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Abstract

We establish a coarea formula for real-valued Lipschitz maps on strati�ed groups

when the domain is endowed with a homogeneous distance and level sets are mea-

sured by the Q-1 dimensional spherical Hausdor� measure. The number Q is the

Hausdor� dimension of the group with respect to its Carnot-Carath�eodory distance.

We construct a Lipschitz function on the Heisenberg group which is not approxi-

mately di�erentiable on a set of positive measure, provided that the Euclidean

notion of di�erentiability is adopted. The coarea formula for strati�ed groups also

applies to this function, where the Euclidean one clearly fails. This phenomenon

shows that the coarea formula holds for the natural class of Lipschitz functions

which arises from the geometry of the group and that this class may be strictly

larger than the usual one.
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Introduction

It is well known that the coarea formula in Euclidean spaces is an important tool of
Geometric Measure Theory with several applications to Analysis. Let u : A �! R be a
Lipschitz function, where A � Rn is measurable. The coarea formula reads as followsZ

A
h(x) jru(x)jdx =

Z
R

Z
u�1(y)

h(x)Hn�1
j�j (x) dy ; (1)

where Hn�1
j�j denotes the Hausdor� measure with respect to the Euclidean distance and

h : A �! [0;1] is a measurable function, see for instance [12]. The purpose of the
present paper is to obtain a version of (1) for real-valued Lipschitz maps on strati�ed
groups endowed with either the Carnot-Carath�eodory distance or any homogeneous
distance. The interest in developing tools of Geometric Measure Theory on strati�ed
groups has several motivations that arise from subelliptic PDEs, Harmonic Analysis,
Sobolev spaces with respect to H�ormander vector �elds and the geometry of Carnot-
Carath�eodory spaces. Some relevant books are the following [6], [13], [19], [30], [39].
There are several recent contributions in this stream, we cite the papers [1], [4], [5], [10],
[14], [15], [16], [17], [18], [22], [23], [24], [25], [26], [31], [34], [35], [36], [40], but surely
the list could be enlarged.

Recall that a strati�ed group is a simply connected nilpotent Lie group with a graded
Lie algebra. These groups encompass a wide family of geometries, where the Euclidean
one �ts into the commutative case. Two nonisomorphic strati�ed groups cannot be
biLipschitz equivalent even locally. In fact, their metric properties might be considerably
diverse, [27], [33], [37]. It turns out that results which are valid for arbitrary strati�ed
groups actually hold for a huge family of geometries which are di�erent from each other.
However, it may happen that some facts only hold for some class of strati�ed groups
and not for anyone. This is one of the reasons why the aim to establish results and
formulae for arbitrary strati�ed groups is often a delicate matter.

Let us look more closely to the object of the present paper. The coarea formula for
functions of bounded variations can be stated in the general framework of metric spaces,
as it has been proved in [29]. A general version on Carnot-Carath�eodory spaces can be
found in [14], [18] and [31]. In this case the notion of perimeter measure with respect to
a set of vector �elds plays a crucial role, [8]. Another intrinsic surface measure can be
naturally considered in strati�ed groups, which possess a precise Hausdor� dimension,
denoted by Q. This is the spherical Hausdor� measure SQ�1, which is built with respect
to a homogeneous distance of the group. Here a natural question comes up: when we
consider Lipschitz functions with respect to the Carnot-Carath�eodory distance can we
replace in the coarea formula the perimeter measure of lower level sets fu < tg with
the restriction of SQ�1 to the level sets fu = tg? This problem has been raised in
[31], Remark 4.8, where it is also pointed out that this formulation is meaningless on
general Carnot-Carath�eodory spaces, where the Hausdor� dimension might change in
di�erent regions of the space. A �rst partial answer to this question has been given
in [25], where the coarea formula is obtained in the case of Heisenberg groups through
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recti�ability of the perimeter measure in this class of groups, [15]. In Theorem 3.5 of the
present paper we answer this question for arbitrary strati�ed groups without relying on
any recti�ability result for the perimeter measure. In fact the recti�ability of perimeter
measure is presently known only for strati�ed groups of step two, [17]. We emphasize
the importance of the distance with respect to which the Lipschitz property is assumed.
The case of Riemannian Lipschitz functions, i.e. where the Riemannian distance of
the group is considered, deals with more regular maps and the corresponding coarea
formula can be obtained using a blow-up of the measure associated to C1 hypersurfaces
on strati�ed groups, see the relevant works [21], [26] and [32].

In the present paper we will always deal with Lipschitz functions with respect to
the Carnot-Carath�eodory distance of the group. This class of functions is considerably
larger than that of Riemannian Lipschitz functions and it includes also highly irregu-
lar maps which naturally arise from the Carnot-Carath�eodory geometry of the group.
This class of \intrinsic" Lipschitz functions has also a natural notion of di�erentiability,
which is associated to the algebraic structure of the group. This is the notion of H-
di�erentiability, introduced in De�nition 1.12, which gives in turn the notion of C1

H

function, namely, an H-di�erentiable function with continuous H-di�erential. This de�-
nition was successfully introduced by Pansu in [33], in order to study rigidity properties.
However, even C1

H functions on noncommutative strati�ed groups might be extremely
di�erent from the usual C1 functions. Through a technique used by Kirchheim and
Serra Cassano, [22], we also show the existence of a C1

H function which is not approxi-
mately di�erentiable in the Euclidean sense on a set of positive measure. Note that even
the more general Euclidean coarea formula for Sobolev functions cannot be applied to
this case, because it is well known that Sobolev functions are a.e. approximately di�er-
entiable. Concerning the coarea formula for Euclidean Sobolev mappings we refer the
reader to the recent result by Mal�y, Swanson and Ziemer [28] and references therein. The
intrinsic coarea formula we obtain in Theorem 3.5 also applies to the singular function
described above, where the Euclidean coarea formula clearly has no meaning.

Our strategy relies on several recent results of Geometric Measure Theory both
in strati�ed groups and in general metric spaces. We �rst consider the \weak coarea
formula" for functions of bounded variations and we seek more regularity of level sets
due to the Lipschitz property of the function. By a version of the Whitney extension
theorem on strati�ed groups, proved in [17], we can assume that the Lipschitz function
is C1

H . The implicit function theorem on strati�ed groups, proved by Franchi, Serapioni
and Serra Cassano in [16], imply that the regular part of the level set, where the H-
di�erential does not vanish, can be represented locally by a continuous parametrization.
In order to establish a relation between the perimeter measure of lower level sets and
the spherical Hausdor� measure of the corresponding level sets we dilate and rescale
a.e. level set at every regular point. Here the di�culty is that this process essentially
amounts to an intrinsic di�erentation of the implicit map which locally parametrizes
the level set and that is only continuous. The singular part of the level set, where the
H-di�erential vanishes, might be highly singular. To get rid of this part we utilize other
two results. The �rst, is a weak Sard-type theorem, proved in [25], by which the singular
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part of a.e. level set is SQ�1-negligible. The second, is a general result due to Ambrosio,
according to which the perimeter measure on a general k-Ahlfors regular metric space
supporting a weak (1; 1)-Poincar�e inequality is absolutely continuous with respect to
Sk�1, see [1]. It is well known that strati�ed groups have these properties with k = Q,
see for instance [20]. Thus, we can conclude that also the perimeter measure of the
singular part is vanishing.

Let A be a measurable set of a strati�ed group G, let u : A �! R be a Lipschitz
function and let h : A �! [0;1] be a measurable function. Then the following coarea
formula holdsZ

A
h(x) jrHu(x)j dx =

Z
R

Z
u�1(s)\A

h(x) �gQ�1(rHu(x)) dS
Q�1(x) ds : (2)

The symbol rH denotes the H-gradient of u (De�nition 1.14) and �gQ�1(rHu(p)) is the
metric factor (De�nition 1.7). This function takes into account the anisotropy of the
distance. Even in a �nite dimensional space (corresponding to a commutative strati�ed
group) the choice of a Banach norm di�erent from the Euclidean norm makes the metric
factor nontrivially depending on the direction of the gradient. However, in the class
of rotational groups endowed with the associated Carnot-Carath�eodory distance the
metric factor �gQ�1(�) does not depend on the horizontal direction �. Furthermore, this
class of groups includes Euclidean spaces, Heisenberg groups and more general H-type
groups, see [26] for more information. Recently, Franchi, Serapioni and Serra Cassano
have introduced a homogeneous distance d1 on arbitrary strati�ed groups, [17]. It is
possible to check that this distance yields a constant metric factor, see Proposition 1.9.
As a consequence, either on rotational groups with Carnot-Carath�eodory distance or on
arbitrary strati�ed group with the distance d1, we can de�ne the geometric constant
�Q�1 = �gQ�1 and S

Q�1
G

= �Q�1S
Q�1, so that the coarea formula becomes

Z
A
h(x) jrHu(x)j dx =

Z
R

Z
u�1(s)\A

h(x) dSQ�1
G

(x) ds ; (3)

which resembles the Euclidean one. The possibility to replace the spherical Hausdor�
measure SQ�1

G
with the corresponding Hausdor� measure HQ�1

G
is another nontrivial

challenge. An interesting development of (2) would be its extension to Q-Ahlfors regular
Carnot-Carath�eodory spaces. Unfortuately, in this setting the implicit function theorem
of [16] and the weak Sard-type theorem of [25] are not available.

Let us give a brief overview of the paper. In Section 1 we recall basic facts on
strati�ed groups and introduce the important concepts of H-�nite perimeter sets and of
H-di�erentiability. In Section 2 we obtain an explicit formula for the perimeter measure
of lower level sets in terms of the spherical Hausdor� measure and of the metric factor.
Section 3 is devoted to the proof of coarea formula for Lipschitz functions and it is
also presented its simpler form when suitable homogeneous distances are chosen. In
Section 4 we construct special examples of C1

H functions, which are not approximately
di�erentiable in the Euclidean sense on a set of positive measure.
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1 Preliminaries

In this section we introduce strati�ed groups and present their basic properties. Through
their \sub-Riemannian" metric structure we recall the well known notions of H-�nite
perimeter set and of H-di�erentiability.

1.1 Basic notions on strati�ed groups

A strati�ed group is a simply connected nilpotent Lie group G endowed with a graded
Lie algebra G, which is decomposed into a direct sum of subspaces Vj subject to the
condition Vj+1 = [Vj ; V1] for every j 2 N n f0g, and Vj = f0g whenever j is greater than
some positive integer. We denote by � the maximum integer such that V� 6= f0g and
we call it the nilpotence degree of the group or the step of the group. Recall that for
arbitrary subspaces V;W � G we de�ne [V;W ] =spanf[X;Y ] j X 2 V; Y 2Wg.

The assumption that G is simply connected and nilpotent ensures that the exponen-
tial map exp : G �! G is a di�eomorphism. This structure allows us to de�ne dilations
on the group, i.e. maps �t : G �! G with �t(

P
�

j=1 vj) =
P

�

j=1 t
jvj , where t > 0 andP

�

j=1 vj 2 G is the unique representation of a vector of G, provided that vj 2 Vj for
every j = 1; : : : ; �. This notion of dilation is motivated by the fact that the composition
exp ��t� exp

�1 : G �! G is a group homomorphism. We will use the same symbol to
denote dilations which are read on the group. More information on strati�ed groups can
be found for instance in [9], [13] and [21].

The grading of the algebra allows us to choose a privileged basis of G, where single
bases of subspaces Vj are joined together in an ordered way. This is what we call an
adapted basis to the grading of G. We will denote this basis as follows

(X1; X2; : : : ; Xm; Ym+1; : : : ; Yq) (4)

where only the basis (X1; : : : ; Xm) of V1 is emphasized by a di�erent notation, due to its
privileged role. The space V1 de�nes the horizontal subbundle of the group. We introduce
the horizontal space HpG = fX(p) j X 2 V1g at p 2 G and consider the disjoint union
of all these subspaces with the relevant vector bundle topology. We denote by HG the
horizontal subbundle. Smooth sections of the horizontal subbundle are called horizontal

vector �elds. The metric structure on the group is given by the following class of left
invariant Riemannian metrics.

De�nition 1.1 (Graded metric) We say that a left invariant Riemannian metric g
on G is a graded metric if all subspaces fVj j j = 1; : : : ; �g are orthogonal each other.
We denote by vg the Riemannian volume on G associated to g.
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De�nition 1.2 (Graded coordinates) We consider an adapted basis (4) which is
orthonormal with respect to a graded metric g. A system of graded coordinates associated
to this basis is represented by the di�eomorphism F : Rq �! G de�ned by

F (�) = exp
� mX

i=1

�iXi +

qX
i=m+1

�iYi

�
:

Note that in the previous de�nition we have use the fact that the exponential map
exp : G �! G for simply connected nilpotent groups is a di�eomorphism. We also point
out that whenever an adapted basis (4) is �xed, it is automatically de�ned the unique
left invariant metric g which makes this basis orthonormal and it is also a graded metric.
In the sequel, whenever a graded basis and a system of graded coordinates are �xed the
unique graded metric that makes this basis orthonormal will be also understood.

Remark 1.3 Let us �x a system of graded coordinates F : Rq �! G. One can check
that the Riemannian volume measure coincides with the Lebesgue measure. Precisely,
we have that F]L

q = vg, where L
q denotes the q-dimensional Lebesgue measure on

Rq and F]L
q is the push-forward measure, de�ned by F]L

q(A) = Lq
�
F�1(A)

�
for any

measurable set A � G. This fact justi�es our notation vg(A) = jAj, where A � G is a
measurable set, and the symbol dx when the integration is considered with respect to
the Riemannian volume measure vg.

De�nition 1.4 (Coordinate dilations) Let F be a system of graded coordinates.
The associated coordinate dilations �t : R

q �! Rq, with t > 0, are de�ned by

�t(�) =

qX
j=1

tdj �j ej ; (5)

where (ej) denotes the canonical basis of R
q and dj = dimVj .

The Carnot-Carath�eodory distance between two points p and p0 is obtained by taking the
in�mum among lengths of absolutely continuous curves a.e. tangent to the horizontal
subbundle and which connect p with p0. The length of connecting curves is computed by
a graded metric g, hence the Carnot-Carath�eodory distance � is left invariant and it has
the important scaling property �(�tp; �tp

0) = t�(p; p0), where p; p0 2 G. Any continuous
distance which satis�es the previous scaling property and it is left invariant will be
called homogeneous distance. The possibility to de�ne a Carnot-Carath�eodory distance
depends on the existence of connecting curves tangent to the horizontal subbundle, the
so-called horizontal curves. By de�nition of strati�ed group we have that the Lie algebra
generated by V1 coincides with G, then the well known Chow theorem implies that any
two points are connected by at least one horizontal curve, see for instance [6]. The Chow
theorem also ensures that the Carnot-Carath�eodory distance is continuous with respect
to the topology of the group and it also induces the same topology. It is also worth to
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remark that any two homogeneous distances d1 and d2 are biLipschitz equivalent in the
following sense

c1 d1(p; p
0) � d2(p; p

0) � c2 d1(p; p
0);

where c1; c2 > 0 are geometrical constants and p; p0 2 G. This immediately follows by
homogeneity, left invariance and continuity of homogeneous distances, similarly to the
classical argument for norms of �nite dimensional spaces.

De�nition 1.5 (Metric balls) Let d be a homogeneous distance of G. The open ball
of center p and radius t is de�ned by Bp;t = fr 2 G j d(p; r) < tg. The closed ball with
the same center and the same radius is Dp;t = fr 2 G j d(p; r) � tg. When the center of
the ball is the unit element we simply write Bt and Dt, respectively.

The left translations on G will be denoted by lp, where p 2 G and lp(x) = px for any
x 2 G. Sometimes we will also use the notation pf to denote the composition lp�f . By
properties of homogeneous distances metric balls can be written as lp�tB1 = Bp;t.

As a consequence of the last formula and of (5) one easily sees that jBp;tj = tQjB1j,
since the jacobian of �t is t

Q, where Q =
P

�

j=1 j dimVj , and F]L
q = vg. This scaling

property implies that the Hausdor� dimension of the group with respect to an arbitrary
homogeneous distance is exactly Q and that the corresponding Q-dimensional Hausdor�
measure HQ is �nite on compact sets. Then the measure HQ is proportional to the
volume measure vg, due to the left invariance of both measures.

De�nition 1.6 (Hausdor� measures) Let d be a homogeneous distance of G and let
a � 0. For each subset E � G we de�ne the a-dimensional spherical Hausdor� measure

Sa(E) = lim
"!0+

inf
n 1X

j=1

diam(Dxi;ti)
a

2a
j E �

1[
i=1

Dxi;ti ; ti � "
o

and the a-dimensional Hausdor� measure of E as

Ha(E) = lim
"!0+

inf
n 1X

j=1

diam(Fi)
a

2a
j E �

1[
i=1

Fi ; diam(Fi) � "
o

where fFig are subsets of G and diam(A) = sup(x;y)2A�A d(x; y) for any A � G.

In the case we want to emphasize the use of a particular homogeneous distance d we will
use the symbol Ha

d. We will indicate by j � j the Euclidean norm in Rq. The same symbol
will also denote the Riemannian norm for vectors of the tangent bundle of the group.
Note that we do not introduce any geometrical constant in the de�nitions of Hausdor�
and spherical Hausdor� measures. In fact, we will work in codimension one, where these
geometrical constants are replaced by the metric factor, which will be introduced in the
following de�nition.

De�nition 1.7 (Metric factor) Let B1 be the open unit ball with respect to a �xed
homogeneous distance d of G. Consider a vector � 2 V1nf0g together with its orthogonal
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hyperplane ~L(�) in G and de�ne L(�) = exp ~L(�) � G. We �x a system of graded
coordinates F : Rq �! G and de�ne

�gQ�1(�) = Hq�1
j�j

�
F�1(L(�) \B1)

�
: (6)

The map � �! �gQ�1(�) is the metric factor of the homogeneous distance d with respect
to the direction � and the Riemannian metric g.

Remark 1.8 The notion of metric factor does not depend on the choice of graded
coordinates, as it has been proved in Lemma 1.10 of [26]. Notice also that �gQ�1(�) is
uniformly bounded from above and from below by positive constants.

In Theorem 5.1 of [17] a homogeneous distance d1 has been explixitly constructed
in every strati�ed group. Its explicit formula is stated in Rq with respect to graded
coordinates:

d1(x; 0) = max
j=1;:::;�

f"j j(x
mj�1+1; : : : ; xmj )j1=jg (7)

with the left invariant property d1(x; y) = d1(x�1 � y; 0) and for every j = 1; : : : ; �
the number "j 2]0; 1[ is suitable dimensional constant depending only on the group.

The integer mj is equal to zero if j = 0 and it corresponds to the sum
Pj

k=1 nk, with
nk = dim(Vk), if j = 1; : : : ; �. In the next proposition we prove that the metric factor
with respect to this distance becomes a constant function of the horizontal direction �.

Proposition 1.9 Let �gQ�1 represent the metric factor with respect to the distance d1.

Then there exists �Q�1 > 0 such that for every � 2 H1 n f0g we have �gQ�1(�) = �Q�1.

Proof. For any couple of horizontal vectors �; � 2 H n f0g we can �nd an isometry
� : G �! G such that �(�) = � and �( ~L(�)) = ~L(�), where ~L(�) and ~L(�) are the
orthogonal spaces to � and �, respectively. We read these orthogonal spaces in G

de�ning L(�) = exp
�
~L(�)

�
and L(�) = exp

�
~L(�)

�
. Let (W1; : : : ;Wq) be a graded

basis of G, let F : Rq �! G be the associated system of graded coordinates and de�ne
I(x) =

Pq
j=1 x

j Wj 2 G for every x 2 Rq. By the expression of d1 it is easy to see

that the unit ball ~B1 � R
q with respect to d1 is preserved under Euclidean isometries,

i.e. ~�( ~B1) = ~B1 whenever ~� is an Euclidean isometry. Thus, taking into account that
F = exp �I and that ~� = I�1 � � � I : Rq �! Rq is an Euclidean isometry

F�1(L(�)) \ ~B1 = I�1( ~L(�)) \ ~B1 = I�1(�( ~L(�))) \ ~B1

= ~�
�
I�1( ~L(�)) \ ~��1( ~B1)

�
= ~�

�
I�1( ~L(�)) \ ~B1

�
= ~�

�
F�1(L(�)) \ ~B1

�
;

then, by De�nition 1.7 it follows that

�gQ�1(�) = Hq�1
j�j

�
F�1(L(�)) \ ~B1)

�
= Hq�1

j�j

�
~�
�
F�1(L(�)) \ ~B1)

��

= Hq�1
j�j

�
F�1(L(�)) \ ~B1)

�
= �gQ�1(�):

This concludes the proof. 2
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1.2 H-perimeter and H-di�erentiability

We assume throughout the paper that 
 is an open subset of a strati�ed group G.
The space of smooth horizontal vector �elds of 
 is denoted by �(H
) and the one of
compactly supported horizontal vector �elds by �c(H
). Note that a horizontal vector
�eld ' can be written as

Pm
j=1 'j Xj , where (X1; X2; : : : ; Xm) is a basis of the �rst layer

V1 � G. The H-divergence of ' is de�ned as
Pm

j=1Xj'j and it is denoted by divH'.
This de�nition is independent of the choice of the basis of V1. All these de�nitions allow
us to de�ne H-BV functions on strati�ed groups. These functions were introduced in
general Carnot-Carath�eodory spaces by Capogna, Danielli and Garofalo, [8].

De�nition 1.10 (H-BV functions) We say that a function u 2 L1(
) is a function
of H-bounded variation (in short, an H-BV function) if

jDHuj(
) := sup

�Z


u(x) divH'(x) dx

���' 2 �c(H
); j'j � 1

�
<1 ;

We denote by BVH(
) and BVloc;H(
) the space of functions of H-bounded variation
and of locally H-bounded variation, respectively.

By Riesz Representation theorem we get the existence of a nonnegative Radon measure
jDHuj and of a Borel section � of H
 such that we have j�j = 1 jDHuj-a.e. and for any
� 2 �c(H
) the following integration by parts formula holds

Z


u(x) divH�(x) dx = �

Z


h�; �i d jDHuj : (8)

The vector valued measure � jDHuj is denoted by DHu. A measurable set E � 
 is
said to be of H-�nite perimeter if its characteristic function 1E belongs to BVH(
). We
use the symbol j@EjH to denote the total variation jDH1E j and the Borel section � is
denoted by �E and it is called generalized inward normal.

De�nition 1.11 (H-linear maps) Let G and M be two strati�ed groups. We say
that L : G �! M is an H-linear map if it is a group homomorphism with the property
L(�tp) = �0tL(p) for any p 2 G and t > 0, where �t and �0t are dilations of G and M,
respectively. The space of all H-linear maps from G to M is denoted by HL(G;M).

De�nition 1.12 (H-di�erentiability) Let A � G be a measurable set and let p 2 A
be a density point, i.e. jA \ Dp;tj=jDp;tj ! 1 as t ! 0+. We say that a function
u : A �! R is H-di�erentiable at p 2 A if there exists an H-linear map L : G �! R

such that

lim
A3r!p

ju(r)� u(p)� L(p�1r)j

d(p; r)
= 0 : (9)

The unique map L which satis�es (9) is denoted by dHu(p) and it is called the H-
di�erential of u at p. The family of continuously H-di�erentiable functions u : 
 �! R

is denoted by C1
H(
).
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We will also write that a function is C1
H to indicate that it belongs to C1

H(
). It is
worth observing that C1 functions in the usual sense are always C1

H functions, as one
can directly check from the de�nition of H-di�erentiability. The converse is not true
and in Section 4 we will show an extreme example, where a C1

H function might not be
di�erentiable in the Euclidean sense on a set of positive measure.

Lipschitz functions on strati�ed groups satisfy a Rademacher-type theorem.

Theorem 1.13 Let u : A �! R be a Lipschitz function, where A � G . Then u is a.e.

H-di�erentiable.

This theorem has been proved by Monti and Serra Cassano in the more general frame-
work of Carnot-Carath�eodory spaces, [31]. Note that the Rademacher-type theorem
proved in [31] is obtained for functions de�ned on all the space. Taking into account
that real-valued Lipschitz maps on metric spaces can be extended from their domain to
all the space, it is easily proved the a.e. H-di�erentiability of Lipschitz functions de�ned
on an arbitrary subset. Let us mention that Rademacher theorem in the general case of
Lipschitz maps between strati�ed groups is a deep result due to Pansu, [33].

When a graded metric g is �xed on the group we can see the usual identi�cation
between the gradient of a function and its di�erential. Let L : G �! R be an H-linear
map. It is easy to see that there exists a unique horizontal vector X 2 V1 such that
L(expW ) = hX;W ig for any W 2 G. In view of the fact that the exponential map
is a di�eomorphism between G and G, it will be also convenient to read the H-linear
map L as a linear map L : G �! R simply writing L(W ) = hX;W ig. We will use this
convention in the following de�nition.

De�nition 1.14 (H-gradient) Let dHu(p) : G �! R be the H-di�erential of the func-
tion u : A �! R. We denote by rHu(p) the unique horizontal vector of V1 such that

dHu(x)(W ) = hrHu(p);W ig (10)

for any W 2 G. We say that rHu(p) is the H-gradient of u at p.

Throughout the paper we will utilize both notions of H-di�erential and of H-gradient.

2 Measure of level sets

In this section we establish an explicit formula for the perimeter measure of level sets of
C1
H functions. An important tool to obtain this result is the following implicit function

theorem, proved by Franchi, Serapioni and Serra Cassano in [16]. In the sequel the
notation @E will denote the topological boundary of a subset E � 
 in the topology
induced by 
. Note that by Theorem 2.1 the piece of boundary given by the level set of
a C1

H function with nonvanishing H-gradient is indeed a manifold boundary in the sense
of topological manifolds.

10



Theorem 2.1 (Implicit function theorem) Let f 2 C1
H(
), p 2 
 and f(p) = 0.

Suppose that X1f(p) > 0, where X1 is an element of the adapted orthonormal basis (4).

Then there exists a connected open neighbourhood U � 
 of p such that the open subset

E = fr 2 U j f(r) < 0g has H-�nite perimeter in U and there exist connected open

subsets A � Rq�1, I � R with (0; 0) 2 I � A and a continuous embedding � : A �! U
such that f(�(�)) = 0 for every � 2 A, �(0) = p and �(A) = U \ @E. The generalized

inward normal is continuous and for every r 2 U \ @E it is expressed by

�E(r) = �
rHf(r)

jrHf(r)j
: (11)

The following formula for the perimeter measure with respect to graded coordinates holds

j@EjH(U) =

Z
A

qPm
j=1Xjf(�(�))2

X1f(�(�))
d� : (12)

Remark 2.2 Note that Theorem 2.1 also provides a rather explicit form of �. In fact,
using graded coordinates we have �(�) = p ('(�); �), where ' : A �! R is a continuous
function and  : I � A �! p�1U is a di�eomorphism, where (t; �) = F (0; �) exp(tX1)
and F : Rq �! G is the system of graded coordinates associated to the frame (4).

The next theorem is the main result of this section.

Theorem 2.3 (Blow-up) Let f 2 C1
H(
), p 2 
 with f(p) = 0 and rHf(p) 6= 0 and

de�ne the open subset E = fr 2 
 j f(r) < 0g. Then the following limit holds

lim
t!0+

j@EjH(Bp;t)

tQ�1
= �gQ�1(rHf(p)) : (13)

Proof. By hypothesis there exist an open neighbourhood V � 
 of p and f 2 C1
H(V )

such that V \ � = f�1(0) and dHf(r) : G �! R is nonvanishing for any r 2 V . We
�x an orthonormal system of the form (4), where X1(p) = rHf(p)=jrHf(p)j. This
particular choice implies that

Xjf(p) = 0 for every j = 2; : : : ;m : (14)

In view of this assumption there exists an open neighbourhood V 0 � V of p such that
X1f(r) > 0 for every r 2 V 0. By virtue of Theorem 2.1 there exist a connected open
neighbourhood U � V 0 of p and a homeomorphism � : A �! U \ � de�ned by

�(�) = pF (0; �) exp('(�)X1) = p('(�); �)

for every � 2 A, where A � Rq�1 is a connected open neighbourhood of zero. The func-
tion ' : A �! R is continuous with '(0) = 0 and  : I � A �! U is a di�eomorphism,
where I is an open interval with 0 2 I. We choose t0 > 0 such that Dp;t0 � U and de�ne
the compact subset A0 = ��1(Dp;t0) � A. Under these conditions the open set

E = f(t; �) j (t; �) 2 I �A; t < '(�)g = fr 2 U j f(r) < 0g

11



has H-�nite perimeter in U and by (12) there exists t0 > 0 such that for every positive
t � t0 we have

j@EjH(Bp;t) =

Z
��1(Bp;t)

qPm
j=1Xjf(�(�))2

X1f(�(�))
d� : (15)

We make the change of variable � = ~�t�, where ~�t : R
q�1 �! Rq�1 is the restriction of

the coordinate dilation �t to the hyperplane f0g�R
q�1. The jacobian of the restriction

~�t is t
Q�1, hence for every positive t � t0 we obtain that

j@EjH(Bp;t) = tQ�1
Z
~�1=t��1(Bp;t)

qPm
j=1Xjf(�(~�t�))2

X1f(�(~�t�))
d� (16)

To perform the limit of j@EjH(Bp;t)=t
Q�1 as t! 0+ we have to study how the sets

~�1=t�
�1(Bp;t) = f� 2 ~�1=tA0 j ~�t� 2 ��1(Bp;t)g

behave as t! 0+. We observe that

��1(Bp;t) = f� 2 A0 j F (0; �) exp('(�)X1) 2 Btg ;

hence we have

~�1=t�
�1(Bp;t) =

n
� 2 ~�1=tA0 j F (0; ~�t�) exp('(~�t�)X1) 2 Bt

o
(17)

=
n
� 2 ~�1=tA0 j �tF (0; �)�t exp

�
'(~�t�)

t X1

�
2 �tB1

o
(18)

=
n
� 2 ~�1=tA0 j F (0; �) exp

�
'(~�t�)

t X1

�
2 B1

o
: (19)

We want to prove that '(~�t�)=t ! 0 as t ! 0+. This is a rather delicate fact in that
we know only that ' is continuous. For any � 2 A0 we de�ne the open set

I1(�) =
n
t 2 ]0;+1[\I j '(~�t�) 6= 0

o
:

In the case when the topological closure I1(�) does not contain zero, then '(~�t�) = 0
for every t 2]0; "0[, where "0 > 0 is suitable small, hence our limit becomes trivial.
Suppose now that 0 2 I1(�). In this case we can choose a sequence ftjg contained in
I1(�) and converging to zero. We can also suppose that ftjg �]0; "[, where " > 0 is
chosen so that ~�tA0 � A0 for every t 2 ]0; "[. By the fact that f is C1

H the derivative of
t �! f(p(t; �)) is X1f(p(t; �)) > 0 for every t 2 I and for every � 2 A0. Thus, the
function t �! f(p(t; �)) is strictly increasing and we have

f(p('(~�tj�);
~�tj�))� f(p(0; ~�tj�)) = �f(p(0; ~�tj�)) 6= 0 (20)

12



for every � 2 A0, due to the condition '(~�tj�) 6= 0. By the the mean value theorem
there exists c(tj ; �) 2]0; tj [ such that

f(p(tj ; �))� f(p(0; �))

tj
�X1f(p(0; �)) = X1f(p(c(tj ; �); �))�X1f(p(0; �)) :

Thus, the uniform continuity of (X1f)�(p) on the compact set [0; "]�A0 implies that

max
�2A0

���f(p(t; �))� f(p(0; �))

t
�X1f(p(0; �))

��� �! 0+ as t! 0+ :

Utilizing (20) and the previous uniform convergence it follows that

0 6= �
'(~�tj�)

f(p(0; ~�tj�))
=

'(~�tj�)

f(p('(~�tj�);
~�tj�))� f(p(0; ~�tj�))

�!
1

X1f(p)
(21)

as tj ! 0+. In view of the particular choice of X1 we have dHf(p)(F (x)) = X1f(p)x1 ;
where x 2 Rq and F : Rq �! G is the system of graded coordinates associated to the
basis (4). It follows that

dHf(p)(F (0; �)) = 0 for any � 2 Rq�1:

As a result, the H-di�erentiability of f at p and the identity (0; ~�t�) = F (0; ~�t�) yield

f(p(0; ~�t�))

t
=

f(pF (0; ~�t�))� dHf(p)(F (0; ~�t�))

t
�! 0 (22)

uniformly in � 2 A0 as t ! 0+. Joining the limits (21) and (22), for any � 2 A0, we
obtain that

lim
I1(�)3tj!0+

'(~�tj�)

tj
= 0 : (23)

Taking into account that '(~�t�) = 0 whenever t > 0 and t =2 I1(�), we can conclude
that limit (23) holds for every in�nitesimal sequence ftjg �]0; "[, then

lim
t!0+

'(~�t�)

t
= 0 : (24)

The limit (24) and the expression (19) yield

1~�1=t��1(Bp;t)
�! 1 ~B1\(f0g�Rq�1) as t! 0+; (25)

where ~B1 = F�1(B1). We also notice that F (f0g�Rq�1) � G is exactly the hyperplane
orthogonal to rHf(p) = jrHf(p)jX1(p). Hence, from (11) and the de�nition of metric
factor we conclude that

Hq�1
j�j ( ~B1 \ (f0g � Rq�1) = �gQ�1(�E(p)) : (26)

13



Now, in view of (14) and the continuity of rHf we obtainqPm
j=1Xjf(�(~�t�))2

X1f(�(~�t�))
�! 1 as t! 0+: (27)

By virtue of (16), (25) and (27) we deduce that the limit of j@EjH(Bp;t)=t
Q�1 as t! 0+

exists and in view of (26) it is equal to �gQ�1(�E(p)). This �nishes the proof. 2

In Theorem 2.5 we will also utilize the following general result due to Ambrosio, [1].

Theorem 2.4 (Absolute continuity) Let E � X be a set of �nite perimeter in a k-
Ahlfors regular metric space X which supports a weak (1,1)-Poincar�e inequality. Then

the perimeter measure P (E; �) is absolutely continuous with respect to Hk�1.

Strati�ed groups are clearly Q-Ahlfors regular, due to the property jBp;rj = jB1jr
Q for

any p 2 G and r > 0. They also satisfy a Poincar�e inequality, [20]. By a standard
approximation argument it is not di�cult to check that the notion of perimeter measure
in metric spaces used in [1] corresponds to the one for strati�ed groups or more general
Carnot-Carath�eodory spaces, [29]. Then Theorem 2.4 can be used for strati�ed groups.

In the next theorem we will use the standard notation �xA to denote the restriction
of the measure � to the measurable set A. Precisely �xA(F ) = �(A \ F ) for every
measurable set F .

Theorem 2.5 Let u 2 C1
H(
), s 2 R and E = fr 2 
 j u(r) < sg. We set

� =
n
r 2 
 j u(r) = s and rHu(r) = 0

o

and suppose that HQ�1(�) = 0. We also assume that j@EjH(
) <1. Then we have

j@EjH = �gQ�1(�E)S
Q�1

x@E: (28)

Proof. By de�nition of perimeter measure it is easily recognized that its support is
contained in the topological boundary @E, hence we can write

j@EjH(
) = j@EjH(@E) = j@EjH(@E n �) + j@EjH(�) : (29)

Note that the singular set � can be highly irregular. However, the contribution to the
perimeter measure from this part is negligible. In fact, the set E has H-�nite perimeter,
hence due to Theorem 2.4 the perimeter measure is absolutely continuous with respect
to HQ�1. Using our hypothesis we know that HQ�1(�) = 0, then j@EjH(�) = 0 and
the perimeter measure j@EjH is clearly supported on @E n �.

Let p 2 @E n � and de�ne "p > 0 such that for any t 2]0; "p[ we have Bp;t � 
. In
view of j@EjH(Bp;t) <1 we see that j@EjH(@Bp;t) might not vanish only on a countable
set of numbers t, therefore j@EjH(Bp;t) = j@EjH(Dp;t) for a.e. t > 0. As a consequence,
the family of closed balls

C = fDp;t j 0 < t < "p; p 2 @E n �; j@EjH(Bp;t) = j@EjH(Dp;t)g (30)
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is �ne at each point of @En�, i.e. de�ning Ip = ft 2]0; "p[ jDp;t 2 Cg, for every p 2 @En�
we have inf Ip = 0. Now we observe that the function u � s satis�es the hypotheses of
Theorem 2.3 for every p 2 @E n �, then by (13) we obtain

lim
t2Ip;t!0+

j@EjH(Dp;t)

tQ�1
= �gQ�1(�E(p)) (31)

for every p 2 @E n �. In order to employ Theorems 2.10.17(2) and 2.10.18(1) of [12]
we have to make sure diam(Bt) =diamBp;t = 2t, for any t > 0 and p 2 G. We can
choose exp at0X 2 Bt with X 2 V1, 0 < t0 < t and d(exp aX; e) = 1, where e is the unit
element of the group. Then d(exp at0X; exp (�at0X)) = 2t0 � diam(Bt). Letting t

0 ! t
we obtain 2t � diam(Bt). The opposite inequality is straightforward. In the notation
of Section 2.6.16 of [12] we have proved that for any p 2 @E n � there exists the limit

(C) lim
S!p

j@EjH(S)

�(S)
= �gQ�1(�E(p)); (32)

where C is the family (30) and �(S) = diam(S)Q�1=2Q�1. Finally, Theorems 2.10.17(2)
and 2.10.18(1) of [12] applied to the measure j@EjHx(@E n�) lead us to the conclusion.
2

3 The coarea formula

This section is devoted to the proof of the coarea formula on strati�ed groups. We start
recalling this formula for functions of bounded variation, see [14], [18] and [31].

Theorem 3.1 Let u 2 BVH(
). Then for every measurable set A � 
 we have

jDHuj(A) =

Z
R

j@EsjH(A) ds ; (33)

where Es = fx 2 
 j u(x) < sg.

Proposition 3.3 is the key step to obtain the coarea formula in the general case of
Lipschitz functions. To obtain this result we need of the following theorem, proved in
[25].

Theorem 3.2 (Sard-type theorem) Let G and M be strati�ed groups of Hausdor�

dimension Q and P , respectively, and let A � G be a measurable set. Consider a

Lipschitz map u : A �!M and de�ne the set of singular points

� = fp 2 A j dHu(p) exists and it is not surjectiveg:

Then, for HP -a.e. � 2M it follows HQ�P
�
� \ u�1(�)

�
= 0.
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We will use this result for the case M = R, where P = 1 and u : 
 �! R is of class C1
H .

In this case the map u is everywhere H-di�erentiable, hence in view of (10) for every
s 2 R we have

u�1(s) =
n
p 2 u�1(s) j rHu(p) = 0

oGn
p 2 u�1(s) j rHu(p) 6= 0

o
; (34)

where the symbol
F

denotes the disjoint union. Note also that C1
H functions are lo-

cally Lipschitz with respect to the Carnot-Carath�eodory distance, therefore Theorem 3.2
applied to uj
0 , where 


0 is a relatively compact open subset of 
, yields

HQ�1
�n

r 2 
0 j u(r) = s and rHu(r) = 0
o�

= 0 : (35)

for a.e. s 2 R. This last consequence will be exploited in the next proposition.

Proposition 3.3 Let u : 
 �! R be a C1
H function. Then for every measurable set

A � 
 we haveZ
A
jrHu(x)j dx =

Z
R

Z
u�1(s)\A

�gQ�1(rHu(x)) dS
Q�1(x) ds ; (36)

where SQ�1, �gQ�1 are considered with respect to the same homogeneous distance.

Proof. Consider 
0 compactly contained in 
 and recall that C1
H functions are both

locally Lipschitz and locally H-BV functions. We de�ne the set Es = fr 2 
0 j u(r) < sg
for every s 2 R. By virtue of the H-di�erentiability of u it is not di�cult to see that
jDHuj = jrHuj vg, where DHu is the vector distributional derivative of u regarded as a
vector measure. Thus, the coarea formula (33) implies

Z
R

j@EsjH(

0) ds = jDHuj(


0) =

Z

0
jrHu(x)j dx <1:

Then for a.e. s 2 R we have j@EjH(

0) <1 and formula (35) holds for a.e. s 2 R. As

a consequence, for a.e. s 2 R we can apply Theorem 2.5 to the set Es, getting

j@EsjH = �gQ�1(�Es)S
Q�1

x@Es (37)

for a.e. s 2 R. Then formulae (33) and (37) give

Z
A
jrHu(x)j dx = jDHuj(A) =

Z
R

Z
u�1(s)\A

�gQ�1(�Es) dS
Q�1 ds (38)

for any measurable set A � 
0. Finally, we replace formula (11) in (38) and we use the
fact that the metric factor depends only on the direction of the horizontal vector, then
(36) follows. 2

To recover the coarea formula in the case of Lipschitz functions we will need of the
following result, taken from [17].
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Theorem 3.4 (Whitney extension theorem) Let u : F �! R be a continuous

function on a closed subset F � G and let 	 : F �! HL(G;R) be continuous, such

that for every compact set K � F we have

sup

�
ju(r)� u(p)�	(p)(p�1r)j

d(p; r)

��� p; r 2 K; d(p; r) < t

�
�! 0 as t! 0+ :

Then there exists a C1
H function ~u : G �! R such that ~ujF = u and (dH ~u)jF = 	.

In the next theorem we prove the coarea formula for real-valued Lipschitz maps on
strati�ed groups.

Theorem 3.5 (Coarea formula) Let A � G be a measurable set, u : A �! R be a

Lipschitz function and h : A �! [0;+1] be a measurable function. Then we haveZ
A
h(x) jrHu(x)j dx =

Z
R

Z
u�1(s)\A

h(x) �gQ�1(rHu(x)) dS
Q�1(x) ds ; (39)

Proof. We �rst assume that A is bounded. By Theorem 1.13 we know that u is a.e.
H-di�erentiable on A, then for a.e. p 2 A it follows

!(p; t) = sup
r2A; d(p;r)<t

ju(r)� u(p)� dHu(p)(p
�1r)j

d(p; r)
�! 0 as t! 0+:

Let us choose an arbitrary � > 0. By Egorov-Severini theorem there exists a compact
set F � A such that jA n F j < � and supp2F !(p; t)! 0 as t! 0+, then we get

sup

�
ju(r)� u(p)� dHu(p)(p

�1r)j

d(p; r)

��� p; r 2 F; d(p; r) < t

�
�! 0 as t! 0+ :

The last limit enables us to apply Theorem 3.4 with 	 = (dHu)jF . Thus, there exists
a C1

H function ~u : G �! R such that ~ujF = u and (dH ~u)jF = (dHu)jF . We can apply
Proposition 3.3 to ~u, with 
 = G and observing that F is a measurable subset of G.
Then we have proved thatZ

F
jrHu(x)j dx =

Z
R

Z
u�1(s)\F

�gQ�1(rHu(x)) dS
Q�1(x) ds : (40)

Taking an in�nitesimal sequence of positive numbers f�jg we have a family of closed
sets fFjg such that jA n

S1
j=1 Fj j = 0 and formula (40) holds replacing F with Fj for

any j � 1. Then Beppo Levi convergence theorem yieldsZ
S
1

j=1 F
jrHu(x)j dx =

Z
R

Z
u�1(s)\(

S
1

j=1 Fj)
�gQ�1(rHu(x)) dS

Q�1(x) ds : (41)

Now we apply the coarea estimate 2.10.25 of [12] and the fact that the metric factor is
a bounded map. It follows that

Z
R

Z
u�1(s)\(An

S
1

j=1 Fj)
�gQ�1(rHu(x)) dS

Q�1(x) ds � k�gQ�1k1

���A n
1[
j=1

Fj

��� = 0
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then (41) becomesZ
A
jrHu(x)j dx =

Z
R

Z
u�1(s)\A

�gQ�1(rHu(x)) dS
Q�1(x) ds : (42)

We wish to extend (42) to any measurable subset A of 
. It su�ces to choose an
increasing sequence of bounded measurable sets fAkg whose union coincides with A
and use the Beppo Levi convergence theorem for (42) with A is replaced by Ak. Then
(42) holds for any measurable subset of 
. Finally, taking an increasing sequence of
nonnegative step functions which pointwise converges to h and applying again the Beppo
Levi convergence theorem, our claim follows. 2

The coarea formula we have previously obtained takes a more familiar form in a privi-
leged class of strati�ed groups, called rotational groups. We briey recall their de�nition.

We consider a group G and a �xed graded metric g. A horizontal isometry is an
H-linear map T : G �! G such that dT (e) : G �! G is an isometry with respect
to g. A rotational group G has su�ciently many horizontal isometries so that for any
couple of vertical hyperplanes L(�);L(�) � G, orthogonal to the horizontal directions
�; � 2 V1, there exists a horizontal isometry T : G �! G such that dT (e) (L(�)) = L(�).
It is straightforward to recognize that Euclidean spaces are rotational. It has been
proved in [26] that Heisenberg groups and more general H-type groups are rotational.
The main feature of rotational groups is that the metric factor �gQ�1(�) with respect to
the Carnot-Carath�eodory distance does not depend on the horizontal direction �, see
Remark 2.14 and Proposition 2.18 of [26]. Then it is constantly equal to a geometric
constant, denoted by �Q�1. It is natural to use this constant in the de�nition of spherical
Hausdor� measure, then de�ning

SQ�1
G

= �Q�1 S
Q�1

as the intrinsic spherical Hausdor� measure. Note that in the Euclidean space En we
have Q = n and �Q�1 = !n�1, where !n�1 denotes the volume of the unit ball of E

n�1.
Then we have Sn�1

En
= !n�1S

n�1
j�j = !n�1H

n�1
j�j , where the last equality is a special

property of Euclidean spaces and its validity on strati�ed groups is not known. In the
case of arbitrary strati�ed groups is still possible to obtain a constant metric factor by
using the distance d1, as we have seen in Proposition 1.9. Then also in this case we can
de�ne �Q�1 and S

Q�1
G

as above.
As an immediate corollary of Theorem 3.5 we have obtained the following result.

Corollary 3.6 Let G be a strati�ed group, A � G be a measurable set and u : A �! R

be a Lipschitz function. Then for any measurable function h : A �! [0;+1] we haveZ
A
h(x) jrHu(x)j dx =

Z
R

Z
u�1(s)\A

h(x) dSQ�1
G

(x) ds ; (43)

where the constant �Q�1 and the spherical Hausdor� measure SQ�1
G

are computed ei-

ther with respect to d1 for arbitrary strati�ed groups or with respect to the Carnot-

Carath�eodory distance if the group is rotational.
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4 A surprising case

In this section we apply the technique of [22] in order to obtain an example of C1
H

function on the Heisenberg group H3, which is not approximately di�erentiable on a
set of positive measure, when the classical notion of approximate di�erentiability for
Euclidean spaces is adopted, see De�nition 4.1. Note that approximate di�erentiability
is a much weaker condition then usual di�erentiability. In fact, Sobolev functions are
always a.e. approximately di�erentiable, but there are well known examples of Sobolev
functions which are not di�erentiable in the usual sense at any point, see for instance
[7] and [38]. As a surprising consequence of our example, the \sub-Riemannian" coarea
formula (43) holds for this function, whereas the Euclidean one fails. We also point
out that the same formula (43) is always satis�ed by either Euclidean or Riemannian
Lipschitz functions, [26].

Recall that the Heisenberg group H3 is the simplest model of noncommutative stra-
ti�ed group. Its Lie algebra h3 has the grading V1 � V2, where spanfX;Y g = V1,
spanfZg = V2 and the only nontrivial bracket relation is [X;Y ] = �4Z. If we represent
the Heisenberg group with respect to graded coordinates associated to the basis (X;Y; Z)
we can indentify it with C� R endowed with the group operation

(z; s) � (w; t) =
�
z + w; s+ t+ 2Imhz; wiC

�
; (44)

where (z; s); (w; t) 2 C�R and h ; iC denotes the complex scalar product on C. We will
also consider on C the structure of two-dimensional real vector space and in this case
we will denote the corresponding scalar product by h ; iR2 . Exploiting the previously
mentioned graded coordinates we can introduce a homogeneous distance on H3 as follows

d1 ((z; t); 0) = maxfjzj; jtj1=2g

and d1 ((z; t); (w; �)) = d1
�
(z; t)�1(w; �); 0

�
, whenever (z; t); (w; �) 2 C � R. This

distance is biLipschitz equivalent to the Carnot-Carath�eodory distance of H3, as one
can easily check using the scaling property with respect to dilations of the group.

De�nition 4.1 Let O be an open subset of Rm with x 2 O and let f : O �! Rn be a
measurable map. We say that f is approximately di�erentiable at x 2 O if for any " > 0

lim
r!0+

Lm (fy 2 Bx;r j jf(y)� f(x)� L(y � x)j < " jy � xjg)

!m rm
= 1 ; (45)

where we have denoted by Lm them-dimensional Lebesgue measure, by !m the Lebesgue
measure of the unit ball of Rm and by Bx;r the open ball of center x and radius r > 0
with respect to the Euclidean distance.

Our example is built through a H�older continuous function which is not approximately
di�erentiable everywhere. We utilize a classical construction due to Besicovitch and
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Ursell and we refer to Section 8.2 of [11] for more details and complete proofs. We
consider the 4-periodic sawtooth funtion de�ned as

�(t) =

8<
:

t 0 � x < 1
2� t 1 � x < 3
t� 4 3 � x < 4

and for a �xed number 1 < s < 2 we de�ne

h(t) =
1X
k=1

�s�2k �(�kt); t 2 R ; (46)

where we assume that

�k+1=�k �! +1 and log �k+1= log �k �! 0 ; (47)

(for instance �k = k! satis�es these conditions). In [11] it is proved that there exist
positive constants C0; � > 0 such that

jh(t)� h(�)j � C0 jt� � j2�s (48)

whenever jt�� j � �. We also have that for any � 2]1; s[ there exist constants c�; �1 > 0
such that for any 0 < r < �1 and � 2 R the estimate

L1
��
t 2 R j (t; h(t)) 2 S(�;h(�));r

	�
� c�r

� (49)

holds, where S(�;h(�));r is the square of center (�; h(�)) and side of length r. Here we
have used the estimate (8.12) of [11].

Proposition 4.2 The function h : R �! R de�ned as in (46) under the conditions

(47) is not approximately di�erentiable at � for any � 2 R.

Proof. We arbitrarily choose � 2 R and suppose by contradiction that h is approxi-
mately di�erentiable at � . We �x " > 1 so that on account of (45) there exist r0 > 0
and a linear map L(t) =  t such that, de�ning

E�;r = ft 2 R j jt� � j < r("+ jj); jh(t)� h(�)j � ("+ jj)jt� � jg

for any r � r0 we have L
1(E�;r) � r. We note that

E�;r �
�
t 2 R j (t; h(t)) 2 S(�;h(�));2r("+jj)

	
and this inclusion together with (49) yields

r � c�2
�("+ )�r� (50)

whenever r � minfr0; �1g, where we recall that ]0; �1[ is the set of values for which (49)
holds and � > 1. Inequality (50) clearly yields a contradiction when r ! 0+. 2

Another tool we will need is the following result taken from Theorem 4.1 of [5].
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Theorem 4.3 For every � > 0 there exists g� 2
T
0<�<1C

1;�(Q), with Q = [0; 1]2, such
that the Lebesgue measure of the set

Ag� = f(x; y) 2 Q j rg�(x; y) = (2y;�2x)g (51)

is greater than or equal to the number 1� �.

Now we make precise the notion of approximate di�erentiability in the Euclidean sense
for a map de�ned on a strati�ed group. Let F : Rq �! G be a system of graded
coordinates on the strati�ed group G. A function u : 
 �! R is either di�erentiable
or approximately di�erentiable in the Euclidean sense if u�F : F�1(
) �! R is either
di�erentiable or approximately di�erentiable, respectively.

We can now state the main result of this section.

Theorem 4.4 There exist a function � 2 C1
H(H

3;R) and a measurable subset T � H3

with positive measure such that � is not approximately di�erentiable at p for any p 2 T .

Proof. We �x � 2]0; 1[ and de�ne g = g� : Q �! R as in Theorem 4.3. We denote
by F the closed set Ag � R, where Ag is de�ned in (51). We choose h : R �! R as in
Proposition 4.2. We recall that h is locally (2-s)-H�older continuous and satis�es (48)
on intervals of length �. The number s 2]1; 2[ can be chosen so that 2 � s > 1=2. We
�x a = 2 � s and de�ne the function v : F �! R as v(z; t) = h(t � g(z)), where we
consider on R3 the algebraic structure of C � R. Now we use graded coordinates with
respect to the basis (X;Y; Z) of h3, where [X;Y ] = �4Z. These are represented by a
di�eomorphism S : R3 �! H3, as explained in De�nition 1.2. By this di�eomorphism
we can read v on H3 de�ning u = v�S�1 : S(F ) �! R, where F0 = S(F ) � H3 is a
closed subset. We want to prove that for any " > 0 there exists �(") > 0 such that

ju(p)� u(r)j � " d1(p; r) ; (52)

whenever p; r 2 F0 with d1 (p; r) � �("). This condition will unable us to apply The-
orem 3.4 to u : F0 �! R, obtaining a function � 2 C1

H(H
3;R) such that �jF0 = u and

dH�jF0 = 0. We de�ne p = S(z; t) 2 F0 and r = S(w; �) 2 F0, where z = (x; y) and
w = (�; �), noting that u(p) = v(z; t) and u(r) = v(w; �). We choose � < minf1; �g,
where � is the length of intervals where the H�older estimate (48) holds. We have

ju(p)� u(r)j = jh(t� g(z))� h(� � g(w))j � C0 jt� � + g(w)� g(z)ja

� C0 (jt� � � 2 Imhw; ziCj
a + j2 Imhw; ziC + g(w)� g(z)ja) ;

where we have used the condition a < 1. If we assume that d1(p; r) � �, then the
condition a > 1=2 gives

ju(p)� u(r)j � C0(d1(p; r)2a + j2 Imhw; ziC + g(w)� g(z)ja): (53)

Now we note that

2 Imhw; ziC + g(w)� g(z) = 2 Imhw; z � wiC � (g(z)� g(w)) ; (54)
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where we can write

2 Imhw; z � wiC = 2 (��(y � �) + �(x� �)) (55)

= (@2g(w)(y � �) + @1g(w)(x� �)) = hrg(w); z � wiR2 : (56)

Joining equations (54), (55) and (56) we see that

j2 Imhw; ziC + g(w)� g(z)j = jhrg(w); z � wiR2 � (g(z)� g(w))j : (57)

Exploiting the H�older property of g, as stated in Theorem 4.3 we can choose � 2]0; 1[
such that (1 + �)a > 1 due to the fact that a > 1=2. Then the �-H�older condition on
�rst derivatives of g ensures the existence of a constant C1 � 1 such that

jg(z)� g(w)� hrg(w); z � wij � C1 jz � wj1+� (58)

for any z; w 2 Q. The equation (57) and the inequality (58) give

j2 Imhw; ziC + g(w)� g(z)j � C1 jz � wj1+� : (59)

The inequalities (53) and (59) yield

ju(p)� u(r)j � C0C
a
1

�
d1(p; r)2a + d1(p; r)(1+�)a

�
: (60)

The fact that 2a > 1 and (1 + �)a > 1 allows us to choose 0 < �(") < minf1; �g so that

C0C
a
1

�
�(")2a�1 + �(")(1+�)a�1

�
� "

By virtue of (60), it follows that whenever d1(p; r) � �(") the condition (52) holds.
We observe that L2(Ag) � 1 � �> 0, hence L3(F )=+1 and F=Ag � R. The C1

H

function � : H3 �! R has the property ��SjF = v, therefore, reasoning by contradic-
tion, if v were approximately di�erentiable a.e. on F , then it would be approximately
di�erentiable with respect to each variable a.e. on F . In fact, by Stepano�'s theorem
(see Theorem 3.1.8 of [12]), if v were a.e. approximately di�erentiable on F , then it
would be countably Lipschitz on F and Rademacher's theorem applied to the restric-
tion would give the one-dimensional di�erentiability of all restrictions and eventually
the a.e. one-dimensional approximate di�erentiability of v on F . This conicts with the
expression v(z; t) = h(t � g(z)) and with the fact that the function h : R �! R is not
approximately di�erentiable everywhere on R, due to Proposition 4.2. As a result, there
exists a measurable set T � F with positive measure, such that u is not approximately
di�erentiable at any of its points. 2

Remark 4.5 Let f : H3 �! R be a C1 function and let � and T as in Theorem 4.4. We
have already mentioned that C1 functions are always C1

H functions, then u = f + � 2
C1
H(H

3)nC1(H3). By the construction in Theorem 4.4 we know that rH�(p) = 0 for any
p 2 T , then rHu(p) = rHf(p) whenever p 2 T . If we choose f so that rHf 6= 0 on T
we have obtained an example of function u : H3 �! R such that it is not approximately
di�erentiable in the Euclidean sense on a set of positive measure and with respect to
which the sub-Riemannian coarea formula holds on this set and it is not trivial.
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