. For any ε > 0 there is a t0 > 0 such that ᾱ(t) is ε-efficient
for all t > t0.

Proof. Let d be the diameter of the Dirichlet domain D(x). Let a quasi
t-simplex be a simplex whose vertices are at distance < d from those of a
t-simplex. By construction ᾱ(t) is a linear combination of quasi t-simplexes.

We now show that for any ε > 0 there is a t0 > 0 such that for all t > t0
every quasi t-simplex has volume bigger than vn − ε. By contradiction,
let ∆t be a sequence of quasi t-simplexes of volume smaller than vn − ε
with t → ∞. The vertices of ∆t are d-closed to a t-simplex ∆t

∗, and we
move the pair ∆t,∆t

∗ isometrically so that the t-simplexes ∆t
∗ have the same

barycenter. Now both the vertices of ∆t and ∆t
∗ tend to the vertices of an

ideal regular simplex and Proposition 1.14 gives a contradiction. �

The previous lemmas together prove the second half of Theorem 1.9.

Corollary 1.18. Let M be a closed hyperbolic n-manifold. We have

Vol(M) > vn‖M‖.
Theorem 1.9 has some non-trivial consequences.

Corollary 1.19. Let M,N be closed orientable hyperbolic n-manifolds
If there is a map f : M → N of degree d then Vol(M) > |d| ·Vol(N).

In particular, if there is a map f : Σ → Σ′ of degree d between closed
orientable surfaces of genus g > 2 then −χ(Σ) > −d · χ(Σ′).

Corollary 1.20. Two homotopically equivalent closed hyperbolic man-
ifold have the same volume.

We now strengthen the last corollary in dimension n > 3.
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2. Mostow rigidity

2.1. Introduction. We want to prove the following.

Theorem 2.1 (Mostow rigidity). Let M and N be two closed connected
orientable hyperbolic manifolds of dimension n > 3. Every isomorfism
π1(M)

∼→ π1(N) between fundamental groups is induced by a unique isome-

try M
∼→ N .

To estimate how powerful is this theorem, note the following chain of
implications:

isometry =⇒ diffeo =⇒ homeo =⇒ homotopic
equivalence

=⇒ isomorphism
on π1

Such implications cannot be reversed in general:

• two riemannian diffeomorphic manifolds are non isometric in gen-
eral, even if they have constant curvature: consider for instance
hyperbolic surfaces, or flat n-tori;
• in dimension 2 and 3 indeed a homeomorphism implies a diffeo-

morphism, but this is false in dimension 4, where a closed topo-
logical manifold like the K3 surface can have infinitely many non-
equivalent smooth structures; it is also false in higher dimensions:
sometimes a manifold homeomorphic to Sn may not be diffeomor-
phic to it, starting from n = 7;
• the lens spaces L(7, 1) e L(7, 2) are homotopically equivalent but

not homeomorphic closed 3-manifolds;
• the closed 4-manifolds S4, CP2, and S2 × S2 are simply connected

but non homotopically equivalent because their second homology
group is respectively {e}, Z, and Z2.

Closed hyperbolic manifolds are aspherical because their universal cov-
ering Hn is contractible. For such manifolds every isomorphism π1(M) →
π1(N) is induced by a homotopy equivalence, unique up to homotopy: see
Corollary 4.4 from Chapter 1. To prove Mostow theorem we need to pro-
mote this homotopy equivalence to an isometry: we already know that
Vol(M) = Vol(N) by Corollary 1.20.

2.2. Quasi and pseudo-isometries. We introduce the following.

Definition 2.2. A map F : X → Y between metric spaces is a quasi-
isometry if there are two constants C1 > 0, C2 > 0 such that

1

C1
d(x1, x2)− C2 6 d(F (x1), F (x2)) 6 C1d(x1, x2) + C2

for all x1, x2 ∈ X and if d(F (X), y) 6 C2 for all y ∈ Y .

A quasi-isometry is an isometry up to some error: note that F may
neither be continuous nor injective. Two metric spaces are quasi-isometric
if there is a quasi-isometry F : X → Y (which implies the existence of a
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quasi-isometry G : Y → X) and quasi-isometry is an equivalence relation
between metric spaces. Intuitively, looking at a space up to quasi-isometries
is like watching it from some distance: compact metric spaces are obviously
quasi-isometric to a point.

This notion is an important ingredient in geometric group theory : one
may for instance give any finitely-presented group G a canonical metric
(through a Cayley graph), uniquely determined up to quasi-isometries.

Let f : M → N be a homotopic equivalence of closed hyperbolic n-
manifolds. Every continuous function is homotopic to a smooth one, hence

we suppose that f is smooth. The map lifts to a map f̃ : Hn → Hn. We will

prove that f̃ is a quasi-isometry. Actually, the map f̃ is also continuous and

Lipschitz: it will be useful for us to retain this information on f̃ to simplify
some arguments and we hence introduce the following strengthened (but less
natural) version of a quasi-isometry:

Definition 2.3. A map F : X → Y between metric spaces is a pseudo-
isometry if there are two positive constants C1, C2 > 0 such that

1

C1
d(x1, x2)− C2 6 d(F (x1), F (x2)) 6 C1d(x1, x2)

for any x1, x2 ∈ X.

In particular a pseudo-isometry is C1-Lipschitz and hence continuous.
Let f : M → N be a smooth map between riemannian n-manifolds; the

maximum dilatation of f at a point x ∈ M is the maximum ratio |dfx(v)|
|v|

where v varies among the unitary vectors Tx. The maximum dilatation of f
is the supremum of all maximum dilatations as x ∈M varies.

Exercise 2.4. If f : M → N has maximum dilatation C the map f is
C-Lipschitz.

Proposition 2.5. Let f : M → N be a smooth homotopy between closed

hyperbolic n-manifolds. The lift f̃ : Hn → Hn is a pseudo-isometry.

Proof. Since M is compact, the map f has finite maximum dilatation

C. Since f̃ is locally like f , it also has maximum dilatation C and is hence C-
Lipschitz. The same holds for the homotopic inverse g : N →M . Therefore
there is a C1 > 0 such that

d
(
f̃(x1), f̃(x2)

)
6 C1 · d(x1, x2) ∀x1, x2 ∈ Hn,

d
(
g̃(y1), g̃(y2)

)
6 C1 · d(y1, y2) ∀y1, y2 ∈ Hn.

Being a composition of lifts, the map g̃ ◦ f̃ commutes with Γ and has max-
imum displacement bounded by some K > 0, equal to the maximum dis-
placement of the points belonging to a (compact) Dirichlet domain. Hence

d(x1, x2)− 2K 6 d
(
g̃(f̃(x1)), g̃(f̃(x2))

)
6 C1 · d

(
f̃(x1), f̃(x2)

)
for all x1, x2 ∈ Hn. Therefore f̃ is a pseudo-isometry with C2 = 2K/C1. �
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Figure 1. The hyperbolic cosinus of the distance between x e π(x)
is the inverse of the cosinus of θ (left). To determine the maximum
dilatation we decompose the tangent space Tx (right).

2.3. Boundary extension of a pseudo-isometry. We dedicate this
section to showing the following.

Theorem 2.6. A pseudo-isometry F : Hn → Hn extends to a continuous
map F : Hn → Hn that injects ∂Hn to itself.

We separate the proof in some lemmas.

Lemma 2.7. Consider the picture in Fig. 1. We have

cosh d(x, π(x)) =
1

cos θ
.

Proof. We can suppose π(x) = i. The geodesic r is parametrized as
iet. The Möbius transformation z 7→ z+1

−z+1 sends r to γ and fixes i, hence

γ(t) = iet+1
−iet+1 . Set s = d(x, π(x)). We get x = ies+1

−ies+1 and

cos θ = =x = =(ies + 1)2

e2s + 1
=

2es

e2s + 1
=

2

es + e−s
=

1

cosh s
.

�

Lemma 2.8. Let r ⊂ Hn be a line and π : Hn → r the orthogonal projec-
tion to r. The maximum dilatation of π at x ∈ Hn is

d =
1

cosh s

where s = d(x, r).

Proof. We use the half-space model with r and x as in Fig. 1-(left):
we know that cosh s = 1

cos θ . We have Tx = U ⊕ V as in Fig. 1-(right) with
V = ker dπx. A generator u of U is just rotated by dπx with respect to the
euclidean metric; with respect to the hyperbolic metric we have

|dπx(u)|
|u|

=
xn

π(x)n
= cos θ =

1

cosh s
.

�
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Figure 2. The red paths give better estimates for the distance be-
tween F (r) and F (s). On the left: since F is C1-Lipschitz, the blue
path has length at most C1d(r, s). Its projection onto l has dilatation
at most 1/coshR by Lemma 2.8, hence the red path in l has length at

most C1d(r, s)/ coshR. Therefore d(F (r), F (s)) 6 C1
d(r,s)
coshR

+ 2R. On
the right we get d(F (r), F (s)) 6 2R.

We denote by pq the segment from p to q and byNr(A) the r-neighborhood
of A.

Lemma 2.9. Let F : Hn → Hn be a pseudo-isometry. There is a R > 0
such that

F (pq) ⊂ NR

(
F (p)F (q)

)
for all distinct points p, q ∈ Hn.

Proof. Let C1, C2 be the pseudo-isometry constants of F . Fix a suf-
ficiently big R so that coshR > C2

1 . Let l be the line containing F (p) and
F (q). We show that F (pq) can exit from NR(l), but only for a limited
amount of time. Let rs ⊂ pq be a maximal segment where F (rs) is disjoint
from the interior of NR(l), as the blue arc in Fig. 2-(left). We have

1

C1
d(r, s)− C2 6 d(F (r), F (s)) 6 C1d(r, s).

We can strengthen the right hand-side as in Fig. 2-(left) and get

1

C1
d(r, s)− C2 6 d(F (r), F (s)) 6 C1

d(r, s)

coshR
+ 2R

Since coshR > C2
1 we get d(r, s) < M for some constant M that depends

only on C1 and C2. We have proved that F (pq) may exit from NR(l) only
on subsegments of length < M . Since F is C1-Lipchitz the curve F (pq) lies
entirely in NR+C1M/2(l), and we replace R with R+ C1M/2.

It remains to prove that F (pq) lies entirely (up to taking a bigger R)

in the bounded set NR(F (p)F (q)): the proof is analogous and easier, since
Fig. 2-(right) shows that d(F (r), F (s)) 6 2R. �

In the previous and following lemmas, the constant R depends only on
the pseudo-isometry constants C1 and C2.
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Proof.

Figure 3. For any 0 < u < t, the point F (l(u)) is contained in the

(yellow) R-neighborhood of F (p)F (l(t)). If u is big, the blue segment

F (p)F (l(u)) is long, while the red one is bounded by R: hence the angle
αtu between vt and vu is small. Therefore vt is a Cauchy sequence.

Lemma 2.10. Let F : Hn → Hn be a pseudo-isometry. There is a R > 0
such that for all p ∈ Hn and any half-line l starting from p there is a unique
half-line l′ starting from F (p) such that

F (l) ⊂ NR(l′).
Cambiare i, j in t, u nella
figura. We parametrize l as a geodesic l : [0,+∞)→ Hn with unit speed. Since

F is a pseudo-isometry we get

lim
t→∞

d
(
F (p), F (l(t))

)
→∞.

Let vt ∈ TF (p) be the unitary tangent vector pointing towards F (l(t)): Fig. 3
shows that {vt}t∈N is a Cauchy sequence, that converges to a unitary vector
v ∈ TF (p). Let l′ be the half-line starting from F (p) with direction v. It is
easy to check that F (l) ⊂ NR(l′) and l′ is the unique half-line from p with
this property. �

The previous lemma gives a recipe to transform half-lines l into half-lines
l′. Since ∂Hn is an equivalence relation of half-lines, we define the extension
F : ∂Hn → ∂Hn by sending l to l′.

Lemma 2.11. The boundary extension F : ∂Hn → ∂Hn is well-defined
and injective.

Proof. Let l1, l2 be two half-lines at bounded distance d(l1(t), l2(t)) <
M for all t. If d(l′1(t), l′2(t)) → ∞ we get d

(
F (l1(t)), F (l2(t))

)
→ +∞, a

contradiction since F is Lipschitz. Therefore l′1, l
′
2 are at bounded distance.

Injectivity is proved analogously: if l1 and l2 are divergent then l′1 and
l′2 also are because F is a pseudo-isometry. �

It remains to prove that the extension F : Hn → Hn is continuous. We
start by extending Lemma 2.10 from half-lines to lines.

Lemma 2.12. Let F : Hn → Hn be a pseudo-isometry. There is a R > 0
such that for any line l there is a unique line l′ with F (l) ⊂ NR(l′).
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Figure 4. Let l and H be a line and an orthogonal hyperplane. The
orthogonal projection of H onto l is obviously a point l∩H; the pseudo-
isometry F mildly distorts this picture: the image F (H) projects to a
bounded segment in l′.

Proof. Parametrize l as l : (−∞,+∞) → Hn with unit speed. By
cutting l into two half-lines we know that F (l(t)) is a curve that tends to
two distinct points x± ∈ ∂Hn as t→ ±∞. Let l′ be the line with endpoints
x±. For any t > 0 we have

F
(
l([−t, t])

)
⊂ NR

(
F (l(−t))F (l(t))

)
and by sending t→ +∞ we deduce that F (l) ⊂ NR(l′). �

The next lemma says that a pseudo-isometry does not distort much lines
and orthogonal hyperplanes.

Lemma 2.13. Let F : Hn → Hn be a pseudo-isometry. There is a R > 0
such that for any line l and hyperplane H orthogonal to l, the image F (H)
projects orthogonally to l′ onto a bounded segment length smaller than R.

Proof. See Fig. 4. Consider a generic line s ⊂ H passing through
p = l ∩ H. By the previous lemmas F (s) ⊂ NR(s′) with s′ 6= l′, and the
orthogonal projection on a line l sends any other line s′ onto a segment,
bounded by the images of the endpoints of s′.

Consider as in Fig. 5 the line s, with one endpoint s∞ and the corre-
sponding endpoint F (s∞) of s′. The figure shows that the projection f of
F (s∞) to l′ is at bounded distance from a point q which does not depend
on s. �

Lemma 2.14. The extension F : Hn → Hn is continuous.

Proof. Consider x ∈ ∂Hn and its immage F (x) ∈ ∂Hn. Let l be a half-
line pointing to x: hence l′ points to F (x). The half-spaces orthogonal to l′

determine a neighborhood system for F (x): consider one such half-space S.
Let R > 0 be as in the previous lemmas. The image F (l) is R-close to

l′, hence for sufficiently big t the point F (l(t)) lies in S at distance > R
from ∂S. By the previous lemma the image F (H(t)) of the hyperplane
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Figure 5. The lines s1 and s2 have fixed distance d1 = d2 =
cosh−1

√
2 from p. The lines l′, s′1, and s′2 approximate up to an er-

ror R the images of l, s1, and s2. The projection q of F (p) on l′ is hence
R-close to F (p), which is in turn (C1d)-close to the lines s′i. Therefore
q is (C1d + 2R)-close to both s′1 and s′2. This easily implies that f is
(C1d+ 2R)-close to q.

H(t) orthogonal to l(t) is also contained in S. Hence the entire half-space
bounded by one such H(t) goes inside S through F . This shows that F is
continuous at every point x ∈ ∂Hn. �

With some effort, we have proved that every pseudo-isometry of Hn

extends continuously to the boundary. This has an immediate corollary.

Corollary 2.15. Let f : M → N be a smooth homotopy equivalence
between closed hyperbolic n-manifolds. Any lift extends to a continuous map

f̃ : Hn → Hn whose restriction f̃ |∂Hn : ∂Hn → ∂Hn is a homeomorphism.

Proof. Pick a smooth homotopic inverse g. Both f and g lift to pseudo-
isometries and extend to their boundaries. In the proof of Proposition 2.5 we

have seen that g̃◦ f̃ has finite maximum dispacement and hence its extension

to ∂Hn is the identity. Therefore g̃|∂Hn and f̃ |∂Hn are homeomorphisms. �

2.4. Conclusion of the proof of Mostow theorem. To prove Mostow
rigidity we still need some lemma.

Lemma 2.16. Let f : M → N be a smooth homotopic equivalence of

closed hyperbolic n-manifolds. The extension f̃ : ∂Hn → ∂Hn of a lift sends
the vertices of a regular ideal simplex to the vertices of a regular ideal simplex.

Proof. Let w0, . . . , wn be vertices of a regular ideal simplex and sup-

pose by contradiction that their images f̃(w0), . . . , f̃(wn) span a non-regular
ideal simplex. By Theorem 1.10 this simplex has volume smaller than
vn − 2δ for some δ > 0. By continuity there are neighborhoods Ui of vi
in Hn for i = 0, . . . , n such that the volume of the simplex with vertices

f̃(u0), . . . , f̃(un) is smaller than vn − δ for any choice of ui ∈ Ui.Motivare continuità.



2. MOSTOW RIGIDITY 129

In Section 1.4 we have defined a cycle

α(t) =
∑
σ∈Σ

λσ(t) · σ

where t depends on ε. We say that a singular simplex σ ∈ Σ is bad if its
i-th vertex is contained in Ui for all i. Let Σbad ⊂ Σ be the subset of all bad
singular simplexes and define

α(t)bad =
∑

σ∈Σbad

λσ(t) · σ.

We want to estimate |α(t)| and |αbad|. We prove that

|α(t)| =
∑
s∈S
|λσ(t)|

is a real number independent of t: let S0 ⊂ S(t) be the set of all t-simplexes
having the first vertex in D(x). It follows from the definitions that |α(t)|
equals the measure of S0. Moreover the set S0 is in natural correspondence
with the set of all isometries that send x to some point in D(x): its volume
does not depend on t. Dire che il volume è pari

al volume diD(x) e quindi
M?To estimate |α(t)bad| we fix g0 ∈ Γ so that D(g0x) ⊂ U0. Let Sbad ⊂ S(t)

be the set of all bad t-simplexes with first vertex in D(g0x). If t is sufficiently
big, the volume of Sbad is bigger than a constant independent of t. Motivare questo.

We have proved that |α(t)bad|/|α(t)| > C for some C > 0 indepen-
dent of t. On the renormalization ᾱ(t) = α(t)/kt we get the same ratio
|ᾱ(t)bad|/|ᾱ(t)| > C. The map f : M → N has degree one and hence sends
ᾱ(t) to a class

f∗(ᾱ(t)) =
1

kt

∑
σ∈Σ

λσ(t) · (f ◦ σ)st

representing [N ]. Since a C-portion of ᾱ(t) is bad, a C-portion of simplexes
in f∗(ᾱ(t)) has volume smaller than vn − δ and hence

Vol(N) =

∫
f∗(ᾱ(t))

ω < |ᾱ(t)|((1− C)vn + C(vn − δ)) = |ᾱ(t)|(vn − δC).

Since this holds for all t and |ᾱ(t)| → ‖M‖ we get

Vol(N) < ‖M‖(vn − δC) = Vol(M)− δC · ‖M‖.

Corollary 1.20 gives Vol(M) = Vol(N): a contradiction. �

Now we use for the first time the hypothesis n > 3.

Proposition 2.17. Let ∆ ⊂ Hn be a regular ideal simplex and F a facet
of ∆. If n > 3 the only regular ideal simplexes in Hn having F as facet are
∆ and ∆′, obtained mirroring ∆ along F .
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Proof. Every regular simplex of dimension> 2 has a barycenter defined
by intersecting its axis, the unique lines exiting from a vertex and orthogonal
to the opposite facet. Take the line orthogonal to the barycenter of F : the
last vertex of ∆′ must be the endpoint of this line. �

Given an ideal n-simplex ∆ ⊂ Hn, we define R(∆) as the set of all n-
simplexes obtained iteratively from ∆ by mirroring along all the facets. If
∆ is the regular 2- or 3-simplex we obtain two tessellations, see Chapter 3.
If ∆ is a regular n-simplex with n > 4, its dihedral angle is equal to the
dihedral angle of a regular euclidean (n− 1)-simplex, which does not divide
2π: therefore simplexes overlap a lot and we do not obtain a tessellation. In
any case we have the following.

Exercise 2.18. Let ∆ be a regular ideal n-simplex in Hn. The vertices
of all elements in R(∆) form a dense subspace of ∂Hn.

Da dimostrare?

We turn back to Mostow rigidity.

Proposition 2.19. Let f : M → N be a smooth homotopic equivalence
between closed hyperbolic orientable manifolds of dimension n > 3. The

restriction f̃ |∂Hn : ∂Hn → ∂Hn is the trace of an isometry ψ : Hn → Hn.

Proof. Let v0, . . . , vn ∈ ∂Hn vertices of a regular ideal simplex ∆. The

lift f̃ sends them to the vertices of a regular ideal simplex, and let ψ the

unique isometry of Hn such that ψ(vi) = f̃(vi) for all i.
Iteratively, Proposition 2.17 shows that the two maps coincide on all

vertices of R(∆), which form a dense set. Therefore f̃ = ψ on ∂Hn. �

We can finally prove Mostow rigidity theorem.

Theorem 2.20. Let f : M → N be a homotopic equivalence between
closed orientable hyperbolic manifolds of dimension n > 3. The map f is
homotopically equivalent to an isometry.

Proof. Set M = Hn/Γ and N = Hn/Λ, and pick a lift f̃ . We have

(2) f̃ ◦ g = f∗(g) ◦ f̃ ∀g ∈ Γ

for an isomorphism f∗ : Γ→ Λ. We may suppose f smooth. The boundary

extension of f̃ is the trace of an isometry ψ : Hn → Hn. Hence

(3) ψ ◦ g = f∗(g) ◦ ψ ∀g ∈ Γ

holds at ∂Hn. All the elements in (3) are isometries, and isometries are
determined by their boundary traces: hence (3) holds also in Hn. Therefore
ψ descends to an isometry

ψ : M → N.

A homotopy between f and ψ may be constructed from a convex combina-

tion of f̃ and ψ in Hn. �
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2.5. Consequences of Mostow rigidity. The most important con-
sequence is that the entire geometry of a closed hyperbolic n-manifold with
n > 3 is a topological invariant. Numerical quantities like the volume of the
manifold, its geodesic spectrum, etc. depend only on the topology of the
manifold. We single out another application.

Theorem 2.21. Let M be a closed hyperbolic manifold of dimension
n > 3. The map

Isom(M)→ Out(π1(M))

is an isomorphism.

Proof. We already know that it is injective by Proposition 2.22 from
Chapter 3. We prove that it is surjective: every automorphism of π1(M) is
represented by a homotopy equivalence since M is aspherical (see Corollary
4.4 from Chapter 1), which is in turn homotopic to an isometry by Mostow
rigidity. �

We note that this is false in dimension n = 2, where Isom(S) is finite
and Out(π1(S)) is infinite.





CHAPTER 9

Surface diffeomorphisms

We introduce in this chapter some analogies between Hn and Teich(Sg).

We have already seen that Hn compactifies to a closed disc Hn, that Isom(Hn)
acts on this closed disc, and that an isometry is elliptic, parabolic, or hyper-
bolic according to where are its fixed points.

Analogously, we will construct in this chapter a natural compactifica-
tion of the open ball Teich(Sg) to a closed disc. The mapping class group
MCG(Sg) acts on this closed disc, and there will be a trichotomy for the
elements of MCG(Sg) which depends on its fixed points.

1. Geodesic currents

1.1. Projective immersion. Recall from Chapter 4 that S = S (Sg)
is the set of all simple closed curves in the closed surface Sg, seen up to
isotopy and changing of orientation (these curves are hence unoriented).
When g > 2 the length functions provide an injective map

i : Teich(Sg) ↪→ RS .

We have identified Teich(Sg) with its image and given it the induced topol-
ogy. With that topology Teich(Sg) is homeomorphic to an open ball of
dimension 6g − 6. We now want to compactify Teich(Sg): a first tentative

could be to take its closure in RS , but it does not work.

Proposition 1.1. The subspace Teich(Sg) is closed in RS .

Proof. The inclusion map is proper, hence closed (see Chapter 4). �

We now consider the projective space P(RS ) with the projection

π : RS \ {0} −→ P(RS ).

Proposition 1.2. The composition

π ◦ i : Teich(Sg) −→ P(RS )

is injective.

Proof. Suppose that there are two distinct points h, h′ ∈ Teich(Sg)
and a constant k > 1 such that `γ(h) = k · `γ(h′) for all γ ∈ S .

Let γ1, γ2 ∈ S be two curves with i(γ1, γ2) = 1. We take x0 = γ1 ∩ γ2

as a basepoint for π1(Sg, x0). The elements γ2 ∗ γ1 and γ2 ∗ γ−1
1 define two

133
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more non-trivial simple closed curves in Sg. The formula

tr(A) · tr(B) = tr(AB) + tr(A−1B)

holds for any A,B ∈ SL2(R). Proposition 2.11 from Chapter 5 implies that

2 cosh

(
l(γ1)

2

)
· cosh

(
l(γ2)

2

)
= cosh

(
l(γ2 ∗ γ1)

2

)
+ cosh

(
l(γ2 ∗ γ−1

1 )

2

)
.

We have obtained a relation between the lengths of γ1, γ2, γ2∗γ1, and γ2∗γ−1
1

that holds for any hyperbolic metric on Sg. It may be written as:

cosh

(
l(γ1) + l(γ2)

2

)
+ cosh

(
l(γ1)− l(γ2)

2

)
=

cosh

(
l(γ2 ∗ γ1)

2

)
+ cosh

(
l(γ2 ∗ γ−1

1 )

2

)
.

By contradiction every h′-length is k times a h-length: this equation is hence
valid after multiplying every argument by k. It is easy to check that

cosh a+ cosh b = cosh c+ cosh d, cosh ka+ cosh kb = cosh kc+ cosh kd

if and only if {a, b} = {c, d}. This leads to a contradiction: the number
l(γ1) + l(γ2) is strictly bigger than l(γ2 ∗ γ1) or l(γ2 ∗ γ−1

1 ), since γ2 ∗ γ1 and

γ2 ∗ γ−1
1 have a non-geodesic representative of length l(γ1) + l(γ2). �

As we will see, the image of Teich(Sg) in P(RS ) is not close.Dove diciamo che le
geodetiche chiuse sono le
curve più corte? 1.2. Thurston compactification. We now embed S in P(RS ). A

simple closed curve γ ∈ S defines a functional i(γ) ∈ RS as follows:

i(γ)(η) = i(γ, η).

We have constructed a map i : S → RS .

Proposition 1.3. The composition

π ◦ i : S −→ P(RS )

is injective.

Proof. Let γ1, γ2 ∈ S be distinct. There is always a curve η ∈ S with
i(γ1, η) 6= 0 and i(γ2, η) = 0. (If i(γ1, γ2) > 0, simply take η = γ2.) �

We see both Teich(Sg) and S as subsets of RS .

Proposition 1.4. The sets Teich(Sg) and S are disjoint in P(RS ).

Proof. For each γ ∈ S we have i(γ, γ) = 0, while every curve has
positive length on any hyperbolic metric. �

We can state Thurston’s compactification theorem. Let g > 2.

Theorem 1.5 (Thurston compactification). The closure Teich(Sg) of

Teich(Sg) in P(RS ) is homeomorphic to D6g−6, whose interior is Teich(Sg)
and whose boundary contains S as a dense subset.
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In particular, the closure of S is a sphere S6g−7. To prove this theorem
we will introduce some geometric notions.

1.3. The torus case. On the torus T we have

Teich(T ) = H2, S = Q ∪ {+∞}.
The latter equality holds because a unoriented simple closed curve is deter-
mined by a pair (p, q) of coprime integers, unique up to switching both sides,
and hence by the number p

q ∈ Q∪{∞}. We can also see both Teich(T ) and

S inside RS and Thurston compactification holds:

Proposition 1.6. The closure of Teich(T ) in P(RS ) is homeomorphic
to D2, whose interior is Teich(T ) and whose boundary contains S as a
dense subset.

Proof. Exercise 2.14 and Proposition 1.17 from Chapter 5 give

i

(
p

q
,
r

s

)
=

∣∣∣∣det

(
p r
q s

)∣∣∣∣ = |ps− qr| = s ·
∣∣∣p− q r

s

∣∣∣
`
p
q (z) =

|p+ qz|√
=z

Consider the closure H2 = H2 ∪ R ∪ {∞} of H2 and define for all z ∈ H2

the functional

fz :
p

q
7−→ |p+ qz| if z 6=∞,

f∞ :
p

q
7−→ |q|.

We have constructed a continuous immersion

f : H2 −→ P(RS )

z 7−→ fz.

The map is closed because it sends a compact into a Hausdorff space, hence
it is a homeomorphism onto its image. By the formulas above, a metric
z ∈ H2 goes to fz while a curve r

s ∈ S goes to f− r
s
. �

1.4. Geodesics. We have seen that on the torus length functions `γ(z)
and geometric intersection i(γ, η) may be collected in a single family of
functionals. We will do the same also for g > 2.

Let M a complete hyperbolic manifold. We indicate by G (M) the set
of all geodesics R → M run at unit speed, seen up to reparametrization
t 7→ ±t+ k: in particular the geodesics are not oriented.

We are particularly interested in the set G = G (H2) of lines in H2. A
line is determined by its extremes, hence there is a bijection

G ←→
(
∂H2 × ∂H2 \∆

)
/∼

where ∆ = {(a, a) | a ∈ ∂H2} is the diagonal and (a, b) ∼ (b, a). We assign
to G the topology of

(
∂H2 × ∂H2 \∆

)
/∼. With the disc model ∂H2 = S1.
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Exercise 1.7. The space G is homeomorphic to an open Möbius strip.

The isometries of H2 act naturally on G .

Proposition 1.8. If S = H2/Γ is a complete hyperbolic surface we get
a natural bijection

G (S)←→ G /Γ

Proof. Every line in H2 induces a geodesic in H2/Γ by composing with
the covering π : H2 → H2/Γ, and two lines induce the same geodesic if and
only if they are connected by the action of an element in Γ. �

We see a geodesic γ ∈ G (S) as a Γ-orbit of lines in H2. Note that γ has
compact support in S if and only if it wraps (infinitely many times) a closed
geodesic.

1.5. Geodesic currents. We introduce this definition.

Definition 1.9. Let S = H2/Γ be a complete hyperbolic surface. A ge-
odesic current on S is a locally finite, non-trivial, Γ-invariant Borel measure
µ on G .

We denote by C = C (S) the set of all geodesic currents in S. It is a
subset of the space M (G ) of all Borel measures of G , closed with respect to
sum and product with a positive scalar, and inherits a topology.

Example 1.10 (Simple closed curves). A simple closed geodesic γ ∈ G
lifts to a Γ-orbit of disjoint lines in H2, which is in turn a discrete set in
G . The Dirac measure on this discrete set is locally finite and Γ-invariant,
hence a geodesic current.

A simple closed curve γ determines a geodesic current: we have con-
structed a natural map

S −→ C .

Proposition 1.11. The map is injective.

Proof. Distinct curves have distinct lifts and give Dirac measures with
distinct (actually disjoint) supports. �

We now define a current which is supported on the whole G .

1.6. The Liouville measure. Let γ : R→ H2 be a geodesic and Uγ ⊂
G the open set consisting of all lines intersecting γ in a point. We can
parametrize Uγ via the homeomorphism

R× (0, π)→ Uγ

that sends (t, θ) to the line that intersects γ in the point γ(t) at an angle θ.
We define a volume 2-form on Uγ as follows:

µγ =
1

2
sin θ dt ∧ dθ.
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Proposition 1.12. The charts Uγ form a differentiable atlas for G . The
2-forms µγ match up to sign and hence give a measure µ on G .

Proof. Every line intersects some other line, hence the charts cover G .
We consider a line r ∈ Uγ∩Uγ′ . The charts Uγ and Uγ′ have parametrizations
(t, θ) and (t′, θ′) and 2-forms

µ =
1

2
sin θdt ∧ dθ, µ′ =

1

2
sin θ′dt′ ∧ dθ′.

Consider the jacobian

J =


∂θ′

∂θ

∂t′

∂θ

∂θ′

∂t

∂t′

∂t


and recall that

dt′ ∧ dθ′ = det J · dt ∧ dθ.

We need to show that

det J =
sin θ

sin θ′
.

Consider first the case γ, γ′, and r intersect in the same point O. We find

∂θ′

∂θ
= 1,

∂t′

∂θ
= 0,

∂t′

∂t
=

sin θ′

sin θ

that implies detJ = sin θ
sin θ′ . Consider the case γ and γ′ intersect r in two

distinct points P and P ′ at some distance l > 0. By the previous case we
may suppose that γ, γ′ are orthogonal to r, hence sin θ = sin θ′ = 1. We get

∂θ′

∂θ
= cosh l,

∂t′

∂θ
= sinh l,

∂θ′

∂t
= sinh l,

∂t′

∂t
= cosh l

that implies detJ = cosh2 l − sinh2 l = 1. � Dimostrare derivate
parziali con disegni o
altro. B

The measure µ on G is the Liouville measure: it is not induced by a
global volume 2-form on G because G is non-orientable, see Esercise 1.7.
The Liouville measure is clearly invariant by the action of Isom(H2). The
factor 1

2 in the definition was chosen to get the following result.

Proposition 1.13. Let s ⊂ H2 be a segment of length L. The lines in
H2 intersecting s form a set of measure L.

Proof. The set has measure∫ π

0

∫ L

0

1

2
sin θ dt dθ = L

∫ π

0

1

2
sin θ dθ = L.

�



138 9. SURFACE DIFFEOMORPHISMS

1.7. The Liouville currents. Let S = H2/Γ be a closed hyperbolic
surface. The Liouville measure is Isom(H2)-invariant: in particular it is Γ-
invariant and hence defines a current µ ∈ C (S), called the Liouville current.

In what follows we always suppose g > 2.

Proposition 1.14. The space C (Sg) of currents does not depend (up to
canonical isomorphisms) on the hyperbolic metric on Sg.

Proof. Let h, h′ be two hyperbolic structures on Sg, giving two differ-
ent coverings π, π′ : H2 → Sg. The identity map Sg → Sg lifts to a map
between these coverings that extend continuously to their boundaries by
Corollary 2.15 from Chapter 8. This induces an isomorphism between the
corresponding current spaces. �

Now that C = C (Sg) is metric-independent, we note that every metric
h ∈ Teich(S) induces a Liouville current µh. We get a map

µ : Teich(S) −→ C .

We will see later that i is injective. We have mapped S and Teich(S) inside
C : we now introduce a bilinear form on C that extends both the length and
the geometric intersection for closed geodesics.

1.8. Intersection form. Let S = H/Γ be a hyperbolic surface. We
denote by I ⊂ G × G the open subset consisting of all pairs (γ, γ′) of
incident distinct lines. We give I the topology induced by G × G : hence
I is a topological 4-manifold. The group Γ acts on I diagonally.

Exercise 1.15. The map I → I /Γ is a topological covering.

Therefore I /Γ is a topological 4-manifold. Note that both I and I /Γ

are non-compact: the pairs (γ, γ′) of distinct lines intersecting in a fixed
points for a non-compact set.

Two currents α, β ∈ C induce a product measure α × β on G × G
and hence on I . Since α × β is Γ-invariant, it descends to a measure on
I /Γ which we still indicate by α× β, defined as follows: the measure on a
well-covered connected open set U ⊂ I /Γ is the measure of any connected
component of its counterimage.

Definition 1.16. The intersection i(α, β) of two geodesic currents is
the total volume of I /Γ in the measure α× β.

It is not obvious that i(α, β) is finite since I /Γ is not compact: we will
prove this later. We start by recognizing i in some important cases. Recall
that we consider S inside C .

Proposition 1.17. If α, β ∈ S , i(α, β) is their geometric intersection.

Proof. Fix an auxiliary hyperbolic metric for Sg and represent α and β
as geodesics. The measure α×β is the Dirac measure with support the pairs
(l, l′) of incident lines in H2 that cover respectively α and β. The Γ-orbits
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of these pairs are in natural bijection with the points in α ∩ β. Hence the
volume of IΓ is the cardinality of α ∩ β. �

Recall the Liouville map µ : Teich(Sg)→ C .

Proposition 1.18. If α ∈ S we have i(µh, α) = `α(h).

Proof. Give S the metric h. The measure α×β has its support on the
incident pairs (l, l′) where l is arbitrary and l′ is a lift of β.

A segment s′ ⊂ l′ of length L = `α(h) is a fundamental domain for the
action of Γ on the lifts of l′. Therefore i(µh, α) is the volume of the pairs
(l, l′) where l is arbitrary and intersects s′. By Proposition 1.13 these pairs
have volume L. �

Corollary 1.19. The Liouville map µ : Teich(Sg)→ C is injective.

Proof. We know that Teich(Sg) embeds in RS : if h 6= h′ there is a
curve γ ∈ S with `γ(h) 6= `γ(h′), hence i(µh, γ) 6= i(µ′h, γ). �

We will consider both Teich(Sg) and S as subsets of C . We know the
geometric meaning of i on two curves, and on a curve and a metric. What
is i on two metrics? We know the answer when they coincide.

Proposition 1.20. If α ∈ Teich(Sg) we have i(µ, µ) = −π2χ(S).
Da dimostrare

1.9. Continuity of the intersection function. The following fact is
not obvious, since G is not compact.

Theorem 1.21. The form i : C × C → R is continuous.
Prove also that it is finite-
valuedWe say that a geodesic current fills the surface S if every line in H2

intersects transversely at least one line in the support of α. A Liouville
measure fills S since its support is the whole of G . We say that k simple
closed curves γ1, . . . , γk fill S if the current γ1 + . . .+ γk does.

Proposition 1.22. Let γ1, . . . , γk be simple closed geodesics with respect
to some metric. If S \ (γ1 ∪ · · · ∪ γk) consists of polygons, the curves fill S.

Proof. Every geodesic in S intersects these curves. �

Exercise 1.23. Let α and β be currents. We have i(α, β) > 0 if and only
if there are two lines in the supports of α and β that intersect transversely.

Corollary 1.24. If α fills then i(α, β) > 0 for any β ∈ C .

1.10. A compactness criterion. The following compactness criterion
is simple and useful.

Proposition 1.25. If α ∈ C fills S, the set of all β ∈ C with i(α, β) 6
M is compact for all M > 0.
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Proof. Let C ⊂ C be the set of all β with i(α, β) 6 M . It is closed
because i is continuous, we show that is is also compact.

Let l be a line in H2. By hypothesis there is a l′ in the support of α
which intersects l transversely. Let Ul, Ul′ be two neighborhoods of l, l′ in
G sufficiently small so that the following hold:

• every line in Ul intersects a line in Ul′ , hence Ul × Ul′ ⊂ I ,
• the product Ul′ × Ul is mapped injectively in I /Γ.

If β ∈ C we have

α(Ul′)β(Ul) = (α× β)(Ul′ × Ul) 6 (α× β) (I /Γ) = i(α, β) < M.

Therefore every line l has an open neighborhood Ul such that

β(Ul) < Kl ∀β ∈ C

for some constant Kl = M/α(Ul′) depending only on l. We may cover G
with countably many such neighborhoods.

Let βi be a sequence in C. On each Ul the sequence βi(Ul) is bounded,
hence on a subsequence βi(Ul)→ β∞(Ul) for all l. �Finire usando qualche teo

di compattezza o Ul sist
di intorni. Corollary 1.26. The immersion µ : Teich(S) ↪→ C is proper and a

homeomorphism onto its image.

Proof. The immersion is proper: if hi ∈ Teich(S) is a divergence se-
quence, we know that on a subsequence there is a simple closed curve γ such
that `γ(hi) = i(hi, γ)→∞. Since i is continuous µ(hi) ∈ C diverges.Controllare bene qui

To show that µ is a homeomorphism onto its image it is easier to con-
sider the inverse µ−1 : µ(Teich(S))→ Teich(S). The map µ−1 is continuous
because i is and Teich(S) has the weakest topology where the length func-
tions are continuous. We show that it is proper. Let γ1, . . . , γk be simple
closed curves that fill S. If µ(hi) is a diverging sequence, by Proposition
1.25 we have i(µ(hi),

∑
t γt) → ∞ and hence i(µ(hi), γt) → ∞ for some t.

Therefore hi is divergent also in Teich(S). �

The compactness criterion implies the following.

Corollary 1.27. Let γ1, . . . , γk be simple closed geodesics that fill S.
The points h ∈ Teich(S) with `γi(h) 6M form a compact subset of Teich(S).

Exercise 1.28. Use the compactness criterion to re-prove that on a hy-
perbolic Sg there are only finitely many closed geodesics of bounded length.

1.11. Projective currents. We compose the immersions of Teich(S)
and S in C with the projection

π : C −→ PC

where PC = C /∼ with α ∼ λα for all λ > 0.

Proposition 1.29. The space PC is compact.
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Proof. Pick h ∈ Teich(S). By the compactness criterion the set C =
{α ∈ C | i(α, h) = 1} is compact. By Corollary 1.24 we have i(α, h) > 0 for
all α: hence π : C → PC is surjective and PC is compact. �

Proposition 1.30. The composition π ◦ i : S → PC is injective.

Proof. Let γ1, γ2 ∈ S be distinct. There is always a curve η ∈ S with
i(γ1, η) 6= 0 and i(γ2, η) = 0. �

The image of Teich(S) in C is closed because the immersion µ is proper.
The image in PC is not closed, and its closure is a compact set since PC is
compact.

Proposition 1.31. The composition π ◦ µ : Teich(S) → PC is injec-
tive and a homeomorphism onto its image. The boundary of π(µ(Teich(S))
consists of projective currents [α] with i(α, α) = 0.

Proof. Consider Teich(S) already properly embedded in C . Since
i(h, h) = −π2χ(S) is constant on Teich(S), the composition is injective.
The map Teich(S) → π(Teich(S)) is continuous and proper: consider a di-
verging sequence hi ∈ Teich(S). By compactness the sequence [hi] ∈ PC
converges on a subsequence to some [α] ∈ PC . For each i there is a λi > 0
such that λihi → α in C . Since hi diverges in Teich(S) and hence in C we
get λi → 0. Since i is continuous we get

i(α, α) = lim
i→∞

i(λimi, λimi) = −π2χ(S) lim
i→∞

λ2
i = 0.

In particular [α] 6∈ π(Teich(S)): this implies that π : Teich(S)→ π(Teich(S)
is proper and hence a homeomorphism onto its image. Moreover the bound-
ary of π(Teich(S)) consists of some elements α with i(α, α) = 0. �

We consider both S and Teich(S) embedded in PC . To identify ∂Teich(S)
we now analyze the geodesic currents α with i(α, α) = 0. These geodesc cur-
rents are geometric objects that contain and generalize S .

2. Laminations

2.1. Measured geodesic laminations. Let S = H2/Γ be a hyper-
bolic surface. A geodesic lamination λ is a non-empty set of disjoint simple
complete geodesics in S, whose union is a closed subset of S. Each geodesic
may be closed or open and is called a leaf ; their union is the support of λ.
We will often confuse λ with its support for simplicity.

The following examples are fundamental:

• a finite set of disjoint closed geodeiscs in S,
• a set of disjoint lines in H2 whose union is closed.

The lamination in H2 may be particularly complicated, see Fig. 1.

Exercise 2.1. A set λ of disjoint lines in H2 form a closed set if and
only if λ is closed as a subset of G .
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Figure 1. A geodesic lamination in H2.

If a set of disjoint lines in H2 is not closed, it suffices to take its closure
to get a lamination. Those in H2 are fundamental, since a lamination in
S = H2/Γ lifts to a Γ-invariant lamination in H2. The laminations in S are
hence in natural bijection with the Γ-invariant laminations in H2.

Let λ ⊂ S be a geodesic lamination. A transverse arc to λ is the support
of a simple regular curve α : [a, b] → S transverse to each leaf of λ, whose
endpoints α(a) and α(b) are not contained in λ.

Definition 2.2. A transverse measure for a lamination λ ⊂ S is a
locally finite measure µα on each transverse arc such that:

(1) if α′ ⊂ α is a sub-arc of α, the measure µα′ is the restriction of µα;
(2) the support of µα is α ∩ λ;
(3) if there is an isotopy αt : [a, b]→ S between two arcs α0 and α1 such

that each level αt is a transverse arc, then µα0 = (α−1
0 ◦α1)−1(µα1).

In particular every arc α transverse to λ has a finite length, defined as
the total measure of the arc. The arc has length zero if and only if α∩λ = ∅.
A measured geodesic lamination is a geodesic lamination with a transverse
measure.

Example 2.3. A lamination λ formed by a finite set of disjoint closed
geodesics γ1, . . . , γk has a natural transverse measure: for any transverse arc
α, the measure µα on α is just the Dirac measure supported in α ∩ λ.

More generaly, we may assign a positive weight ai > 0 at each γi and
define µα by giving a weight ai at each intersection α ∩ γi. When weights
vary we get distinct measured laminations with the same support.

2.2. Currents and measured geodesic laminations. Let S = H2/Γ

be a hyperbolic surface and β be a geodesic current with i(β, β) = 0. By
Exercise 1.23 the support of β is a closed Γ-invariant subset of G formed by
disjoint lines, which projects to a lamination λ in S.

The lamination λ has a natural transverse measure induced by β, defined
as follows. Let α be an arc transverse to λ; let us lift it to an arc α̃ in H2.
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Up to cutting α̃ in finitely many arcs we may suppose that it intersects each
leaf of λ̃ in at most one point. We define the measure of a Borel set U ⊂ α̃
as the β-measure of the lines in β that it intersects.

Exercise 2.4. This transverse measure satisfies the axioms and give λ
the structure of a measured geodesic lamination.

Proposition 2.5. We have just defined a bijection{
currents β with i(β, β) = 0

}
←→

{
measured geodesic laminations on S

}
Proof. Given a measured geodesic lamination λ in S, we construct a

geodesic current β. Consider the lift λ̃ in H2. Define the support of β as the
leaves of λ̃. For every leaf r we choose a transverse arc α to r that intersects
every leaf in λ̃ in at most one point. The leaves intersected by α form an
open neighborhood Ur of r in λ̃ ⊂ G . We define the measure βr on Ur by
transporting the transverse measure on α.

The open sets Ur cover λ̃ ⊂ G and βr|Ur∩Ur′ = βr′ |Ur∩Ur′ for all r, r′.
We may extract from this a locally finite covering and apply Proposition 3.3
from Chapter 1 to get a measure β on λ̃ that extends each βr.

The measure β is Γ-invariant by construction, hence gives a geodesic
current with i(µ, µ) = 0 since its support consists of disjoint lines. �

We denote by ML ⊂ C the set of all measured geodesic laminations on
S, thus identified with the currents having zero self-intersection. With this
identification the set ML does not depend on the hyperbolic metric chosen.

Recall that a multicurve is a finite collection of disjoint and homotopi-
cally non-trivial simple closed curves. A multicurve determines a measured
geodesic lamination: consider n parallel components as a single one with
weight n and use Example 2.3. We obtain the inclusions

S ⊂M ⊂ML ⊂ C .

2.3. Euclidean singular foliations. Geodesic laminations are not com-
binatorial in nature and hence difficult to construct: we introduce a tool that
is useful for this task. Fare GB prima per super-

fici con bordo angoloso e
mettere questo esempioLet the Fontana plane F be the euclidean plane C cut along the segment

[−1, 1], i.e. obtained from C by substituting (−1, 1) with two copies of it,
one attached to the upper half-plane and one to the lower. The Fontana
plane is a flat surface with boundary consisting of two geodesic lines (the
two copies of (−1, 1)) and two cone points of angle 2π.

We fix some terminology: the two cone points are called singular, the
points in the two copies of (−1, 1) are the boundary points, and all the other
points in F are interior points. We see F foliated by horizontal geodesic
lines: three lines emanate from each singular point.

Definition 2.6. A euclidean singular foliation on a closed surface S
is a non-empty closed set φ ⊂ S equipped with an atlas of charts onto
open sets of F, whose transition functions are isometries that preserve the
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Figure 2. We require that each complementary region of a euclidean
singular foliation is not a disc, a monogon, or a bigon.

Figure 3. An interior, singular, and boundary point in a euclidean
singular foliation.

horizontal foliation of F. We require that no component of S \ int(φ) is a
disc, a monogon, or a bigon as in Fig. 2.

A point of φ is singular, boundary, or inner if it is mapped to a singular,
boundary, or inner point of F, see Fig. 3. The subsurface φ has a struc-
ture of flat surface with boundary consisting of geodesic lines (the regular
boundary points) and cone points of angle 2π (the singular points). The
complementary regions are the connected components of S \ int(φ): each is
a surface with poligonal boundary, with vertices at the singular points. We
require that no complementary region is a disc, a monogon, or a bigon.

The singular foliation of F descends to a singular foliation of φ into
geodesics, called leaves. A leaf may be open or close. A leaf is singular if it
terminates at a singular point. Each singular point is adjacent to three sin-
gular leaves (counted with multiplicity). By compactness φ contains finitely
many singular points and leaves: the following exercise shows that most
leaves are non-singular.

A euclidean singular foliation will be called simply a foliation.

Exercise 2.7. The foliation φ contains uncountably many leaves.

Example 2.8. Pick a square in F disjoint from the boundary as in Fig.
and identify its opposite sides via an isometry. We get a torus equipped
with a euclidean singular foliation φ.

In this example the foliation has no singular and boundary points and
covers the torus, hence χ(φ) = 0. More generally:

Proposition 2.9. There are −2χ(φ) singular points in φ.
Fare GB con angoli e
bordo. Proof. Gauss-Bonnet formula says

2πχ(φ) =
∑

αi
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Figure 4. We may cut a foliation along an interior compact leaf.

where αi are the exterior angles of the boundary cone points. The exterior
angle of a singular point is π − 2π = −π. �

Corollary 2.10. A foliation φ in Sg with g > 2 is a proper subset.

Proof. If φ has singular points then it is a proper subset. If it has no
singular points then χ(φ) = 0 and φ is again a proper subset (a union of
disjoint annuli). �

Corollary 2.11. There are no foliations in S2.

Corollary 2.12. A foliation φ in S contains at most −6χ(S) singular
points. It contains −6χ(S) singular points if and only if its complementary
regions consist of triangles and annuli.

Proof. We have −6χ(S) = −6χ(φ) − 6χ(C) = 3n − 6χ(C) where n is
the number of singular points and C = C1t · · · tCk are the complementary
regions. Each Ci is incident to some ni singular points with n = n1 + . . . nk.
By hypothesis we have 3χ(Ci)−ni 6 0 and the equality holds if and only if
Ci is an annulus or a triangle. Therefore 3χ(C) 6 n and we get

−6χ(Sg) = 3n− 6χ(C) > 3n− 2n = n.

The equality holds if and only if the Ci are annuli and triangles. �

2.4. Transversal arcs and multicurves. Let S be equipped with a
foliation φ. An arc, curve, or multicurve α is transverse to φ if it is transverse
to each leaf. A transverse arc α intersects φ in finitely many disjoint closed
segments, and the endpoints of α may or may not be contained in φ.

A boundary leaf of φ is a leaf contained in the boundary of φ: it may
be a segment connecting two singular points or a circle. The foliation φ
sometimes contains also some interior (i.e. non-boundary) compact leaf l: a
segment as in Fig. or a circle. In that case we may cut φ along l as shown
in Fig. and obtain a new foliation φ′.

Definition 2.13. A foliation φ is reduced if every compact interior leaf
is a circle parallel to a boundary leaf.

Every foliation may be transformed to a reduced foliation by cutting
along finitely many compact leaves: simply cut along every interior leaf and
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Figure 5. A bigon between a multicurve µ and a foliation φ (left)
and how to eliminate it (right).

P P

d

l

Figure 6. If µ is in general position with respect to φ, it is tangent to
some leaf in finitely many points as shown here (left). A perpendicular
of small length d points to some leaf l at distance d from P , which forms
a bigon with µ (right).

along one circle leaf in each class of parallel closed leaves. It is slightly more
convenient to work with reduced foliations.

A multicurve µ forms a bigon with φ if one component of µ forms a
bigon with a boundary leaf of φ as in Fig. 5-left.

Proposition 2.14. Let φ be a reduced foliation. Every multicurve µ has
a representative transverse to φ which forms no bigons with φ.

Proof. We put µ in general position with respect to φ, so that µ is
tangent to φ only in finitely many points as in Fig. 6-left. We eliminate all
bigons of µ using the isotopy shown in Fig. 5-right.

Consider a tangency point P . We draw from it a line perpendicular to
the leaves as in Fig. 6-right of some length d > 0. The line ends at some
leaf l at distance d from P . For sufficiently small d the leaf l forms a bigon
with µ as in the figure.

Let now D be the supremum of all values of d such that l exists and forms
a bigon as in the figure. Some cases may occur: the two configurations of
Fig. 7 are excluded because every component of µ is homotopically non-
trivial and φ is reduced. The remaining possibilities are listed in in Fig. 8
and 9: each can be simplified by an isotopy of µ that decreases the number
of tangency points of µ.

The move in Fig. 9-right does not create any new bigon because no
complementary region of φ is a bigon. If the move in Fig. 9-left creates a
new bigon, we eliminate it as in Fig. 5-right: the resulting multicurve µ has
the same number of tangency points as before but one component less in
µ \ φ, hence the process ends in finite time and we get a multicurve that
forms no bigon and has no tangency points. �
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PP

Figure 7. These two configurations do not arise because every com-
ponent of a multicurve is homotopically non-trivial (left) and because
the foliation is reduced (right).

P P

Figure 8. Each such configuration can be simplified. In the left
picture we reduce the number of tangency points, in the right picture a
component of µ is isotopic to a leaf, hence to a boundary leaf since φ is
reduced: therefore it may be isotoped to be disjoint from φ.

If there are no bigons with φ, there are no bigons with any leaf of φ.

Proposition 2.15. Let φ be a foliation in S. If a multicurve µ forms
no bigon with φ, then it forms no bigon with any leaf of φ.

Proof. Suppose by contradiction that there is a bigon, that is a disc
D with ∂D = α ∪ β with α ⊂ µ and β contained in some leaf of φ. The arc
α intersects φ transversely in finitely many arcs.

Consider D abstractly. We enlarge D so that the arcs in α ∩ φ are
orthogonal to the foliation as in Fig. 10-left. Consider the complementary
regions in D \ φ that are adjacent to α. By hypothesis there are no bigons
as in Fig. 11-left. If there is a triangle as in Fig. 11-right, we eliminate it as
shown in the figure.
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P P

Figure 9. Each such configuration can be simplified.

Figure 10. We can enlarge D so that α ⊂ ∂D intersects φ into lines
orthogonal to the leaves.

Figure 11. There are no complementary bigons as in the left picture.
A complementary triangle as in the right picture can be eliminated by
gluing together two sides of it. If the sides have different lengths, we
enlarge the disc as in Fig. 10 to get sides of the same length.

If we double D and φ along α we get another disc D′ containing a
foliation φ′ having ∂D′ as a leaf. We double again D′ along ∂D′ to get a
foliation φ′′ in the 2-sphere S2. Note that since there are no bigons and
triangles in D as in Fig. 10, no complementary region in D′ \ φ′ and hence
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in S2 \ φ′′ is a disc, a monogon, or a bigon. Hence φ′′ is indeed a euclidean
singular foliation in S2: however, this is excluded by Corollary 2.11. �

2.5. Transversal measure. We equip every transverse simple arc to
a foliation φ with a Borel measure as follows.

Let α be a transverse arc in the Fontana plane F. The support of α has
a Borel measure, induced by the linear 1-form dy. This measure is preserved
by all transition functions, therefore it descends to any simple transverse arc
α to a euclidean singular foliation φ in any surface S. We call this measure
the transversal measure of α. Its support α∩φ consists of disjoint segments.

In particular, a transverse arc or curve α has a transversal length `(α)
defined as the total measure of α.

Remark 2.16. The transversal length is not bigger than the riemannian
length, and the two lengths coincide when α is orthogonal to all leaves.

2.6. From foliations to laminations. We transform here foliations
into measured geodesic laminations. Let φ be a foliation on a surface Sg
of genus g > 2 and fix an auxiliary hyperbolic metric on Sg = H2/Γ. The

foliation φ lifts naturally to a foliation φ̃ on H2, whose leaves and singular
points are the counter-images of leaves and singular points of φ.

Lemma 2.17. A non-singular leaf of φ̃ has two distinct endpoints in ∂H2.

Proof. We may suppose that φ is reduced, since reducing φ moves the
leaves of a bounded amount and hence does not affect the limit behaviour of
its lifts in φ̃. Choose any geodesic pants decomposition µ. By Proposition
2.14 we may transform φ via an isotopy so that µ is transverse and forms
no bigon with φ. Its counterimage µ̃ in H2 consists of pairwise ultraparellel
disjoint lines.

Consider a non-singular leaf β of φ and a lift β̃ in H2. If β is contained in
a pair-of-pants, it is a simple closed curve parallel to a component of µ, hence
homotopic to a geodesic, and β̃ is homotopic to a line of µ̃ with the same
endpoints. Otherwise, β crosses µ without forming bigons by Proposition
2.15: therefore β̃ crosses µ̃ without forming bigons, and hence it intersects
each line in β̃ at most once.

Represent H2 as the closed euclidean disc. The curve β̃ intersects in-
finitely many lines in H2 as in Fig. 12. Since µ̃ is a discrete set of lines in
G , for any ε > 0 there are only finitely many lines whose endpoints have
distance (in the euclidean metric) bigger than ε. The curve β̃ intersects
infinitely many lines, whose endpoints are nested and infinitely close, hence
β̃ has two endpoints in ∂H2. These are distinct since the lines in µ̃ are
ultraparallel. �

The straightening of φ̃ is the set of lines in H2 obtained by replacing
every non-singular leaf of φ̃ with the line having the same endpoints.

Lemma 2.18. The straightening of φ̃ consists of disjoint lines.
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A

B

C

D

Figure 12. The lift β̃ of a leaf intersects the ultraparallel lines µ̃,
each at most once: therefore it has disjoint limits as t→ ±∞ (left). An

arc crosses a first and a last leaf of φ̃, and all other leaves it crosses have
endpoints in the segments AB and CD (right).

Proof. Leaves in φ̃ are disjoint, hence their endpoints are unlinked. �

The closure of the straightening of φ̃ is a geodesic lamination λ̃ in H2.
The whole construction is Γ-invariant, hence λ̃ also is. Therefore λ̃ descends
to a geodesic lamination λ on S, called the straightening of φ.

Remark 2.19. The straightening induces a natural map{
leaves of φ

}
−→

{
leaves of λ

}
which may be neither injective nor surjective: many leaves may straighten
to the same one, and some leaves in λ were added in the closure.

We now define a transverse measure on λ. Informally, the transverse
measure on φ induces one on λ. More formally, we define a measure on G
with support λ̃.

Let α be an arc in H2 transverse to φ̃, which intersects every leaf at most
once. Let α∗ ⊂ α be the set of points contained in a non-singular leaf of φ̃.
We may orient all leaves intersecting α∗ coherently and define a map

sα : α∗ → ∂H2 × ∂H2

that sends x to the oriented pair of endpoints of the leaf containing x. By
construction each component of sα is monotone, hence measurable: therefore
sα is a measurable function.

Let [A,B] and [C,D] be as in Fig. 12-(right) the smallest closed segments
in ∂H2 (which might reduce to points) such that [A,B]× [C,D] contains the

image of sα. We have (A,B)∩ (C,D) = ∅ and every leaf of φ̃ with endpoints
in (A,B) and (C,D) crosses α. We equip the open set

Uα = (A,B)× (C,D) ⊂ G

with the push-forward µα via sα of the transverse measure on α induced by
φ̃. We do this for all transverse arcs α that cross each leaf at most once.
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a{
Figure 13. A switch (1), the switch condition requires that a = b+c
(2), to construct a foliation, replace every branch with weight a with a
square of width a (3), every switch creates a singular point (4).

Proposition 2.20. There is a unique measure µ on G with support λ̃
which restricts to µα on each Uα.

Proof. We check that µα = µα′ whenever Uα ∩Uα′ 6= ∅. Let φ′ ⊂ φ be
the leaves having endpoints in Uα ∩ Uα′ . These leaves cross both α and α′

and hence induce a bijection i : α ∩ φ′ → α′ ∩ φ′ such that sα = sα′ ◦ i. The
map i preserves the transverse measure, since the close leaves in φ′ stay at
the same euclidean distance when they go from α to α′. Hence µα = µα′ .

Now we apply Proposition 3.4 from Chapter 1 to get a unique µ on the
union of the open sets Uα. Using a pants decomposition as in the proof of
Proposition 2.17 one sees that every non-singular leaf is contained in some
Uα: therefore µ is supported on λ̃. �

The measure µ is clearly Γ-invariant (as everything is) and therefore
descends to a measured lamination λ in S.

We can now transform canonically every foliation φ into a measured
geodesic lamination λ. Let φ′ be obtained by reducing φ. For a multicurve
µ, we define i(φ, µ) as the transversal length of any isotopic representative
for µ which is transverse to φ′ and forms no bigon with it, which exists
by Proposition 2.14. This number is well-defined and useful because of the
following.

Proposition 2.21. We have i(φ, µ) = i(λ, µ).

Proof. Every component of µ has no bigons with the leaves of φ by
Proposition 2.15 and hence lifts to a segment in H2 that intersects every
leaf at most once. The measure of the leaves it crosses equals its transverse
measure by the definition above. �

2.7. Train tracks. Laminations are better constructed via foliations,
and foliations are better modeled via train tracks.

A train track on a closed surface S is a closed subset τ ⊂ S built by
taking a finite set of points (called vertices or switches) and joining them
with disjoint arcs called branches. We require that every switch looks locally
like Fig. 13-(left): there are three branches all with the same tangent line,
two from one side and one from the other. As for foliations, we also require
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Figure 14. A train track on S3.

Figure 15. Decompose S into pants and annuli and fix a blue point
in each curve.

Figure 16. Identify each pant and annulus with one of these two
fixed models.

that no complementary region in S \ τ is a disc, a monogon, or a bigon. An
example is shown in Fig. 14.

A weight system on τ is constructed by assigning a non-negative real
number, called weight, to each branch of τ , such that the switch conditions
hold: at every switch as in Fig. 13-(2) we must have a = b+ c.

A weighted train track determines a foliation as follows: replace every
branch with weight a with a euclidean rectangle of width a and arbitrary
length as in Fig. 13. Thanks to the switch conditions, these rectangle glue
nicely at each switch as in Fig. 13, producing a singular vertex.
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2.8. A parametrization for ML. Let S = Sg with g > 2 be oriented.
We want to parametrize the space ML of all geodesic laminations on S, and
to this purpose we fix a frame similar to the one needed in Fenchel-Nielsen
coordinates.

Let a decomposition into pants and annuli be a multicurve as in Fig. 15,
obtained from a pants decomposition by duplicating each curve. A frame
here consists of a decomposition of S into pants and annuli, with a marked
(blue) point in each closed curve as in Fig. 15: here we fix a diffeomorphism
(preserving orientation and marked points) between each pants and annulus
with one model from Fig. 16.

We fix an arbitrary frame for Sg.

Definition 2.22. Assign a triple ai, bi, ci of non-negative numbers to
each annulus of the frame, such that one of the following holds:

ai = bi + ci, bi = ci + ai, ci = ai + bi.

This assignment is called a coloring.

We transform a coloring into a weighted train track as follows. Every
pair-of-pants is adjacent to three annuli: the ai colorings of these annuli
form a triple ai, aj , ak. We insert a portion of train track as in Fig. 17: its

shape depends on the position of [ai, aj , ak] in RP2 and its weights depend
linearly on ai, aj , ak.

We extend the train track inside an annulus colored with ai, bi, ci as
shown in Fig. 18. A coloring determines a weighted train track, hence a
foliation, hence a measured geodesic lamination.

Theorem 2.23. The construction induces a bijection{
colorings

}
←→ML.



154 9. SURFACE DIFFEOMORPHISMS

[1,0,0]

[0,1,0] [0,0,1]

[1,1,0] [1,0,1]

[0,1,1]

ak

aj

a -i j aka -

ai aj ak   -j+ ak ai aj   -+

aj ak ai   -+

2 2

2

2
aia -k aja -i

2

aiaj

ai

aiak

a -j aia -k

2

Figure 17. The portion of train track determined by the triple
(ai, aj , ak). The triangle in RP2 with vertices [1, 0, 0], [0, 1, 0], [0, 0, 1]
subdivides into four triangles and the shape of the train track depends
on the position of P = [ai, aj , ak]. When P lies in the frontier of two
triangles some branch has weight zero and the different shapes actually
coincide after deleting this branch.
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[1,1,0] [1,0,1]

[0,1,1]

c

b

c
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Figure 18. The portion of train track determined by the triple
(ai, bi, ci). The boundary of the triangle in RP2 with vertices
[1, 0, 0], [0, 1, 0], [0, 0, 1] subdivides into three segments and the shape of
the train track depends on the position of P = [ai, bi, ci] in this bound-
ary. When P lies in a vertex some branch has weight zero and the two
shapes coincide after deleting this branch.


