Corso di Geometria analitica e algebra lineare Primo compitino, 19/12/2007 - A

Cognome: Nome: Matricola:

Esercizio 1. Per $t \in \mathbb{R}$, si consideri il sottospazio U_t di \mathbb{R}^4 generato dai vettori

$$\begin{pmatrix} 3 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ t+2 \\ 4 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ t+1 \end{pmatrix}.$$

- (i) Al variare di $t \in \mathbb{R}$ determinare la dimensione di $\mathrm{Ann}(U_t) \subseteq (\mathbb{R}^4)^{\vee} = M_{1,4}(\mathbb{R});$
- (ii) Dire per quali valori di t il funzionale $\phi = (1, 0, -1, -1)$ appartiene a Ann (U_t) .

Esercizio 2. Sia \mathbb{K} un campo, sia V uno spazio vettoriale su \mathbb{K} di dimensione 19 e siano $v_1, v_2 \in V$ due vettori non nulli. Sia $T \subseteq \operatorname{End}(V)$ il sottoinsieme definito da:

$$T := \left\{ f \in \operatorname{End}(V) \mid f(v_1) \in \operatorname{Span}(v_2), f(v_2) \in \operatorname{Span}(v_1) \right\}$$

- (i) Mostrare che T è un sottospazio vettoriale di $\operatorname{End}(V)$,
- (ii) Determinare le possibili dimensioni di T al variare di $v_1, v_2 \in V \setminus \{0\}$.

Esercizio 3. Dire se le seguenti affermazioni sono vere o false, giustificando la risposta.

(i) Due delle seguenti matrici sono equivalenti per righe:

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 3 & -3 \\ -1 & 1 & -3 \end{array}\right), \ \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right), \ \left(\begin{array}{cccc} 1 & -2 & -3 \\ 1 & 1 & 3 \\ 2 & 3 & 8 \end{array}\right).$$

(ii) Sia V uno spazo vettoriale di dimensione 2 e sia $f: V \to V$ un endomorfismo tale che $f^3 = 0$. Allora $f^2 = 0$.