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Abstract

We obtain an intrinsic Blow-up Theorem for regular hypersurfaces on graded nilpo-

tent groups. This procedure allows us to represent explicitly the Riemannian sur-

face measure in terms of the spherical Hausdor� measure with respect to an intrinsic

distance of the group, namely homogeneous distance. We apply this result to get a

version of the Riemannian coarea forumula on sub-Riemannian groups, that can be

expressed in terms of arbitrary homogeneous distances. We introduce the natural

class of horizontal isometries in sub-Riemannian groups, giving examples of rota-

tional invariant homogeneous distances and rotational groups, where the coarea

formula takes a simpler form. By means of the same Blow-up Theorem we obtain

an optimal estimate for the Hausdor� dimension of the characteristic set relative to

C1;1 hypersurfaces in 2-step groups and we prove that it has �nite Q�2 Hausdor�

measure, where Q is the homogeneous dimension of the group.
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Introduction

Strati�ed Lie groups, also known as \Carnot groups", have been the object of extensive
studies in connection with di�erent areas of Mathematics, e.g. the theory of Subelliptic
Partial Di�erential Equations, Sobolev Spaces and Optimal Control Theory. Actually,
the project to develop classical tools of Geometric Measure Theory in these groups and
in the more general Carnot-Carath�eodory spaces is at an embryonic stage. However,
only recently there has been some progress in this direction, [2], [6], [13], [14], [15], [17],
[18], [20], [21], [22], [23], [24], [25], [30], [31], [33], but the list is surely incomplete.

The initial question that motivated this paper was �nding the geometrical meaning
of the following integral Z

�

 
mX
i=1

hXi; �i2
!1=2

dHn�1
j�j (1)

in terms of an arbitrary homogeneous distance of the group, where � is a hypersurface
of class C1 in Rn, � is a unit normal vector to �, the vector �elds fXig span the
horizontal subbundle (which induces the Carnot-Carath�eodory structure) and Hn�1

j�j
is the n�1 dimensional Hausdor� measure with respect to the Euclidean norm. The
integral term (1) appears in isoperimetric inequalities formulated in strati�ed groups
and in general Carnot-Carath�eodory spaces, when � is the boundary of a regular open
set, see [11], [12], [32]. Moreover, regular sets of �nite perimeter in Carnot-Carath�eodory
spaces ful�ll the same formula for the perimeter measure, see [5]. Hence formula (1)
represents a natural notion of surface measure in \strati�ed geometries". But notice
that if we represent a strati�ed group as Rn with respect to a system of coordinates,
the Euclidean scalar product in (1) prevents a natural representation of Hn�1

j�j in terms
of intrinsic objects of the group. This is due to the fact that the Euclidean metric in
any representation of G as Rq is not left invariant (in the case of nonabelian groups).
So we are forced to employ left invariant Riemannian metrics.

We reformulate (1) in terms of a left invariant Riemannian metric and a homoge-
neous distance of the group, where the latter can be considered analogously to a Banach
norm. Precisely, we consider graded metrics (see De�nition 1.1). Note that these no-
tions do not depend on the particular system of coordinates �xed on the group. We
state our formula as followsZ

�
j�H jg d� =

Z
�
�gQ�1 (�H(x)) dSQ�1(x): (2)

The map �H(x) denotes the Riemannian projection of the unit normal �(x) onto the
horizontal subbundle, SQ�1 is the spherical Hausdor� measure built using a homoge-
neous distance, Q is the homogeneous dimension of the group and �Q�1(�H(x)) is the
metric factor, a new object we have introduced to take into account both the anisotropy
of the homogeneous distance and the position of the tangent space of � at x. The metric
factor amounts to the measure of the intersection of the hyperplane orthogonal to the
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direction �H(x) with the unit ball B1 with respect to the homogeneous distance, (Def-
inition 1.11). The main tool to get formula (2) is the Blow-up Theorem (Theorem 2.1)
on the Riemannian surface measure with respect to a �xed homogeneous distance. This
theorem on regular hypersurfaces can be interpreted as the counterpart of the Blow-up
Theorem on points of the reduced boundary for sets of �nite perimeter [14], [16]. In the
proof of Theorem 2.1 we assume the existence of a continuous homogeneous distance,
instead of the classical H�ormander condition, which always guarantees such assump-
tion. In formula (2) we consider the hypersurface � with SQ�1-negligible characteristic
set, (De�nition 1.14). Recently, Z. Balogh proved that this assumption is always ver-
i�ed in Heisenberg groups for C1 hypersurfaces, [2]. We mention that the size of the
characteristic set is of great importance in connection with isoperimetric estimates and
trace theorems in strati�ed groups as well as in general Carnot-Carath�eodory spaces,
[6], [7], [12]. As a variant of the Blow-up Theorem (Theorem 3.1) we obtain that the
characteristic set of a C1;1 hypersurface in a 2-step graded group has �nite Q�2 Haus-
dor� measure and its Hausdor� dimension does not exceed Q�2 (Theorem 3.2 and
Remark 3.3). Due to Theorem 1.4(1) of [2] this estimate is optimal, i.e. it cannot be
improved with a number less than Q�2. In the Heisenberg group our upper bound
on the Hausdor� dimension �ts into the case � = 1 of Theorem 1.1(2) in [2], where a
di�erent method, based on a covering argument, is employed.

By virtue of the Blow-up Theorem, we also derive a version of the Riemannian
coarea formula on strati�ed groups. Let f : M �! R be a Lipschitz map with respect
to the Riemannian distance of the group M. Our coarea formula reads as followsZ

E
jDHf jg d�g =

Z
R

�Z
E\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt : (3)

In order to prove (3) we also use a general coarea estimate, [22], which implies that
the set of singular points in a.e. level set of f is SQ�1-negligible. Formula (3) was
�rst obtained by P. Pansu in the Heisenberg group, using the Carnot-Carath�eodory
distance, [26], and it was extended to general strati�ed groups for smooth functions by
J. Heinonen, [18]. We point out that the problem of extending the validity of (3) to
Lipschitz maps with respect to a homogeneous distance is an open question, nevertheless
some particular cases have been considered in [22]. In the case M is an Euclidean space
En, with the classical Riemannian metric, formula (3) gives an extension of the classical
Euclidean coarea formulaZ

E
jDf j d� =

Z
R

�Z
E\f�1(t)

�n�1(�(x)) dHn�1(x)
�
dt ;

where Hn�1 is the Hausdor� measure with respect to a norm � of En and �n�1(�(x))
is the corrisponding metric factor with respect to the canonical Riemannian metric
(Corollary 2.8). We mention that another type of coarea formula for metric space
valued Lipschitz maps on Euclidean normed spaces (or recti�able subsets) holds, [1].
Here the role of the metric factor is replaced by an \intrinsic" notion of "coarea factor".
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Another aspect which naturally comes up is �nding particular conditions on both the
Riemannian metric and the homogeneous distance such that the metric factor becomes
a dimensional constant independent of the direction. In Subsection 2.1 we introduce
R-invariant distances and R-rotational groups that possess these symmetry properties
and we present some important examples where these properties hold.

1 De�nitions and notation

In this section we present the notation we are going to use throughout the paper and
we recall the main de�nitions concerning Carnot groups.

Let us consider a simply connected graded nilpotent Lie group G, i.e. its Lie algebra
G admits the grading G = V1

L � � �LV�, with the inclusions [Vj ; V1] � Vj+1, for any j � 1
and Vi = f0g i� i > �. If we assume further that the preceding inclusions are equalities
we say that the group is a strati�ed group, or a Carnot group, see [10], [27]. We we will
denote byM all the strati�ed groups. Notice that the strati�cation hypothesis amounts
to the so-called H�ormander condition on the left invariant vector �elds which span V1.
The integer � is called degree of nilpotency or step of the group. The subspace V1 is
called the horizontal space. We denote the translations of the group as lx : G �! G,
lx(y) = xy. Via the di�erential of translations we can move V1 to any point x of G,
denoting as Hx � TxG the horizontal �ber. This family of subspaces generates what
we call an horizontal subbundle of G, denoted by H.

By virtue of the graded structure we can de�ne one parameter group of dilations
�r : G �! G, r > 0, de�ned as follows

�r

� �X
j=1

vj

�
=

�X
j=1

rjvj ;

where
P

�

j=1 vj = v and vj 2 Vj for each j = 1; : : : �. To any element of Vj we associate
the integer j, which is called the degree of the vector.

Since G is simply connected and nilpotent it follows that exp : G �! G is a di�eo-
morphism. The inverse function of the exponential map is denoted by ln. By means of
these maps there is a canonical way to transpose dilations from G to G. We will use the
same symbol to denote dilations of the group. The following standard properties hold

1. �r(x � y) = �rx � �ry for any x; y 2 G and r > 0 ,

2. �r(�sx) = �rsx for any r; s > 0 and x 2 G.
To provide a metric structure on the group we �x a \natural" Riemannian metric g on
G, which is compatible with the algebraic structure of the group.

De�nition 1.1 Let G be a strati�ed group. We say that a Riemannian metric g on G
is left invariant if translations of the group are isometries. A graded metric g on G is a
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left invariant metric such that all the subspaces Vj � G of the grading are orthogonal
each other.

These metrics will be always understood throughout the paper. Strati�ed groups en-
dowed with graded metrics are also called sub-Riemannian groups. The Riemannian
norm of a vector W 2 TxG will be denoted by jW jg. We will denote with � the Rie-
mannian measure of hypersurfaces, which can be represented precisely as the q � 1 di-
mensional Hausdor� measure with repsect to the Riemannian geodesic distance, where
q is the topological dimension of G. In a strati�ed group M it is always possible to
construct a left invariant distance such that it is 1-homogeneous with respect to dila-
tions. The standard way to do this is to consider the class of horizontal curves, i.e.
the absolutely continuous curves whose derivatives belong to H a.e. The conditions
on commutators of H guarantee that each couple of points in M can be connected by
an horizontal curve. Hence, it is possible to de�ne the in�mum among all the Rie-
mannian lengths of horizontal curves which connect the two points. The outcome is a
distance, named the Carnot-Carath�eodory distance, which is continuous and satis�es
the following properties

1. d(x; y) = d(ux; uy) for every u; x; y 2 G ,

2. d(�rx; �ry) = r d(x; y) for every r > 0 :

We say that any continuous distance satisfying the above properties on a graded group
G is a homogeneous distance. All homogeneous distances are bi-Lipschitz equivalent
and induce the topology of the group. This fact can be proved following the classical
argument for norms of �nite dimensional vector spaces, using the properties 1. and 2.
We denote by Q the Hausdor� dimension of G with respect to a homogeneous distance.
By properties of dilations it is not di�cult to prove that Q =

P
�

j=1 j dim(Vj).

De�nition 1.2 We de�ne the set Bx;r � G as the open ball of center x and radius
r > 0 with respect to a homogeneous distance. We will omit the center of the ball if it
coincides with the unit element of the group.

Using properties of homogeneous distances we have

Bx;r = xBr = x�rB1 :

De�nition 1.3 (Hausdor� measures) For each a � 0 and E � G we de�ne the
a-dimensional spherical Hausdor� measure of E as

Sa(E) = lim
"!0+

inf
n 1X

j=1

rai j E �
1[
i=1

Bxi;ri ; ri � "
o

and the a-dimensional Hausdor� measure of E as

Ha(E) = lim
"!0+

inf
n 1X

j=1

diam(Fi)
a

2a
j E �

1[
i=1

Fi ; diam(Fi) � "
o
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where fFig are subsets of G and diam(Fi) = sup(x;y)2Fi�Fi d(x; y).

De�nition 1.4 The set of all continuously di�erentiable real valued functions de�ned
on an open subset A � G will be denoted by C1(A;R).

De�nition 1.5 Let f 2 C1(A;R), where A is an open subset of G and x 2 A. We
de�ne the horizontal di�erential dHf(x) : G �! R as follows

dHf(x)(W ) = lim
r!0

f (x � exp(�rW ))� f(x)

r
: (4)

Remark 1.6 The di�erentiability of f implies the existence of the limit (4). One can
prove that dHf(x) is a linear map which vanishes on vectors of degree higher than one
and it has the following homogeneity

dHf(x)(�rW ) = r dHf(x)(W ) :

In fact, DHf(x) can be realized as the composition of df(x) with the projection of G in
He. See [14], [21], [27], [33] for more information on the notion of Pansu di�erentiability,
or horizontal di�erentiability, which generalizes (4).

The unique vector of TxG which represents the linear map dHf(x) with respect to the
Riemannian metric is denoted by DHf(x) and it is called horizontal gradient.

De�nition 1.7 We �x an orthonormal basis (W1; : : : ;Wq) of G and de�ne the map
J : Rq �! G as

J (y) = exp
� qX

i=1

yiWi

�
:

We call the couple (J ; y) a system of normal coordinates associated to the basis.

De�nition 1.8 Let us denote nj = dimVj for any j = 1; : : : ; �, m0 = 0 and mi =Pi
j=1 nj for any i = 1; : : : �. We say that a basis (W1; : : : ;Wq) of G is an adapted basis,

if
(Wmj�1+1;Wmj�1+2; : : : ;Wmj )

is a basis of Vj for any j = 1; : : : �.

De�nition 1.9 (Weighted coordinates) A system of normal coordinates associated
to an adapted basis will be called a system weighted coordinates. Assuming to have

J (y) = exp
�Pq

i=1 yiWi

�
, we de�ne the weight of the coordinate yi as di = j + 1 if

mj � i � mj+1, for any i = 1; : : : ; q.

Notice that any graded metric admits weighted coordinates. We mention that De�ni-
tion 1.9 has a natural generalization in Carnot-Carath�eodory spaces, see [3], [23].
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Lemma 1.10 Let B1 be the open unit ball with respect to a homogeneous distance of

the group and let L � G be a hyperplane. We read the hyperplane on G as L = exp(L).
Then for any couple of normal coordinates (J ; y) and (T ; z) we have

Hq�1
j�j

�J �1(L \B1)
�
= Hq�1

j�j

�T �1(L \B1)
�
;

where Hq�1
j�j denotes the q � 1 dimensional Hausdor� measure with respect to the Eu-

clidean norm in Rq.

Proof. It is su�cient to observe that the composition J �1�T transforms coordinates
with respect to di�erent orthonormal bases. Then J �1�T is an isometry of Rq with
respect to the Euclidean norm. The identity

J �1(L \B1) =
�J �1

�T � �T �1(L \B1)
�

leads us to the claim. 2

De�nition 1.11 Consider a vector � 2 G n f0g and its orthogonal hyperplane L � G,
with L = exp(L). We �x a system of normal coordinates (J ; y) and de�ne

�gQ�1(�) = Hq�1
j�j

�J �1(L \B1)
�
: (5)

We call �gQ�1(�) the metric factor of the homogeneous distance d with respect to the
direction �.

Remark 1.12 In view of the Lemma 1.10, the above de�nition does not depend on
the choice of normal coordinates. We observe further that the number �gQ�1(�) depends
only on the direction of � and the left invariant Riemannian metric on G. Furthermore,
it is not di�cult to see from De�nition 1.11 that the function �gQ�1(�) is uniformly
bounded from below and from above by positive constants that depend only on the
homogeneosu distance and the graded metric.

Now we present a simple case which shows that in absence of particular symmetry
properties the metric factor depends on the horizontal direction �.

Example 1.13 Let us consider the Euclidean space E2, with homogenous distance
�(x) = maxfjx1j; jx2jg, where (x1; x2) are Euclidean coordinates. We observe that E2

is an abelian 2-dimensional strati�ed group, where the canonical Riemannian metric is
obviously left invariant. We denote by L(�) the straight line which contains the origin
and whose direction is � 2 T1, where T1 is the 1-dimensional torus. In this case, by
de�nition of �1(�), we have

�1(�) = H1
j�j

�
L(�+

�

2
) \ fx 2 E2 j maxfjx1j; jx2jg < 1g

�
;

7



By a direct computation we have

�1(�) =

8>><
>>:

2(cos�)�1 ��
4 � � � �

4
2(sin�)�1 �

4 � � � 3
4�

2j cos�j�1 �3
4� � � � 5

4�
2j sin�j�1 5

4� � � � 7
4�

:

In Subsection 2.1 we will see some important cases where the metric factor is constant
and can still be computed explicitly.

De�nition 1.14 Let � � G be a hypersurface of class C1, with x 2 �. Consider a
unit normal �(x) of � at x. We denote by �H the Riemannian projection of �(x) on
the horizontal space Hx. We call the vector �H(x) the horizontal normal of � at x. We
say that x 2 � is a characteristic point of � if j�H(x)jg = 0. We denote by C(�) the
set of all characteristic points of �, namely the characteristic set.

2 Blow-up and coarea formula

In this section we prove the Blow-up Theorem on graded nilpotent groups. Its main
application is the coarea formula for Riemannian Lipschitz maps on sub-Riemannian
groups with respect to arbitrary homogeneous distances (Theorem 2.6).

Next, we introduce the notions of R-invariant distances and R-rotational groups
and we prove that coarea formula can have a simpler form in this class of groups and
distances (Theorem 2.22).

Theorem 2.1 (Blow-up) Let � � G be a hypersurface of class C1 and let x 2 � be

a noncharacteristic point. Then we have

lim
r!0

�(� \ xBr)

rQ�1
=
�gQ�1(�H(x))

j�H(x)jg ; (6)

Proof. Let (X1; : : : ; Xm) be an orthonormal frame of the horizontal subbundle H.
We can represent � in a neighbourhood of x as A \ f�1(t) � �, where t 2 R, A � G

is an open subset and f 2 C1(A;R). Since the point x is noncharacteristic, the map
dHf(x) is surjective, then DHf(x) =

Pm
i=1Xif(x)Xi 6= 0. Let us de�ne the unit

vector Y1(x) = DHf(x)=jDHf(x)jg and consider the corresponding left invariant vector
�eld Y1 2 G. We can choose a left invariant orthonormal basis (Y1; : : : ; Ym) which
span the horizontal subbundle, hence Yjf(x) = 0, for any j � 2. Next, we complete
(Y1; : : : ; Ym) to an orthonormal basis (Y1; : : : ; Ym; Z1; : : : ; Zs) adapted to the grading
of G. We represent f with respect to the associated weighted coordinates centered at
x. Precisely, we consider an open neighbourhood of the origin V � Rq with weighted
coordinates (y; z) 2 V such that exp(V ) � x�1A and we de�ne F : V �! R as follows

F (y; z) = f
�
x exp

� mX
i=1

yiYi +
sX

j=1

zjZj

��
= f (xJ (y; z)) :
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We have DyF (0) = (Y1f(x); 0; : : : ; 0) = (jDHf(x)jg; 0; : : : ; 0). By the Implicit Function
Theorem we get a coordinate hyperplane �x = f(u1; : : : ; uq) 2 Rq j u1 = 0g, an
open neighbourhood of the origin U � V \ �x and a map � 2 C1(U; V ) such that
F (�(u)) = t for any u 2 U , with �(0) = 0. Notice that v = (u1; : : : ; uq) = (y; z) is a
system of weighted coordinates with di = 1 for any i = 1; : : : ;m and di � 2 for any
i = m + 1; : : : ; q, where di is the weight of ui. We de�ne the set �0 = exp(�(U)),
observing that x�0 is an open neighbourhood of x in � and denote by x� the map
(lnx) � � : U �! ln(�). Thus, for any suitable small r > 0 we have

�(� \ xBr) = �(x�0 \ xBr) =

Z
(x�)�1(lnx� ~Br))

q
det (hij(x�(u))) du ;

where ~Br = J �1(Br) � Rq and (hij) denotes the graded metric g restricted to � with
respect to the coordinates u. Let us observe that (x�)�1(lnx � ~Br) = ��1( ~Br). Now,
taking into account the weight of coordinates u = (u2; : : : ; uq), the dilation �r reads

�ru =

qX
j=2

rdj uj ej ;

where (ej) is the canonical basis of R
q�1. Hence, the restriction of �r to �x has jacobian

rQ�1. Then, we make a change of variable u = �ru
0, obtaining

�(� \ xBr) = rQ�1
Z
�1=r��1( ~Br)

q
det (hij(x�(�ru0))) du

0 : (7)

Now, we analyze the domain of integration �1=r�
�1( ~Br) � �x as r ! 0. We can write

�(u) = ('(u); u), with ' : U �! R, obtaining

�1=r�
�1(Br) = fu 2 �x j

�
'(�ru) r

�1; u
� 2 ~B1 g :

We note that

@ui'(0) = �@yiF (0)
@y1F (0)

= 0 for i = 2; : : : ;m ;

hence, by Taylor formula we get

'(�ru)r
�1 =

qX
i=m+1

@yiF (0)r
di�1ui +R(�ru)r

�1 ;

where R(v)jvj�1 ! 0 as jvj ! 0 and j � j is a norm on the space �x. For any i > m we
have di � 2, then '(�ru)r

�1 ! 0 as r ! 0, uniformly in u which varies in a bounded
set. Hence, for any u 2 ~B1 \�x we have

1�1=r��1(Br)(u) �! 1 as r ! 0 ;
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whereas for any u 2 �x n ~B1 we get

1�1=r��1(Br)(u) �! 0 as r ! 0 ;

so by formula (7) and Lebesgue Convergence Theorem it follows

lim
r!0

�(� \ xBr)

rQ�1
=

Z
~B1\�x

q
det (hij(x)) du : (8)

Let us compute explicitly the left invariant Riemannian metric restricted to x�0 with
respect to our coordinates u 2 U . We have

hij(x�(u)) = g(x�(u))

�
@(x�)

@ui
;
@(x�)

@uj

�
=

g(x�(u))

�
dlx

@�

@ui
; dlx

@�

@uj

�
= g(�(u))

�
@�

@ui
;
@�

@uj

�
:

The graded metric (gij) with respect to the coordinates u coincides with �ij at the unit
element e, then we get

q
det (hij(x)) =

s
det

��
@�

@ui
;
@�

@uj

��
=

jDF (0)j
j@y1F (0)j

=
jDf(x)jg
jDHf(x)jg :

Finally, observing that

�H(x) =
DHf(x)

jDf(x)jg (9)

and Hq�1
j�j ( ~B1 \�x) = �gQ�1(�H(x)), equation (8) gives us the thesis. 2

Remark 2.2 A version of Theorem 2.1 can be obtained on less regular hypersurfaces,
such as reduced boundaries of sets of �nite perimeter, see [14], [16]. In this case is
required an isoperimetric inequality, which comes from the strati�cation of the group.
Due to the fact that we are considering a C1 smooth surface, our approach can be
accomplished whenever there exists a continuous homogeneous distance on G. Clearly,
in the case of strati�ed groups we always have the Carnot-Carath�eodory distance, which
is in particular a continuous homogeneous distance.

Theorem 2.3 Consider a hypersurface � � G of class C1 such that the characteristic

set C(�) is negligible with respect to the measure SQ�1. Then for any measurable set

E � � we haveZ
E
j�H(x)jg d� =

Z
E
�gQ�1(�H(x)) dSQ�1 and SQ�1(E) =

Z
E

j�H(x)jg
�gQ�1(�H(x))

d� : (10)
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Proof. Theorem 2.1 implies that for any x 2 � n C(�) we have

lim
r!0

�(� \ xBr)

rQ�1
=
�gQ�1(�(x))

j�H(x)jg :

Now, using theorems on measure derivatives, see for instance Theorems 2.10.17 (2) and
2.10.18 (1) of [9], and observing that the characteristic set is negligible, the proof follows
by a standard argument. 2

Corollary 2.4 Let A be an open subset of G. Consider a map f 2 C1(A;R) with

regular value t 2 f(A). If the characteristic set

C
�
f�1(t)

�
=
n
x 2 f�1(t) j dHf : Hx �! R vanishes

o
is negligible with respect to SQ�1, then for any measurable subset E � A we haveZ

E\f�1(t)

jDHf(x)jg
jDf(x)jg d� =

Z
E\f�1(t)

�gQ�1(�H(x)) dSQ�1(x) :

Proof. It is enough to use Theorem 2.3 and the following equation

�H(x) =
DHf(x)

jDf(x)jg : 2 (11)

Now we state the classical Riemannian coarea formula, see section 13.4 of [4].

Theorem 2.5 Let f : G �! R be a Riemannian Lipschitz function. Then for any

summable map u : G �! R, the following formula holdsZ
G

u jDf jg d�g =
Z
R

�Z
f�1(t)

u d�
�
dt ; (12)

where �g is the Riemannian volume measure and � is the Riemannian surface measure.

The following result is an important application of Theorem 2.1.

Theorem 2.6 (Coarea formula) Let E be a measurable subset of a sub-Riemannian

group M and consider a Lipschitz map f : E �! R with respect to the Riemannian

distance of M. Then we haveZ
E
jDHf jg d�g =

Z
R

�Z
E\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt ; (13)

where the spherical Hausdor� measure and the metric factor are understood with respect

to the same homogeneous distance.
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Proof. Without loss of generality, we can assume that E is a bounded set and that f
is extended to a Lipschitz map on M. The Whitney Extension Theorem (see 3.1.15 of
[9]) ensures that for any " > 0 there exists a map ~f : M �! R of class C1 such that,
de�ning

E0 =
n
x 2M j f(x) = ~f(x)

o
;

we have �g(E nE0) � ". Thus, the gradients of f and ~f coincide a.e. on E0. In view of
formulae (9) and (12) we obtainZ

E
jDHf jg d�g =

Z
R

�Z
E\f�1(t)

j�H jg d�
�
dt ;

for any measurable subset E �M. Hence, the general inequality 2.10.25 of [9] implies

0 �
Z
E
jDf jg d�g �

Z
R

�Z
E0\ ~f�1(t)

j~�H jg d�
�
dt � C Lip(f) " ;

where C is a dimensional constant and ~�H is the horizontal normal relative to the level
sets of ~f . By virtue of Theorem 2.7 of [22] we know that the set of characteristic points
is SQ�1-negligible for a.e. level set of ~f . Thus, we can apply formula (10), getting

0 �
Z
E
jDf jg d�g �

Z
R

�Z
E0\ ~f�1(t)

�gQ�1(~�H(x)) dSQ�1(x)
�
dt � C Lip(f) " : (14)

Let us observe that E0 \ f�1(t) = E0 \ ~f�1(t) and for a.e. level set we have Df = D ~f
outside of a SQ�1-negligible set. Thus, for a.e. t 2 R the following equality holds for
SQ�1-a.e. x 2 f�1(t)

�Q�1(~�H(x)) = �Q�1(�H(x)) :

Hence, inequality (14) becomes

0 �
Z
E
jDf jg d�g �

Z
R

�Z
E0\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt � C Lip(f) " :

Again, using the general inequality 2.10.25 of [9] and observing that in view of (5) the
function �gQ�1(�) is bounded, we getZ

R

�Z
(EnE0)\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt � C 0 Lip(f) " :

Finally, joining the last two inequalities we arrive at

�C 0Lip(f) " �
Z
E
jDf jg d�g �

Z
R

�Z
E\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt � CLip(f)" :

Letting "! 0, the proof is complete. 2
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Remark 2.7 It is natural to ask whether it is possible to get a coarea formula where
only the restriction of the left invariant metric g on the horizontal subbundle is involved.
The left invariance of �g and SQ implies �g = cSQ, where c = �g(B1)=SQ(B1). Then
formula (13) becomesZ

E
jDHf jg dSQ =

Z
R

�Z
E\f�1(t)

�Q�1(�H(x)) dSQ�1(x)
�
dt ;

where �Q�1(�) = SQ(B1) �Q�1(�)=�g(B1). Now, by a standard but a bit long calcula-
tion one can check that the quotient �Q�1(�) is constant over all left invariant metrics
which coincide on the horizontal subbundle.

Corollary 2.8 Let E be a measurable subset of En and let f : E �! R be a Lipschitz

map. Consider a norm � : En �! [0;+1[ and the Hasudor� measure Hn�1 relative to

this norm. Then we haveZ
E
jDf j d� =

Z
R

�Z
E\f�1(t)

�n�1(�(x)) dHn�1(x)
�
dt ; (15)

where jDf j is the length of the Euclidean gradient of f , � is the normal direction to

the level set and �n�1(�(x)) = Hn�1
j�j (�x \ fy 2 En j �(y) < 1g), with �x equal to the

hyperplane normal to �(x).

Proof. Formula (15) follows directly from (13), observing that the intrinsic Hausdor�
dimension Q of En coincides with n and that any direction in En is horizontal. Thus, the
horizontal gradient coincides with the Euclidean gradient and the horizontal normal �H
coincides with the normal � to the level set. Now, we recall that the spherical Hausdor�
measure coincides with the Hasudor� measure on recti�able subsets of a normed space.
This fact follows by a isodiametric inequality which holds on any �nite dimensional
normed space, see [4]. Thus, for a.e. level set of f we can replace the Sn�1 in formula
(13) with Hn�1. This completes the proof. 2

2.1 Invariant metrics and horizontal isometries

In this subsection we introduce the notion of \horizontal isometry", that respects both
the Riemannian and the algebraic structure of the group. This concept allows us to
distinguish a class of sub-Riemannian groups that have particular symmetry properties,
namely \rotational groups". Furthermore, it is always possible to de�ne homogeneous
distances which are compatible with horizontal isometries (see Remark 2.14). The met-
ric factor �gQ�1(�) with respect to these particular matrics and homogeneous distances
is independent of � 2 H n f0g, so it becomes a dimensional constant in the coarea
formula, see Theorem 2.22. In Remark 2.23 we give some applications of this theorem.

The following de�nition generalizes the concept of horizontal isometry �rst intro-
duced in the particular case of Heisenberg groups, [22].
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De�nition 2.9 We say that a map T : G �! G is a horizontal isometry if the following
properties hold

1. T (x � y) = T (x) � T (y) for any x; y 2 G (T is a group homomorphism)

2. T (�rx) = �rT (x) for any x 2 G and r > 0 (T is 1-homogeneous)

3. dT (e) : G �! G is an isometry, where e 2 G is the unit element.

Notice that conditions 1 and 3 imply that T : G �! G is an isometry of G in the sense
of Riemannian Geometry. Furthermore, conditions 1 and 2 say that T is a G-linear
map (see [21]), so it is bi-Lipschitz with respect to any homogeneous distance of the
group.

Remark 2.10 We point out that the existence of horizontal isometries is strongly
related to the compatibility of the left invariant Riemannian metric with the algebraic
structure of the group. This fact will appear evident in the following examples.

De�nition 2.11 (Invariant distances) Let R be a set of horizontal isometries. We
say that a homogeneous distance is R-invariant if for any T 2 R we have T (B1) = B1,
where B1 is the open unit ball with respect to the homogeneous distance.

De�nition 2.12 (Rotational groups) A vertical hyperplane L � G is the orthogonal
space of a horizontal vector of G. We say that a strati�ed group G is R-rotational, if
there exists a class R of horizontal isometries such that for any couple of vertical
hyperplanes L and L0 there exists T 2 R with dT (e)(L) = L0. We will simply say
rotational group, when the class R is understood.

Example 2.13 (Rotational Euclidean spaces) The Euclidean space En with the
canonical Riemannian metric is a rotational group. In fact, any hyperplane is vertical,
so it is natural to choose the class of all Euclidean isometries of En as R. Hence,
Euclidean spaces are R-rotational, with R-invariant Euclidean distance.

Remark 2.14 Notice that if R is the class of all horizontal isometries and � is the
Carnot-Carath�eodory distance built with respect to the same Riemannian metric, then
� is R-invariant. In fact, any horizontal isometry transforms horizontal curves into
horizontal curves and it preserves their length. So, there is a natural class ofR-invariant
distances associated to a strati�ed group with respect to its Riemannian metric. A
nontrivial question for a general strati�ed group is to get the existence of a su�ciently
large class of horizontal isometries. In Example 2.15 we will show that horizontal
isometries cannot always be obtained starting from isometries of G. In other words,
if we consider an isometry I : G �! G, there may not exist a 1-homogemeous group
homomorphism T : G �! G such that dT (e) = I.
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Example 2.15 Let us consider the isometryA : R4 �! R4 represented by the following
matrix 0

BB@
0 0 0�1
0 1 0 0
0 0 1 0
1 0 0 0

1
CCA :

We de�ne the rotation T : C2 � R �! C2 � R as T (x + iy; s) = (A(x; y); s), where
x; y 2 R2 and s 2 R. The map T cannot be a horizontal isometry of the Heisenberg
group H2 = C2 � R with the group operation

(z; s) � (w; t) = (z + w; s+ t+ 2Im(z � w)) ; (16)

where z; w 2 C2, zj = xj + iyj , wj = �j + i�j , with j = 1; 2. In fact, the homomorphism
property would imply

Im(z � w) = Im(Az �Aw) ; (17)

which gives

y2�1 � y1�2 � x2�1 + x1�2 = �x1�1 + y1�1 � x2�2 + y2�2 :

The last equality fails for xi = 0, yi = �i = �i = 1, with i = 1; 2, so T is not a group
homomorphism.

However, Heisenberg groups are important examples of rotational Carnot groups. This
fact will be a consequence of the following example.

Example 2.16 (Rotational Heisenberg groups) In order to emphasize the crucial
role played by the metric structure associated to a strati�ed group we consider an
intrinsic version of the Heisenberg group. Let  : V1 � V1 �! R be a symplectic map,
where V1 is a vector space of dimension 2n. We de�ne a Lie product on h2n+1 = V1�R!
as follows

[(u+ t!); (v + �!)] =  (u; v)!

for any u; v 2 V1 and t; � 2 R. Then, any homogeneous algebra isomomorphism T can
be written as T = S � (�IdR!) ; where T (!) = �! and

� (u; v) =  (Su; Sv) (18)

for some � 6= 0. When � = 1 the maps S satisfying (18) are the well known symplectic

transformations. We recall that  admits a symplectic basis (e1; : : : ; e2n) of V1, i.e.
 (ei; en+j) = �4�ij ,  (ei; ej) = 0 and  (en+i; en+j) = 0 for any i; j = 1; : : : ; n.
Hence, a metric compatible with the symplectic structure of h2n+1 has to make the basis
(ei) [ (!) orthonormal. Such a metric is called symplectic metric. With this particular
choice, we will be able to show the existence of a large class of horizontal isometries
on h2n+1. In fact, the symplectic metric allows us to get an isometric identi�cation
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between h2n+1 and H
2n+1= Cn � R, where the group operation of the latter is de�ned

analogously as in (16). Moreover, the map  in these coordinates is represented as
 (z; w) = 4Im(z � w). Now, consider a unitary operator U : Cn �! Cn and de�ne the
map T : Cn�R �! Cn�R as T (z; s) = (U(z); s) for any (z; s) 2 Cn�R. The invariance
of the complex scalar product under unitary trasformations gives condition (18) with
� = 1, therefore T is a group isomomorphism. Properties 2 and 3 of De�nition 2.9 are
easily veri�ed, so it follows that T is a horizontal isometry.

Now, vertical hyperplanes in Hn can be characterized as products ��R, where � is
a real 2n�1 dimensional space of Cn. Furthermore, unitary operators preserve the real
scalar product of R2n, so it is not di�cult to show that for any couple of hyperplanes
L and L0 of Cn there exists a unitary map U : Cn �! Cn such that T (L) = L0.
Then the product of unitary operators of Cn with the projection on the last component
corresponds to a class R of horizontal isometries in h2n+1. Thus, we have proved that
Heisenberg groups with a symplectic metric are rotational groups.

Remark 2.17 (Rotational H-type groups) The results obtained in the preceeding
example can be achieved also in some more general groups of Heisenberg type. These are
2-step groups endowed with a scalar product h ; i and a linear map J : V2 �! End(V1)
with the following properties

1. hJZX;Y i = hZ; [X;Y ]i for any X;Y 2 V1 and Z 2 V2
2. J2Z = �jZj2I,

see [19] for more information. Let us consider the group

G =
n
(�;  ) 2 O(V2)�O(V1) j J�(v)( (x)) =  (Jv(x))

o
;

where O(V1) and O(V2) denote the group of isometries in V1 and V2, respectively. In
Proposition 5 of [29], C. Riehm proves that the maps of (�;  ) of G are homomorphisms,
hence G corresponds to a group of horizontal isometries according to our de�nition.
Furthermore, denoting by GV1 the projection of G in O(V1), in [28] there is a precise
characterization of H-type groups where GV1 is transitive on the sphere V �

1 = fv 2
V1 j jvj = 1g. In view of De�nitio 2.12, groups with this transitive property on V �

1 are
R-rotational with R = G.

In the following proposition we show thatR-rotational groups andR-invariant distances
yield a constant metric factor.

Proposition 2.18 Let G be an R-rotational group and let d be an R-invariant distance
of G. Then there exists �Q�1 2 R such that

�gQ�1(�) = �Q�1

for any � 2 H n f0g.
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Proof. Let us consider the map J : Rq �! G associated to a system of normal
coordinates. We want to prove that for each vertical hyperplane L, posed L = exp(L),
we have

Hq�1
j�j

�J �1(L \B1)
�
= Hq�1

j�j

�J �1(T (L) \B1)
�
;

for any horizontal isometry T 2 R. We de�ne the isometry I = exp�1 �J = Rq �! G,
observing that I�1� dT (e)�I is an isometry of Rq with respect to the Euclidean norm.
Then we have

Hq�1
j�j

�J �1(L \B1)
�
= Hq�1

j�j

�
I�1� dT (e) exp�1(L \B1)

�
and

I�1� dT (e) exp�1(L \B1) = I�1� exp�1 �T (L \B1) = J �1 (T (L) \ T (B1)) :

Finally, the R-invariance property T (B1) = B1 leads us to the conclusion. 2

Remark 2.19 The number �Q�1 in Proposition 2.18 amounts to the measure of the
intersection between the unit ball and a vertical hyperplane. In the next example, we
will see that �n�1 in E

n with the Euclidean distance corresponds exactly to the measure
!n�1 of the unit ball in E

n�1.

Example 2.20 Let us consider En with standard coordinates x = (xi) and the classical

Euclidean norm �(x) = jxj =
qPn

i=1 x
2
i : In this case we have

�n�1(�(x)) = Hn�1
j�j (�x \ fy 2 En j jyj < 1g) = Hn�1

j�j

�fy 2 En�1 j jyj < 1g� = !n�1

Example 2.21 Let us consider the distance d ([z; t]; 0) = maxfjzj; jtj1=2g in the Heisen-
berg group H2n+1. By calculations of Lemma 4.5 (iii) in [14] we have that the corre-
sponding metric factor is �Q�1 = 2!2n�1.

Theorem 2.22 Let G be an R-rotational group and suppose to have an R-invariant
distance on G. Thus, if f : E �! R is a Lipschitz map with respect to the Riemannian

distance and E is a measurable subset of G we haveZ
E
jDHf jg d�g = �Q�1

Z
R

SQ�1 �E \ f�1(t)� dt : (19)

Proof. By virtue of Theorem 2.6 we haveZ
E
jDHf jg d�g =

Z
R

�Z
E\f�1(t)

�gQ�1(�H(x)) dSQ�1(x)
�
dt :

In view of Proposition 2.18 we get �gQ�1(�H(x)) = �Q�1, so the proof is complete. 2
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Remark 2.23 In this remark we present some applications of (19).

1. Classical Coarea formula. Taking into account De�nition 1.3, by classical results
on recti�able sets in Euclidean spaces we have !n�1Sn�1 = !n�1Hn�1 = �, where
� is the n � 1 surface measure in En. In view of these facts, formula (19) and
calculation in Example 2.20 give us the classical coarea formula.

2. Coarea formula in H2n+1 with respect to the Carnot-Carath�eodory distance. Ob-
serving that the Carnot-Carath�eodory distance in H2n+1 is R-invariant (Exam-
ple 2.16), formula (19) yields the coarea formula proved in [26].

3. Coarea formula in H2n+1 with respect to the maximum distance. The maximum
distance in Example 2.21 gives us the coarea formula (19) with �Q�1 = 2!2n�1.

3 Characteristic sets

In this section we study the size of the characteristic set for C1;1 smooth hypersurfaces.
The following variant of the Blow-up Theorem provides estimates for the Q�2 densities
of C1;1-hypersurfaces in 2-step graded groups.

Theorem 3.1 (Blow-up estimates) Let G be a 2-step graded group with grading G =
V1 � V2 and let � be a C1;1-hypersurface with a characteristic point x 2 �. Then there

exist two constants c1; c2 > 0, such that

c2 � lim sup
r!0

�(� \ xBr)

rQ�2
� lim inf

r!0

�(� \ xBr)

rQ�2
� c1 ; (20)

where c1 depends on the Lipschitz constant of the normal �eld on �.

Proof. Let (X1; : : : ; Xm) be an orthonormal frame of V1 and let (Z1; : : : ; Zs) be
an orthonormal basis of V2. We represent � in a neighbourhood of x with the set
A \ f�1(t) � �, where A is an open subset of G, f 2 C1;1(A;R) and f(x) = t.

Since x 2 � is a characteristic point, the horizontal gradient Xf(x) is vanishing, soPs
l=1 Zlf(x)Zl 6= 0 and we can de�ne the unit vector

W1(x) =

Ps
l=1 Zlf(x)Zl

jPs
l=1 Zlf(x)Zljg

:

Hence we can build an orthonormal basis (W1; : : : ;Ws) of V2. Now, we consider an
open neighbourhood of the origin V � Rq and the function F : V �! R de�ned as

F (y; z) = f
�
x exp

� mX
l=1

ylXl +
sX

l=1

zlWl

��
;
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so (y; z) are weighted coordinates. We have @z1F (0) =W1f(x) 6= 0 and @zlF (0) = 0 for
any l = 2; : : : ; s. Hence, by the Implicit Function Theorem there exists a hyperplane
Q = f(y; z0) j y 2 Rm; z0 = (z2; : : : ; zs) 2 Rs�1g, an open neighbourhood of the origin
U � V \ Q and a map � 2 C1;1(U; V ) such that �(0) = 0 and F (�(u)) = t for any
u 2 U . We can represent a neighbourhood of x in � as x exp�(U) = x�0 and for any
suitable small r > 0 we get

�(� \ xBr) = �(x�0 \ xBr) =

Z
��1( ~Br)

q
det (hij(x�(u))) du ;

where ~Br = lnBr and (hij) is the restriction of the graded metric g onto the surface �
with respect to the coordinates u. As coordinates y have weight 1 and coordinates z0

have weight 2, the representation of the restriction of �r to Q is as follows

�r(y; z
0) = (ryi; r

2zj) :

Then the jacobian of �r jQ is rQ�2. Now, we make a change of variable u = �ru
0,

obtaining

�(� \ xBr) = rQ�2
Z
�1=r��1( ~Br)

q
det (hij(x�(�ru0))) du

0 : (21)

Next, we study the shape of the domain �1=r�
�1( ~Br) as r ! 0. By the Implicit Function

Theorem there exists a map ' 2 C1;1(U;R) such that �(y; z0) = (y; '(y; z0); z0). Thus,
we can represent the set �1=r�

�1( ~Br) as follows

�1=r�
�1�r( ~B1) = f(y; z0) 2 Q j �y; ' ��r(y; z0)� r�2; z0� 2 ~B1g : (22)

By our choice of coordinates and the fact that Xf(x) = 0 we have

@yk'(0) = �@ykF (0)
@z1F (0)

= 0 @zl'(0) = � @zlF (0)
@z1F (0)

= 0

for any k = 1; : : : ;m and l = 2; : : : ; s. Hence, we have proved that Dy'(0) = 0 and
Dz0'(0) = 0. By Taylor formula for C1;1 smooth functions we get

'
�
�r(y; z

0)
�
= �

�
(ry; r2z0)

� j(ry; r2z0)j2 (23)

where j � j is a norm on the space Q and � is a map which is bounded by the Lipschitz
constant of D'. Let C � Rq be an open Euclidean ball contained in ~B1 and let us
de�ne the set

E = f(y; z0) 2 Q j (y; Ljyj2; z0) 2 Cg ;
where L = 2k�k1. Now, we aim to prove that for any (y; z0) 2 E

1�1=r��1(Br)

�
(y; z0)

� �! 1 as r ! 0 : (24)
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Consider (y; z0) 2 E and choose r0 > 0 such that for any r 2 (0; r0) we have j(y; rz0)j �p
2jyj. Then, by equation (23) for any r 2 (0; r0) we get

r�2j' ��r(y; z0)� j = j� �(ry; r2z0)� j j(y; rz0)j2 � 2k�k1 jyj2 = L jyj2 :

Since C is convex and �1=r�
�1�r( ~B1) has representation (22) it follows that (y; z0) be-

longs to �1=r�
�1�r( ~B1) for any r 2 (0; r0), so the limit (24) is proved. In view of Fatou

Theorem and (24) we obtain

lim inf
r!0

Z
�1=r��1( ~Br)

q
det (hij(x�(�ru0))) du

0 �
Z
E

q
det (hij(x)) du :

where q
det (hij(e)) =

s
det

��
@�

@ui
;
@�

@uj

�
e

�
=

jDF (0)j
j@z1F (0)j

= 1 :

Now, we observe that the set E is an open set, whose size depends on the Lipschitz
constant of the normal �eld x �! (D'(x); 1). Then, in view of formula (21) the
positive constant c1 = Lq�1(E) satis�es our claim. To get the upper estimate we
observe directly from the representation (22) that there exists a bounded set F which
contains �1=r�

�1( ~Br) for any r > 0. Thus, we can choose c2 = Lq�1(F ). 2
Before stating the next theorem, we recall the de�nition of Hausdor� dimension of a
subset E in a metric space (X; d):

Hd�dim(E) = inf f� > 0 j H�
d (E) = 0g :

Theorem 3.2 Let G be a 2-step graded group and let � � G be a C1;1-hypersurface.

Then there exist two constants c1; c2 as in Theorem 3.1 such that

c2 SQ�2 (C(�)) � �(C(�)) � c1 SQ�2 (C(�)) ; (25)

moreover we have

HdC�dim (C(�)) � Q� 2 : (26)

Proof. We adopt the notation of Theorem 2.10.18 in [9], where V = �, � = �x� and
F is the family of balls with respect to the homogeneous metric d and �(Bx;r) = r�

for any x 2 G and r > 0. By virtue of the estimates (20) and Theorems 2.10.17(2),
2.10.18(1) of [9] we get our claim

c1 SQ�2 (C(�)) � � (C(�)) � c2 SQ�2 (C(�)) :

Now, let us �x � 2 (Q� 2;+1) and observe that by (20) we have

lim sup
r!0

�x�(Bx;r)

r�
� t
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for any t > 0 and any x 2 C(�). Thus, again Theorem 2.10.18 of [9] implies that for
each t > 0 we have

tS�(C(�)) � �(C(�)) � �(�) :

Since � can be realized as a countable union of relatively compact hypersurfaces we
can assume that � is relatively compact. Then �(�) is �nite, so letting t!1 we get
S�(C(�)) = 0. This ends the proof. 2

Remark 3.3 In the assumptions of Theorem 3.2, if �(�) <1 it follows

c1HQ�2(C(�)) � �(C(�)) � �(�) <1 ;

so the characteristic set has �nite Q�2 Hausdor� measure.

We observe that the Carnot-Carath�eodory distance dC is always greater than or equal
to the Riemannian distance �, when both of them are built with the same left invariant
metric. Hence, for any set E � G and � > 0 we have H�

� (E) � H�
dC
(E). So the

following inequality holds

HdC�dim(E) � H��dim(E) : (27)

Now, by Theorem 1.4(1) of [2], for any � > 0 there exists a C1;1-hypersurface �� in the
Heisenberg group Hn such that Hj�j�dim(C(��)) � 2n� �, where j � j is the Euclidean
norm in Hn, viewed as a vector space. It is clear that H��dim(C(�)) = Hj�j�dim(C(�)),
so by (27) we get

HdC�dim(C(��)) � 2n��=Q�2�� ; (28)

where Q=2n+2 is the Hausdor� dimension of Hn with respect to a homogeneous dis-
tance. Thus, by virtue of Theorem 3.2 we get

Q�2�� � HdC�dim(C(��)) � Q�2 ;

it follows that the estimate (26) is optimal.
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