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ABSTRACT

Markovian fluid flow models are used extensively in performance analysis of
communication networks. They are also instances of Markov reward models
that find applications in several areas like storage theory, insurance risk and
financial models, and inventory control. This paper deals with the transient (time
dependent) analysis of such models. Given a Markovian fluid flow, we construct
on the same probability space a sequence of queues that are stochastically
coupled to the fluid flow in the sense that at certain selected random epochs,
the distribution of the fluid level and the phase (the state of the modulating
Markov chain) is identical to that of the work in the queue and the phase. The
fluid flow is realized as a stochastic process limit of the processes of work in the
system for the queues, and the latter are analyzed using the matrix-geometric
method. These in turn provide the needed characterization of transient results
for the fluid model.
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1. INTRODUCTION

This work is an extension to transient (time dependent) results of those of
Ramaswami�12� and of Ahn and Ramaswami�3� on steady state results for stochastic
fluid flows. In the models considered, the net rate of change of the fluid at any
instant depends on the state (called phase) of a finite state, continuous time Markov
chain (CTMC).

A direct computation of the transient results by numerical integration of the
partial differential equations (pde’s) for the transient probabilities is both difficult
and hazardous due to possible build up of errors. Spectral methods are not very
successful either; see Refs.�6�16�. An effort based on ad-hoc series expansions by
Sericola�14� is highly successful, but it does not lend itself to generalizations or to
probabilistic interpretations. We wish to provide a powerful alternative that also
holds some hope of extensions in the future to more challenging models (such
as those modulated by countable or continuous state space processes which are
needed to model heavy tails and self similarity.) Our work is rooted in matrix-
geometric methods.�7�9�13� The fact that those have been generalized to operator
settings, see e.g., Refs.�10�17� gives us the hope that generalizations of our approach
to the infinite dimensional case would indeed become possible. We emphasize that
such a generalization has not been made in this paper.

Our approach is based on an approximation of the fluid model by the amounts
of work in a sequence of Markov modulated queues of the quasi birth and death
(QBD) type. That enables the use of matrix-geometric methods for queues. Our
main result, Theorem 13, obtains the Laplace transforms (with respect to time) of
the time dependent joint distribution of the fluid level and the phase in a form
that lends itself to stable computations. The characterization uses certain kernels
that appear in the matrix-geometric method and enable one to “jump” directly to a
“last epoch before time t,” and thereby avoids building the story over many small
intervals up to time t as in a numerical solution of the pde’s. Following is an
overview of the approach and the organization of the paper.

A first step in our analysis is a “spatial uniformization” of the phase process.
Under that scheme described in Sec. 2, the phase process is modeled as a Markovian
point process such that potential increases to the fluid buffer between two successive
epochs of that point process have an exponential distribution with a common rate,
say �. That allows one to replace the upward trajectories of the fluid process
between the spatial uniformization epochs by jumps occurring at those epochs, and
to consider the resulting path as a path of the work in the system for a queue with
Markovian arrivals and independent, identically distributed (iid) work amounts;
herein lies the value of spatial uniformization.

Unfortunately however, the resulting queue does not have a simple structure,
because in it each service time is also directly proportional to the interarrival time;
we want to avoid that inconvenience. Therefore, we consider a queue in which
arrivals come at the spatial uniformization epochs but bring amounts of work that
are not only iid exponential random variables, but are also independent of the
arrival process. Now, paths of the resulting work process do not coincide with those
of the fluid process anymore. But nevertheless, we can show (see Sec. 4) that a
stochastic coupling still results in a distributional sense between the fluid flow and
the work in the queue at points of the chosen Markovian point process.
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Unfortunately, distributional coupling would only provide weak limits at
individual embedded points and is not adequate for studying the behavior at an
arbitrary point t or of functionals of the paths such as the busy period. Therefore,
in Sec. 3, we construct a sequence of nested spatial uniformizations on a common
probability space defined by a set of �n with �n → �, as n → �, with the hope that,
since the mean quanta sizes 1/�n → 0, we shall, in the limit, realize the fluid flow as
a pathwise limit of the work processes.

That such a hope is not misplaced is illustrated by Fig. 1 where we consider the
fluid flow modulated by the Markov process with generator

Q =
(−1 1
0�5 −0�5

)
�

in which the fluid level increases at rate 1 in state 1 and decreases at rate 1
in state 2. The figure depicts the results of a simulation experiment with spatial
uniformizations given by �n = n, for various values of n. The left hand side plots
give the sample paths of the fluid model and of the work in the queues, and the
right hand side plots give the paths of their differences. Note that as n → �, the
differences do become negligible.

Figure 1. Comparison of the paths of the fluid flow process and workload in the queue ��n�

for n = 1� 10� 100� 5000.
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At a high-level, this article is but an implementation of the above simple ideas.
As noted, the details of the construction of the needed queues is given in Sec. 3.
In Sec. 4, we establish stochastic coupling at the spatial uniformization epochs and
also show that each queue is of the QBD type; see Theorem 3 and Theorem 5. In
Sec. 5, Theorem 8 we establish the stochastic process limit result that forms the basis
of our approach. To let the main ideas flow uninterrupted, the technical details of
its proof are moved to a later section, viz., Sec. 9.

Lest the reader should miss a major subtlety of our construction, we note that
to compare the sample path increments of the spatial discretizations, it is necessary
to make their construction such that all of them are modulated by a common phase
process and are nested. Our construction in Sec. 3 satisfies this important condition,
and that is exploited many times, and particularly so to establish the stronger
(pathwise) limit theorems.

In Sec. 6, we develop the transient analysis of the queues using matrix-geometric
techniques. These are then used in Sec. 7 to obtain the transient results for the fluid
flow model through a limit process. Specifically, Sec. 7 introduces three fundamental
kernels for the fluid model that hold the key to its transient analysis. In Sec. 8,
numerical computations are performed for a set of examples, and the results are
compared to those of Sericola.�14� Finally, in Sec. 10, we provide some concluding
remarks.

2. THE MODEL AND SPATIAL UNIFORMIZATION

We assume as given an irreducible, CTMC of “phases” with a finite state space
S = S1 ∪ S2 ∪ S3 and infinitesimal generator Q, such that: during sojourn of the
CTMC in state i ∈ S1, the fluid level increases at rate ci > 0; during sojourn of the
CTMC in state j ∈ S2, the fluid level decreases at rate cj > 0; and during sojourn
of the CTMC in S3, the fluid level remains constant. Throughout this article, I will
denote an identity matrix and 1 a column vector of 1’s both of whose dimensions
will be determined by the context in which they appear. Where it is necessary to
indicate the dimension explicitly, we will write In to denote the n× n identity matrix.

For later use, we define the diagonal matrices

Cj = diag�ci� i ∈ Sj	� j = 1� 2� 3� (1)

where we set ci = 1 for all i ∈ S3, and let C = diag�C1� C2� C3� and c = ∑
i∈S ci.

We partition the states of the Markov chain in conformity with the three sets Si
identified above and denote its infinitesimal generator in partitioned form as

Q =
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 � (2)

Throughout, to avoid confusion between submatrices in a partitioned structure and
elements of a matrix, the �i� j�th element of a matrix A will be denoted by �A�ij or
as A�i� j� instead of as Aij as is often customary.
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A spatial uniformization (for the fluid flow) is effected by modeling the Markov
process of phases as a Markov renewal process (MRP) with exponential sojourn
times such that the potential increases to the fluid level between epochs of that MRP
are identically distributed. To that end, we let ��Jn� tn� 
 n ≥ 0	 be such a MRP,
with successive states Jn ∈ S, transition epochs 0 = t0 < t1 < t2 < · · · , and with
semi-Markov kernel H�·� defined such that H�i� j� t�, the �i� j�th element of H�t�, is
given by

H�i� j� t� = P�Jn+1 = j� tn+1 − tn ≤ t�Jn = i	 = (
1− e−�cit

)
�P��ij� (3)

where

P� = �−1C−1Q+ I� and � ≥ max
i∈S

{−�C−1Q�ii
}
� (4)

The semi-Markov process (SMP) � = �J�t� 
 t ≥ 0	 is specified such that it takes
the value Jn in the interval tn ≤ t < tn+1. The following result shows that � is indeed
a realization of the phase process.

Theorem 1. The process � = �J�t�� t ≥ 0	 is a CTMC with infinitesimal generator Q.

Proof. It is easy to verify that P� is indeed a nonnegative, stochastic matrix. If
we assume J�0� = i ∈ S, then the SMP stays in i exactly n steps with probability
�P��

n−1
ii �1− �P��ii�. Since t1 − t0� t2 − t1� � � � � tn − tn−1 are conditionally independent

given J0� J1� � � � � Jn−1, with probability �P��
n−1
ii �1− �P��ii�, a sojourn time of � in state

i is the sum of n iid exponentially distributed random variables with rate �ci. Since
�P��ii = 1+ �Q�ii/��ci�, we have for the Laplace-Stieltjes transform (LST) fi�s� of the
sojourn time in state i,

fi�s� =
�∑
n=1

(
�ci

s + �ci

)n

�P��
n−1
ii �1− �P��ii� =

−�Q�ii
s − �Q�ii

�

showing that the sojourn time in i is exponentially distributed with parameter
−�Q�ii. Also, it can be seen that, given that � transits out of i into a different state,
the probability that it moves into j is �P��ij/�1− �P��ii� = −�Q�ij/�Q�ii. Hence the
result. �

Consider a sojourn interval of the SMP in i for some i ∈ S1; that is distributed
as exp��ci�, and during that interval, fluid accumulates at rate ci per unit time. Thus
the total additional fluid accumulation in that interval is distributed as exp���. This
underlies our reason for using the nomenclature “spatial uniformization.” We note
that this is similar to the “stochastic discretization” Adan and Resing�2� used in an
operational manner, but formulated more formally.

Later in the paper (see Sec. 4), we will consider a sequence of spatial uniformi-
zations given by the values �n = n�� n = 1� 2� � � � , where � = maxi∈S

{−�C−1Q�ii
}
� In

those contexts, the matrix Pn� =
1
n�

C−1Q+ I will be denoted simply as Pn, and the
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matrix P1 simply as P. Also, we shall assume Pn to be partitioned in conformity with
the partitioning of the state space as

Pn =
Pn11 Pn12 Pn13

Pn21 Pn22 Pn23

Pn31 Pn32 Pn33

 � (5)

Finally, for later use, we note the following equations which are easy to verify:

Pnii =
n− 1
n

I + 1
n
Pii� i = 1� 2� 3� (6)

and

Pnij =
1
n
Pij for i 	= j� i� j ∈ �1� 2� 3	� (7)

3. COUPLED QUEUES

3.1. Preliminaries

We assume the following as given on a common probability space �
�����:
A collection of mutually independent Poisson processes, say, �n�k, and �n�k with
rates �ck respectively for k ∈ S, and n ≥ 1; and a discrete time Markov chain
� = �Ln 
 n ≥ 0	 of phases which has transition matrix P and is independent of all
the Poisson processes �n�k, and �n�k� n ≥ 1� k ∈ S. Without loss of generality, we
shall assume that L0 = i for some i ∈ S.

We use ⊕ for denoting superposition of processes; thus, �n�j ⊕ �n�j denotes
the superposition of �n�j and �n�j , and

⊕n
k=1 �k�j denotes the superposition of the

processes �1�j� � � � ��n�j . Also, the epochs of the process
⊕n

r=1

⊕
j∈S��r�j ⊕ �r�j� will

be denoted by the sequence �snk 
 k ≥ 0	.
With these as building blocks, we construct for almost all sample points in


: (a) a phase process � = �J�t� 
 t ≥ 0	 which is a CTMC with generator Q but
realized through a spatial uniformization construct as described in Sec. 2; (b) a
process � = �F�t� 
 t ≥ 0	 such that F�t� increases at rate cj while J�t� = j ∈ S1,
decreases at rate cj while J�t� = j ∈ S2, and remains constant while J�t� ∈ S3 — i.e.,
�F�t�� J�t�� is the fluid flow process of interest; and (c) for each n ≥ 1, a queue
��n� = �Q�n��t� 
 t ≥ 0	 and its associated work process 	 �n� = �W�n��t� 
 t ≥ 0	,
where Q�n��t� is the queue length and W�n��t� is the amount of work in the queue
��n� at time t+.

3.2. The Construction

To avoid pedantry and to save notations, we shall suppress the sample point in
the ensuing discussion which is indeed a sample point by sample point construction.
We denote the set of epochs of the Poisson process

⊕n
r=1 �r�j by An�j� j ∈ S and let

An =
⋃

j∈S An�j ; the arrival epochs to the queue ��n� will be a subset of An as we shall
see later. Similarly, we denote the epochs of the Poisson process

⊕n
r=1 �r�j by Dn�j

and let Dn =
⋃

j∈S Dn�j ; the departure epochs of ��n� will form a subset of them as
we shall see later.



ORDER                        REPRINTS

Transient Analysis of Fluid Flow Models 77

Construction of the Phase Process � . Let a0 = 0, and let a1 be the first epoch of
�1�L0

that occurs after time 0. In general, set an+1 to be the first epoch of �1�Ln
to

occur after the epoch an. Let J�t� = Ln in the interval an ≤ t < an+1. We note first
of all that ��Ln� an� 
 n ≥ 0	 is a MRP of the type discussed in Sec. 2. Also, from
Theorem 1, � = �J�t� 
 t ≥ 0	 is a CTMC with infinitesimal generator Q. Indeed
the epochs �an	 form a set of spatial uniformization epochs for the fluid process
modulated by the phase process, with respect to the parameter �; see Sec. 2.

Construction of the Fluid Flow � . Without loss of generality, we assume the initial
condition F�0� = 0 and define the process �F�t�	 such that for t ∈ �an� an+1�� F�t� =
F�an�+ cj�t − an� if J�t� = j ∈ S1� F�t� = max�0� F�an�− cj�t − an�� if J�t� = j ∈ S2,
and finally F�t� = F�an� if J�t� ∈ S3. Defined thus, clearly the joint process
��F�t�� J�t��	 is stochastically equivalent to the fluid model of interest.

Construction of the Queues. For each n, the queue ��n� will be defined in terms of
the successive embedded epochs tn0 = 0, and �tnk 
 k ≥ 1	 where there is an arrival,
departure or phase transition; we emphasize that some phase transitions may be
from a phase to itself, as necessitated for instance in the uniformization process.
These epochs will be such that �tnk	 ⊂ �snk	, where s

n
k were introduced earlier, and �tnk	

yield a spatial uniformization with respect to n�. It will be assumed that service is
rendered by the server only when the phase is in S2. Also, for all queues, the queue
size at time 0 will be defined to be 0 to match our initial condition F�0� = 0. In what
follows we shall denote by Qn

k and Jnk the queue length (number of customers in the
system ��n�) and the phase at the epoch tnk+ respectively.

(a) Let tn0 = 0� Qn
0 = 0 and Jn0 = i.

(b) Having defined tnk and �Qn
k� J

n
k �, we first specify the next time point tnk+1 and

then the value of the queue size and phase at that epoch. The queue size
in ��n� is assumed to remain constant over intervals of the form �tnk � t

n
k+1�;

that is, we shall set Q�n��t� = Qn
k for all t ∈ �tnk � t

n
k+1�. There are several cases

to consider.

Case 1. If Jnk ∈ S1, then tnk+1 is defined to be the first epoch in An�Jnk
to come after

tnk , and Qn
k+1 is set to 1+Qn

k — that is, tnk+1 is defined to be an arrival epoch to the
queue ��n�. The phase at Jnk+1 is set to J�tnk+1�; note that a phase change occurs at
the newly defined epoch iff that epoch tnk+1 ∈ A1�Jnk

and a different phase is entered;
otherwise, that epoch will constitute a self-transition for the phase in the queue ��n�.

Case 2. If Jnk ∈ S3, then tnk+1 is once again defined to be the first epoch in An�Jnk
to

come after tnk , but Q
n
k+1 is set to the same value as Qn

k . — that is, the queue length
remains constant just as the fluid level. The phase Jnk+1 is set to J�tnk+1�.

Case 3. If Jnk = j ∈ S2, then we set tnk+1 to be the first epoch in An�j ∪Dn�j to come
after tnk . The queue length at that epoch is set depending on whether that epoch
comes from An�j or from Dn�j . Specifically, Q

n
k+1 is set to the same value as Qn

k if
tnk+1 ∈ An�j ; it is changed to max�0� Qn

k − 1� if the new epoch tnk+1 ∈ Dn�j . Thus, the
next epoch is just a phase transition epoch (with no effect on queue size) if it is in
An�j , and a departure epoch (with no phase change) if it is in Dn�j and a departure
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is indeed possible; note that except when the epoch is in A1�j and the new phase
entered is different, the new epoch is a dummy phase change transition epoch.

Note that the queue ��n� is specified above only in terms of its arrival, departure
and phase change epochs, and we did not assume any order of service. Now, we
assume services are done in the FIFO order. With this assumption, it is easy to
see that the construction also specifies the work process W�n��t� at each point t for
almost all � ∈ 
.

Construction of the Process 
�n� = �Y �n��t�	. Associated with the work in the
constructed queue ��n�, let us now define the process Y �n��t� such that for tnk ≤ t
< tnk+1,

Y �n��t� =


W�n��tnk�+ cj�t − tnk�� if J�tnk� = j ∈ S1
max�0�W �n��tnk�− cj�t − tnk��� if J�tnk� = j ∈ S2
W�n��tnk�� if J�tnk� ∈ S3�

(8)

note that in the intervals �tnk t
n
k+1�, the phase process remains constant and the rate of

growth of Y �n��t� mimics that of F�t�. Indeed, it will be proved later, that �F�t� 
 t≥0	
can be realized a.s., as the pathwise stochastic process limit of �Y �n��t� 
 t ≥ 0	.

4. PROPERTIES OF ��n� AND COUPLING

We shall now show that each arrival in the queue ��n� brings in a random
amount of work distributed as exp�n�� independently of the history of the process
�Q�n��t�� J�t�� up to its arrival epoch. (Since the server serves at variable rates
cj� j ∈ S2, we avoid using the term “service time” so that the amount of work
brought in by a customer is clearly distinguished from his “time in service.”)

Theorem 2.

(a) Arrivals to the queue occur only at those epochs tnk for which J�tnk−� ∈ S1; that
is, the epoch is a phase transition epoch in An from S1 for that queue (which
may very well be a phase self transition).

(b) Departures to the queue can occur at tnk only if J�tnk−� ∈ S2� Q
n
k−1 > 0 and

tnk ∈ Dn. Also, the phase immediately after each departure epoch is the same
as that immediately prior to that epoch.

(c) Assume that work gets depleted at rate cj while J�t� = j ∈ S2, and that no
service is rendered while J�t� ∈ S1 ∪ S3. Then the amounts of work done in ��n�

between successive departure epochs are iid random variables distributed as
exp�n��.

Proof. The first two assertions are obvious, and we only need to prove (c). Its proof
is very similar to that of Theorem 2 in Ref.�3� but given below for completeness.

The service of a customer in ��n� begins at an epoch tnk with Jnk ∈ S2. The service
completion epoch is the first epoch tnk+r � r ≥ 1 to come after tnk for which Jnk+r ∈ S2
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and tnk+r ∈ Dn. We let fi�s� denote the transform of the amount of work to be done
by the server until the next departure epoch, given that service starts in phase i ∈ S2.

From our construction of tnk , clearly the interval of time to the next epoch of
transition is the minimum of 2n exponential distributions with the same parameter
�ci. Since during that interval, work is being depleted at rate ci, the total work
rendered during that interval is also exponentially distributed but with parameter
2n� as one may easily verify. Also, the probability that the customer in service
departs at that epoch is 1

2 .
Now, if the work of the customer in service is not completed at that epoch, then

it is an epoch of phase change which may or may not be in S2. If it is not in S2, note
that the service of the customer is halted until the phase returns to the set S2; and
such a return will happen w.p. 1 since the phase process is irreducible and hence
recurrent non-null (we have a finite number of phases).

Using all these facts and denoting by b�i� j�� i� j ∈ S2 the probability that a
service interrupted from phase i gets restarted in phase j, we can now write the
equations

fi�s� =
1
2

2n�
s + 2n�

+ 1
2

2n�
s + 2n�

∑
j∈S2

b�i� j�fj�s�� i ∈ S2�

If we set f�s� to be the column vector of fi�s�’s and B to be the matrix whose
elements are b�i� j�� i� j ∈ S2, it is now easy to verify that the above set of linear
equations has the solution

f�s� =
[
I − n�

s + 2n�
B

]−1
n�

s + 2n�
1

=
�∑
k=0

(
n�

s + 2n�

)k+1

Bk1�

Since B is a stochastic matrix, we have

f�s�1 = n�

s + n�
1� (9)

Thus, the marginal distribution of the amount of service rendered is exponential
with parameter n� and is independent of the starting phase, and the proof is
complete. �

The process ��Q�n��t�� J�t� 
 t ≥ 0	 has a simple structure which lends to an
analysis by the matrix-geometric method. That is the main import of our next result.

Theorem 3. The queues ��n� have the following properties:

(a) All the queues ��n� are modulated by the same continuous time phase process
J�·� which is a CTMC with infinitesimal generator Q on the state space S.

(b) For each n� ��Q�n��t�� J�t�� 
 t ≥ 0	 is a continuous time QBD.
(c) The embedded sequence ��Q�n��tnk�� J�t

n
k�� 
 k ≥ 0	 is a discrete time QBD.
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Proof. Using the construction, it is elementary to verify that ��Q�tnk�� J�t
n
k��	 is a

discrete time QBD with transition matrix


Mn Bn0 0 0 · · ·
Bn2 Bn1 Bn0 0 · · ·
0 Bn2 Bn1 Bn0 · · ·
· · · · · · · · · · · · · · ·

 � (10)

where Mn = Bn2 + Bn1, and

Bn0 =
Pn11 Pn12 Pn13

0 0 0
0 0 0

 �

Bn1 =
 0 0 0

1
2Pn21

1
2Pn22

1
2Pn23

Pn31 Pn32 Pn33

 �

Bn2 =
 0 0 0
0 1

2 I 0
0 0 0

 � (11)

where the matrices Pnij are defined by (5)–(7). Furthermore, in state �n� j�� n ≥ 0�
j ∈ S, the sojourn time (i.e., the time to the next epoch tnk ) is exponentially
distributed with mean �n�cj�

−1 for j ∈ S1� �2n�cj�
−1 for j ∈ S2, and �n��−1 for j ∈ S3.

This completes the proof. �

Let us denote the queues ��n� constructed above by ��n���� to explicitly note that
��n� is the nth queue arising from a spatial uniformization of the phase process, with
respect to �. Then it follows from the above theorem that the laws of both ��1��n��
and ��n���� are identical. At this point, it is worth noting that the epochs �tnk 
 k ≥ 0	
used in the construction provide a spatial uniformization of the phase process with
respect to the parameter n�, and that these spatial uniformization epochs are nested
in the sense that

�tnk 
 k ≥ 0	 ⊂ �tn+1
k 
 k ≥ 0	�

From these facts, we record a noteworthy result whose importance stems from its
immediate implication that once we have analyzed the queue ��1����, the results for
��n����, can be obtained by just changing � to n� in the final formulae for the queue
��1����. We state the result formally as a theorem.

Theorem 4. The queue ��n���� (which is the nth queue constructed from a spatial
uniformization of the phase process with respect to �) has the same law as the queue
��1��n�� (which is the first queue constructed from a spatial uniformization with respect
to n�).
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The next result is a coupling theorem and gives the primary reason for our
interest in the constructed queueing models.

Theorem 5.

(a) The process ��Y �n��tnk�� J�t
n
k�� 
 k ≥ 0	 has the same probability law as the

process ��F�tnk�� J�t
n
k�� 
 k ≥ 0	.

(b) The process ��Y �n��tnk−�� J�tnk�� 
 k ≥ 1	 has the same probability law as the
process ��Y n�tnk+�� J�tnk�� 
 k ≥ 1	.

Proof. We will show that the partial subsequences up to m have identical
distributions for all m. Note that Part (a) is clearly true for m = 0 and
similarly Part (b) is clearly true for m = 1. The proof is completed by
mathematical induction by observing that all sequences considered are Markov,
and furthermore due to their construction, for all �x� j�, the conditional distribution
of �F�tnk+1−�� J�tnk+1�� given �F�tnk+�� J�tnk�� = �x� j� is the same as the conditional
distribution of �Y�tnk+1−�� J�tnk+1�� and of �Y�tnk+1+�� J�tnk+1�� given �Y�tnk+�� J�tnk��
= �x� j�. �

5. FLUID FLOW AS A LIMIT PROCESS

We have noted that in the nth queue ��n�, the amount of work brought by
each customer is distributed as exp�n��. As n → �, these quanta become smaller
and smaller. Given that the rates of change of the processes Y �n��·� and F�·� in the
intervals �snk � s

n
k+1� are identical and that these have the same distribution at the

end points of these intervals, it appears reasonable to expect that as n → �, the
distribution of �Y �n��t�� J�t�� should tend to that of �F�t�� J�t��. We actually prove a
stronger result yielding convergence in probability.

Theorem 6.

(a) For all t ≥ 0, the following convergence in probability holds:

Y �n��t� → F�t� in pr. as n → ��

(b) For all t > 0� x ≥ 0, we have

�0i�F�t� ≤ x� J�t� = j� = lim
n→��0i�Y

�n��t� ≤ x� J�t� = j��

where, by �0i we denote the conditional probability given that the respective
process starts in the state �0� i�.

Proof. Part (b) is a direct consequence of (a). So as not to impede the flow of the
paper, the proof of (a) is presented in Sec. 9 separately. �
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In an entirely analogous manner, we can actually prove the following result; we
omit the details of the proof which are along the same lines as that of Theorem 6.

Theorem 7. For all ur > 0� r = 1� � � � � m� xr ≥ 0 and jr ∈ S, we have

�0i�F�ur� ≤ xr� J�ur� = jr� 1 ≤ r ≤ m�

= lim
n→��0i�Y

�n��ur� ≤ xr� J�ur� = jr� 1 ≤ r ≤ m�� (12)

Due to Theorem 11.3.1v of Ref.,�18� we have that the process �Y �n��·�� J�·��
converges as n → � to the process �F�·�� J�·�� in the sense that

lim
n→�

∫


fd�n =

∫


fd�� (13)

for all continuous, bounded real-valued functions f on 
. Under the assumption
that the probability space is a separable, metric space, we can now invoke the
Skorohod Representation Theorem (See Ref.�15� and also Chapter 3 of Ref.�18�) to
assert that there exist versions Ỹ �n��·� and F̃ �·� of the processes Y �n��·� and F�·�
respectively such that

��Ỹ �n��t� → F̃ �t� as n → �∀t� = 1�

In view of its importance, we state the result as a theorem.

Theorem 8. There exist on a common probability space versions Ỹ �n��t� and F̃ �t� of
the processes Y �n��t� and F�t� such that

��Ỹ �n��t� → F̃ �t� as n → �� = 1�

Throughout the rest of the paper, we shall (by an abuse of notations) assume
that Y �n��·� and F�·� are such versions so that where necessary we may take
sample path limits. This also allows us to assert the following “continuous mapping
principle,” namely, that for any continuous functional f of the paths (see Ref.�18� for
applicable definitions of the topology),

f�Y �n�� J� ⇒ f�F� J�� as n → ��

where ⇒ denotes convergence in the sense of Eq. (13); we refer to Ref.�18� for details.

6. TRANSIENT ANALYSIS OF 
�n�

In this section, we present the busy-period and idle-period analysis of the
process �Y �n�� J�. The limit results as n → � will give, by the continuous mapping
principle, the corresponding results for �F� J�. For the analysis, we need certain
results on the nth coupled queue process ���n�� J�. A key ingredient of the analysis
is the matrix transform R̂n�s� which was introduced by Ramaswami�11� as a
generalization of Neuts’ R-matrix. First, we recall its definition and characterizing
equations.
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6.1. The Kernel R̂n�·�

Recall that ��Qn
k� J

n
k � t

n
k� 
 k ≥ 0	 is the embedded MRP in the nth queue ��n�

arising from a spatial uniformization of the phase process with respect to �. We
showed in Sec. 4 that this MRP has exponential sojourn times depending on phases,
and that its embedded sequence ��Qn

k� J
n
k � 
 k ≥ 0	 is a discrete time QBD process

defined by the matrices Bni� i = 0� 1� 2 (see Eq. (11)). Furthermore, the mean sojourn
time in state �n� j� is given by 1/�n�cj� if j ∈ S1 ∪ S3, and by 1/�2n�cj� if j ∈ S2.
Defining the matrix

� = diag��I�S1�� 2�I�S2�� �I�S3���

we can therefore write for Re�s� ≥ 0, the LST of the kernel of the MRP under
consideration as being given by

M̂n�s� B̂n0�s� 0 0 · · ·
B̂n2�s� B̂n1�s� B̂n0�s� 0 · · ·

0 B̂n2�s� B̂n1�s� B̂n0�s� · · ·
· · · · · · · · · · · · · · ·

 � (14)

where

B̂ni�s� = n�C�sI + n�C�−1Bni� i = 0� 1� 2�

and Bni = B̂ni�0� are given by (11). The matrix M̂n�s� = B̂n1�s�+ B̂n2�s�.
Following Ref.�11�, for Re�s� > 0, let the matrix R̂n�s� be the solution in the class

of matrices of spectral radius at most one of the matrix quadratic equation

R̂n�s� = B̂n0�s�+ R̂n�s�B̂n1�s�+ R̂2
n�s�B̂n2�s�� (15)

where by an abuse of notations, we let R̂k
n�s� = �R̂n�s��

k.
It is well-known that in the set of LSTs, such a kernel R̂n�·� solving (15) exists

uniquely, has spectral radius strictly less than unity for Re�s� > 0, and furthermore
that the matrix R̂n�0+� is indeed Neuts’ R-matrix for the embedded Markov chain
which is a QBD. It has also been shown in Ref.�11� that for all k ≥ 0, the kernel R̂k

n�·�
is the LST of the k-fold convolution Rk

n�·� of a matrix distribution function Rn�·� on
�0���. Furthermore, for k ≥ 0� i� j ∈ S, we can interpret �Rk

n�t��ij , the �i� j�th element
of the convolution Rk

n�t�, as the expected number of visits to the state �m+ k� j�
in the time interval min�t� ��m��, where ��m� is the return time to “level” m in the
embedded MRP, given that the MRP starts in the state �m� i�. We can interpret
�Rk

n�dt��ij as the elementary probability that a visit to �k� j� is made in the interval
�t� t + dt� and that no visits are made by the MRP to states of the form �0� j� in
�0� t�, given that it starts in state �0� i�.

We note that due to the structure of B̂n0 (zero rows), the matrices R̂n�s� have
the structure

R̂n�s� =
 R̂n�11�s� R̂n�12�s� R̂n�13�s�

0 0 0
0 0 0

 � (16)



ORDER                        REPRINTS

84 Ahn and Ramaswami

The zero rows of R̂n�s� are inherited by R̂�
n�s� for � ≥ 1, and from the above

equation, we also have the following equation for the latter:

R̂�
n�s� =

 �R̂n�11�s��
� �R̂n�11�s��

�−1R̂n�12�s� �R̂n�11�s��
�−1R̂n�13�s�

0 0 0
0 0 0

 � (17)

In what follows, we shall again abuse the notations slightly and write R̂�
n11�s� in place

of �R̂n�11�s��
�.

The computation of R̂�s� is efficiently accomplished using the L-R algorithm
of Ref.�8� (with the matrices B̂ni�s� in place of Ai there), and it is trivial to note
from the probabilistic interpretations of that algorithm that one obtains quadratic
convergence; this is so since exactly as in the case of R, the termination of the
algorithm in its kth step corresponds to ignoring paths that go beyond level (queue
length) 2k.

6.2. Transient Analysis of 
�n� in a Busy Period

Assume that at time 0, the fluid process and the queue start empty and that the
phase is i for some i ∈ S1. Then note that Y �n��0� = 0. We shall call time 0 the start
of a busy period for the fluid flow as well as for the process 
�n�. In what follows,
to save space we sometimes write Y �n�

u in place of Y �n��u�. Define �Vn�i�j�t� x� such
that

�Vn�i�j�t� x� = �0i�Y
�n�
t ≤ x� J�t� = j� Y �n�

u > 0 for all 0 < u ≤ t��

Then, for x > 0� �vn�i�j�t� x� =
�

�x
�Vn�i�j�t� x� is the joint density of Y �n��t� and

the phase at time t. In the following, we let Vn�t� x� and vn�t� x� denote respectively
the matrices with elements �Vn�i�j�t� x�� i ∈ S1� j ∈ S and �vn�i�j�t� x�� i ∈ S1� j ∈ S.
Also, we represent each matrix in partitioned form in accordance with the partition
of the state space and denote their limits w.r.t n by V� and v�; the existence of the
limits is a consequence of the continuous mapping principle in Sec. 5. Thus,

Vn�t� x� = �Vn�1�t� x��Vn�2�t� x��Vn�3�t� x���

V��t� x� = �V��1�t� x��V��2�t� x��V��3�t� x���

vn�t� x� = �vn�1�t� x�� vn�2�t� x�� vn�3�t� x��

v��t� x� = �v��1�t� x�� v��2�t� x�� v��3�t� x���

Now, we can prove the following theorem:

Theorem 9. For complex variables � and s with Re�s� > 0� Re��� ≥ 0, let

V̂n�l�t� �� =
∫
�0���

e−�xVn�l�t� dx�� l = 1� 2� 3�
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be the LST of Vn�l�t� x� with respect to x, and let

˜̂Vn�l�s� �� =
∫ �

0
e−stV̂nl�t� ��dt

denote the Laplace transform with respect to t of V̂nl�t� ��. Then

˜̂Vn�1�s� �� = ��+ n��
[
�I − n��R̂n�11�s�− I�

]−1
�sI + ��+ n��C1�

−1 (18)

˜̂Vn�2�s� �� = n�
[
�I − n��R̂n�11�s�− I�

]−1
R̂n�12�s� �sI + 2n�C2�

−1 (19)

˜̂Vn�3�s� �� =
n�

s + n�

[
�I − n��R̂n�11�s�− I�

]−1
R̂n�13�s� (20)

Proof. (a) For i� j ∈ S1, we can see from the definition of 
�n� that

�Vn�i�j�t� x�

= �i�je
−n�cj tI�cjt ≤ x�+

�∑
k=1

∫ t

0
�Rk

n�du��i�je
−n�cj�t−u�I�x − cj�t − u� ≥ 0�

×
∫ x−cj�t−u�

0

�n��k

�k
yk−1e−n�ydy�

In the above, the first term on the right hand side above corresponds to the case
where no transition of the embedded MRP occurs in �0� t�. In the second term, the
variable u in the integral is the last epoch of transition of the embedded MRP before
time t; see the interpretation of Rk

n�·� given earlier. In computing the distribution, we
have used the facts that: (a) Y �n��t� = W�n��u�+ cj�t − u�; and (b) given Q�n��u� =
k�W�n��u� is distributed as a sum of k iid exp�n�� random variables.

Taking LST with respect to x, for i� j ∈ S1, we can now write

�V̂n�i�j�t� �� =
∫ �

0
e−�x�Vn�i�j�t� dx�

= �i�je
−�cj te−n�cj t

+
�∑
k=1

∫ t

0
�Rk

n�du��i�j

(
n�

�+ n�

)k

e−��+n��cj�t−u��

If we also take Laplace transformation of the above function on t w.r.t. s� Re�s� > 0,
then the transform has the following form

�
˜̂Vn�i�j�s� �� =

∫ �

0
e−st�V̂n�i�j�t� ��dt

= �ij�s + ��+ n��cj�
−1

+
�∑
k=1

[
R̂k
n�s�

]
i�j

(
n�

�+ n�

)k 1
s + ��+ n��cj

�
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It follows that

˜̂Vn�1�s� ��

= �sI + ��+ n��C1�
−1

+ n�R̂n�11�s�
[
�I − n��R̂n�11�s�− I�

]−1
�sI + ��+ n��C1�

−1

= ��+ n��
[
�I − n��R̂n�11�s�− I�

]−1
�sI + ��+ n��C1�

−1 �

(b) Similarly, for i ∈ S1� j ∈ S2, we get

�V̂n�i�j�t� �� =
∫ �

0
e−�x�Vn�i�j�t� dx�

=
�∑
k=1

∫ t

0
�Rk

n�du��i�je
−2n�cj�t−u�

(
n�

�+ n�

)k

�

we have used the following facts: at the last epoch u of the MRP before time t,
the phase visited should be j and some k ≥ 1 customers should be in the system at
u+ (since the busy period has not ended before t); the total amount of remaining
work at time t is indeed the value of Y �n�

t ; due to the exponential distribution of
the amount of work of each customer, the remaining amounts of work at t for
customers have the same distribution exp�n�� as at the time point u as one may
easily verify; finally, given j ∈ S2� P�t

n
k+1 − tnk > u� = exp�−2n�cju�.

If we take Laplace transformation of the above function on t w.r.t. s� Re�s� > 0,
then the transform has the following form

�
˜̂Vn�i�j�s� �� =

∫ �

0
e−st�V̂n�i�j�t� ��dt

=
�∑
k=1

[
R̂k
n�s�

]
i�j

(
n�

�+ n�

)k 1
s + 2n�cj

�

It follows from (17) that

˜̂Vn�2�s� �� =
�∑
k=1

(
n�

�+ n�

)k

R̂k−1
n�11�s�R̂n�12�s� �sI + 2n�C2�

−1

= n�
[
�I − n��R̂n�11�s�− I�

]−1
R̂n�12�s� �sI + 2n�C2�

−1 �

Hence, we have (19).

(c) Finally, we can write for i ∈ S1 and j ∈ S3,

�V̂n�i�j�t� �� =
∫ �

0
e−�x�Vn�i�j�t� dx�

=
�∑
k=1

∫ t

0
�Rk

n�du��i�je
−n��t−u�

(
n�

�+ n�

)k

�
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If we take Laplace transformation of the above function on t w.r.t. s� Re�s� > 0,
then the transform has the following form:

�
˜̂Vn�i�j�s� �� =

∫ �

0
e−st�V̂n�i�j�t� ��dt

=
�∑
k=1

[
R̂k
n�s�

]
i�j

(
n�

�+ n�

)k 1
s + n�

�

From this, it follows using (17) that

˜̂Vn�3�s� �� = �s + n��−1
�∑
k=1

(
n�

�+ n�

)k

R̂k−1
n�11�s�R̂n�13�s�

= n�

s + n�

[
�I − n��R̂n�11�s�− I�

]−1
R̂n�13�s�� �

6.3. Idle Period and Busy Cycle of 
�n�

Assume that a busy period of 
�n� (i.e., a period when the process remains
continuously positive) starts at time 0. Let �n and �n denote respectively the duration
of the busy period starting at time 0 and the duration of the idle period (the
period where Y �n� = 0) following that busy period. Let �n = �n + �n, and note that it
represents the length of a busy cycle. We also note that a busy period can start only
with phase in S1, and it always ends with phase in S2; similarly, an idle period can
start only with phase in S2 and must end with phase in S1. Bearing these in mind,
for t ≥ 0, let us define the kernels Bn�t�� Un�t� and Wn�t� such that

�Bn�i�j�t� = �0i ��n ≤ t� J��n� = j� � i ∈ S1� j ∈ S2�

�Un�j�k�t� = �0j ��n ≤ t� J��n� = k� � j ∈ S2� k ∈ S1�

�Wn�i�k�t� = �0i ��n ≤ t� J��n� = k� � i� k ∈ S1�

and also denote their LSTs respectively by B̂n�s�� Ûn�s� and Ŵn�s�.
We note that �n is a dwell time of the underlying phase process � in S2 ∪ S3

which starts in a phase in S2 and ends upon entering the set S1. Thus, �n can
be determined completely by using the underlying phase process, and it does not
depend on n. From these facts, it follows that Ûn�s� = Û �s�, where

Û �s� = �sI −Q22�
−1�Q21 +Q23�sI −Q33�

−1Q31�

+ �sI −Q22�
−1Q23�sI −Q33�

−1Q32Û �s��

and we can write

Û �s� = �I − D̂�s��−1�sI −Q22�
−1�Q21 +Q23�sI −Q33�

−1Q31�� (21)
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where

D̂�s� = �sI −Q22�
−1Q23�sI −Q33�

−1Q32� (22)

Finally, we also have

Ŵn�s� = B̂n�s�Û �s��

We can also calculate Û �s� as the transform of an absorption time distribution in
a Markov process. To that end, consider an absorbing Markov process defined by
the generator[

Q−1 Q�1

0 0

]
�

where

Q−1 =
(
Q22 Q23

Q32 Q33

)
� Q·1 =

(
Q21

Q31

)
�

If we denote the LSTs of the distributions of the absorption times given different
initial states in S2 ∪ S3 by

�sI −Q−1�
−1Q·1 =

(
Û21�s�

Û31�s�

)
�

then Û �s� = Û21�s�. This also shows that U�·� is a phase type distribution.

7. TRANSIENT ANALYSIS OF (F� J )

7.1. Preliminaries

For Re�s� > 0, we now define the following matrices which will play a key role
in our analysis.

K∗
n�s� = �I − R̂n�11�s��

−1 �sI + n�C1�
−1 � (23)

�n�s� = R̂n�12�s�n�C2�sI + 2n�C2�
−1� (24)

�n�s� =
n�

s + n�
R̂n�13�s�� (25)

We first give some probabilistic interpretations.

Theorem 10. Let �Hn�t��ij denote the probability that a busy period of 
�n� ends at or
before time t and in phase j ∈ S2, given that it starts at time 0 in phase i ∈ S1. The matrix
�n�s� is such that its �i� j�th element is the Laplace-Stieltjes transform of �Hn�·��ij .
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Proof. The busy period ends at t in phase j iff at the last epoch u of the MRP
before t� Q�n��u� = 1 and J�u� = j and then the next epoch of the MRP occurs at t
and marks a departure of that customer. That gives the density,

hn�t� =
∫ t

0
Rn�12�du�

1
2
2n�C2e

−2n�C2�t−u��

here, we have used the fact that the sojourn time in �1� j� for j ∈ S2 is distributed
as exp�2n�cj� and that the epoch t is a departure epoch iff the epoch marking t
comes from

⊕n
r=1 �rj which has probability 1/2. Taking the Laplace transform of

the above expression, we get the required result. �

Corollary 1. The matrix

��s� = lim
n→��n�s�

exists, and its �i� j�th element is the LST of the busy period duration and ending phase
of the fluid process given that the busy period starts in phase i ∈ S1.

Proof. This is an immediate consequence of the continuous mapping principle.
�

Corollary 2. Let Ĝn�s� be a matrix such that its �i� j�th element is the LST of the
duration of a busy period of the queue ��n� that starts in �1� i� and ends in phase j. Then

��n�s��ij = �B̂n0�s�Ĝn�s��ij� for i ∈ S1� j ∈ S2�

where B̂n0�s� is the matrix appearing in Eq. (14).

Proof. If the process �Y �n�� J� starts in �0� i� with i ∈ S1, then the queue is starting
with an idle period. The first transition of the MRP then starts off a busy period
of the queue in state �1� r� for some r ∈ S, and the first transition is governed by
B̂n0�s�. Hence the result. �

Theorem 11. The matrix K∗
n�s� is a matrix of Laplace transforms such that its �i� j�th

element is the transform∫ �

0
e−st�0i�J�t� = j and Y �n��u� > 0 for all 0 < u ≤ t�dt� i� j ∈ S1�

Therefore, the limit

K∗�s� = lim
n→�K

∗
n�s�

exists, and its �i� j�th element is the Laplace transform∫ �

0
e−st�0i�J�t� = j and F�u� > 0 for all 0 < u ≤ t�dt� i� j ∈ S1�
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Proof. The first assertion is immediate upon noting that K∗
n�s� = ˜̂Vn�1�s� 0�; see

Eq. (18). The second follows from the continuous mapping principle. �

Before we discuss the next theorem which gives a set of equations that are
satisfied by the matrices K∗�s����s� and ��s�, we prove two lemmas.

Lemma 1. For Re�s� > 0, the matrix K∗�s� is invertible.

Proof. Consider the matrix ˜̂
Vn�1�s� 0� in Eq. (18). By the continuous mapping

principle, it converges as n → � to the double transform ˜̂
V��1�s� 0� for the fluid

model. Now, looking at (18), since

n��sI + n�C1	
−1 → C−1

1 as n → ��

the matrix �n��R̂n�11�s�− I��−1 must have a limit as n → �. This also entails
immediately, upon taking limits in the equation[

n��R̂n�11�s�− I	
] [

n��R̂n�11�s�− I	
]−1 = I

defining the inverses, that the matrix n��R̂n�11�s�− I� also has a (nonsingular) limit
as n → �. Let

K�s� = lim
n→� n��R̂n�11�s�− I�� and K̃�s� = C1K�s�C

−1
1 �

Letting n → � in (18), we can now write˜̂
V��1�s� �� = C−1

1 ��I − K̃�s��−1�

Inverting the LST with respect to �, it is then easy to see that

Ṽ��1�s� x� = C−1
1

∫ x

0
eK̃�s�udu� x > 0� (26)

Letting x → � in the above, due to the interpretation of K∗�s� in Theorem 11,
we get˜̂

V��1�s� 0� = K∗�s� = −C−1
1 �K̃�s��−1�

Thus, we have the existence of �K̃�s��−1 as well as the relationship

K∗�s� = −C−1
1 �K̃�s��−1� (27)

and the proof of the lemma is also complete. �

Lemma 2. The sequence �n�s� has a limit as n → �.

Proof. By the continuous mapping principle, the left side of (20) converges to˜̂V��3�s� ��. Setting � = 0 in (20), we see upon using (25) that

˜̂Vn�3�s� 0� = �−n��R̂n�11�s�− I��−1�n�s��
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We have shown in the proof of Lemma 1 that the inverse on the right side of
the above has a nonsingular limit as n → �. Therefore, since the left side converges,
there should exist a matrix

��s� = lim
n→��n�s�

for all Re�s� > 0. �

We now define �̃ �s� and �̃�s� by

�̃ �s� = C1��s�C
−1
2 (28)

�̃�s� = C1��s�� (29)

and prove the following theorem.

Theorem 12. The matrices K̃�s�� �̃ �s� and �̃�s� also satisfy the following equations:

K̃�s� =
[
�Q11 − sI�+ �̃ �s�Q21 + �̃�s�Q31

]
C−1

1 (30)

0 = Q12 + �̃ �s� �Q22 − sI�+ �̃�s�Q32 + K̃�s��̃ �s�C2 (31)

0 = Q13 + �̃ �s�Q23 + �̃�s� �Q33 − sI� � (32)

Proof. Using (16), (11), (6) and (7), we can rewrite Eq. (15) as:

n�
(
R̂n�11�s�− I

)
= n��sI + n�C1�

−1Q11 − n�s�sI + n�C1�
−1

+ 1
2
R̂n�12�s��2n���sI + 2n�C2�

−1Q21 +
n�

s + n�
R̂n�13�s�Q31

0 = n��sI + n�C1�
−1Q12 +

1
2
R̂n�12�s��2n���sI + 2n�C2�

−1�Q22 − sI�

+ n�

s + n�
R̂n�13�s�Q32 + n�

(
R̂n�11�s�− I

)
× 1

2
R̂n�12�s��2n�C2��sI + 2n�C2�

−1

0 = n��sI + n�C1�
−1Q13 +

1
2
R̂n�12�s��2n���sI + 2n�C2�

−1Q23

+ n�

s + n�
R̂n�13�s��Q33 − sI��

The asserted equations follow by using (23)–(25) and (27) to simplify the above and
then taking the limits as n → �. �

Remark 1. With s = 0+ and S3 = �, the equations in the above theorem reduce
to the Eqs. (2.9) and (2.11) obtained by Ramaswami�12� for K̃�0+� and �̃ �0+�
which were denoted by the symbols K and � in that article. As noted there, the
solutions to these equations for a fixed s are not unique, and further work remains
in developing a direct algorithm based on them.
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7.2. Final Results

We are now ready to state and prove the main result of this article which,
among others, gives the Laplace transform (with respect to time t) of the
distribution of the fluid level at time t, given that a busy period of the fluid process
starts at time 0 from the empty level in a phase of S1. In what follows, we denote by
��0�S1�

�A� the vector whose elements are the conditional probabilities �0i�A� which
is the conditional probability of the event A given that F�0� = 0 and J�0� = i ∈ S1.

Theorem 13.

(a) For x > 0, let ṽ��s� x� denote the Laplace transform of the density function
v��t� x� introduced in Subsec. 6.2. Then

ṽ��1�s� x� = C−1
1 eK̃�s�x�

ṽ��2�s� x� = C−1
1 eK̃�s�x�̃ �s�� (33)

ṽ��3�s� x� = C−1
1 eK̃�s�x�̃�s��

(b) Let �Ŵ �s��ij denote the Laplace-Stieltjes transform of the distribution of the
length of a busy cycle (time until the start of the second busy period) which
ends in phase j ∈ S1 given that a busy period of the fluid process starts at time
0 in phase i ∈ S1. Then, the matrix of these elements,

Ŵ �s� = ��s�Û �s� = C−1
1 �̃ �s�C2Û �s�� (34)

where Û �s� is defined in Subsec. 6.3.
(c) For x > 0,∫ �

0
e−st ��0�S1�

�F�t� > x� dt (35)

= �I − Ŵ �s��−1C−1
1 �−K̃�s��−1eK̃�s�x�I + �̃ �s�+ �̃�s��1�

where 1 is a column vector of 1’s.
(d) ∫ �

0
e−st��0�S1�

�F�t� = 0� dt

= �I − Ŵ �s��−1���s�
��� 0��sI −Q−1�

−11

= �I − Ŵ �s��−1�C−1
1 �̃ �s�C2

��� 0��sI −Q−1�
−11� (36)

where

Q−1 =
(
Q22 Q23

Q32 Q33

)
�
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Proof. (a) Taking limits as n → � in Eqs. (18)–(20), one easily gets

˜̂
V��1�s� �� = C−1

1

[
�I − K̃�s�

]−1
�

˜̂
V��2�s� �� = C−1

1

[
�I − K̃�s�

]−1
�̃ �s��

˜̂
V��3�s� �� = C−1

1

[
�I − K̃�s�

]−1
�̃�s��

The asserted results follow by noting that ��I − K̃�s��−1 is indeed the Laplace
transform of exp�K̃�s�x�.

(b) We note from the fact that the busy cycle consists of the first busy period
(governed by � ) and the immediately following idle period (governed by Û )
that Ŵ �s� = ��s�Û �s�. The rest is a change of notation only.

(c) This part is obtained by noting that F�t� > x happens iff t is in the kth busy
period of the fluid process for some k, and then using the formulae for the busy
cycle distribution and the transient distribution given in (a) within a busy period.
We omit the details.

(d) The proof of this is similar to (c) and uses the fact that t should now be a
point within some idle period of the fluid process. �

Let us denote K̃�0+�� �̃ �0+�� �̃�0+� respectively by K̃� �̃ and �̃. The transient
results then yield the following theorem whose formula coincides with that obtained
(using much simpler arguments) in Ref.,�3� Theorem 18, for the steady state joint
distribution of the fluid and phase, whenever it exists.

Theorem 14. Assume that the fluid process is stable. Let �F�x� j� denote the steady state
probability that the fluid level is greater than x and the phase is j, and let �F�x� denote
the vector with elements �F�x� j�� j ∈ S. Then

�F�x� = �1e
K̃x�I�S1�

��� �̃
��� �̃��

where � is the stationary probability vector of the phase process, and �1 comprises of
the steady state probabilities for the states in S1.

Proof. Multiplying the Laplace transforms in (33) by s, we note that for i ∈ S1�
j ∈ S, the �i� j�th element of

s�I − Ŵ �s��−1C−1
1 �−K̃�s��−1eK̃�s�x�I

��� �̃ �s�
��� �̃�s���

is the LST of the complementary distribution function

�i�F�t� > x� J�t� = j��

In particular, setting x = 0 and letting s → 0 in the above, we note that the jth
element of

lim
s→0

s�I − Ŵ �s��−1C−1
1 �−K̃�s��−1
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equals

lim
t→��i�J�t� = j� = �j�

provided the Markov renewal process governed by Ŵ �·� is recurrent nonnull. (To
evaluate the limit distribution via the Markov renewal process at the start of busy
periods, we need the stability condition.) Hence the result. �

8. NUMERICAL RESULTS

For comparison with the results of Sericola,�14� we take some of the examples
in that paper. Specifically, we consider a system with a set of m on-off Markov
sources as defining the underlying phase process. The state space S = �0� 1� � � � � m	
is such that the state i denotes that i sources are busy. We also set S1 = �1� � � � � m	
and S2 = �0	. (In this case S3 is empty, and the applicable formulae are obtained by
dropping the terms corresponding to S3). For each source, the duration of on and
off periods are exponentially distributed with means 1 and 1/�, respectively. The
m+ 1 dimensional infinitesimal generator Q of this Markov chain is given by

�Q�i�i+1 = �m− i��� for 0 ≤ i ≤ m− 1�

�Q�i�i−1 = i� for 1 ≤ i ≤ m�

with the diagonal elements defined such that row sums of Q are zero.
The fluid rates are determined such that a source that is on inputs at rate 1,

while the system drains the fluid at rate 0.8. Thus, ci = �i− 0�8�. So, if we denote the
traffic intensity of the system by �, then � can be determined from � by the equation
� = �m��/�0�8�1+ ���.

To effect computations, we took various values of n in increments of 1000 until
the successive matrices �n�s� differed by at most 1e-12 in their elements. Each �n�s�

was itself computed using Corollary 2 from Ĝn�s� for computing which we used
the logarithmic reduction algorithm.�8� The value of �n�s� at the termination of the
iteration process was taken as the value of ��s�, the limiting value of the sequence
�n�s�. The other required matrices were all derived from this. From these were
computed the transforms in (35) and (36), and these transforms were inverted using
the Laplace transform inversion method of Abate and Whitt.�1� Table 1 contains the
values of the complementary distribution of the amount of fluid in the system and
the corresponding values reported in Ref.�14�.

Note that our results are consistently larger than those of Sericola. Our
numerical results show a match of up to 5 decimal places with Sericola’s results in
Ref.�14� most of the time. Recently, in the case m = 2, using a significantly smaller
value for the error threshold � in his algorithm, Sericola has verified that our results
agree to about 10 decimal places; unfortunately, due to long run times with small �
values, we could not verify the other cases, but we do conjecture that our values are
the more accurate ones.
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Table 1. Comparison of ��F�100� > x� values with those of Sericola�14� at time t = 100.

m = 2� � = 0�75 m = 2� � = 1�25 m = 50� � = 5/6

x Ours Sericola Ours Sericola Ours Sericola

0 0.749803 0.749797 0.999942 0.999933 0.823479 0.823470
2 0.186047 0.186045 0.998769 0.998760 0.485221 0.485216
4 0.056276 0.056276 0.995548 0.995539 0.326178 0.326174
6 0.016943 0.016943 0.988034 0.988025 0.219216 0.219213
8 0.005064 0.005064 0.972873 0.972865 0.146241 0.146239
10 0.001498 0.001498 0.945740 0.945732 0.096634 0.096632
12 0.000437 0.000437 0.902078 0.902070 0.063190 0.063189
14 0.000125 0.000125 0.838395 0.838388 0.040871 0.040870
16 0.000035 0.000035 0.753781 0.753774 0.026139 0.026137
18 0.000010 0.000010 0.651010 0.651004 0.016526 0.016525
20 0.000003 0.000003 0.536633 0.536629 0.010328 0.010326
22 0.000001 0.000001 0.419800 0.419797 0.006379 0.006378
24 0.000000 0.000000 0.310136 0.310133 0.003894 0.003893
26 0.000000 0.000000 0.215474 0.215472 0.002350 0.002349
28 0.000000 0.000000 0.140293 0.140292 0.001401 0.001400
30 0.000000 0.000000 0.085342 0.085342 0.000826 0.000825
32 0.000000 0.000000 0.048378 0.048378 0.000481 0.000481
34 0.000000 0.000000 0.025496 0.025496 0.000277 0.000277
36 0.000000 0.000000 0.012467 0.012467 0.000158 0.000158
38 0.000000 0.000000 0.005645 0.005645 0.000089 0.000089
40 0.000000 0.000000 0.002362 0.002362 0.000050 0.000049

9. PROOF OF THEOREM 6

9.1. Preliminaries

First, we define some notations to be used in the proof and recall that all
the processes under consideration are defined on a common probability space
�
�����.

Definition 1.

(a) For l ∈ S��0l and �0l denote respectively the conditional probability and the
conditional expectation given the initial state �0� l� of work and phase or fluid
and phase.

(b) Recall that �a0� a1� · · · 	 mark the spatial uniformization epochs of the phase
process with respect to rate � (see Sec. 3.2). Let the index  �t� be such that
a �t� is the last of these epochs to occur before time t. Similarly, let  n�t�
denote the index of the last epoch before time t in the set �tn0 � t

n
1 � · · · 	. Note that

�0 = a0 < a1 < · · · 	 ⊂ �0 = tn0 < tn1 < · · · 	 and a �t� ≤ tn n�t� for all n ≥ 1.
(c) For a given time set G, let A�n��G� denote the total number of arrivals to the

queue ��n� which occurs in G. Thus, A�n��G� denotes the number of epochs
tnk in G such that tnk is an epoch of

⊕n
i=1 �i�j in G and J�tnk−� = j for some
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j ∈ S1. Clearly, A
�n��G� is a Poisson distributed random variable with mean

n�g where

g =
∫
G

∑
j∈S1

cjI�J�u� = j�du�

(d) Given a time set G, define �W�n� �G� and �F �G� to be the total amount of work
that arrives to the queue ��n� and to the amount of increase to the fluid buffer
that occurs in G. For notational convenience, we also define

�W�n��i = �W�n� ��ai−1� ai���

�F�i = �F ��ai−1� ai���

(e) Given a time set G, let �W�n� �G� and �F �G� denote respectively the maximum
amount of work and fluid which can be depleted in G assuming enough exists
at the beginning. From the construction, we can see that

∀G� �W�n� �G� = �F �G� =
∫
G

∑
j∈S2

cjI�J�u� = j�du�

(f) Let X�n�
i denote the work of the ith customer in the nth coupled queue process

��n�. We know that X�n�
i has an exp�n�� distribution and is independent of all

other quantities.

Remark 2.

(a) For disjoint intervals �a� b� and �c� d�� A�n���a� b�� and A�n���c� d�� are
conditionally independent given the phases J�a� and J�c�.

(b) A�n��G� and X
�n�
i are independent for all i and G.

(c) For all t ≥ 0� Y �n��t� and X�n�
j � j ≥ A�n���0� t��+ 1, are independent. This is so

since Y �n��t� depends only on the history up to time t.
(d) Given 0 ≤ t1 < t2� �W�n� ��t1� t2�� can be represented by

�W�n� ��t1� t2�� =
A�n���0�t1��+A�n���t1�t2��∑

i=A�n���0�t1��+1

X
�n�
i

where X�n�
i is defined in (f) of Definition 1. This shows that for nonoverlapping

intervals G1 and G2� �W�n� �G1� and �W�n� �G2� are conditionally independent
given the phases at the beginning of these intervals.

The following is an important intermediate result in strengthening the
distributional convergence that follows from the continuous mapping principle to a
convergence in probability result.



ORDER                        REPRINTS

Transient Analysis of Fluid Flow Models 97

Lemma 3.

(a) For all i ≥ 1,

�
[��W�n��i − �F�i� > � � �ak� J�ak��� k ≥ 0

]
≤ 4n�c�ai − ai−1�+ 2�2c2�ai − ai−1�

2 + 2�n�+ 1�
n2�2�2

� (37)

where c = ∑
j∈S cj .

(b) If we let Gt = �a �t�� t�, then

� ���W�n� �Gt�− �F �Gt�� > � � �ak� J�ak��� k ≥ 0�

≤ 4n�c�t − a �t��+ 2�2c2�t − a �t��
2

n2�2�2
� (38)

(c) As n → �� t − tn n�t� converges in probability to 0 (uniformly) in t.

Proof. (a) Let Gi = �ai−1� ai�. Note that the underlying phase process � does not
change phase within Gi. Let us assume that the phase it remains in is j ∈ S.

If j ∈ S2 ∪ S3, then there is no arrival to the queue ��n� and no increase to the
fluid level during ��i−1� �i�; this follows from the definition of the fluid process and
its n-th coupled queue ��n�. Therefore, in this case the result holds trivially because

�W�n��i = �F�i = 0�

Consider now the case j ∈ S1. By Definition 1(c), A�n��Gi�, the number of
customers arriving to ��n� in the interval Gi, now equals the number of epochs
in Gi of the Poisson process

⊕n
i=2 �i�j . This is distributed as Poisson with mean

�n− 1��cj�ai − ai−1�.
Since each customer in ��n� brings in 1/�n�� amount of work on the average,

we get:

� ��W�n� �Gi� � �ak� J�ak��� k ≥ 0� = �n− 1��cj�ai − ai−1�/�n���

Now, using the fact that the rate of increase of the fluid in Gi is cj , we get:

�
[(
�W�n� �Gi�− �F�i

)2 � �ak� J�ak��� k ≥ 0
]

= �
[
�2
W�n� �Gi� � �ak� J�ak��� k ≥ 0

]
− 2cj�ai − ai−1�� ��W�n� �Gi� � �ak� J�ak��� k ≥ 0�+ c2j �ai − ai−1�

2

= [
2�n− 1��cj�ai − ai−1�+ �2c2j �ai − ai−1�

2
]
/�n��2� (39)
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Since there is another arrival at the epoch ai� �W�n��i can be expressed as the
sum of �W�n� �Gi� and an independent random variable Z which is exponentially
distributed with mean 1/�n��. From this, we get using the Chebycheff inequality,

�
[��W�n��i − �F�i �> � � �ak� J�ak��� k ≥ 0

]
≤ 2

�2

{
�

[(
�W�n� �Gi�− �F�i

)2 � �ak� J�ak��� k ≥ 0
]
+ E�Z2�

}
= 2

�2

{
�

[(
�W�n� �Gi�− �F�i

)2 � �ak� J�ak��� k ≥ 0
]
+ n�+ 1

n2�2
�

}
(40)

The proof can now be completed by this inequality and Eq. (39).

(b) A little reflection will show that Eq. (39) holds for Gi = �a �t�� t� also. So,
the proof follows along the same lines as that of (a).

(c) Note that due to the nested nature of the epochs, t − tn n�t� monotonely
decreases as n increases, and a �t� ≤ tn n�t� ≤ t. Define t∗ = t − a �t� and assume that
J�a �t�� = j ∈ S.

Now, if j ∈ S1� t
n
 n�t�

is determined by the Poisson process
⊕n

i=2 �i�j and it follows
from renewal theory (Chapter 9 of Ref.�5�) that

�
[
�t − tn n�t��

2 � a �t�� J�a �t�� = j ∈ S1

]
= t∗2e−�n−1��cj t

∗ +
∫ t∗

0
�n− 1��cj�t

∗ − u�2e−�n−1��cj �t
∗−u�du

≤ 2/��n− 1��cj�
2 ≤ 2/��n− 1��c�2�

where c = minj∈S cj . Note that the last term in the above does not depend on t and
goes to 0 as n goes to infinity.

Now, if j ∈ S2 or j ∈ S3, then we can get similar inequalities from the fact that
if j ∈ S2� t

n
 n�t�

is determined by the Poisson process
⊕n

i=2 �i�j ⊕
⊕n

i=1 �i�j ; and if
j ∈ S3� t

n
 n�t�

is determined by the Poisson process
⊕n

i=2 �i�j .
Since the bounds for these conditional expectations do not depend on t or the

conditioning values, and go to zero as n → �, this allows us to show that

�
[
�t − tn n�t��

2
]
→ 0� as n → ��

and that the convergence is uniform in t. Hence (c) follows. �

9.2. Proof of Theorem 6

Now, we introduce the reflection map for the proof. In the classical treatment of
fluid flow models (see e.g., Ref.�18�), it is customary to consider an unrestricted fluid
flow F̃ �s� ≡ �F ��0� s��− �F ��0� s�� (i.e., one without a boundary at level 0) from
which the fluid process F�t� with boundary at level 0 is obtained by the formula

F�t� = F̃ �t�− inf
0≤u≤t

F̃ �u�� (41)
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The map F̃ → F will be called the reflection map and is denoted by �.�18� Similarly,
if we let W̃ �n��s� ≡ �W�n� ��0� s��− �W�n� ��0� s�� denote the unrestricted work flow
process, we can also see that W�n��t� = ��W̃ �n���t�.

From the fact that Y �n��ai� = W�n��ai� for all i ≥ 0, we can see that if J�t� ∈ S1,

F�t� = F�a �t��+ �F ��a �t�� t���

Y �n��t� = W�n��a �t��+ �W�n� ��a �t�� t��+ cJ�t��t − tn n�t��� (42)

and if J�t� ∈ S2,

F�t� = max�0� F�a �t��− cJ�t��t − a �t��	�

Y �n��t� = max�0�W �n��a �t��− cJ�t��t − a �t��	� (43)

From Lemma 3, t − tn n�t� converges in probability to 0. Also, �W�n� ��a �t�� t��
converges to �F ��a �t�� t�� in probability as n → � because by Lemma 3(b),

�
[��W�n� ��a �t�� t��− �F ��a �t�� t��� > �

] ≤ 4n�ct + 2�2c2t2

n2�2�2
�

Thus, it is sufficient to consider convergence at the epoch a �t� for the proof.
Finally, if J�t� ∈ S3, then

F�t� = F�a �t�� and Y �n��t� = W�n��a �t���

and once again, we need to only consider the epoch a �t�. This we do next.
From the reflection map, we know that F�a �t�� = ��F̃ ��a �t�� and W�n��a �t�� =

��W̃ �n���a �t��. Moreover, since depletion of work and fluid can occur only when the
underlying phase process belongs to S2, we can also see that

inf
0≤u≤a �t�

F̃ �u� = inf
0≤i≤ �t�

F̃ �ai�� and (44)

inf
0≤u≤a �t�

W̃ �n��u� = inf
0≤i≤ �t�

W̃ �n��ai�� (45)

From the Eqs. (44) and (45) and the fact that �F ��0� ai�� = �W�n� ��0� ai�� for
all i ≥ 1, it is enough to consider convergence of �W�n� ��0� ai�� to �F ��0� ai�� for
i = 1� � � � �  �t� to show the convergence at a �t�. From Lemma 3, we can show that

�0l

[
max

1≤i≤ �t�
��W�n� ��0� �i��− �F ��0� �i��� > � � �ak� J�ak��� k ≥ 1

]

≤ �0l

[
 �t�⋃
i=1

���W�n��i − �F�i� > �/ �t�	 � �ak� J�ak��� k ≥ 1

]

≤
 �t�∑
i=1

�0l

[��W�n��i − �F�i� > �/ �t� � �ak� J�ak��� k ≥ 1
]

≤  2�t�

�2

 �t�∑
i=1

4n�c�ai − ai−1�+ 2�2c2�ai − ai−1�
2 + 2�n�+ 1�

n2�2

≤  2�t�

�2
× 4n�ct + 2�2c2t2 + 2 �t��n�+ 1�

n2�2
�
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If we let ��t� denote the total number of epochs before time t of the Poisson
process

⊕
j∈S �1�j , then 0 ≤  �t� ≤ ��t� and it follows that

�0l

[
max

1≤i≤ �t�
��W�n� ��0� �i��− �F ��0� �i��� > �

]
≤ �4n�ct + 2�2c2t2����2�t��+ 2���3�t���n�+ 1�

n2�2�2
�

Since ��t� is a Poisson distributed random variable with the mean c�t����2�t�� and
���3�t�� are finite and do not depend on n. Therefore, the proof of Theorem 6 is
complete. �

10. CONCLUDING REMARKS

We have characterized the transient distribution of stochastic fluid flows
modulated by finite state CTMCs in a computable form. The characterization is
in terms of three kernels obtained as limits of certain kernels arising in a sequence
of matrix-geometric queues that approximate the fluid model. We demonstrated
computational tractability by actually carrying out the approximation. However,
at the time of preparing the final version of this paper, we have developed some
direct algorithms for computing these kernels directly from Eqs. (30)–(32) that are
satisfied by them. That will obviate the need to compute results for the constituent
approximating queues. This new development will be discussed elsewhere as it
requires several results not developed here. Among the uses of the results here are
algorithms for the finite buffer case presented in Ref.�4�.
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