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Introduction by the Organisers

The workshop Invariants of topological spaces of dimension three, organised by
Max Muster (München) and Bill E. Xample (New York) was held March 1st–
March 6th, 2005. This meeting was well attended with over 30 participants with
broad geographic representation from all continents. This workshop was a nice
blend of researchers with various backgrounds . . .
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Abstracts

Convexity in Carnot groups
Valentino Magnani

We give an account of recent results and open questions related to the notion of
convexity in Carnot groups. A Carnot group G is a connected, simply connected
graded nilpotent Lie group equipped with a system of left invariant horizontal
vector fields X1, X2, . . . , Xm, spanning the first layer V1 of the Lie algebra and
satisfying the Lie bracket generating condition, [8]. These vector fields give the
horizontal directions at each point of the space and define the so-called Carnot-
Carathéodory distance, [9].

Let Ω be an open subset of G. A function u : Ω−→R is H-convex if its re-
striction t−→u(x exp(tX)) is convex with respect to t, where X ∈ V1, x ∈ Ω and
γ(t) = x exp(tX) is the unique integral curve of X passing through x, namely, a
horizontal line. This notion has been proposed by Caffarelli and Cabré and stud-
ied by Danielli, Garofalo and Nhieu, [5], see also [12]. Recall that horizontal lines
constitute a special subset of (sub-Riemannian) geodesics. However, extending
convexity of u to all geodesics of the group would yield a trivial notion, [13].

A first regularity property shows that H-convex functions which are locally
bounded above are locally Lipschitz with respect to the Carnot-Carathéodory
distance, [14]. Balogh and Rickly have shown that H-convex functions in the
Heisenberg group are automatically locally bounded above, [2]. Recently, Rickly
has shown that measurable H-convex functions are locally bounded above in any
Carnot group and that the measurability assumption can be removed if the step is
not greater than two, [17]. A detailed study of H-convex functions and H-convex
sets in Carnot groups can be found in [16]. Here we mention that it is still not
clear whether H-convex functions are locally bounded above in arbitrary Carnot
groups.

The following estimates for continuous H-convex functions have been achieved
in [5],

sup
y∈Bξ,r

|u(y)| ≤ C

∫
Bξ,λr

|u(y)| dy(1)

‖∇Hu‖L∞(Bξ,r) ≤
C

r

∫
Bξ,λr

|u(y)| dy.(2)

where λ > 1 is a fixed number, C > 0 depends on the group and ∇Hu =
(X1u, . . . , Xmu).

Convexity in Carnot groups can be also introduced in the viscosity sense, ac-
cording to the following definition by Lu, Manfredi and Stroffolini, [12]. An upper
semicontinuous function u : Ω−→R is said to be v-convex if for every x ∈ Ω and
every ϕ ∈ C2(Ω) being greater than or equal to u in a neighbourhood of x and
such that u(x) = ϕ(x), we have ∇2

Hϕ(x) ≥ 0. The horizontal Hessian ∇2
Hϕ(x) has
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elements 1
2(XiXj + XjXi)(ϕ(x)), for every i, j = 1, . . . ,m. Through comparison

with subelliptic cones, whose existence and uniqueness in the Heisenberg group
is provided by results of Bieske, [3], estimates (1) and (2) for v-convex functions
have been obtained in [12]. By recent results of Wang, [22], these estimates have
been further extended to Carnot groups, [11].

A natural question concerns the equality between v-convexity and H-convexity.
A first positive answer has been achieved in the Heisenberg group, [2], then dif-
ferent proofs have been given in arbitrary Carnot groups, [11], [14], [16], [21].
Precisely, an upper semicontinuous function is v-convex if and only if it is H-
convex.

Concerning second order regularity results, a natural question is extending
the classical Aleksandrov-Busemann-Feller differentiability theorem to H-convex
functions. A way to reach this result is showing that the second order distribu-
tional derivatives XiXju, i, j = 1, . . . m, of an H-convex function u are measures,
namely u ∈ BV 2

H(Ω). In fact, as it is shown by Ambrosio and the author [1],
if u ∈ BV 2

H(Ω), then for a.e. x ∈ Ω there exists a unique polynomial P[x] of
homogeneous degree less than or equal to two satisfying

1
r2

∫
Bx,r

|u− P[x]|−→0.

Here P[x] is the second order approximate differential of u at x. By a standard
method, [7], it can be shown that functions in BV 2

H(Ω), satisfying (1) and (2)
have a.e. pointwise second order differential. Then an important issue is study-
ing whether H-convex functions belong to BV 2

H(Ω). The H-convexity easily im-
plies that the symmetrized second order derivatives (XiXju+XjXiu)/2 are mea-
sures, then proving that XiXju are measures is equivalent to showing that so are
[Xi, Xj ]u and we arrive at the following problem:

(3) Is it true that [Xi, Xj ]u are measures when u is an H-convex function?

This is an open question in arbitrary Carnot groups. A positive answer in Heisen-
berg groups has been given by Gutiérrez and Montanari, [10], and its extension
to step two Carnot groups has been established by Danielli, Garofalo, Nhieu
and Tournier, [6]. Trudinger has achieved a further extension to free divergence
Hörmander vector fields of step two, [20]. The interesting feature of this approach
is in finding a suitable subelliptic nonlinear operator satisfying a monotonicity
property. In the Euclidean case, Trudinger and Wang obtained this property for
k-Hessian operators applied to k-convex functions, [18], [19]. For a real symmetric
matrix A we define

Fk(A) =
∑

1≤i1<i2<···<ik≤n

Mi1i2i3...ik
(A)

where Mi1i2i3...ik
(A) are the k-minors on the diagonal of the matrix. A function

u ∈ C2(Ω) is k-convex if Fj [u] := Fj(∇2u) ≥ 0 for every j = 1, . . . , k. The
monotonicity theorem, as proved in [18], shows that functions u, v ∈ C2(Ω)∩C(Ω)
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satisfying u ≤ v on Ω, u = v on ∂Ω and such that u + v is 2-convex yield the
inequality ∫

Ω

Fk[v] ≤
∫

Ω

Fk[u].

The proof follows immediately from both integration by parts and the free diver-
gence formula

∑n
j=1

(
∂xj

∂rij
Fk

)
(∇2u) = 0. In Heisenberg groups the correspond-

ing operator satisfying a monotonicity theorem has been found in [10] and it has
the form

F2[u] = F2(∇2
Hu) + 12n(∂tu)2.

Then its form has been extended to two step Carnot groups in [6], obtaining

F2[u] = F2(∇2
Hu) +

3
4

∑
i<j

(
[Xi, Xj ]u

)2

.

As observed in [20], these operators possess a free divergence formula. In fact,
defining G2(A) = F2(A) + 1

2

∑
i<j(aij − aji)2 and noting that F2[u] = G2(X2u),

where X2u = (XiXju)ij is the nonsymmetrized horizontal Hessian, one finds
m∑

j=1

Xj (
(
∂rij

G2

)
(X2u)) = 0,

then the monotonicity theorem easily follows for more general free divergence, two
step Hörmander vector fields, [20]. As a consequence of this theorem, the estimate∫

Ω′
F2(∇2

Hu) +
3
4

∑
i<j

(
[Xi, Xj ]u

)2

≤ C

(∫
Ω

|u|
)2

(4)

can be achieved for a function u ∈ C2(Ω), satisfying Fj(∇2
Hu) ≥ 0 for j = 1, 2,

where Ω′ is compactly contained in Ω and C depends on dist(Ω′, ∂Ω). Now, to
establish that [Xi, Xj ]u ∈ L2

loc(Ω) when u is H-convex, we introduce the following
definition. According to [20], we say that a function u ∈ C2(Ω) is k-convex with
respect to the vector fields Xj (or simply k-convex) if Fj(∇2

Hu) ≥ 0 for any
j = 1, . . . , k. The larger class of locally summable k-convex functions is obtained by
closure of C2 smooth k-convex functions with respect to L1

loc-convergence. Hence,
estimate (4) shows that locally summable 2-convex functions satisfy [Xi, Xj ]u ∈
L2

loc(Ω). Now we notice that in Carnot groups a function u ∈ C2(Ω) is H-convex
if and only if ∇2

Hu ≥ 0, therefore by a suitable smooth convolution it can be
seen that the class of locally summable m-convex functions coincides with that of
locally Lipschitz H-convex functions. As a result, in step two Carnot groups any
H-convex function u has the property [Xi, Xj ]u ∈ L2

loc(Ω).
Now, it would be desirable having a characterization of the L1

loc-limits of k-
convex functions analogous to the case k = m. Here it is helpful the following
distributional characterization of H-convex functions in step two Carnot groups.
A Radon measure µ such that ∇2

Hµ ≥ 0 is defined by an L1
loc-limit of smooth H-

convex functions, [14]. The problem of extending this characterization to higher
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step Carnot groups relies on the validity of the key identity

(5) XiXjθ(x) = XiXjθ(x−1)

for mollifiers θ such that θ(x) = θ(x−1). Presently, this identity holds in step
two Carnot groups, whereas it is not known in groups of higher step. The same
approach of [14] and equality (5) easily imply that locally summable k-convex
functions can be characterized in distributional sense, as in Lemma 2.2 of [19].

Second order differentiability can be extended to k-convex functions. In fact,
among the gradient estimates obtained in [20] for k-convex functions, it is shown
that

sup
Ω′

|u(x)− u(y)|
d(x, y)α

≤ C ‖u‖L1(Ω) ,

under the condition k > (Q − 1)m/(Q + m − 2). As a consequence, arguing as
in [4], from the fact that [Xi, Xj ]u ∈ L2

loc(Ω) and the approximate second or-
der differentiability of functions in BV 2

H(Ω), the classical Aleksandrov-Busemann-
Feller’s theorem extends to k-convex functions in step two Carnot groups, when
k > (Q− 1)m/(Q + m− 2), [20].
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