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Abstract. We establish an explicit formula between the perimeter
measure of an open set E with C1 boundary and the spherical Hausdor�
measure SQ�1 restricted to @E, when the ambient space is a strati�ed
group endowed with a left invariant sub-Riemannian metric and Q de-
notes the Hausdor� dimension of the group. Our formula implies that
the perimeter measure of E is less than or equal to SQ�1(@E) up to a di-
mensional factor. The validity of this estimate positively answers a con-
jecture raised by Danielli, Garofalo and Nhieu. The crucial ingredient of
this result is the negligibility of \characteristic points" of the boundary.
We introduce the notion of \horizontal point", which extends the no-
tion of characteristic point to arbitrary submanifolds and we prove that
the set of horizontal points of a k-codimensional submanifold is SQ�k-
negligible. We propose an intrinsic notion of recti�ability for subsets
of higher codimension, namely, (G;Rk)-recti�ability and we prove that
Euclidean k-codimensional recti�able sets are (G;Rk)-recti�able.
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Introduction

The project of developing analysis in metric spaces is receiving remarkable attention
in the last few years with several monographs on this topic, [7], [18], [35], [36], [65].
The class of Carnot-Carath�eodory spaces provides good models to be studied in this
perspective. They are characterized as connected di�erentiable manifolds with a family
of smooth vector �elds X1; : : : ; Xm, which satisfy a Lie bracket generating condition.
Under this assumption the \Carnot-Carath�eodory distance" can be de�ned, [33].
We will focus our attention on strati�ed groups, also known as Carnot groups, [25],

[59], which form a special class of Carnot-Carath�eodory spaces. An important feature
of strati�ed groups is the existence of a family of intrinsic dilations which scale well with
the Carnot-Carath�eodory distance and de�ne the Hausdor� dimension of the group.
Strati�ed groups and Carnot-Carath�eodory spaces have been thoroughly investigated

in several di�erent areas of Analysis as Optimal Control Theory, Di�erential Geometry,
Harmonic Analysis and PDEs. Some relevant books are the following [10], [25], [34],
[53], [67]. The systematic study of Geometric Measure Theory on strati�ed groups
has begun only very recently with a continuously growing literature and it is now the
subject of several contributions [1], [5], [8], [12], [15], [17], [26], [27], [28], [29], [30],
[32], [41], [45], [46], [47], [48], [57], [54], [60], [61], [62], [64] and this list is certainly not
complete.
The leading theme of this paper is the role of characteristic points in the study of

intrinsic notions of recti�ability and in the expression of perimeter measure for open
sets with C1 boundary. In the area of PDEs, characteristic points have been largely
studied in connection with boundary regularity of solutions to equations with nonneg-
ative characteristic form, [11], [13], [21], [24], [42], [43], [38], [39], [44], see also the
references therein. The solution to the Dirichlet problem for the Kohn Laplacian in a
smooth domain may not be smooth up to the boundary due to the presence of char-
acteristic points, [38]. Characteristic points play an important role with respect to
metric properties of domains suitable for Sobolev-Poincar�e inequality, Ahlfors regular-
ity of hypersurfaces, intrinsic measure of hypersurfaces and trace theorems, [8], [12],
[15], [16], [22], [31], [48], [55], [56]. In the sequel we give a detailed description of the
contents of the present paper.
The �rst section presents all the basic materials that will be used throughout the

paper. Section 2 is devoted to characteristic points of submanifolds and their negli-
gibility. Negligibility of characteristic points with respect to the Euclidean Hausdor�
measure Hn�1

j�j was proved by Derridj for (n-1)-dimensional smooth hypersurfaces, [22].

Recently, Balogh through a remarkable construction of functions with prescribed gradi-
ent has proved that there exist C1 hypersurfaces in the Heisenberg group such that the
one codimensional Euclidean Hausdor� measure of the characteristic set is positive, [8].
However, he also shows that if we consider the Hausdor� measure HQ�1 with respect
to the Carnot-Carath�eodory distance, then the characteristic sets of C1 hypersurfaces
becomes negligible with respect to this measure. The covering type procedure adopted
by Balogh has been extended by Franchi, Serapioni and Serra Cassano to all strati�ed
groups of step two, [29].
Our approach to the negligibility of characteristic points in arbitrary strati�ed groups

relies on a Sard-type theorem, [47], where characteristic points are properly interpreted
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as intrinsic singular points of the submanifold. This characterization works for subman-
ifolds of any codimension and allows us to �nd an analogous notion of characteristic
point. In this general case, we call these points \horizontal", in that the tangent space
to the submanifold at these points has a su�ciently \large" intersection with the hor-
izontal space, see De�nition 2.10. Note that in submanifolds of codimension one the
notion of horizontal point coincides with the classical notion of characteristic point.
The main result of this paper is given in Theorem 2.16, where we show that the

set of horizontal points in a k-codimensional submanifold is HQ�k-negligible. The key
observation is to look at horizontal points as those points where the de�ning map
of the surface is \intrinsically singular", namely, it has a nonsurjective P-di�erential
(De�nition 2.2). Once horizontal points are regarded as singular points we construct
an ad hoc argument in order to apply the weak Sard-type theorem proved in [47], due
to which a.e. level set of a vector valued Lipschitz map contains an HQ�k-negligible
subset of singular points. The negligibility of horizontal points in strati�ed groups
immediately extends the validity of Theorem 2.3 in [48] to any C1 hypersurface. Let �
be a C1 hypersurface � and let SQ�1 be the spherical Hausdor� measure with respect to
a homogeneous distance. Then Theorem 2.20 gives an explicit formula for the density
of SQ�1

x� with respect to the Riemannian measure restricted to the hypersurface.
In Section 3 we present other consequences of Theorem 2.16. We �rst introduce

the notions of (G;Rk)-regularity and of (G;Rk)-recti�ability (De�nition 3.1 and De�-
nition 3.2). These notions for k = 1 have been �rst introduced and studied by Franchi,
Serapioni and Serra Cassano in the cycle of papers [27], [28] and [29]. As the classical
notion of di�erentiability is used to de�ne the smoothness of a manifold, we observe that
P-di�erentiability naturally de�nes (G;Rk)-regularity for every codimension, introduc-
ing a vast class of new geometrical objects to be studied, where (G;Rk)-regular sets play
the role of \intrinsic regular submanifolds". However, those groups G whose Lie algebra
G does not contain any k-dimensional commutative subalgebra in the �rst layer cannot
have (G;Rk)-regular sets. Clearly, an (Rq;Rk)-regular set is exactly a C1 submani-
fold of codimension k. On the other hand, as soon as we consider a noncommutative
strati�ed group, things can dramatically change. A recent paper by Kirchheim and
Serra Cassano, [41], shows a remarkable example of an (H1;R)-regular set S such that
H�

j�j(S) > 0, where j � j is the Euclidean norm and 2 < � < 5=2, where H1 is the three
dimensional Heisenberg group. This interesting hypersurface cannot be 2-recti�able
in the Euclidean sense, although there exists a 1

2
-H�older continuous parametrization

which makes it a topological submanifold of topological dimension two. Recently,
(Hn;Rk)-regular sets, with 1 � k � n, have been studied by Franchi, Serapioni and
Serra Cassano, [30]. In the terminology of [30], these sets are called k-codimensional
H-regular surfaces. Note that there are no (Hn;Rk)-regular sets whenever k > n.
Our negligibility result applies in comparing (G;Rk)-recti�ability with Euclidean

recti�ability in the Federer sense, 3.2.14 of [23]. In the papers [27] and [29] Franchi,
Serapioni and Serra Cassano have proved that Euclidean recti�able sets of codimen-
sion one in strati�ed groups of step two are always (G;R)-recti�able. As application
of Theorem 2.16, in Theorem 3.8 we extend this result to any Euclidean recti�able
set of any strati�ed group. Note that horizontal curves or more general Legendrian
submanifolds cannot be (G;Rk)-regular. In fact, from the notion of horizontal point,
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one can check that any k-codimensional Legendrian submanifold coincides with its
horizontal set, then Theorem 2.16 proves that it is HQ�k-negligible. In other words,
a k-codimensional Legendrian submanifold is invisible in a (G;Rk)-recti�able set in
the same way as Euclidean (q-k-s)-recti�able sets are invisible in an Euclidean (q-k)-
recti�able set, where s > 0. It is certainly interesting to investigate which couples
(G;Rk) possess nontrivial (G;Rk)-regular sets and to check whether these sets have
Hausdor� dimension Q�k and topological dimension q�k, where q is the topological
dimension of G. Presently, this question has been positively answered for k = 1 and
arbitrary G in [28] and for k � n and G = H

n in [30]. Expanding our perspective,
it is natural replacing Rk with another strati�ed group M, getting the general no-
tion of (G;M)-regularity (De�nition 3.5). We introduce this notion of regularity to
illustrate its potential in connection with future developments of Geometric Measure
Theory on strati�ed groups. These notions of intrinsic regularity provide several types
of recti�able objects modeled with respect to di�erent geometries. This shows how the
geometry of strati�ed groups is rich and is still far from being well understood.
Our negligibility result can be also applied to study the relationship between the

perimeter measure of a set with C1 boundary and the spherical Hausdor� measure of
its boundary. In the more general case when a portion @E\U of @E is a (G;R)-regular
set and U is an open subset, the following formula

j@EjHxU = �gQ�1(�H)S
Q�1
x(U \ @E)

can be found in [28] and [49]. Due to HQ�1-negligibility of characteristic points the
previous formula holds for any set E with C1 boundary and any measurable set of G.
As a consequence, we can positively answer a conjecture raised by Danielli, Garofalo
and Nhieu in [15]. A detailed discussion of this application will be given in the last
part of Section 3.

Acknowledgments. The author wishes to thank the referees for their precious com-
ments and observations.

1. Preliminaries

We will mean by measure on a metric space X a set function � : P(X) �! [0;+1]
with the properties �(;) = 0 and �(E) �

P1
j=1 �(Ej) whenever E �

S1
j=1Ej. Every

measure � naturally induces a �-algebra A� � P(X) where it is additive on countable
disjoint unions. Recall that B(X) is the smallest �-algebra containing open sets of
X. Elements of B(X) are called Borel sets and a measure � such that B(X) � A� is
called Borel measure. The push-forward of a measure � under the map F : X �! Y
is de�ned by F]�(E) = � (F�1(E)) for every E � Y . The restriction of a measure �
to a subset A � X is de�ned by �xA(E) = �(A\E) for every E � X. The following
elementary change of variable formula will be useful in the sequel. Its proof can be
obtained by approximation of measurable functions with measurable step functions.

Proposition 1.1 (Change of variable). Let X; Y be two metric spaces and let N be
either R or a �nite dimensional space. Suppose that F : X �! Y and u : Y �! N
are Borel maps, where � is a Borel measure over X and u � F is �-summable. Then
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for every B 2 B(X) we have

(1)

Z
F�1(B)

u � F d� =

Z
B

u dF]� :

De�nition 1.2 (Strati�ed group). Let G be a simply connected Lie group and let G
be its Lie algebra of left invariant vector �elds. Let H1 be a subspace of G and suppose
that the inductively de�ned sequence of subspaces

Hj+1 = [Hj; H1] = spanf[Z; Y ] j Z 2 Hj; Y 2 H1g

has the properties

(1) Hj \Hk = f0g whenever j 6= k and j; k 2 N n f0g
(2) there exists � � 1 such that H � 6= f0g and H�+1 = f0g
(3) G is spanned by all the subspaces fHj j j = 1; : : : ; �g .

We say that G is a strati�ed algebra and that G is a strati�ed group. The integer � is
called the step of the group. A left translation of the group is a map lp : G �! G de�ned
by s �! lp(s) = ps, where p; s 2 G. As a consequence of (1) and (3) every vector

Y 2 G can be written in a unique way as the sum Y =
P�

j=1 Yj, where Yj 2 H
j. This

enables us to introduce canonical projections pHj : G �! Hj de�ned by pHj(Y ) = Yj,
where Y is written as above. In the case of projection on the �rst layer we also de�ne
pH = pH1 .

Conditions (1) and (3) of the previous de�nition can be shortly stated writing

G = H1 �H2 � � � � �H�;

where the symbol � indicates the direct sum of vector spaces.
Recall that the exponential map exp : G �! G associates to any left invariant vector

�eld W 2 G the value 
W (1) 2 G of the curve 
W : R �! G which solves the Cauchy
problem �


0(t) = W (
(t))

(0) = e

In the sequel we will use the fact that the exponential map exp : G �! G of simply
connected nilpotent Lie groups is a di�eomorphism, [14].

De�nition 1.3 (Graded metric). We say that a left invariant Riemannian metric g
on G is a graded metric if all subspaces fHj j j = 1; : : : ; �g are orthogonal each other.
The left invariant scalar product between two vectors V;W 2 TpG will be denoted
by hV;W ip or hV (p);W (p)i. In the case X; Y 2 G the scalar product hX; Y ip is
independent of the point p and can be simply denoted by hX; Y i.

De�nition 1.4 (Graded coordinates). We de�ne the numbers nj = dimHj for any

j = 1; : : : ; �, m0 = 0 and mi =
Pi

j=1 nj for any i = 1; : : : �. We say that a basis

(W1; : : : ;Wq) of G is an adapted basis if (Wmj�1+1;Wmj�1+2; : : : ;Wmj
) is a basis of Hj

for any j = 1; : : : �. We say that (W1; : : : ;Wq) is a graded basis if it is an adapted and
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orthonormal basis with respect to a graded metric. The graded coordinates with respect
to the basis (W1; : : : ;Wq) are given by the di�eomorphism F : Rq �! G de�ned by

F (x) = exp
� qX

j=1

xjWj

�
:

The degree of the coordinate xj is the unique integer dj such that Wj 2 H
dj .

LetX; Y 2 G. The Baker-Campbell-Hausdor� formula (shortly BCH-formula) allows
us to obtain an explicit polynomial P (X; Y ) with respect to the nonassociative Lie
product of G, such that exp (P (X; Y )) = expX expY , see for instance [37]. The
BCH-formula and graded coordinates allow us to read the group operation in Rq as a
polynomial operation (which depends on the �xed system graded coordinates). We will
denote this polynomial operation by x � y, where x; y 2 Rq. In the case the Lie algebra
G is commutative, namely [X; Y ] = 0 for every X; Y 2 G, we simply have x � y = x+ y
and all coordinates have degree one (see also Chapter XIII, Section 5 of [66]).

Proposition 1.5. Let F : Rq �! G be a system of graded coordinates with respect to
a graded metric g. Then the equality F]L

q = vg holds, where Lq is the q-dimensional
Lebesgue measure.

Proof. We know that F : Rq �! G is a smooth di�eomorphism. Let A be a
measurable set of Rq. By the classical area formula and the left invariance of both vg
and F]L

q we have

c Lq(A) = vg(F (A)) =

Z
A

JqF (�) d�

for some constant c > 0. We have denoted by JqF the q-dimensional Jacobian of F .
Then

R
A
JqF = c for any measurable A. By continuity of � �! JqF (�) we obtain that

JqF (�) = c for any � 2 Rq. We know that F = exp �L, where L(�) =
Pq

i=1 �jWj

and (Wj) is an orthonormal basis of G. Since the map dF (0) = d exp(0)�L = L has
jacobian equal to one, then c = 1 and the thesis follows. 2

Motivated by the previous proposition in the sequel we will also adopt the simpler
notation vg(A) = jAj for every measurable subset A � G.

De�nition 1.6 (Dilations). Let G be a strati�ed group. For every r > 0 we de�ne the
dilation �r : G �! G by

�rp = exp
� �X

j=1

rj pHj

�
exp�1(p)

��
:

Consider a system of graded coordinates F : Rq �! G. The coordinate dilation
�r : R

q �! R
q associated to F is de�ned by �r = F�1 � �r � F and can be written as

�r(x) =

qX
j=1

rdjxjej;(2)

where (ej) is the canonical basis of R
q and dj is the degree of the coordinate xj.
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In view of relation (2) it is easy to see that Lq(�r(A)) = rQLq(A) for any measurable
subset A � Rq, where we have de�ned

(3) Q =

qX
k=1

dk =
�X

j=1

j dim(Hj):

Thus, by de�nition of coordinate dilation and by Proposition 1.5, for any r > 0 and
any measurable subset E � G we have

vg(�rE) = vg
�
F (�r(F

�1(E)))
�
= Lq

�
�r(F

�1(E))
�
= rQ Lq

�
F�1(E)

�
= rQ vg(E):

Finally, the left invariance of vg yields the formula

(4) vg(lp � �r(E)) = rQ vg(E)

for any p 2 G and any r > 0. Observing that Bp;r = lp(�rB1) we have in particular

vg(Bp;r) = rQ vg(B1):

This implies that the number Q de�ned in (3) is the Hausdor� dimension of the group
and that the Q-dimensional Hausdor� measure HQ built with respect a homogeneous
distance is �nite on bounded sets and it is proportional to vg.
The horizontal subbundle HG is de�ned by the collection of all subspaces

HpG = fX(p) j X 2 H1g

where p 2 G. These are the so-called horizontal spaces. We denote by H
 the subfam-
ily of horizontal spaces HpG where p 2 
 and 
 is an open subset of G. A di�erent
way to introduce horizontal spaces is the following

dlp(HeG) = HpG(5)

for every p 2 G, where e is the unit element of the group.
By de�nition of strati�ed group, the Lie algebra spanned by H1 coincides with G,

then the well known Chow theorem implies that any two points of G can be connected
by at least one absolutely continuous curve a.e. tangent to the horizontal subbundle,
[10]. These curves are the so-called horizontal curves which permit us to introduce
the Carnot-Carath�eodory distance. Let p; p0 2 G and consider the in�mum among
lengths of all horizontal curves connecting p with p0, where the length is computed with
respect to the graded metric of the group. This in�mum is the Carnot-Carath�eodory
distance between p and p0 and it is denoted by �(p; p0). The left invariance of the
graded metric implies that the Carnot-Carath�eodory distance is left invariant, namely,
�(p0p; p0s) = �(p; s) for every p; p0; s 2 G and it is also homogeneous with respect to
dilations, �(�rp; �rs) = r�(p; s) for every r > 0.

Next we will use the usual Euclidean norm on G. To do this, there is not a unique
choice and we will refer to a �xed system of graded coordinates F : Rq �! G. This
choice will not a�ect our arguments because if G : Rq �! G is another system of
graded coordinates, the change of variable F �G�1 : Rq �! R

q is an isomorphism,
hence the Euclidean norm with respect to G is equivalent to the one with respect to F .
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With this convention we state an important relation between the Euclidean distance
and the Carnot-Carath�eodory distance on strati�ed groups

(6) jx� yj � �(x; y) � C jx� yj1=� for any x; y 2 K � G ;

whereK is compact and C is a dimensional constant depending onK. Note that � is the
step of the group. Estimates (6) can be proved in more general Carnot-Carath�eodory
spaces, [58]. In particular the Carnot-Carath�eodory distance is continuous and it in-
duces the same topology of G.

De�nition 1.7 (Homogeneous distance). A continuous map d : G � G �! [0;+1)
is a homogeneous distance if it satis�es the axioms of an abstract distance, it is left
invariant, d(p0p; p0s) = d(p; s) for any p; p0; s 2 G, and it is homogeneous with respect
to dilations, d(�rp; �rs) = r d(p; s) for every r > 0.

Clearly the Carnot-Carath�eodory distance is the foremost homogeneous distance, but
also other useful examples of homogeneous distances can be considered. For instance,
in Proposition 2.19 we will study symmetry properties of the homogeneous distance d1
introduced in [29]. It is worth observing that homogeneous distances are biLipschitz
equivalent in the following sense. If d1 and d2 are homogeneous distances, then there
exists a constant C > 1 such that for every p; s 2 G we have

C�1 d1(p; s) � d2(p; s) � C d1(p; s):

This fact can be seen using the classical argument used for norms of �nite dimensional
spaces, that actually are a particular case. In the sequel we will always refer to a �xed
homogeneous distance.

De�nition 1.8 (Metric ball). The open ball of radius r > 0 and center p 2 G will
be denoted by Bp;r. If we wish to emphasize the particular choice of the homogeneous
distance d we write Bd

p;r. Open balls with radius r and centered at the unit element of
the group are denoted by Br. We use similar conventions for closed balls Dp;r of center
p and radius r.

De�nition 1.9 (Hausdor� measures). Let d be a homogeneous distance of G and let
a � 0. For each subset E � G we de�ne the a-dimensional spherical Hausdor� measure

Sa(E) = lim
"!0+

inf
n 1X

j=1

diam(Dxi;ti)
a

2a
j E �

1[
i=1

Dxi;ti ; ti � "
o

and the a-dimensional Hausdor� measure of E as

Ha(E) = lim
"!0+

inf
n 1X

j=1

!a
diam(Fi)

a

2a
j E �

1[
i=1

Fi ; diam(Fi) � "
o

where fFig are subsets of G and diam(A) = sup(x;y)2A�A d(x; y) for any A � G. The
dimensional constant !a is de�ned as follows

!a =
�a=2

�(1 + a=2)
and �(s) =

Z 1

0

rs�1e�r dr :
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Remark 1.10. Note that we have used the dimensional constant !a only for the def-
inition of the Hausdor� measure Ha. In fact, our formulae involving the spherical
Hausdor� measure Sa will contain the metric factor �gQ�1 (De�nition 2.17) that natu-
rally replaces the constant !a.

When we want to specify the use of the Euclidean distance we will write Ha
j�j and

Sa
j�j and for the case of the Carnot-Carath�eodory distance we will write Ha

� and Sa
� .

Throughout the paper the symbol 
 will denote an open subset of G. We will denote
by �(H
) the space of smooth sections of H
, i.e. the horizontal vector �elds. The
space �c(H
) denotes the family of horizontal vector �elds compactly supported in 
.

De�nition 1.11 (Horizontal divergence). Let (X1; : : : ; Xm) be a basis of left invariant
vector �elds of H1. The horizontal divergence (in short H-divergence) of the section
' =

Pm
i=1 '

jXj 2 �(H
) is de�ned by divH ' =
Pm

j=1Xj'
j :

Notice that the previous de�nition does not depend on the choice of the basis of H1.
Now we recall the notion of \image" of a vector �eld through a di�eomorphism. Let
f :M �! N be a C1 di�eomorphism of di�erentiable manifolds and let X be a vector
�eld of M . The image of X under f is the vector �eld of N de�ned by

f�X(p) = df(f�1(p))
�
X
�
f�1(p)

��
for every p 2 N . A vector �eld X 2 H1 is read in Rq through a system of graded
coordinates F : Rq �! G when it is de�ned as ~X = F�1

� X. In the sequel we will
use this notation to denote vector �elds of G with respect to graded coordinates of Rq.
With this notation the horizontal divergence can be written as follows

(7) (divH') � F =
mX
j=1

~Xj ~'
j ;

where ' 2 �(HG) and ~' = ' � F . Another useful formula involving left invariant
vector �elds in Rq is the following

(8) ~Wk = @xk +

qX
j=mdk

+1

akj(x1; : : : ; xj�1) @xj ;

where ~Wk = F�1
� Wk with k = 1; : : : ; q, the integers mi and dj are introduced in

De�nition 1.4, the maps akj are homogeneous polynomials with respect to coordinate
dilations and the graded basis (W1;W2; : : : ;Wq) of G is associated to the system of
graded coordinates F , see also p.621 of [66]. Note that in formula (8) we have used
the standard representation of vector �elds as �rst order di�erential operators.
Let u : 
 �! R be a C1 map, p = F (x) 2 
 and ~u = u � F . We consider the map

y �! ~u(x � y). By left invariance of vector �elds ~Wj on R
q we have the useful formula

@~u

@yj

���
y=0

= ~Wj~u(x) = Wju(p):(9)

In the following de�nition the symbol j � j will denote the norm induced by the
Riemannian metric on tangent spaces. We will use this notation whenever its meaning
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will be clear from the context. The space �c(H
) denotes the family of smooth sections
of the subbundle HG having compact support.

De�nition 1.12 (Perimeter measure). We say that a measurable set E � 
 is of
H-�nite perimeter on the open subset 
 � G if

j@EjH(
) = sup

�Z
E

divH� dvg

���� 2 �c(H
); j�j � 1

�
<1 :

If E has H-�nite perimeter on every open subset U compactly contained in 
 we say
that E has locally H-�nite perimeter in 
. We will denote by j@EjH the associated
Radon measure.

By virtue of Riesz representation theorem there exists a measurable section �E of
HG such that

(10)

Z
E

divH� dvg = �

Z
G

h�; �Ei d j@EjH ;

for any � 2 �c(HG). We say that �E is the generalized inward normal to E. By
the standard polar decomposition (Corollary 1.29 of [3]) we have that j�E(p)j = 1 for
j@EjH-a.e. p 2 
.

2. Horizontal set of C1 submanifolds

In this section we introduce the notion of horizontal point for a k-codimensional
submanifold and we prove that the set of all horizontal points is HQ�k-negligible. The
symbols G and M denote strati�ed groups and 
 stands for an open subset of G. We
will show the relationship between the intrinsic notion of P-di�erentiability and the
notion of horizontal point. Recall that P-di�erentiability of maps between strati�ed
groups was successfully introduced by Pansu in order to study rigidity properties, [59].

De�nition 2.1 (G-linear map). We say that L : G �! M is an G-linear map if it is
a group homomorphism and L(�rp) = �0rL(p) for every p 2 G and every r > 0, where
�r and �

0
r are dilations of the strati�ed groups G and M, respectively.

De�nition 2.2 (P-di�erentiable map). Let f : 
 �!M, whereM is a strati�ed group.
We say that f is P-di�erentiable at p 2 
 if there exists a G-linear map L : G �! M

such that

�0 (f(p)�1f(s); L(p�1s))

�(p; s)
�! 0 as s! p ;(11)

where � and �0 are the Carnot-Carath�eodory distances of G and M, respectively. The
unique G-linear map which satis�es (11) is called the P-di�erential of f at p and it
is denoted by dHf(p). By the exponential map exp : G �! G we will also read the
P-di�erential as a linear map between the Lie algebras of G and of M. In this case we
will use the same notation dHf(p).

De�nition 2.3 (C1
H map). We denote by C1

H(
;M) the class of maps f : 
 �! M

which are P-di�erentiable at every point of 
 and whose P-di�erential p �! dHf(p)
is continuous. In the case M = R we simply write C1

H(
).
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In the present paper we work with C1 maps and C1 submanifolds, but mainly using
the notion of P-di�erentiability. The next proposition ensures that this is possible since
C1 maps in the usual sense are also C1

H .

Proposition 2.4 (P-di�erentiability). The inclusion C1(
;Rk) � C1
H(
;R

k) holds
and for every u 2 C1(
;Rk) and every p 2 
 we have the formula dHu(p)(Y (p)) =
du(p)(pH(Y )(p)) whenever Y 2 G. The map pH : G �! H1 denotes the canonical
projection introduced in De�nition 1.2.

Proof. Let us �x a system of graded coordinates F : Rq �! G with respect to a
graded basis (W1;W2; : : : ;Wq) of G. De�ne ~u = u�F 2 C1(~
;Rk), where ~
 = F�1(
).
We de�ne x = F�1(p) where p 2 
. Using graded coordinates together with coordinate
dilations and the notion of P-di�erentiability our proof boils down to show the existence
of the limit

lim
r!0+

~u (x � �r(y))� ~u(x)

r
uniformly as y varies in some bounded neighbourhood of the origin. Let us de�ne the
map

r �! ~u (x � �r(y)) = ~u
�
x �
� qX

j=1

rdjyjej

��
=  (r; y):

Since the map  is C1 we can write

 (r; y)�  (0; y)

r
= r�1

Z r

0

@t (�; y) d�;

hence formula (9) implies that

 (r; y)�  (0; y)

r
= r�1

qX
j=1

Z r

0

dj �
dj�1yj ~Wj~u (x � ��y) d�

=
mX
j=1

yj

Z 1

0

~Wj~u (x � �r�y) d� +

qX
j=m+1

dj r
dj�1yj

Z 1

0

� dj�1 ~Wj~u (x � �r�y) d�;

where the degree dj of the coordinate yj is greater than one if and only if j > m. By

the continuity of ~Wj~uj for every j = 1; : : : ; q, formula (9) and the last equality we have
proved that

lim
r!0+

~u (x � �r(y))� ~u(x)

r
=

mX
j=1

yj ~Wj ~u(x) =
mX
j=1

yjWju(p):(12)

The previous expression yields a G-linear map with respect to graded coordinates y

dHu(p)
� qX

j=1

yjWj(p)
�
=

mX
j=1

yjWju(p):

By the explicit formula for the P-di�erential and the continuity of Wj for every j =
1; : : : ; q it follows the continuity of dHu(p) with respect to p. Finally, observing that

pH

� qX
j=1

yjWj

�
(p) =

mX
j=1

yjWj(p) 2 HpG
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for every Y 2 G we achieve the relation dHu(p)(Y (p)) = du(p)(pH(Y )(p)). 2

Proposition 2.5. Let u 2 C1(
) and p 2 
. Then there exists a unique horizontal
vector denoted by rHu(p) 2 HpG, such that dHu(p)(V ) = hrHu(p); V ip for any V 2
TpG and rHu(p) is the the orthogonal projection of ru(p) onto HpG.

Proof. The linear map dHu(p) can be represented by a vector W 2 TpG such that
dHu(p)(V ) = hW;V ip for any V 2 TpG. We �rst prove that W 2 HpG. We �rst
observe that TpG = H1

pG� � � � �H�
pG where we have de�ned for any j = 1; : : : ; �

Hj
pG = fX(p) 2 TpG j X 2 Hjg:

Then we can write V =
P�

j=1 Vj and W =
P�

j=1Wj, where Vj;Wj 2 Hj
pG. By virtue

of Proposition 2.4 we know that dHu(p)(V ) = du(p)(V1) = hru(p); V1i, hence

hru(p); V1ip = hW;V ip = hW;V1i:

Due to the fact that we are using a graded metric the subspaces fHj
pG j j = 1; : : : ; �g

are orthogonal each other, then the arbitrary choice of V implies that Wj = 0 for every
2 � j � � and

hru(p)�W1; V1i = 0

for every V1 2 HpG. The last property characterizes W1 as the orthogonal projection
of ru(p) onto HpG. In particular W1 is the projection of W onto HpG. Thus, de�ning
rHu(p) = W1 the proof is achieved. 2

De�nition 2.6 (Horizontal normal). Let � � 
 be a C1 submanifold of codimension
one and let p 2 �. We denote by �(p) a unit normal to � at p with respect to a �xed
graded metric. We say that the orthogonal projection of �(p) onto HpG is a horizontal
normal of � at p and we denote it by �H(p).

Remark 2.7. Note that the horizontal normal should be considered up to its sign,
because we do not require oriented submanifolds in the de�nition of horizontal normal
and all functions depending on the horizontal normal do not depend on its sign. In
more rigorous terms, one should identify �H and ��H as equivalent relation in HpG

and consider the corresponding quotient space.

Lemma 2.8. Let u : 
 �! R be a C1 map. Suppose that u�1(0) 6= ; and assume that
ru(p) 6= 0 for every p 2 
. Then, for every p 2 u�1(0) and every Z 2 TpG we have

(13) dHu(p)(Z) = jru(p)j h�H(p); Zip and �H(p) =
rHu(p)

jru(p)j
;

where �H(p) is the horizontal normal of the submanifold u�1(0) at the point p.

Proof. We observe that �(p) = ru(p)=jru(p)j is a unit normal to u�1(0) at p. By
de�nition of horizontal normal, the orthogonal projection of �(p) onto HpG is �H(p),
then Proposition 2.5 concludes the proof. 2

De�nition 2.9 (Horizontal gradient). Let u 2 C1(
). In view of Proposition 2.5 we
can de�ne the horizontal gradient of u as the unique C1 horizontal vector �eld rHu
such that

dHu(p)(Y ) = hrHu(p); Y ip
for every p 2 
 and every Y 2 TpG.
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De�nition 2.10 (Horizontal point). Let � � 
 be a C1 submanifold of codimension
k and let p 2 �. We say that p 2 � is a horizontal point of � if

(14) dim(HpG)� dim (HpG \ Tp�) � k � 1:

The horizontal set of � is the subset of all horizontal points and it is denoted by C(�).

The previous de�nition is inspired by Lemma 2.11 and Theorem 2.13 in the following
sense. Let � be a submanifold of codimension one de�ned as a level set of a C1 map
u : 
 �! R. Theorem 2.13 singles out a class of \intrinsic" singular points of �,
corresponding to the subset of � where dHu vanishes, (this subset is well de�ned due
to Proposition 2.4). In view of Lemma 2.11 this subset exactly corresponds to the
subset of horizontal points of �. The singularity of u at p 2 � can be also expressed
by the condition dim(HpG) = dim (HpG \ Tp�), namely, dHu(p) is vanishing. For
submanifolds of higher codimension condition (14) amounts to the non surjectivity
of dHu(p) : G �! R

k, because dim (dHu(p)(HpG)) = dim(HpG) � dim (HpG \ Tp�),
although the map u does not appear in (14). In the case k = 1, one can interpret
inequality (14) by the inclusion HpG � Tp�, that coincides with condition dim(HpG) =
dim(HpG\ Tp�). It is clear that when k > 1 condition (14) means that the horizontal
subspace HpG is allowed to intersect Tp� without necessarily being contained in it.
Thus in higher codimension, a point p such that HpG � Tp� is a horizontal point, but
the horizontal set C(�) includes a larger class of points.

Lemma 2.11 (Singular points). Let O be an open subset of G with the unit element
e contained in O and let u 2 C1(O;Rk) such that u(e) = 0 and the di�erential map
du(p) : TpG �! R

k is surjective for any p 2 O. Then, de�ning � = u�1(0), we
represent the horizontal set of � as follows

C(�) =
n
p 2 � j dHu(p) : G �! R

k is not surjective
o
:

Proof. We choose p 2 � � O. Since the submanifold � coincides with the level
set u�1(0) we have Ker(du(p)) = Tp�. Let us de�ne the subspace

S(p) = fX 2 H1 j X(p) 2 HpG \ Tp�g � H1:

We wish to prove that

Ker(dHu(p)) = S(p)�H2 � � � � �H�:(15)

We will use the formula

dHu(p)(Y (p)) = du(p) (pH(Y )(p)) for any Y 2 G;(16)

proved in Proposition 2.4. Let Y 2 S(p)�H2�� � ��H�. By de�nition of S(p) we have
that pH(Y )(p) 2 HpG \ Tp� and by (16) we obtain that dHu(p)(H

j) = f0g for every
j = 2; : : : ; �, then du(p)((Y )(p)) = 0. As a result, we have proved the �rst inclusion

S(p)�H2 � � � � �H� � Ker(dHu(p)):

Conversely, assume that Y 2 Ker(dHu(p)). By (16) it follows that pH(Y )(p) 2
Ker(du(p)), then pH(Y )(p) 2 HpG \ Tp�. We have proved that pH(Y ) 2 S(P ), hence
Y 2 S(p)�H2 � � � � �H�. The arbitrary choice of Y implies the opposite inclusion

Ker(dHu(p)) � S(p)�H2 � � � � �H�;
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therefore (15) follows. The equality (15) and the relation dim(S(p)) = dim(HpG\Tp�)
yield

(17) dim(dHu(p)(G)) = dim(G)�dim(Ker(dHu(p))) = dim(HpG)�dim(HpG\Tp�) :

Now assume that p 2 C(�). By de�nition of horizontal point we know that

dim(HpG)� dim(HpG \ Tp�) � k � 1;

therefore formula (17) implies that dim(dHu(p)(G)) � k�1 and that dHu(p) : G �! R
k

cannot be surjective. Conversely, if dHu(p) : G �! R
k is not surjective, then by (17)

it follows that dim(HpG)� dim(HpG \ Tp�) � k � 1. This concludes the proof. 2

Proposition 2.12. Let � be a submanifold of G. Then for any p 2 G we have

lp(C(�)) = C(lp(�)) :

Proof. The left translation lp : G �! G is a di�eomorphism, therefore lp(�) is
another submanifold of G. In view of (5) and using the chain rule it follows that
dlp(s) (HsG) = HpsG for any s 2 G, hence

dlp(s) (HsG \ Ts�) = HpsG \ dlp(s)(Ts�) = HpsG \ Tps (lp�) :(18)

As a consequence, for any s 2 G we have

dim (HsG \ Ts�) = dim (HpsG \ Tps (lp�)) :

By the de�nition of horizontal point, the last equality implies that s 2 C(�) if and
only if ps 2 C(lp�). 2

An essential tool to achieve Theorem 2.16 is the following Sard-type theorem, which
corresponds to Theorem 2.7 of [47].

Theorem 2.13 (Sard-type theorem). Let G and M be strati�ed groups of Hausdor�
dimension Q and P , respectively, with Q � P . Let A � G be a measurable set.
Consider a Lipschitz map � : A �!M and de�ne the set of singular points

S = fp 2 A j dH�(p) exists and it is not surjectiveg:

Then, for HP -a.e. � 2M it follows HQ�P (S \ ��1(�)) = 0.

Remark 2.14. Due to the general Eilenberg inequality proved in 2.10.25 of [23] the
fact that points where u is not P-di�erentiable are negligible implies that they are
HQ�P -negligible in HP -a.e. level set. In other words, for HP -a.e. level set of u the
subset of points p where dH�(p) exists has full measure.

We will apply Theorem 2.13 to the caseM = Rk, P = k and � 2 C1(U;Rk), where U
is an open subset of G. Due to Proposition 2.4, any map of C1(U;Rk) also belongs to
C1
H(U;R

k), then it is everywhere P-di�erentiable, with continuous P-di�erential. The
existence everywhere of the P-di�erential allows us to divide the points of ��1(t) into
two disjoint subsets for every t 2 Rk. The �rst one is the subset of points p 2 ��1(t)
such that dH�(p) : G �! R

k is not surjective and the second one is the complement.
It is clear that C1

H maps are locally Lipschitz with respect to the Carnot-Carath�eodory
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distance, therefore Theorem 2.13 can be applied to ujK , where K is a compact subset
of U , getting

HQ�k
�n
p 2 K j �(p) = t and dH�(p) is not surjective

o�
= 0 :(19)

for a.e. t 2 Rk. If we take a countable family of compact subsets fKjg whose union is
equal to U and we apply (19) to any of these compact subsets, it follows that for a.e.
t 2 Rk we have

HQ�k
�n
p 2 U j �(p) = t and dH�(p) is not surjective

o�
= 0 :(20)

This proves the following corollary of Theorem 2.13.

Corollary 2.15. Let � : U �! R
k be a C1 map. Then � 2 C1

H(U;R
k) and for a.e.

t 2 Rk equation (20) holds.

The next theorem is the main result of this paper.

Theorem 2.16 (Negligibility). Let � � 
 be a C1 submanifold of codimension k.
Then we have HQ�k (C(�)) = 0:

Proof. According to De�nition 1.4, we �x a graded basis (W1; : : : ;Wq) and the
associated graded coordinates given by F : Rq �! G. Let us �x a point p 2 �.
By de�nition of C1 submanifold there exists an open neighbourhood Op of p, a map
up 2 C1(Op;R

k) and some integers 1 � j1 < j2 < � � � < jk � q such that for any
s 2 Op the vectors (Wj1up(s);Wj2up(s); : : : ;Wjkup(s)) are linearly independent and
�\Op = u�1p (0). Proposition 2.12 permits us to translate p to the unit element e 2 G.

We de�ne O = lp�1Op and u : O �! R
k as u(s) = up(lps) for each s 2 O. The

left invariance of vector �elds Wj gives Wju(s) = Wjup(lps) for every s 2 O and every
j = 1; : : : ; q. Then for every s 2 O the vectors (Wj1u(s);Wj2u(s); : : : ;Wjku(s)) are
linearly independent. We de�ne the translated submanifold �p = lp�1�, the open set
~O = F�1(O) � R

q and ~� = F�1(�p) � R
q, observing that ~u�1(0) = ~� \ ~O where

~u = u � F : ~O �! R
k is C1. We have

@xj ~u(0) = du � @xjF (0) = du �Wj(e) = Wju(e)

for any j = 1; : : : ; q. Then the vectors (@xj1 ~u; : : : ; @xjk ~u) are linearly independent in an

open neighbourhood O1 � ~O of the origin. Let us de�ne the subspace

� =
n
x 2 Rq j xj1 = xj2 = � � � = xjk = 0

o
:

By the implicit function theorem there exist an open subset A � � containing the
origin and a C1 map ' : A �! R

k such that ~u(�; '(�)) = 0 for any � 2 A. Our
notation precisely means

(�; '(�)) =
X

i=2fj1;:::;jkg

�i ei +
X

i2fj1;:::;jkg

'i(�) eji

where (ej) is the canonical basis of R
q. The map � : A �! O1 is de�ned by �(�) =

(�; '(�)) 2 ~� for any � 2 A. We introduce the C1 map 	 : Rk � A �! G,

	(t; �) = exp t1Wj1 � exp t2Wj2 � � � � � exp tkWjk � F (�(�))
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for every (t; �) 2 Rk�A. We have used the dot symbol to denote the group operation.
We have

@ti	(0) = Wji(e) 2 TeG and @�j	(0) = Wj(e) +
kX
i=1

'ji�j(0)Wji(e) ;

for every i = 1; : : : ; k and every j =2 fj1; : : : ; jkg. It is easily recognized that vectors

(@t1	(0); : : : ; @tq	(0))

are a basis of TeG, hence there exist " > 0 and open sets A1 � A and U � G such that
	
�
(�"; ")k � A1

�
= U , 0 2 A1, e 2 U and the function

	 : (�"; ")k � A1 �! U

is invertible. Let us consider the projection p : Rq �! R
k de�ned by

p(x) = (xj1 ; xj2 ; : : : ; xjk)

for any x 2 Rq and de�ne the C1 map � : U �! (�"; ")k as

�(s) = p
�
	�1(s)

�
; for any s 2 U:

Thus, Corollary 2.15 implies that for a.e. t 2 (�"; ")k we have

(21) HQ�k
�n
s 2 U j �(s) = t and dH�(s) is not surjective

o�
= 0:

By the fact that 	 is invertible it follows that d�(s) is surjective for every s 2 U , then
the subset St = ��1(t) � U is a C1 submanifold for any t. We can apply Lemma 2.11,
obtaining that

C (St) =
n
s 2 St j dH�(s) is not surjective

o
:

In view of (21) we get HQ�k (C(St)) = 0 for a.e. t 2 (�"; ")k. By de�nition of � we
know that

St = ��1(t) =
n
s 2 U j 	�1(s) 2 ftg � A1

o
= exp t1Wj1 � exp t2Wj2 � � � � � exp tkWjk � F (�(A1))

= lst1 (lst2 (� � � (lstkF (�(A1)))) � � � );

where t = (t1; t2; : : : ; tk) and sti = exp tiWji for every i = 1; 2; : : : ; k. For t = 0 2 Rk

the previous equations yield S0 = F (�(A1)) � �p, then

St = lst1 (lst2 (� � � (lstkS0)) � � � ):

The previous formula and the HQ�1-negligibility of C(St) for a.e. t 2 (�"; ")k yield

0 = HQ�k (C(St)) = HQ�k
�
C(lst1 (lst2 (� � � (lstkS0)) � � � ))

�

= HQ�k
�
lstk

�
lstk�1 � � �

�
lst1 (C(S0)) � � �

���
= HQ�k (C(S0)) :

In the third equality we have used Proposition 2.12 and in the fourth one we have used
the fact that left translations are isometries with respect to any homogeneous distance.
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Note that S0 contains the unit element e and it is an open subset of �p. We know that
�p = lp�1�, hence de�ning Sp = lpS0 we have that Sp � � is an open neighbourhood
of p in the topology of �. Thus, reasoning as before we obtain

HQ�k(Sp) = HQ�k (C(lpS0)) = HQ�k (lp(C(S0)) = HQ�k (C(S0)) = 0:

The arbitrary choice of p implies that we can �nd a countable family of open subsets�
Spj j Spj � �; j 2 N

	
:

such that � =
S

j2N Spj and H
Q�k

�
C(Spj)

�
= 0 for every j 2 N. Finally, the thesis

follows by the equality C(�) =
S

j2NC(Spj). 2

A �rst important consequence of the previous theorem occurs in codimension one,
where we obtain the representation of the Q�1 dimensional spherical Hausdor� mea-
sure of C1 hypersurfaces. To see this, we will use the notion of \metric factor", [48].

De�nition 2.17 (Metric factor). Let B1 be the open unit ball with respect to a
�xed homogeneous distance d of G. Consider � 2 H1 n f0g along with its orthogonal
hyperplane ~L(�) in G and de�ne L(�) = exp ~L(�) � G. Let F : Rq �! G represent a
system of graded coordinates and de�ne

(22) �gQ�1(�) = Hq�1
j�j

�
F�1(L(�) \B1)

�
:

The map � �! �gQ�1(�) is called the metric factor of the homogeneous distance d with
respect to the direction � and the graded metric g.

With a slight abuse of notation, it will be useful in the sequel to de�ne the metric
factor also for horizontal vectors. We de�ne

�gQ�1(v) = �gQ�1(V )

where v 2 HpG and V 2 H1 n f0g is the unique vector �eld such that V (p) = v. Note
that a more rigorous, but unnecessary formulation should consider the metric factor
�gQ�1 as a function on the tangent bundle TG and which is constant along left invariant
vector �elds.

Remark 2.18. As we have seen in Lemma 1.10 of [48], the above de�nition does
not depend on the choice of graded coordinates. So the number �gQ�1(�) depends
only on the homogeneous distance d, the direction of � and the graded metric g.

By the symmetry of Euclidean balls and taking two of them B
j�j
r1 and B

j�j
r2 such that

B
j�j
r1 � F�1(B1) � B

j�j
r2 , we notice that the intersection F

�1 (L(�)) \ Bj�j
ri for i = 1; 2 is

independent of the direction �. As as result, for any � 2 H1 n f0g we have

!q�1 r
q�1
1 � �gQ�1(�) � !q�1 r

q�1
2 ;

then � �! �gQ�1(�) is uniformly bounded from above and from below by positive
constants which depend on the homogeneous distance and on the graded metric.

In Subsection 2.1 of [48] a class of strati�ed groups where the Carnot-Carath�eodory
distance yields a constant metric factor is singled out, namely, the class of R-rotational
groups, which encompasses Heisenberg groups and more general H-type groups. In the
appendix of [29], Franchi, Serapioni and Serra Cassano have constructed a general
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homogeneous distance d1 for every strati�ed group. Its explicit formula is stated in
R
q with respect to graded coordinates:

d1(x; 0) = max
j=1;:::;�

f"j j(x
mj�1+1; : : : ; xmj)j1=jg(23)

with the left invariant property d1(x; y) = d1(x
�1 � y; 0) and "j 2]0; 1[ for every

j = 1; : : : ; q, are suitable dimensional constants depending only on the group. The
integer mj for every j = 0; : : : ; � is introduced in De�nition 1.4 and the dot symbol
between x�1 and y denotes the group operation in graded coordinates, according to the
discussion below De�nition 1.4. In the next proposition we prove that the metric factor
with respect to this distance becomes a constant function of the horizontal direction �.

Proposition 2.19. Let �gQ�1 represent the metric factor with respect to the distance d1.

Then there exists �Q�1 > 0 such that for every � 2 H1 n f0g we have �gQ�1(�) = �Q�1.

Proof. For any couple of horizontal vectors �; � 2 H n f0g we can �nd an isometry
� : G �! G such that �(�) = � and �( ~L(�)) = ~L(�), where ~L(�) and ~L(�) are the
orthogonal spaces to � and �, respectively. We read these orthogonal spaces in G

de�ning L(�) = exp
�
~L(�)

�
and L(�) = exp

�
~L(�)

�
. Let (W1; : : : ;Wq) be a graded

basis of G, let F : Rq �! G be the associated system of graded coordinates and
de�ne I(x) =

Pq
j=1 x

jWj 2 G for every x 2 Rq. By the expression of d1 it is easy

to see that the unit ball ~B1 � R
q with respect to d1 is preserved under the family of

isometries ~� , i.e. ~�( ~B1) = ~B1. Thus, taking into account that F = exp �I and that
~� = I�1 � � � I : Rq �! R

q is an Euclidean isometry

F�1(L(�)) \ ~B1 = I�1( ~L(�)) \ ~B1 = I�1(�( ~L(�))) \ ~B1

= ~�
�
I�1( ~L(�)) \ ~��1( ~B1)

�
= ~�

�
I�1( ~L(�)) \ ~B1

�
= ~�

�
F�1(L(�)) \ ~B1

�
;

then, by De�nition 2.17 it follows that

�gQ�1(�) = Hq�1
j�j

�
F�1(L(�)) \ ~B1)

�
= Hq�1

j�j

�
~�
�
F�1(L(�)) \ ~B1)

��

= Hq�1
j�j

�
F�1(L(�)) \ ~B1)

�
= �gQ�1(�):

This concludes the proof. 2

In view of Theorem 2.16 in the case k = 1, the statement of Theorem 2.3 in [48] holds
for any C1 submanifold of codimension one. As a consequence, the relation between the
Riemannian measure �g induced by the graded metric g restricted to a C

1 submanifold
� of codimension one and SQ�1

x� is established on arbitrary strati�ed groups.

Theorem 2.20. Let � be a C1 submanifold of codimension one in 
. Then we have

�gQ�1(�H)S
Q�1
x� = j�H j �gx� ;(24)

SQ�1
x� =

j�H j

�gQ�1(�H)
�gx� ;(25)

where �g is the measure induced by the graded metric g restricted to �.
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3. (G;Rk)-rectifiability and perimeter measure

In this section we present some applications of Theorem 2.16. We start introducing
families of regular sets with respect to the geometry of strati�ed groups.

De�nition 3.1 ((G;Rk)-regular set). A subset � � 
 is a (G;Rk)-regular set if there
exists a map f 2 C1

H(
;R
k) such that � = f�1(0) and the P-di�erential

dHf(p) : G �! R
k

is a surjective G-linear map for any p 2 �.

De�nition 3.2 ((G;Rk)-recti�ability). We say that S � 
 is (G;Rk)-recti�able, if
there exists a sequence of (G;Rk)-regular sets f�jg such that

HQ�k
�
S n

[
j2N

�j

�
= 0:

The (G;Rk)-recti�ability turns out to have a \fractal nature" with respect to the
Euclidean viewpoint, since (G;Rk)-regular sets may have Euclidean Hausdor� dimen-
sion strictly greater than their topological dimension, then they cannot be recti�able
in the Euclidean sense, [41]. In the following de�nition we recall the classical notion of
recti�ability, utilizing countable unions of C1 surfaces, instead of Lipschitz images.

De�nition 3.3 (Recti�ability). We say that a subset S � G is recti�able of codi-
mension k or simply (q�k)-recti�able if there exists a sequence of C1 surfaces f�jg of
dimension (q�k) such that

Hq�k
j�j

�
S n

[
j2N

�j

�
= 0 :

Remark 3.4. Notice that (G;Rk)-recti�ability coincides with recti�ability when G =
R
q and q > k. Then the notion of (G;R)-recti�ability allows us to state in a uni�ed

way the De Giorgi recti�ability theorem in strati�ed groups. By results of [19], [27],
[29] we know that if j@EjH(G) <1, where G is either an Euclidean space or a strati�ed
group of step two, then the H-reduced boundary @�HE is (G;R)-recti�able. Presently,
this result for strati�ed groups of step higher than two is an open issue.

In order to complete the picture, we brie
y mention a further extension of the notion
of (G;Rk)-recti�ability. In fact, we can replace Rk with another strati�ed group M.

De�nition 3.5 ((G;M)-regular set). A subset � � 
 is a (G;M)-regular surface if
there exist f 2 C1

H(
;M) such that f�1(e) = � and

dHf(p) : G �!M

is a surjective G-linear map for any p 2 �.

It is apparent that the notion of (G;M)-regularity in higher codimension allows us
a certain amount of freedom in the choice of M, but not all codomains are \good" to
be considered. For instance, the family of (Hn;Hm)-regular sets is empty whenever
n > m. This follows by the fact that there are no surjective G-linear maps between
H
n onto Hm, as it can be checked using the de�nition of G-linearity and the group

operation in the Heisenberg group, see also Theorem 2.8 of [47]. As soon as we have
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a surjective G-linear map L : G �! M a canonical example of (G;M)-regular set can
be given by choosing the subgroup N = L�1(e) � G which is (G;M)-regular. In view
of Proposition 1.12 of [47] the Hausdor� dimension of N is Q�P , where Q and P are
the Hausdor� dimensions of G and M, respectively. These considerations lead to the
following de�nition.

De�nition 3.6 ((G;M)-recti�ability). We say that S � 
 is (G;M)-recti�able, if there
exists a sequence of (G;M)-regular sets f�jg such that

HQ�P
�

�
S n

[
j2N

�j

�
= 0 ;

where � is the Carnot-Carath�eodory distance of G.

Theorem 3.7. Let � � 
 be a connected submanifold of class C1 and codimension k.
Then � is (G;Rk)-recti�able.

Proof. By Lemma 2.11 we see that C(�) is a closed subset of �, then � nC(�) is
a countable union of connected pieces that can be represented locally as level sets of
C1 maps with surjective P-di�erential. Theorem 2.16 implies HQ�k (C(�)) = 0, hence
the thesis follows. 2

Theorem 3.8. Every recti�able set of codimension k is (G;Rk)-recti�able.

Proof. Let S be a recti�able set of codimension k and let f�j j j 2 Ng be a

family of C1 submanifolds of codimension k such that Hq�k
j�j

�
S n

S
j2N�j

�
= 0 : By

Proposition 4.4 of [29], for every � > 0 and every R > 0 there exists CR > 0 such that

HQ�q+�(E) � CRH
�
j�j(E);(26)

whenever E � BR. Using the estimate (26) for � = q � k we obtain

HQ�k
�
BR

\
S n

[
j2N

�j

�
� Hq�k

j�j

�
BR

\
S n

[
j2N

�j

�
= 0

for every R > 0, then HQ�k
�
S n

S
j2N�j

�
= 0. By Theorem 3.7 we know that �j is

(G;Rk)-recti�able for any j 2 N. This concludes the proof. 2

Finally, we discuss an application of Theorem 2.16 related to a question raised by
Danielli, Garofalo and Nhieu in [15]. In this paper the authors prove that there exist
constants c; C > 0 such that for every relatively compact open set E with C2 boundary
the estimates

c SQ�1(@E) � j@EjH(H
n) � C SQ�1(@E) ;(27)

hold, where Q = 2n + 2 is the Hausdor� dimension of the Heisenberg group Hn.
Here the authors conjecture the validity of (27) for arbitrary strati�ed groups. Due to
Theorem 2.5 of [49], see also Theorem 3.5 of [28], we have the following formula

j@EjH = �gQ�1(�H)S
Q�1
x@E ;(28)

under the assumption that the characteristic set is SQ�1-negligible. Then Theorem 2.16
makes (28) true for any set E with C1 boundary. Thus, formula (28) immediately
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extends the validity of (27) to any open set with C1 boundary contained in an arbitrary
strati�ed group, obtaining that

�gQ�1 SQ�1(@E \ 
) � j@EjH(
) � �
g

Q�1 SQ�1(@E \ 
) ;(29)

where 
 � G is an arbitrary bounded open set. The constants �gQ�1, �
g

Q�1, are de�ned
as follows

�gQ�1 = inf
�2H1

�gQ�1(�) and �
g

Q�1 = sup
�2H1

�gQ�1(�):

In Remark 2.18 we have shown that the function � �! �gQ�1(�) is bounded from above
and from below by positive constants, therefore estimates (29) are nontrivial.
As last remark, we wish to show that the constants of (29) are actually optimal. To

do this, we need of the following de�nition.

De�nition 3.9. Let p 2 G and let � 2 H1 n f0g. The vertical half spaces with respect
to � are de�ned as follows

S+(�) = exp
�n
Y 2 G

��� h�; Y i > 0
o�

S�(�) = exp
�n
Y 2 G

��� h�; Y i < 0
o�

:

The vertical half spaces with respect to � and centered at p 2 G are de�ned as follows

lp
�
S+(�)

�
= S+(p; �) and lp

�
S�(�)

�
= S�(p; �):

Let us denote by O the family of nonempty bounded open sets of G and by E the
family of open sets with C1 boundary. We easily see that

�gQ�1 � inf

�
j@EjH(
)

SQ�1(@E \ 
)

���
 2 O; E 2 E

�

� inf

�
j@S+(�)jH(
)

SQ�1(@S+(�) \ 
)

���
 2 O; � 2 H1 n f0g

�

= inff�gQ�1(�) j � 2 H
1 n f0gg = �gQ�1;

where the �rst equality of the last line follows from (28). We also have

�
g

Q�1 � sup

�
j@EjH(
)

SQ�1(@E \ 
)

���
 2 O; E 2 E

�

� sup

�
j@S+(�)jH(
)

SQ�1(@S+(�) \ 
)

���
 2 O; � 2 H1 n f0g

�

= supf�gQ�1(�) j � 2 H
1 n f0gg = �

g

Q�1:

This proves our claim.
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