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Abstract

We show a �rst nontrivial example of coarea formula for vector-valued Lipschitz

maps de�ned on the three dimensional Heisenberg group. In this coarea formula, inte-

gration on level sets is performed with respect to the 2-dimensional spherical Hausdor�

measure, built by the Carnot-Carath�eodory distance. The standard jacobian is replaced

by the so called \horizontal jacobian", corresponding to the jacobian of the Pansu dif-

ferential of the Lipschitz map. Joining previous results, we achieve all possible coarea

formulae for Lipschitz maps de�ned on the Heisenberg group.
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1 Introduction

The study of sub-Riemannian Geometry is recently carried out in several areas of Mathe-
matics, such as Di�erential Geometry, PDEs, Geometric Measure Theory, Sobolev spaces
and Geometric Control Theory. An account on these developments can be found for in-
stance in [1], [10], [11] and [17].

Aim of this note is to show the �rst nontrivial example of coarea formula for vector-
valued maps, whose domain is a noncommutative strati�ed group endowed with its natural
sub-Riemannian structure. Coarea formulae for real-valued maps on strati�ed groups and
the more general Carnot-Carath�eodory spaces have been largely studied by several authors
in di�erent contexts, [8], [9], [15], [16], [18], [20]. Most of these results hold for functions
of bounded variation, where the notion of perimeter measure plays a central role. In our
case this notion cannot be employed since level sets have codimension higher than one.
Moreover, the choice of target may a�ect even the existence of nontrivial coarea formulae,
[13]. As main result of this note we obtain the following coarea formula

Z
A
u(x) JHf(x) dx =

Z
R2

 Z
f�1(t)\A

u(y) dS2
H3
(y)

!
dt; (1)

where u : A �! [0;+1] is a measurable function, A is a measurable subset of the Heisen-
berg group H3, and f : A �! R

2 is a Lipschitz function with respect to the Euclidean
distance. Heisenberg group certainly is the simplest model of strati�ed group, [24]. The
\sub-Riemannian" features of (1) are the horizontal jacobian JHf and the spherical Haus-
dor� measure S2

H3
with respect to the Carnot-Carath�eodory distance. The horizontal ja-

cobian corresponds to the jacobian of the matrix representing the Pansu di�erential (De�-
nition 2.1) and the Carnot-Carath�eodory distance is the control distance associated to the
horizontal distribution of H3 (Section 2). These two objects are strictly related, as formulae
(13) and (14) show. The measure S2

H3
only detects the non-horizontal part of level sets and

the choice of JHf surprisingly �ts this property. Lipschitz functions with respect to the
Euclidean distance are also Lipschitz with respect to the Carnot-Carath�eodory distance,
but the converse is not true. This naturally raises the question of extending (1) to Lipschitz
maps with respect to the Carnot-Carath�eodory distance of H3. The di�culty of this prob-
lem clearly appears in examples of Lipschitz maps with respect to the Carnot-Carath�eodory
distance which are nowhere di�erentiable on a set of full measure, [15]. Coarea formula
(1) �ts into the general coarea formula stated in [13], whose validity for arbitrary strati�ed
groups is still an open problem. Nonetheless, formula (1) allows us to complete the picture
of all possible coarea formulae for Lipschitz maps de�ned on H3, as we show in Theorem 5.2.

In ending, although our proof of coarea formula suggests a clear pattern for its extension
to higher dimensional Heisenberg groups, a number of new di�culties appears in this case,
as we explain in Remark 4.4. In this perspective, the present note becomes the �rst step to
understand more general coarea formulae in higher dimensional strati�ed groups, where the
intriguing geometry of higher codimensional sets is a new terrain for further investigations.
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2 A digest of basic notions

We begin this section introducing the 3-dimensional Heisenberg group. This is a simply
connected Lie group H3 whose Lie algebra h3 is endowed with a basis (X1; X2) satisfying
the nontrivial bracket relations [X1; X2] = 2X3. We will identify the Lie algebra h3 with
the isomorphic Lie algebra of left invariant vector �elds of H3. The exponential map
exp : h3 �! H

3 is a di�eomorphism, then it is possible to introduce global coordinates on
H
3. We consider F : R3 �! H

3 de�ned by

F (x) = exp (x1X1 + x2X2 + x3X3): (2)

We will assume throughout that a system of coordinates de�ned by (2) is �xed. This allows
us to identify H3 with R3. The vector �elds (X1; X2; X3) with respect to our coordinates
read as X1 = @x1 � x2@x3 , X2 = @x2 + x1@x3 and X3 = @x3 . The group operation is
represented by the formula

x � y = (x1 + y1; x2 + y2; x3 + y3 + x1y2 � x2y1): (3)

A natural family of dilations which respects the group operation (3) can be de�ned by
setting �r(x) = (rx1; rx2; r

2x3) for every r > 0. In fact, the map �r : H
3 �! H

3 de�ned
above is a group homomorphism with respect to the operation (3). Our frame (X1; X2; X3)
admits a dual basis (dx1; dx2; #) of one-forms on H3. Where the contact form # can be
explicitly written as

# = dx3 + x2 dx1 � x1 dx2: (4)

The vector �elds X1; X2 span a smooth distribution of 2-dimensional planes, which de�ne
all horizontal directions of H3. A point (t) of a di�erentiable curve  : [a; b] �! H

3 is
characteristic if 0(t) is a horizontal direction and it is called transverse otherwise. Ab-
solutely continuous curves which are a.e. characteristic are called horizontal curves, [1].
The sub-Riemannian metric structure of H3 is obtained �xing a left invariant Riemannian
metric on H3 and de�ning the Carnot-Carath�eodory distance between two points as the in-
�mum over Riemannian lengths of horizontal curves joining these points. Vector �elds X1

and X2 satisfy the Lie bracket generating condition, therefore the Chow theorem implies
that every couple of points is joined by at least one horizontal curve, see for instance [1],
p.15. As a result, the Carnot-Carath�eodory distance is well de�ned.

Through coordinates (2) we can introduce the one dimensional Hausdor� measure H1

on H3 with respect to the Euclidean distance in R3. This measure clearly depends on our
coordinates, however our �nal results will be formulated in intrinsic terms. We will assume
throughout that Lipschitz functions on subsets of H3 are considered with respect to the
Euclidean distance of H3. The symbol j � j will denote the Euclidean norm. By contrast with
Analysis in Euclidean spaces, where the Euclidean distance is the most natural choice, in the
Heisenberg group several distances have been introduced for di�erent purposes. However,
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all of these distances are \homogeneous", namely, they are left invariant and satisfy the
relation �(�ry; �rz) = r �(y; z) for every y; z 2 H3 and r > 0. To simplify notations we write
�(x; 0) = �(x), where 0 denotes either the origin of R3 or the unit element of H3. The open
ball of center x and radius r > 0 with respect to a homogeneous distance is denoted by
Bx;r. The Carnot-Carath�eodory distance is an important example of homogeneous distance.
However, all of our computations hold for a general homogeneous distance, therefore in
the sequel � will denote a homogeneous distance, if not stated otherwise. Note that the
Hausdor� dimension of H3 with respect to any homogeneous distance is four.

Before introducing the next de�nition we recall that any L : H3 �! R
k is a G-linear

map if it is a group homomorphism satisfying the homogeneity property L(�rx) = rL(x)
for every x 2 H3 and r > 0. Note that G-linear maps are also linear in the usual sense, as
we identi�y H3 with R3. G-linear maps constitutes the family of intrinsic di�erentials, as
we clarify in the following de�nition.

De�nition 2.1 (P-di�erentiability) Let f : 
 �! R
k, where 
 is an open subset of H3.

We say that f is P-di�erentiable at x 2 
 if there exists a G-linear map L : H3 �! R
k

such that jf(x � h)� f(x)� L(h)j�(h)�1 �! 0 as �(h)! 0. The G-linear map L with the
previous property is uniquely de�ned and it is called the P-di�erential of f at x. We use
the notation Df(x) to indicate the P-di�erential L.

The notion of P-di�erentiability has been introduced by Pansu in the more general frame-
work of strati�ed groups, [22]. One can check by direct computation that f : 
 �! R

k

is P-di�erentiable at x 2 
 if it is di�erentiable at x in the usual sense. Note that the
converse is not true. The k � 3 matrix representing Df(x) can be written as follows

Df(x) =

2
6664

X1f
1(x) X2f

1(x) 0
X1f

2(x) X2f
2(x) 0

...
...

...
X1f

k(x) X2f
k(x) 0

3
7775 : (5)

We denote by rf(x) the k � 3 matrix (f ixj )
i=1;:::;k
j=1;2;3 representing the standard di�erential

df(x) of f at x. The horizontal jacobian JHf(x) of f at x is de�ned by taking the standard
jacobian of the matrix (5). The standard jacobian of f at x is denoted by Jf(x). The
Lebesuge measure of a measurable subset A in H3 is denoted by jAj and the d-dimensional
spherical Hausdor� measure Sd is always considered with respect to the �xed homogeneous
distance �. Note that our de�nition of spherical Hausdor� measure di�ers from the standard
one of [6], in that the volume of the d-dimensional ball !d is replaced by one. The reason
for this choice clearly appears in Corollary 3.2, where the \natural" dimensional constant
2=�((0; 0; 1))2 in the de�nition of S2

H3
replaces !1 = 2.
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3 Intrinsic measure of transverse curves

The present section is devoted to the blow-up of C1 curves with respect to a homogeneous
distance. As a consequence, we achieve formula (13) , corresponding to the integral re-
presentation of the 2-dimensional spherical Hausdor� measure of a transverse curve. This
formula has been �rst obtained by Pansu, [20]. To make this note more self-contained, here
we recall its proof. In the sequel, 
 will denote an open subset of H3 and coordinates (2)
will be understood, then we will identify 
 with an open subset of R3.

Theorem 3.1 Let  � H3 be a one-dimensional immersed submanifold of class C1 and let

x 2 . If  is transverse at x, then k#(x)k > 0 and the limit

lim
r!0+

H1( \Bx;r)

r2
=

c

k#(x)k
(6)

holds, where c = 2=� ((0; 0; 1))2.

Proof. Let us denote by the same symbol  : J �! H
3 a local parametrization of

the immersed submanifold  near the point x, such that (0) = x and J is an open
neighbourhood of zero. De�ning the subset Ix;r = ft 2 J j �((t); x) < rg, we have

H1( \Bx;r) =

Z
Ix;r

j0(t)j dt;

then the change of variable t = r2� yields

H1( \Bx;r)

r2
=

Z
r�2Ix;r

j0(r2�)j d�; (7)

where we have de�ned r�2Ix;r = f� 2 r�2J j �((r2�); x) < rg. The left invariance of �
and the homogeneity of dilations yield

r�2Ix;r = f� 2 r�2J j �
�
�1=r

�
x�1(r2�)

��
< 1g:

The group law (3) allows us to compute the components of �1=r
�
x�1(r2�)

�
in R3, obtaining

[�1=r
�
x�1(r2�)

�
]j =

j(r
2�)� j(0)

r
�! 0 as r ! 0+; (8)

for every j = 1; 2. Computing the third component we get

[�1=r
�
x�1(r2�)

�
]3 =

3(r
2�)� 3(0)� 1(0)2(r

2�) + 2(0)1(r
2�)

r2

=
3(r

2�)� 3(0)� 1(0)(2(r
2�)� 2(0)) + 2(0)(1(r

2�)� 1(0))

r2
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and from the expression of the contact form (4) we conclude that

[�1=r
�
x�1(r2�)

�
]3 �! �

�
03(0)� 1(0)

0
2(0) + 2(0)

0
1(0)

�
= � #((0); 0(0)): (9)

By de�nition of contact form a vector V 2 TxH
3 is horizontal if and only if #(x; V ) = 0,

then #(x; 0(0)) 6= 0 and k#(x)k > 0, because  is transverse at x. Limits (8) and (9) imply
that for every t 2 R n f�0;��0g we have

1r�2Ix;r(t) �! 1I0x;0(t) as r ! 0+; (10)

where �0 = j#(x; 0(0))j�1� ((0; 0; 1))�2 and

I 0x;0 = f� 2 R j j�#(x; 0(0))j � ((0; 0; 1))2 < 1g = (��0; �0): (11)

Finally, formulas (7), (11) and limit (10) along with Lebesgue convergence theorem yield

H1( \Bx;r)

r2
�! 2�0j

0(0)j as r ! 0+: (12)

This completes the proof. 2

Corollary 3.2 (Integral representation) Let  � H3 be a one-dimensional immersed

submanifold of class C1 which is S2-a.e. transverse. Then we have the formula

S2
H3
() =

Z

k#(x)kdH1(x); (13)

where c = 2=�((0; 0; 1))2 and S2
H3

= cS2.

Proof. It su�ces to de�ne the new measure � = k#(x)kH1, then Theorem 3.1 along with
standard di�erentiability theorems applied to �, see for instance Theorem 2.10.17(2) and
Theorem 2.10.18(1) of [6], lead us to our claim. 2

Remark 3.3 Note that formula (13) can be also expressed with respect to any left invari-
ant metric g, replacing the role of the Euclidean distance. In fact, we have the equalitiesZ


k#(x)kg dH

1
g =

Z
J

j#((t); 0(t))j

j0(t)jg
j0(t)jg dt =

Z
J

j#((t); 0(t))j

j0(t)j
j0(t)j dt

=

Z

k#(x)k dH1 = S2

H3
();

where H1
g is the one dimensional Hausdor� measure with respect to the Riemannian dis-

tance and j � jg denotes the Riemannian norm. This remark emphasizes the auxiliary role
of the Euclidean distance.
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4 Coarea formula for vector valued maps

The purpose of this section is to prove our main result stated in Theorem 4.3. To do this,
the next theorem constitutes the key tool.

Theorem 4.1 Let f : 
 �! R
2 be a C1 function, x 2 
 and assume that df(x) : H3 �! R

2

is surjective. Then there exists a neighbourhood U of x such that for every y belonging to

the one-dimensional submanifold f�1(f(x)) \ U we have

JHf(y) = k#(y)k Jf(y): (14)

Proof. We denote by (rf)i1i2 the 2 � 2 submatrix of rf with columns i1 and i2, and
by Mi1i2(rf) the minor det ((rf)i1i2). By hypothesis the matrix rf(x) has rank two,
therefore we assume for instance that M13(rf(x)) 6= 0. The implicit function theorem
yields a C1 immersion  : J �! H

3 such that (0) = x and f((t)) = f(x) for every t
belonging to the open interval J containing the origin. In addition, the curve  can be
represented as (t) = (1(t); t; 3(t)), where j : J �! R is a C1 function for j = 1; 2. By a
simple and elementary calculation, the di�erentation of equality f ((1(t); t; 2(t))) = f(x)
leads us to the formula�

01
03

�
= �

1

M13 (rf)

�
f2x3 �f1x3
�f2x1 f1x1

� �
f1x2
f2x2

�
; (15)

where we have explicitly written the inverse matrix ((rf)13)
�1. Expression (15) yields

01 = �
M23(rf)

M13(rf)
and 03 = �

M12(rf)

M13(rf)
: (16)

Using the de�nition of JHf and the explicit expressions of operators Xj one can achieve
the following equality

JHf(x) = jM12(rf(x)) + x1M13(rf(x))� x2M32(rf(x))j: (17)

As a consequence of this formula, dividing both terms of the quotient JHf=Jf by jM13(rf)j
and using (16), we obtain

JHf ((t))

Jf ((t))
=
j03(t)� 1(t) + t01(t)j

j0(t)j
=
j#((t); 0(t))j

j0(t)j
= k# ((t)) k: (18)

Clearly, either possible cases M12(rf(x)) 6= 0 or M23(rf(x)) 6= 0 would lead us to the
same formula, due to its intrinsic form. 2

Remark 4.2 Note that in the statement of the next theorem the horizontal jacobian JHf
is considered when f is de�ned on a measurale set instead of an open set. This refers to
a slightly more general notion of P-di�erentiability, where interior points of the domain A
are replaced with density points. Even in this case the P-di�erential is uniquely de�ned,
see De�nition 7 and Proposition 2.2 of [12] for more details.
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Theorem 4.3 (Coarea formula) Let f : A �! R
2 be a Lipschitz map, where A � H3 is

a measurable subset. Then for every measurable function u : A �! [0;+1] the formula

Z
A
u(x)JHf(x) dx =

Z
R2

 Z
f�1(t)\A

u(y) dS2
H3
(y)

!
dt (19)

holds, where c = 2=�((0; 0; 1))2 and S2
H3

= cS2.

Proof. We �rst prove (19) in the case f is de�ned on all of H3 and is of class C1. Let 

be an open subset of H3. In view of the Euclidean coarea formula we have

Z


u(x)Jf(x) dx =

Z
R2

 Z
f�1(t)\


u(y)dH1(y)

!
dt; (20)

where u : 
 �! [0;+1] is a measurable function, see for instance [6]. Now we de�ne
u(x) = JHf(x)1fJf 6=0g\
(x)=Jf(x) and use (20), obtaining

Z


JHf(x) dx =

Z
R2

 Z
f�1(t)\


JHf(x)1fJf 6=0g(x)

Jf(x)
dH1(y)

!
dt: (21)

The validity of (20) also implies that for a.e. t 2 R2 the set of points of f�1(t) where Jf
vanishes is H1-negligible, then the previous formula becomes

Z


JHf(x) dx =

Z
R2

 Z
f�1(t)\


JHf(x)

Jf(x)
dH1(y)

!
dt: (22)

By Theorem 2.7 of [13], for a.e. t 2 R2 we have that S2(Ct\
) = 0, where we have de�ned

Ct = fy 2 f�1(t) \ 
 j JHf(y) = 0g:

As a result, from formulae (13) and (14) we have proved that for a.e. t 2 R2 the equalitiesZ
f�1(t)\


JHf(x)

Jf(x)
dH1(y) = S2

H3
(f�1(t) \ 
 n Ct) = S2

H3
(f�1(t) \ 
)

hold, therefore we have achievedZ


JHf(x) dx =

Z
R2

S2
H3
(f�1(t) \ 
)dt: (23)

The arbitrary choice of 
 yields the validity of (23) also for arbitrary closed sets. Then,
approximation of measurable sets by closed ones, Borel regularity of S2

H3
and the coarea

estimate 2.10.25 of [6] extend the validity of (23) to the following oneZ
A
JHf(x) dx =

Z
R2

S2
H3
(f�1(t) \A)dt; (24)
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where A is a measurable subset of H3. Now we consider the general case, where f : A �! R
2

is a Lipschitz map de�ned on a measurable bounded subset A of H3. Let f1 : H
3 �! R

2 be
a Lipschitz extension of f , namely, f1jA = f holds. Due to the Whitney extension theorem

(see for instance 3.1.15 of [6]) for every arbitrarily �xed " > 0 there exists a C1 function
f2 : H3 �! R

2 such that the open subset O = fz 2 H3 j f1(z) 6= f2(z)g has Lebesgue
measure less than or equal to ". The map f is a.e. di�erentiable in the Euclidean sense,
then it is also a.e. P-di�erentiable. As we have mentioned in Remark 4.2 the horizontal
jacobian JHf is well de�ned and we can consider the estimate����

Z
A
JHf(x) dx�

Z
R2

S2
H3
(f�1(t) \A)dt

���� �
Z
A\O

JHf(x) dx

+

Z
R2

S2
H3
(f�1(t) \A \O)dt: (25)

In fact, due to the �rst part of this proof, the following coarea formula for C1 smooth maps
holds Z

AnO
JHf2(x) dx =

Z
R2

S2
H3
(f�12 (t) \A nO) dt:

Moreover, the equality f2jAnO = fjAnO implies that JHf2 = JHf a.e. on A nO, therefore

Z
AnO

JHf(x) dx =

Z
R2

S2
H3
(f�1(t) \A nO) dt

holds and inequality (25) is proved. Now we recall that the Euclidean distance can be
estimated from above by any �xed homogeneous distance. Let �g denote the Riemannian
distance de�ned by the left invariant metric g �xed on H3. Then we have �g � �CC , where
�CC is the Carnot-Carath�eodory distance associated to g. The fact that the Riemannian
distance is locally equivalent to the Euclidean distance and that the Carnot-Carath�eodory
distance is equivalent to any homogeneous distance prove our claim. As a consequence,
due to the boundedness of A, the map f is Lipschitz even with respect to the homoge-
neous distance �. Let us denote by Lip(f) the Lipschitz constant of f with respect to the
homogeneous distance �. Then there exists a constant c0 depending on � such that

kDf(x)k � c0 Lip(f) (26)

for a.e. x 2 A. Then the algebraic inequality

JHf(x) �
p
(X1f1(x))2 + (X2f1(x))2

p
(X1f2(x))2 + (X2f2(x))2

and (26) imply

JHf(x) � c20 Lip(f)
2 (27)

9



for a.e. x 2 A. By virtue of the general coarea inequality 2.10.25 of [6] there exists a
dimensional constant c1 > 0 such thatZ

R2

S2
H3
(f�1(t) \A \O)dt � c1 Lip(f)

2 H4(O): (28)

The fact that the 4-dimensional Hausdor� meaure H4 with respect to the homogeneous
distance � is proportional to the Lebesgue measure, gives us a constant c2 > 0 such thatZ

R2

S2
H3
(f�1(t) \A \O)dt � c2 Lip(f)

2 jOj � c2 Lip(f)
2 ": (29)

Thus, estimates (27) and (29) joined with inequality (25) yield����
Z
A
JHf(x) dx�

Z
R2

S2
H3
(f�1(t) \A)dt

���� � (c20 + c2) Lip(f)
2 ":

Letting "! 0+, we have proved thatZ
A
JHf(x) dx =

Z
R2

S2
H3
(f�1(t) \A)dt: (30)

Finally, utilizing increasing sequences of step functions pointwise converging to u and apply-
ing Beppo Levi convergence theorem the proof of (19) is achieved in the case A is bounded.
If A is not bounded, then one can take the limit of (19) where A is replaced by Ak and
fAkg is an increasing sequence of measurable bounded sets whose union yields A. Then
the Beppo Levi convergence theorem concludes the proof. 2

Remark 4.4 The proof of Theorem 4.3 suggests a method for its extension to higher
dimensional Heisenberg groups. Applying this method two main problems appear. The
�rst one is to reach an intrinsic characterization of the quotient JHf=Jf in terms of the
contact form and of possible new left invariant forms. The second one is the characterization
of the blow-up limit in terms of these forms.

5 All coarea formulae in the Heisenberg group

This section collects all known coarea formulae for maps de�ned on the three dimensional
Heisenberg group. We �rst recall the notion of coarea factor, see [13] for more information.

De�nition 5.1 (Coarea factor) Let L : H3 �! R
k be a G-linear map, with k � 4.

The coarea factor of L with respect to the spherical Hausdor� measure S4�kc is the unique
number Ck(L) satisfying the relation

Ck(L) jAj =

Z
Rk

S4�kc (L�1(y) \A) dy (31)

for every measurable subset A � H3, where c > 0 and S4�kc = cS4�k.
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One can verify that the number Ck(L) � 0 is positive if and only if L is surjective, see
Proposition 1.12 of [13]. The general notion of coarea factor allows us to state in a uni�ed
way the validity of a family of coarea formulae, as we show in the following theorem.

Theorem 5.2 Let A � H3 be a measurable set and let f : A �! R
k be a Lipschitz map

with 1 � k � 4. Let � be the Carnot-Carath�eodory distance. Then for any measurable

function u : A �! [0;+1] the following equalityZ
A
u(x)Ck(Df(x)) dx =

Z
Rk

Z
f�1(t)\A

u(z) dS4�k
H3

(z) dt (32)

holds and it becomes the trivial identity 0 = 0 if k = 3; 4. The formulae S3
H3

= �S3�
and S2

H3
= 2�((0; 0; 1))�2S2� hold, where � is the metric factor of the Carnot-Carath�eodory

distance and Sd
� is the d-dimensional spherical Hausdor� measure built with the distance �.

The coarea factor Ck(Df(x)) is considered with respect to S4�k
H3

.

In the case k = 1, Theorem 5.2 was �rst proved by Pansu, [20], [21], where

C1(Df(x)) =
p
X1f(x)2 +X2f(x)2:

The coarea factor � in the de�nition of S3
H3

has been introduced in [14], where (32) has
been extended to real-valued Lipschitz maps on strati�ed groups. Here the metric factor is
constant due to the invariant property of the Carnot-Carath�eodory distance with respect
to horizontal isometries, see [14] for more information. In the case k = 2, the validity of
(19) for any G-linear map and the de�nition of coarea factor easily imply the equality

C2(Df(x)) = JHf(x);

then Theorem 5.2 is a consequence of Theorem 4.3. If k = 3; 4, then the general coarea
inequality of [13] can be applied. In fact, any G-linear map L : H3 �! R

k cannot be
surjective in this case, as it easily follows from its matrix representation (5). Then the
number Ck(Df(x)) is always vanishing and the general coarea inequality (1) of [13] yields
the trivial identity 0 = 0. The same argument applies to strati�ed groups M in the target,
having topological dimension greater than or equal to 4, see also Subsection 2.1 of [13].
The only possible noncommutative strati�ed group in the target giving a nontrivial coarea
formula is the three dimensional Heisenberg group itself. In this case the coarea formula
coincides with the area formula, [12], and the map f is assumed to be Lipschitz with respect
to the homogeneous distance of H3.
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