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Abstract

We study open subgroups G of SL2(Z`)
n in terms of some associated Lie algebras without

assuming that G is a pro-` group, thereby extending a theorem of Pink. The result has
applications to the study of families of Galois representations.

1 Motivation and statement of the result

The ultimate goal of this work is the study of the images of certain Galois representations with
values in GL2(Z`)n, such as those afforded by the Tate modules of elliptic curves, or those arising
from modular forms. In view of this aim, one would wish to provide a manageable description
of these images; however, it turns out that it is beneficial, and in a sense simpler, to consider
arbitrary subgroups G of GL2(Z`)n without making any reference to their origin, and in the
present work Galois representations will play virtually no role. In most applications to the study
of Galois representations, the main object of interest is actually the intersection G ∩ SL2(Z`)n,
and furthermore it is an easy matter to pass from results on subgroups of SL2(Z`)n to results on
subgroups of GL2(Z`)n, so we shall actually mostly work with subgroups G of SL2(Z`)n. Any
such G is the extension of a ‘finite’ part, the image G(`) of the reduction G → SL2(F`)n, by a
‘Lie’ part, the kernel of this reduction.

When G is closed and G(`) is trivial (or more generally when G is pro-`), and ` is odd, a
construction due to Pink [Pin93] gives a very concrete and handy description of G in terms of a
certain Z`-Lie algebra L(G) (together with some additional data which is not very important to
our present discussion). Furthermore, if G is the image of a representation of Gal

(
K/K

)
(K a

number field), the condition that G(`) be trivial can always be met by replacing K by a finite
extension, so that Pink’s theorem applies. Note however that the degree of this extension depends
on `: while this is often perfectly fine when considering a single Galois representation, it may
become a major drawback when dealing with infinite families G` indexed by the rational primes
(as is the case, for example, with the action of Gal

(
K/K

)
on the various Tate modules of an

abelian variety). Furthermore, Pink’s theorem does not apply to ` = 2, which might again be
quite a hindrance when trying to study the whole system G` at once.

While we cannot hope to give a complete description of G in terms of Pink’s Lie algebras when
G is not pro-`, we could try and settle for less, namely a result of the form ‘when L(G) contains
a large neighbourhood of the identity (given explicitly), we can explicitly find a neighbourhood of
the identity of SL2(Z`)n that is included in G’. Note that when dealing with Galois representations
we are often interested in ‘large image’ results, for which this weaker form of Pink’s theorem would
still be adequate. Unfortunately, even this is not possible (cf. for example [Lom14, § 4.5]), and
the best we can hope for is for such a statement to hold not quite for G, but for a subgroup H of
G such that the index [G : H] is bounded by a function of n alone. In order to give a concrete
statement we shall need some preliminary definitions:

Definition 1.1. For a prime ` and a positive integer s we let B`(s) be the open subgroup of
SL2(Z`) given by {

x ∈ SL2(Z`)
∣∣ x ≡ Id (mod `s)

}
.

We also set B`(0) = SL2(Z`), and for non-negative integers k1, . . . , kn we denote by B`(k1, . . . , kn)
the open subgroup

∏n
j=1 B`(kj) of SL2(Z`)n.
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Definition 1.2. (cf. [Pin93]) Let ` be a prime, n a positive integer and G be an open subgroup of
GL2(Z`)n. If ` = 2, assume further that the reduction modulo 4 of G is trivial. Writing elements
of G as n-tuples (g1, . . . , gn) of elements of GL2(Z`), we define a map Θn by the formula

Θn : G →
⊕n

i=1 sl2(Z`)
(g1, . . . , gn) 7→

(
g1 − 1

2 tr(g1), . . . , gn − 1
2 tr(gn)

)
,

and we let L(G) ⊆ sl2(Z`)n be the Z`-span of Θn(G). We call L(G) the Lie algebra of G.

Theorem 1.3. Let ` be an odd prime, n be an integer, and G be an open subgroup of SL2(Z`)n.
There exists an open subgroup H of G, of index at most 24n48n(n−1), with the following property:
if L(H) contains

⊕n
i=1 `

ksl2(Z`) for a certain integer k > 0, then H contains B`(p, . . . , p) for
p = 80(max{n, 2} − 1)k.

Similarly, let n be a positive integer and G be an open subgroup of SL2(Z2)n. There exists an
open subgroup H of G that satisfies [G : H]

∣∣ 96n, is trivial modulo 4 (so that L(H) is defined),
and has the following property: if L(H) contains

⊕n
i=1 2ksl2(Z2) for a certain integer k > 0, then

H contains B2(p, . . . , p) for p = 607(max{n, 2} − 1)k.

While it is certainly true that both this theorem and its proof are quite technical, it should
be remarked that this statement does enable us to show exactly the kind of ‘large image’ results
we alluded to: the case n = 1 has been used in [Lom14] to show an explicit open image theorem
for elliptic curves (without complex multiplication), and in [Lom15] we apply the case n = 2 to
extend this result to arbitrary products of non-CM elliptic curves.

A few more words on the proof of theorem 1.3: as it will be clear from section 5, the crucial
cases are n = 1 and n = 2. While the former has essentially been proven in [Lom14], the latter
forms the core of the present paper, and we shall actually prove it in a slightly more precise form
than strictly necessary to establish theorem 1.3. This will be done in sections 3 and 4 below, where
we also give analogous statements for GL2(Z`)2.

Notation. Throughout the paper ` is a fixed prime number. If G is a closed subgroup of GL2(Z`)n
and k is a positive integer, we denote by G(`k) the image of the projection G→ GL2(Z/`kZ)n. If
H is a subgroup of SL2(Z`)n (resp. of SL2(F`)n), we denote by N(H) the largest normal subgroup
of H which is pro-` (resp. an `-group); this object is well-defined by lemma 2.3 below. If x is an
element of GL2(Z`) (resp. of Z`), we write [x] for its image in GL2(F`) (resp. in F`). Since special
care is needed to treat the case ` = 2, to write uniform statements we set v either 0 or 1 according
to whether ` is odd or ` = 2. Finally, it will also be useful to introduce some standard elements
of SL2(Z`): for every a ∈ Z` we set

L(a) =

(
1 0
a 1

)
, D(a) =

(
1 + a 0

0 (1 + a)−1

)
, R(a) =

(
1 a
0 1

)
.

Notice that L(a), R(a) belong to SL2(Z`) for any a ∈ Z`, while D(a) is in SL2(Z`) if and only if
a 6≡ −1 (mod `).

2 Preliminary lemmas

In this section we prove some general lemmas which will be used repeatedly throughout the paper.

2.1 Logarithms and exponentials

We recall the following fundamental properties of logarithms and exponentials, both for `-adic
integers and for elements of M2(Z`), the set of 2× 2 matrices with coefficients in Z`. The proofs
of these statements are immediate upon direct inspection of the involved power series, and will
not be included.
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Lemma 2.1. The power series log(1 + t) =
∑
n≥1

(−1)n−1
tn

n
converges for t ∈ `Z` (respectively for

t ∈ `M2(Z`)), and establishes a bijection between 1+`1+vZ` and `1+vZ` (resp. between B`(1+v) and

`1+vM2(Z`)). The inverse function is given by the power series exp t =
∑
n≥0

tn

n!
, which converges for

t ∈ `1+vZ` (resp. t ∈ `1+vM2(Z`)). Furthermore, for every t ∈ `1+vZ` we have v` log(1+t) = v`(t),
and for every t ∈ `1+vZ` we have v`(exp(t)− 1) = v`(t).

Lemma 2.2. Let A,B ∈ M2(Z2) and n ≥ 2 be an integer. Suppose that A ≡ 0 (mod 4) and
B ≡ 0 (mod 2n): then exp(A+B) ≡ exp(A) (mod 2n) and log(A+B) ≡ log(A) (mod 2n).

2.2 Subgroups of SL2(Z`)
n and Z`-Lie algebras

In this section we consider various properties of closed subgroups of SL2(Z`)n, including their Lie
algebras, generating sets, and derived subgroups.

Lemma 2.3. Let n be a positive integer and G be a closed subgroup of SL2(Z`)n. The collection
of all normal pro-` subgroups of G has a unique maximal element, which we denote by N(G).
Likewise, if G is a subgroup of SL2(F`)n, the collection of all normal subgroups of G whose order
is a power of ` admits a unique maximal element, which we denote again by N(G).

Proof. Denote by π : G → SL2(F`)n the canonical projection and let N be a normal, pro-`
subgroup of G. Clearly π(N) is an `-group that is normal in G(`), so it suffices to show that
N(G(`)) is well-defined, for then N(G) = π−1(N(G(`))) is the maximal normal pro-` subgroup
of G. To treat the finite case consider first n = 1. Then G is a subgroup of SL2(F`), and it easy
to see that the collection of its maximal normal subgroups of order a power of ` has a maximal
element: it follows from the Dickson classification that this is given by the unique `-Sylow if G
is of Borel type, and by the trivial group otherwise. Finally, if G is a subgroup of SL2(F`)n with
n > 1, we denote by Gi the projection of G on the i-th factor SL2(F`); it is then immediate to
check that N(G) =

{
(g1, . . . , gn) ∈ G

∣∣ gi ∈ N(Gi)
}
.

Lemma 2.4. Let t be a non-negative integer. Let W ⊆ sl2(Z`) be a Lie subalgebra that does
not reduce to zero modulo `t+1. Suppose that W is stable under conjugation by B`(s) for some
non-negative integer s, where s ≥ 2 if ` = 2 and s ≥ 1 if ` = 3 or 5. Then W contains the open
set `t+4s+4vsl2(Z`).

Proof. Fix an element w of W that does not vanish modulo `t+1 and write w = µxx+ µyy + µhh
for some µx, µy, µh ∈ Z`, where

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
and min {v`(µx), v`(µy), v`(µh)} ≤ t. Set α := 1 + `s and consider the matrices C` = L(`s),
Cr = R(`s), and Cd = D(`s). For • ∈ {l, d, r} define C• as the linear operator of W into itself
given by

C•(x) = C•
−1xC•

and set D• := C• − Id. As W is stable under conjugation by B`(s), it is in particular also stable
under C• and D•. One can easily check the following identities:

α4(Cd − α2 Id) ◦ Dd(w) = (α4 − 1)(α2 − 1)µxx ∈W

(α2Cd − Id) ◦ Dd(w) = (α4 − 1)(α2 − 1)µyy ∈W,
and by considering the decomposition of w we deduce that also (α4 − 1)(α2 − 1)µhh belongs to
W . By the assumptions on s we have v`((α

4 − 1)(α2 − 1)) = 2s + 3v, and therefore W contains
at least one of

M1 = `t+2s+3vh, M2 = `t+2s+3vx, M3 = `t+2s+3vy.
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In the first case W contains `t+3s+4vsl2 (Z`) because of the following identities:

Dr(M1) = 2`t+3s+3vx, Dl(M1) = −2`t+3s+3vy.

In the second and third case W contains `t+4s+4vsl2 (Z`) because of the following identities:

Dl ◦ Dl(M2) = −2`t+4s+3vy, Dl ◦ Dl(M2)− 2Dl(M2) = −2`t+3s+3vh

Dr ◦ Dr(M3) = −2`t+4s+3vx, Dr ◦ Dr(M3)− 2Dr(M3) = 2`t+3s+3vh.

Lemma 2.5. Let n and m be positive integers. Let g ∈ End (Zm` ) and write pg for the character-
istic polynomial of g. Let furthermore λ ∈ Z`, w ∈ Zm` be such that gw ≡ λw (mod `n). Suppose
that w 6≡ 0 (mod `α+1) holds for some 0 ≤ α < n. Then we have pg(λ) ≡ 0 (mod `n−α).

Proof. Denote by (g − λ Id)∗ the adjugate matrix of (g − λ Id), that is the unique operator such
that (g − λ Id)∗(g − λ Id) = det(g − λ Id) · Id holds. Multiplying (g − λ Id)w ≡ 0 (mod `n) on the
left by (g − λ Id)∗ we obtain det(g − λ Id) ·w ≡ 0 (mod `n), and by considering the coordinate of
w of smallest valuation we obtain pg(λ) = det(g − λ Id) ≡ 0 (mod `n−α) as claimed.

Definition 2.6. If n ≥ 2 and if g1, . . . , gn are elements of a group G, we write Commn−1(g1, . . . , gn)
for the (n − 1) times iterated commutator, which is an element of G that can be defined via the
following recursion:

Comm1(g1, g2) = [g1, g2] = g1g2g
−1
1 g−12 ,

Commn−1(g1, . . . , gn) = [Commn−2(g1, . . . , gn−1), gn].

Furthermore, if G1, . . . , Gn are subgroups of a topological group G, we write Commn−1 (G1, . . . , Gn)
for the subgroup of G topologically generated by{

Commn−1(g1, . . . , gn)
∣∣ gi ∈ Gi for i = 1, . . . , n

}
.

We also write [G1, G2] for Comm1(G1, G2).

Lemma 2.7. Let s be a non-negative integer (with s ≥ 2 if ` = 2 and s ≥ 1 if ` = 3). Let
a, b, c ∈ Z` all have exact valuation s. Suppose that c 6≡ −1 (mod `), so that D(c) belongs to
SL2(Z`). Let G be a closed subgroup of SL2(Z`).

1. Suppose G contains L(a) (resp. R(b)): then for all d ∈ Z` such that v`(d) ≥ s the group G
contains L(d) (resp. R(d)).

2. Suppose s ≥ 1 and G contains D(c): then for all d ∈ Z` such that v`(d) ≥ s the group G
contains D(d).

3. Suppose ` ≥ 5 or s ≥ 1. If G contains L(a), R(b), D(c), then it contains all of B`(s).

4. Suppose ` ≥ 5 and G contains L(a), R(b): then G contains all of B`(2s).

Proof. 1. Let u = d
a ∈ Z`. It is easy to check that for every integer n we have L(a)n = L(an).

Fix a sequence nk of rational integers that converge to u in the `-adic topology: then we have
limk→∞ L(a)nk = limk→∞ L(ank) = L (limk→∞ ank) = L(au) = L(d). Now observe that G
contains every term of the sequence L(a)nk , so – since it is closed in SL2(Z`) by assumption
– it also contains their limit L(d). The same proof also applies to the case of R(b).

2. The assumptions on s imply that log(1 + c) is defined, and that v` log(1 + c) = s (cf. lemma

2.1). Let u =
log(1 + d)

log(1 + c)
, which is a well-defined element of Z` since v` log(1 + d) ≥ s.
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Choose as above a sequence nk that converges to u in the `-adic topology: then G contains
the limit

lim
k→∞

D(c)nk = lim
k→∞

(
(1 + c)nk 0

0 (1 + c)−nk

)
= lim
k→∞

(
exp(nk log(1 + c)) 0

0 exp(−nk log(1 + c))

)
=

(
exp(u log(1 + c)) 0

0 exp(−u log(1 + c))

)
= D(d).

3. Suppose first s = 0: then it is easy to see that G(`) = SL2(F`). Since ` ≥ 5, by [Ser97,
IV-23, Lemma 3] this implies G = SL2(Z`). Suppose on the other hand that s ≥ 1: then
parts (1) and (2) imply that G contains L(d), R(d), D(d) for all d ∈ Z` of valuation at least
s, and by [Lom14, Lemma 3.1] these elements generate B`(s).

4. If s = 0 we notice – as in part (3) – that G(`) = SL2(F`), hence G = SL2(Z`). Otherwise, it
suffices to apply part (3) to (a2, b2, ab): indeed part (1) implies that G contains L(a2), R(b2)

and D(ab) = L

(
a

1 + ab

)
R(−b)L(−a)R

(
b

1 + ab

)
.

Lemma 2.8. Let s1, . . . , sn be non-negative integers (where for every j = 1, . . . , n we require that
sj ≥ 2 if ` = 2 and sj ≥ 1 if ` = 3). The iterated commutator Commn−1(B`(s1),B`(s2), . . . ,B`(sn))
contains B`(s1 + · · ·+ sn + (n− 1)v).

Proof. Consider first the case n = 2. Let s be a non-negative integer (with s ≥ 2 if ` = 2 and
s ≥ 1 if ` = 3). By lemma 2.7 (3), if a, b, c are any three elements of Z` of valuation s and such
that c 6≡ −1 (mod `), the group B`(s) is topologically generated by L(a), R(b), D(c). It is easy to
check the following identities:

[L(`s1), D(`s2)] = L

(
`s2 + 2

(`s2 + 1)
2 `
s1+s2

)

[R(`s1), D(`s2)] = R
(
−(2 + `s2)`s1+s2

)
,

where (by the assumptions on s1, s2) we have v`

(
`s2 + 2

(`s2 + 1)
2

)
= v`(2 + `s2) = v. To conclude the

proof for n = 2 it thus suffices to show that [B`(s1),B`(s2)] contains an element of the form D(c)
with v`(c) ≤ s1 + s2 + v. This is easily achieved thanks to the following identity:

L

(
− `s1+2s2

1 + `s1+s2 + `2s1+2s2

)
[R(`s1), L(`s2)]R

(
`2s1+s2

1 + `s1+s2 + `2s1+2s2

)
= D

(
`s1+s2 + `2(s1+s2)

)
,

where we know that L

(
− `s1+2s2

1 + `s1+s2 + `2s1+2s2

)
and R

(
`2s1+s2

1 + `s1+s2 + `2s1+2s2

)
both belong to

[B`(s1),B`(s2)] by what we already proved and by lemma 2.7 (1). The case of an arbitrary n
follows by induction from the case n = 2.

The following lemma can be considered as an integral analogue of [Rib76, Lemma on p. 790].

Lemma 2.9. Let n ≥ 2 be an integer and G be a closed subgroup of
∏n
i=1 SL2(Z`). Write πi

for the projection on the i-th factor, and suppose that for every i 6= j there is some non-negative
integer sij (with sij ≥ 2 if ` = 2 and sij ≥ 1 if ` = 3) such that the group (πi × πj) (G) contains

B`(sij , sij). Then G contains
∏n
i=1 B`

(∑
j 6=i sij + (n− 2)v

)
.
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Proof. Without loss of generality, by the symmetry of the problem it is enough to prove that G

contains {Id} × · · · × {Id} × B`
(∑

j 6=n snj + (n− 2)v
)
. By lemma 2.8 we know that the group

B`
(∑

j 6=n snj + (n− 2)v
)

is generated by
{

Commn−2(g1, . . . , gn−1)
∣∣ gj ∈ B`(snj)} , so it suffices

to show that for every choice of (g1, . . . , gn−1) ∈
∏
j 6=n B`(snj) the group G contains the ele-

ment (Id, . . . , Id,Commn−2(g1, . . . , gn−1)). By hypothesis we can find x1, . . . , xn−1 ∈ G such
that πi(xi) = Id and πn(xi) = gi for all i between 1 and n − 1. Consider now the iterated
commutator g̃ = Commn−2(x1, . . . , xn−1) ∈ G . For i ≤ n − 1, the i-th component of g̃ is triv-

ial because we have πi(g̃) = Commn−2

πi(x1), . . . , πi(xi)︸ ︷︷ ︸
Id

, . . . , πi(xn−1)

 = Id; moreover, our

choice of x1, . . . , xn ensures that πn(g̃) = Commn−2 (g1, . . . , gn−1) holds. We have thus shown
that (Id, . . . , Id,Commn−2 (g1, . . . , gn−1)) is an element of G.

Lemma 2.10. Let ` > 2 and G be a closed subgroup of SL2(Z`)2. Suppose G contains an element
g = (x, y) with [x] = [± Id] and [y] nontrivial and of order prime to `. Then G contains an element
of the form (± Id, z), where the order of [z] is the same as the order of [y].

Proof. Such an element is given by any limit point of the sequence g`
n

.

Lemma 2.11. Let n ≥ 1 and G1, G2 be two closed subgroups of GL2(Z`)n (with G1(4), G2(4)
trivial if ` = 2). Suppose that the two groups

{
λg1

∣∣ λ ∈ Z×` , g1 ∈ G1

}
and

{
µg2

∣∣ µ ∈ Z×` , g2 ∈ G2

}
coincide: then G1, G2 have the same derived subgroup and the same Lie algebra.

Proof. The hypothesis is symmetric in G1, G2, so it suffices to show the inclusions G′1 ⊆ G′2 and
L(G1) ⊆ L(G2). The hypothesis implies in particular that for all g1 ∈ G1 there exists ν(g1) ∈ Z×`
such that ν(g1)g1 ∈ G2. Now let x, y be elements ofG1: then [x, y] = [ν(x)x, ν(y)y] ∈ G′2, so – since
G′1 is generated by elements of the form [x, y] for x, y varying in G1 – we have G′1 ⊆ G′2. As for the
Lie algebra, simply notice that for all g1 ∈ G1 we have Θn(g1) = 1

ν(g1)
Θn(ν(g1)g1) ∈ L(G2).

Lemma 2.12. Let n be a positive integer and g ∈ SL2(Z`) a matrix satisfying g ≡ Id (mod `1+v)
and g 6≡ Id (mod `n). Then Θ1(g) 6≡ 0 (mod `n).

Proof. Write g =

(
a b
c d

)
, so that Θ1(g) =

(
a−d
2 b
c d−a

2

)
. Suppose by contradiction that we had

Θ1(g) ≡ 0 (mod `n), that is c ≡ d ≡ a−d
2 ≡ 0 (mod `n). It then follows a ≡ d (mod `n+v),

and since 1 = det(g) = ad − bc we find a2 ≡ d2 ≡ 1 (mod `n+v). Since a ≡ 1 (mod `1+v) by
hypothesis, this implies a ≡ d ≡ 1 (mod `n), that is, g ≡ Id (mod `n), contradiction.

2.3 Teichmüller lifts

We now recall the definition of Teichmüller lifts and some of their basic properties.

Definition 2.13. Let F be a finite extension of Q` with residue field F = F`k . For an element
[f ] ∈ F we denote by ω([f ]) the Teichmüller lift of [f ], that is to say the only element g ∈ OF that

reduces to [f ] in F and satisfies g`
k

= g.

Lemma 2.14. With the notation of the previous definition, the sequence f `
kn

converges to ω([f ])
when n tends to infinity.

Proof. Write f = ω([f ]) ·u, where u reduces to 1 in the residue field F. It is clear that the sequence

u`
kn

converges to 1 in F , so f `
kn

= ω([f ])`
kn · u`kn

= ω([f ]) · u`kn

converges to ω([f ]).

Lemma 2.15. Let g be an element of SL2(Z`) such that [g] has order prime to ` and strictly

greater than 2: then the sequence g`
2n

for n ∈ N converges to a certain g∞ that satisfies g`
2

∞ = g∞.
Moreover, if [g] is diagonalizable over F`, the limit g∞ even satisfies g`∞ = g∞.
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Proof. The assumption implies that [g] has distinct eigenvalues, hence there exists an extension F
of Q`, of degree at most 2, over which g can be written as g = P−1DP , where D = diag(λ, λ−1) is

diagonal and P is a base-change matrix. By the previous lemma, the sequence D`2n converges to
diag(ω([λ]), ω([λ−1])), so the sequence g`

2n

= PD`2nP−1 converges to P−1 diag(ω([λ]), ω([λ−1]))P ,

which satisfies the conclusion since ω([λ])`
2

= ω([λ]). For the second statement we can take F = Q`
and use the fact that the Teichmüller lifts satisfy ω([λ])` = ω([λ]).

Proof. Let [λ±11 ] = [λ±12 ] be the eigenvalues of [g1] = [g2]. As in the proof of the previous lemma we

see that the sequence (g1, g2)`
2n

converges to a limit (h1, h2) such that the matrices h1, h2 have the
same eigenvalues ω([λi]), ω([λ−1i ]). The existence of Q is then clear if [h1] = [h2] is diagonalizable
over F`, and follows from [Lom14, Lemma 4.7] otherwise. The claim on the orders of [h1], [h2] is
clear.

3 Odd `, n = 2

In this section we establish the case n = 2 of the main theorem when ` is an odd prime, together
with a refined version of it that applies to subgroups of GL2(Z`)2:

Theorem 3.1. Let ` > 2 be a prime number and G an open subgroup of GL2(Z`)2. Let G1, G2 be
the projections of G on the two factors GL2(Z`), and for i = 1, 2 let ni be a positive integer such that
Gi contains B`(ni). Suppose furthermore that for every (g1, g2) ∈ G we have det(g1) = det(g2).
At least one of the following holds:

1. G contains B`(20 max{n1, n2}, 20 max{n1, n2})

2. there exists a subgroup T of G, of index dividing 2 · 482, with the following properties:

(a) if L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`) for a certain integer k ≥ 0, then T contains
B`(p, p), where p = 2k + max {2k, 8n1, 8n2} .

(b) for any (t1, t2) in T , if both [t1] and [t2] are multiples of the identity, then they are
equal.

We will derive this theorem from the corresponding statement for SL2(Z2)2:

Theorem 3.2. Let ` > 2 be a prime number and G an open subgroup of SL2(Z`)2. For i = 1, 2
let ni be a positive integer such that Gi contains B`(ni). At least one of the following holds:

1. G′ contains B`(20 max{n1, n2}, 20 max{n1, n2})

2. there exists a subgroup T of G, of index dividing 482, with the following properties:

(a) if L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`) for a certain integer k ≥ 0, then T ′ contains
B`(p, p), where p = 2k + max {2k, 8n1, 8n2} .

(b) for any (t1, t2) in T , if both [t1] and [t2] are multiples of the identity, then they are
equal.

3.1 Strategy of proof

Given the amount of technical details required to establish theorem 3.2, before plunging into the
actual proof we try to give a general overview of the argument. Several ingredients are needed.
To begin with, when an element of G exists whose two projections g1, g2 on G1, G2 are sensibly
different (for example, g1 has trivial reduction modulo ` but g2 does not), then this element can
be used to show that G is stable under certain ‘projections’ from G to G1 × {Id} and {Id} ×G2:
in this case, the assumption that G1, G2 contain open topological balls is enough to conclude that
the same is true for G (in a quantitative manner). This line of argument is what leads to lemma
3.7. Thus, in proving theorem 3.2 one can assume – among other things – that G(`) looks like the
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graph of an isomorphism: the reduction to this case is carried out in proposition 3.10. Moreover,
theorem 3.2 is essentially known (and due to Pink) when G is pro-`, cf. theorem 3.4 below. We
would therefore like to reduce to the case of pro-` groups, which we do by considering the maximal
normal pro-` subgroup of G (denoted by N(G) in all that follows). Most of the remaining part of
the proof (sections 3.3 to 3.6) is concerned with showing that when the Lie algebra of T (a certain
subgroup of G of bounded index) is large, the same is true for the Lie algebra of N(T ), to which
we can subsequently apply Pink’s theorem. The key observation in carrying out this last step is
the following: since N(T ) is (by definition) normal in T , its Lie algebra is acted upon by all of
T , including those elements that do not belong to N(T ). A careful study of the action of these
elements, whose details depend on the specific shape of T (`), shows that the stability of L(N(T ))
by the conjugation action of T forces it to be not very different from L(T ), and an application of
Pink’s theorem (in the form of lemma 3.8) then concludes the argument.

One final technical ingredient is our ability to change bases to simplify the computations. More
precisely, let g be any element of GL2(Z`)2: then the group G satisfies the assumptions of theorem
3.2 (for certain values of n1, n2) if and only if gGg−1 does, because the topological balls B`(s) are
invariant under any integral change of basis. Likewise, the conclusion of the theorem only involves
topological balls, multiples of the identity, and open sets of the form `ksl2(Z`) ⊕ `ksl2(Z`): all
of these objects are invariant under change of basis – notice that Θ(gtg−1) = gΘ(t)g−1 for any
t ∈ GL2(Z`)2 – and therefore the claim of theorem 3.2 is true for G if and only if it is true for
gGg−1. In other words, as it should be expected, theorem 3.2 depends on G only through its
conjugacy class, and therefore we are free to change basis every time doing so simplifies some of
our calculations.

Remark 3.3. The proof of theorem 3.2 is constructive, in the sense that the group T – when we
are in case (2) – is described explicitly. Property (2b) will be clear from the construction, and we
will not comment further on it.

3.2 Preliminary reductions

One of the key ingredients of the proof of theorem 3.2 is the following result:

Theorem 3.4. Let ` > 2 be a prime number and k be a non-negative integer. Suppose G is
a closed pro-` subgroup of SL2(Z`) such that L(G) contains `ksl2(Z`): then G′ contains B`(2k).
Similarly, if G is a closed pro-` subgroup of SL2(Z`)2 and L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`),
then G′ contains B`(2k, 2k).

Proof. The proof is identical in the two cases, so let us only consider subgroups of SL2(Z`)2 (the
case of SL2(Z`) is also treated in [Lom14, proof of theorem 4.2]). Consider the basis

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
of sl2(Z`). Since [h, x] = 2x, [h, y] = −2y and [x, y] = h, the derived subalgebra of `ksl2(Z`)
is `2ksl2(Z`). By assumption L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`), so the derived subalgebra
[L(G),L(G)] contains `2ksl2(Z`) ⊕ `2ksl2(Z`). Furthermore, in the notation of [Pin93] we have
that C = tr(L(G) · L(G)) contains both tr

(
(`kh, 0) · (`kh, 0)

)
= (2`2k, 0) and (0, 2`2k). Since C

is by definition a topologically closed additive subgroup of Z2
` , this shows in particular that C

contains `2kZ` ⊕ `2kZ`. It then follows from [Pin93, Theorem 2.7] that

G′ =
{
g ∈ SL2(Z`)2

∣∣ Θ2(g) ∈ [L(G),L(G)], tr(g)− 2 ∈ C
}
⊇ B`(2k, 2k).

Proof. (of theorem 3.1 assuming theorem 3.2) Write det∗ for the map G
det−−→ Z2

`
π1−→ Z` given

by the composition of the usual determinant with the projection on the first coordinate of Z2
` .

By assumption, an element (g1, g2) of G satisfies det(g1, g2) = (1, 1) if and only if it satisfies
det∗(g1, g2) = 1.
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Assume first that ` ≤ 5. Denote by T̃ the inverse image in G of an `-Sylow of G(`), and set

T := ker

(
T̃

det∗−−−→ Z×` →
Z×`
Z×2`

)
.

Using the fact det g1 = det g2 for every (g1, g2) ∈ G, and that the index of an `-Sylow of G(`)

is prime to `, it is easily checked that the index of T in G divides 2 · 1
`−1

(
|GL2(F`)|

`

)2 ∣∣ 2 · 482.

Now set T 1 =
{
λg
∣∣ λ ∈ Z×` , g ∈ T

}
∩ SL2(Z`)2. Using lemma 2.11 and the argument of [Lom14,

Lemma 3.16 (2)] one sees easily that T and T 1 have the same derived subgroup and the same
Lie algebra, and moreover it is clear by construction that T 1 is a pro-` subgroup of SL2(Z`)2.
Furthermore, every element (t1, t2) of T reduces to ([Id], [Id]) modulo `, so T satisfies (2b). Now
if L(T ) contains `ksl2(Z`)⊕ `ksl2(Z`), then the same is true for L

(
T 1
)
, hence (T 1)′ = T ′ contains

B`(2k, 2k) by theorem 3.4, and T has properties (2a) and (2b) as required.
Next consider the case ` > 5. Let U1 be the subgroup of G, of index at most 2, given by

ker
(
G

det∗−−−→ Z×` → Z×` /Z
×2
`

)
. Let U2 =

{
λg
∣∣ λ ∈ Z×` , g ∈ U1

}
∩ SL2(Z`)2, and notice as above

that U1 and U2 have the same derived subgroup. Also notice that U2 is open in SL2(Z`)2: indeed,
as G is open in GL2(Z`)2 there is an r > 0 such that B`(r, r) ⊆ G, and the definition of U2

shows that B`(r, r) is also contained in U2. Moreover, since elements in B`(n1),B`(n2) have unit
determinant, the two projections of U2 on the factors GL2(Z`) contain B`(n1),B`(n2) respectively.
We can assume that U ′2 = U ′1 does not contain B`(20 max{n1, n2}, 20 max{n1, n2}), for otherwise
the same holds for G and we are done. Apply then theorem 3.2 to (U2, n1, n2) to find a subgroup
T2 of U2 (of index dividing 482) that has properties (2a) and (2b) of that statement. Notice

that we have a well-defined morphism U1
ψ→ U2/(±(Id, Id)) sending g to the class of g/

√
det∗(g),

where
√

det∗ g exists in Z×` by construction of U1. Let T2 be the image of T2 in the quotient
U2/(±(Id, Id)). Now ψ is surjective by definition of U2, so if we define T to be the inverse image
of T2 through ψ, then the index [U1 : T ] divides 482 and [G : T ] divides 2 · 482. Furthermore,
the Lie algebra of T and that of T2 agree, as do their derived subgroups (lemma 2.11). Suppose
now that L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`): then the same is true for L(T2), and therefore by
property (2a) of theorem 3.2 we see that T ′2 = T ′ contains B`(p, p). Finally, let (t1, t2) be in T and
suppose that [t1], [t2] are multiples of the identity. By construction, there exists a scalar λ ∈ Z×`
and an element (w1, w2) ∈ T2 such that (t1, t2) = λ(w1, w2); in particular, [w1], [w2] are multiples
of the identity, so the properties of T2 force [t1] = [λ][w2] = [λ][w1] = [t2].

The following proposition allows us to assume that ` > 5:

Proposition 3.5. Theorem 3.2 is true for ` ≤ 5.

Proof. Take T to be the inverse image in G of a `-Sylow of G(`). It is clear that T satisfies (2b).
Furthermore, T is pro-`, so an application of theorem 3.4 shows that T satisfies (2a); finally, it is

immediate to check that [G : T ] divides
(
| SL2(F`)|

`

)2 ∣∣ 482.

Assumption 3.6. From now on, we work under the additional assumption that ` > 5.

Our final objective is to compute, in terms of k, n1 and n2, an integer p such that T contains
B`(p, p). This would be immediate if T were a pro-` group, for then we would simply apply the-
orem 3.4 as it is. In general, however, one needs to take into account the structure of T (`), and
many different possibilities arise, according to the type of T1(`), T2(`) in the Dickson classifica-
tion. In some situations which we now discuss, the two projections G1 and G2 behave essentially
independently of one another; in this case the problem is greatly simplified, and it is possible to
exhibit an integer p as above without examining too closely the structure of G(`):

Lemma 3.7. Let ` > 5 and G, n1, n2 be as in theorem 3.2. Suppose that G contains an element
(a, b) such that [a] = [± Id] and the prime-to-` part of the order of [b] is at least 3. Then G′

contains B`(4n1 + 16n2, 8n2) ⊃ B`(20 max{n1, n2}, 20 max{n1, n2}). The same conclusion is true
if [b] = [± Id] and the prime-to-` part of the order of [a] is at least 3.
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Proof. The statement is clearly symmetric in a and b, so let us assume [a] = [± Id]. Since `2 does
not divide the order of SL2(F`), the element [b]` has order prime to `; replacing (a, b) with (a, b)`

allows us to assume that the order of [b] is prime to ` and not less than 3. By lemma 2.10, G
contains an element of the form (± Id, b′), where the order of [b′] is the same as the order of [b].
We can therefore assume a = ± Id. By hypothesis, for any g2 in B`(n2) there exists a g1 ∈ G1

such that (g1, g2) belongs to G: it follows that for any g2 ∈ B`(n2) the element

(± Id, b′)−1(g1, g2)(± Id, b′)(g1, g2)−1 = (Id, (b′)−1g2b
′g−12 ) = (Id, [(b′)−1, g2]) (1)

belongs to G. Up to a choice of basis, we can assume that either b′ =

(
d 0
0 1/d

)
for a certain unit d,

or b′ =

(
c dε
d c

)
for certain units c, d and a certain ε such that [ε] is not a square, or b′ =

(
0 −1
1 0

)
(for the last two cases cf. [Lom14, Lemma 4.7]). In the first case, setting g2 = R(`n2) in (1) shows
that

(
Id, R

((
d−2 − 1

)
`n2
))

belongs to G. Given that d is not congruent to ±1 modulo `, for
otherwise the order of [b] would be 1 or 2, we see that the `-adic valuation of (d−2 − 1)`n2 is
exactly n2. Similarly, G contains

(
Id, L

(
(d2 − 1)`n2

))
, and by lemma 2.7 (4) this implies that G

contains {1} × B`(2n2). In the second case we notice that R
(
− 2c`2n2 (2+`n2 )2

d(1+`n2 )4

)
can be written as[

(b′)−1,

(
1 + `n2 − c`

n2 (2+`n2 )
d(1+`n2 )

0 1
1+`n2

)]
·

[
(b′)−1,

(
1

1+`n2

c`n2 (2+`n2 )
d(1+`n2 )

0 1 + `n2

)]
,

hence
(

Id, R
(
− 2c`2n2 (2+`n2 )2

d(1+`n2 )4

))
belongs to G; by lemma 2.7 (1) we then see that G contains(

Id, R
(
`2n2

))
, and analogous identities prove that G also contains

(
Id, L

(
`2n2

))
. Lemma 2.7 (4)

then implies that G contains {Id} × B`(4n2). Finally, in the last case we use the identities[
(b′)−1, D(`n2)

]−1
= D(`n2(2 + `n2))

[D(`n2), R(`n2)] = R
(
`2n2(2 + `n2)

)
, [D(`n2), L(`n2)] = L

(
−`2n2

2 + `n2

(1 + `n2)2

)
which prove that G contains {Id} × B`(2n2).

Consider now an element h = (h1, h2) of G whose first coordinate is h1 = R
(

1
`2−1`

n1

)
; such an

element exists by hypothesis. The `(`2−1)-th power of h is of the form h′ =
(
R
(
`n1+1

)
, h′2
)
, where

[h′2] = [h2]`(`
2−1) = [h2]|SL2(F`)| = [Id]. The `4n2−1-th power of h′ (recall that n2 > 0), therefore,

is a certain h′′ =
(
R
(
`n1+4n2

)
, h′′2
)
, where h′′2 ∈ B`(4n2). By what we already proved, G contains

(Id, h′′2), so it also contains h′′ · (Id, h′′2)−1 =
(
R
(
`n1+4n2

)
, Id
)
. The same argument shows that(

L
(
`n1+4n2

)
, Id
)

belongs to G, and we finally deduce that G contains B`(2n1 +8n2)×{Id}, hence
– since we also have G ⊇ {Id} × B`(4n2) – that G contains B`(2n1 + 8n2, 4n2). Taking derived
subgroups and using lemma 2.8 then shows that G′ contains B`(4n1 + 16n2, 8n2).

Lemma 3.8. Let ` > 5 be a prime, G a closed subgroup of SL2(Z`)2 and for i = 1, 2 let ni be
a non-negative integer such that Gi contains B`(ni). Let t be a non-negative integer and u be an
element of sl2(Z`) such that u 6≡ 0 (mod `t+1). Suppose that L(N(G)) ⊆ sl2(Z`)⊕sl2(Z`) contains
(0, u): then G′ contains {Id}×B`(2t+ 8n2). Likewise, if u1, u2 ∈ sl2(Z`) are such that u1, u2 6≡ 0
(mod `t+1) and L(N(G)) contains (u1, 0) and (0, u2), then G′ contains B`(2t+ 8n1, 2t+ 8n2).

Proof. Note first that – by the same argument as [Lom14, Lemma 4.5] – the Lie algebra L(N(G))
is stable under conjugation by G. The smallest Lie subalgebra of L(N(G)) that contains (0, u)
and is stable under conjugation by G is 0 ⊕ S(u), where S(u) is the smallest Lie subalgebra of
sl2(Z`) that contains u and is stable under conjugation by G2. By virtue of lemma 2.4, and
given that G2 contains B`(n2), the algebra S(u) contains `t+4n2sl2(Z`). It follows that L(N(G))
contains 0⊕`t+4n2sl2(Z`), and applying theorem 3.4 we deduce that N(G)′ (hence also G′) contains
{Id} × B`(2t+ 8n2). The second statement is now immediate.
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We thus see that for the following three categories of groups information on G can be extracted
from information on L(G):

(A) pro-` groups: by theorem 3.4, if L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`), then G′ contains
B`(2k, 2k);

(B) groups that contain an element (a, b) such that [a] is trivial and the prime-to-` part of the
order of [b] is least 3, because of lemma 3.7;

(C) groups satisfying the hypotheses of lemma 3.8.

We now start with a general open subgroup G of SL2(Z`)2 and show that (up to passing to a
subgroup of finite, absolutely bounded index) the group G must satisfy one of these three sets of
hypotheses. As already anticipated, we will need a case analysis based on the structure of G1(`)
and G2(`). These are subgroups of SL2(F`), and by the Dickson classification we know that any
subgroup of SL2(F`) is of one of the following types: split Cartan, nonsplit Cartan, normalizer of
split Cartan, normalizer of nonsplit Cartan, Borel, exceptional, all of SL2(F`).

Remark 3.9. To be more precise we should rather write ‘contained in a split Cartan subgroup’,
‘contained in a Borel subgroup’, etc. The slight abuse of language should not cause any confusion.

We call ‘type’ of G the pair (type of G1(`), type of G2(`)); the proof of theorem 3.2 will proceed
by analysing all the possibilities for the type of G. The following proposition helps cut down the
total number of cases we need to treat.

Proposition 3.10. Let ` > 5 and G,n1, n2 be as in theorem 3.2. At least one of the following
holds:

1. G′ contains B`(20 max{n1, n2}, 20 max{n1, n2})

2. there exists a pro-` subgroup T of G such that the index [G : T ] divides 482, and such that if
(t1, t2) is an element of T for which [t1], [t2] are both multiples of the identity, then [t1] = [t2]

3. there exists a subgroup T of G such that the index [G : T ] divides 4 · 48, and which enjoys
all of the following properties (we denote by T1, T2 the projections of T on the two factors
SL2(Z`)):

(a) the projection of T (`) in T1(`)/N(T1(`)) × T2(`)/N(T2(`)) is the graph of an isomor-
phism T1(`)/N(T1(`)) ∼= T2(`)/N(T2(`))

(b) the type of T1(`) (resp. T2(`)) is either Borel, split Cartan, nonsplit Cartan, or SL2(F`)
(c) the orders of T1(`)/N(T1(`)) and T2(`)/N(T2(`)) do not divide 8

(d) T1 (resp. T2) contains B`(n1) (resp. B`(n2))

(e) if (t1, t2) ∈ T is such that [t1] and [t2] are both multiples of the identity, then [t1] = [t2]

Proof. If (1) holds we are done, so we can assume this is not the case. The conclusion of lemma
3.7 is then false, and therefore so is its hypothesis: if (a, b) is an element of G with [a] (resp. [b])
equal to [± Id], then the prime-to-` part of the order of [b] (resp. [a]) is at most 2. Consider the
kernel J2 of the reduction G(`)→ G1(`), which we identify to a (normal) subgroup of G2(`). We
claim that the prime-to-` part of the order of J2 is at most 2. Indeed, SL2(F`) contains only one
element of order 2, namely minus the identity, so if the prime-to-` part of |J2| is at least 3, then
J2 contains an element [b] whose order has prime-to-` part at least 3, contradiction. Taking into
account the fact that J2 is a subgroup of SL2(F`), we see that the `-part of its order can only be
1 or `. Thus the order of J2 can only be one of 1, 2, `, 2`; furthermore, the last two cases can only
happen if G2(`) is of Borel type, since these are the only subgroups of SL2(F`) admitting a normal
`-Sylow. By Goursat’s lemma, we know that the projection of G(`) in G1(`)/J1 × G2(`)/J2 is
the graph of an isomorphism G1(`)/J1 ∼= G2(`)/J2. Notice now that if T is any subgroup of G
of index dividing 4 · 48, then property (3d) is automatically true for T : indeed, since [G1 : T1]
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divides [G : T ], which in turn divides 4 · 48, the index [G1 : T1] is prime to `, and therefore B`(n1)
(which is a pro-` group, since n1 ≥ 1) is contained in G1 if and only if it is contained in T1; the
same argument applies to T2 and B`(n2). Furthermore, it is clear that property (3e) follows from
property (3a): indeed, the only multiples of the identity in SL2(F`) are ± Id, and the existence in
T (`) of an element of the form ([± Id], [∓ Id]) would contradict (3a).

We now construct a group T with the desired properties in two successive steps. We claim first
that there is a subgroup H of G, of index dividing 24, such that H1(`) and H2(`) are either (split
or nonsplit) Cartan, Borel, or all of SL2(F`), so that H satisfies property (3b). This is easily seen
by a case-by-case analysis depending on the type of G1(`):

• split/nonsplit Cartan: then G1(`)/J1 is cyclic, so the same is true for G2(`)/J2. It is easily
checked that this is only possible if G2(`) is either Borel or Cartan, and we are done (taking
H = G).

• normalizer of split/nonsplit Cartan: there is a subgroup H of G of index at most 2 such that
H1(`) is Cartan, and we are back to the previous case.

• Borel: if the order of J1 is prime to `, then the isomorphism G1(`)/J1 ∼= G2(`)/J2 forces
G2(`) to be Borel (because then the order of G2(`) is divisible by `, and G2(`) cannot be all
of SL2(F`), for otherwise the order of G2(`)/J2 would be too large with respect to the order
of G1(`)/J1). If the order of J1 is divisible by `, then G1(`)/J1 ∼= G2(`)/J2 is cyclic, and
this forces G2(`) to be either Borel or Cartan. We can take H = G.

• exceptional: according to whether the projective image of G1(`) is isomorphic to either
A4, A5 or S5, there is a subgroup H of G with [G : H]

∣∣ 24 such that H1(`) is cyclic, of order
either 6 or 10. We are thus reduced to the Cartan case.

• SL2(F`): comparing orders, the isomorphism G1(`)/J1 ∼= G2(`)/J2 forces G2(`) = SL2(F`).
We can take H = G.

Next we claim that there is a subgroup K of H, with [H : K] | 4, such that the kernel J̃1 (resp. J̃2)
of K(`)→ K2(`) (resp. of K(`)→ K1(`)) has order either 1 or `. It is easily seen that this implies
that K satisfies property (3a). Notice that since the orders of J̃1, J̃2 divide 2` this is equivalent
to asking that − Id 6∈ J̃1, J̃2. If neither (− Id, Id) nor (Id,− Id) is in H we are done (simply take
K = H), so let us consider the case when H contains at least one of the two. Again we need to
distinguish two subcases, depending on the type of H1(`):

• split/nonsplit Cartan, Borel: the group P := H1(`)
N(H1(`))

× H2(`)
N(H2(`))

is the product of two

cyclic groups, so P/2P has order dividing 4. Let H be the image of H(`) in P , so that
again H/2H has order dividing 4. We set K = ker

(
H → H(`)→ H → H/2H

)
. It is clear

that [H : K] | 4, and we now show that (− Id, Id) and (Id,− Id) do not belong to K. The
argument is the same in the two cases, so we only consider the former. Clearly, it suffices
to show that the image in H of (− Id, Id) does not lie in 2H. Suppose by contradiction this
is the case, take p ∈ H such that 2p is the class of (− Id, Id) in H, and fix an h ∈ H(`)
that maps to p. By construction, this is an element such that h2 differs from (− Id, Id) by
elements of order `. In particular, h2` = (− Id, Id), so h` = (h1, h2) is an element of H(`)
which squares to (− Id, Id). As the only square roots of Id in SL2(F`) are ± Id, this provides
us with an element (h1,± Id) of H(`) such that h1 has order 4. But this contradicts our
initial result that if an element (h1,± Id) is in G(`), then the prime-to-` part of the order of
h1 is at most 2.

• SL2(F`): as we have already remarked, this forces H2(`) = SL2(F`). By [MW93, Lemma
5.1], there exists an M ∈ GL2(F`) and a character χ : H(`)→ {±1} such that

H(`) =
{

(x, y) ∈ SL2(F`)2
∣∣ y = χ(x, y)MxM−1

}
.

We can take K = ker
(
H → H(`)

χ−→ {±1}
)

, which has index at most 2 in H.
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The group K thus obtained has index dividing [G : H][H : K]
∣∣ 24 · 4 in G, and satisfies

properties (3a) and (3b) (hence, as already remarked, (3d) and (3e)). We obtain a group T as in
(3) by setting T = K if property (3c) is true for K; if this is not the case, we obtain a group T as
in (2) by setting T = ker (K → K1(`)→ K1(`)/N(K1(`))): indeed in this case [K : T ]

∣∣ 8 and T
is pro-` by construction.

In light of the previous proposition and of theorem 3.4, theorem 3.2 follows from the following
statement:

Proposition 3.11. Let ` > 5 be a prime number and G an open subgroup of SL2(Z`)2 satisfying
properties (3a)-(3e) of proposition 3.10. For i = 1, 2 let ni be a positive integer such that Gi
contains B`(ni). At least one of the following holds:

1. G′ contains B`(20 max{n1, n2}, 20 max{n1, n2})

2. there exists a subgroup T of G, of index dividing 12, such that if the Lie algebra L(T )
contains `ksl2(Z`) ⊕ `ksl2(Z`) for a certain positive integer k, then T ′ contains B`(p, p),
where p = 2k + max {2k, 8n1, 8n2} .

We now prove proposition 3.11 by analyzing the various possibilities for the type of G. Every
case is dealt with in a separate section, whose title is of the form (type of G1(`), type of G2(`)).
Note that since N(SL2(F`)) is trivial we have G1(`) = SL2(F`) if and only if G2(`) = SL2(F`); this
helps exclude a few more possibilities for the type of G. Moreover, the statement of proposition
3.11 is symmetric in G1, G2, so we can further use symmetry arguments to reduce the number of
cases (thus, for example, we only need consider one of the two cases (Borel, Nonsplit Cartan) and
(Nonsplit Cartan, Borel)). Finally, note that we shall prove a slightly stronger statement: the
index of T in G can be taken to divide 2.

3.3 Cases (Nonsplit Cartan, Split Cartan) and (Nonsplit Cartan, Borel)

The same idea works in both cases: consider an element (a, b) ∈ G with [a] of maximal order in
G1(`); notice in particular that [a] has order dividing `+ 1. The group G(`) contains the element

([a], [b])`(`−1) = ([a]`(`−1), [Id]), and the order of [a]`(`−1) is given by
ord([a])

(`− 1, ord([a]))
=: m. Notice

that m ≥ 3: indeed we have (`− 1, ord([a])) ≤ 2, so m ≤ 2 would imply ord[a]
∣∣ 4, against the

assumption that the order of G1(`) does not divide 8 (cf. proposition 3.10 (3c)). Lemma 3.7 then
shows that G′ contains B`(20 max{n1, n2}, 20 max{n1, n2}).

3.4 Cases (Split Cartan, Split Cartan), (Borel, Borel) and (Split Car-
tan, Borel)

We start by considering the type (Split Cartan, Split Cartan), the other two cases being essentially
identical. Note that the groups N(G1(`)) and N(G2(`)) are trivial, so G1(`) and G2(`) are
isomorphic by property (3a) of proposition 3.10, and we can find an element (h1, h2) ∈ G such
that [h1], [h2] generate G1(`), G2(`) respectively. By lemma 2.15, the limit (g1, g2) of the sequence

(h1, h2)`
2n

satisfies g`1 = g1, g
`
2 = g2, and furthermore [g1], [g2] generate G1(`), G2(`) respectively.

We choose bases in such a way that both g1 and g2 are diagonal. Write gi =

(
di 0
0 d−1i

)
, where di

satisfies d`i = di. Since G1(`) ∼= G2(`), we know that the orders of [d1] and [d2] agree; in particular,
we can write [d2] = [d1]q for a certain integer q, 1 ≤ q ≤ ord[d1], that is prime to the order of
[d1]. We can, if necessary, apply on the second factor SL2(Z`) the change of basis induced by

the matrix S =

(
1 0
0 −1

)
: this change of basis exchanges the two diagonal entries of g2, hence it

allows us to assume 1 ≤ q ≤ ord[d1]
2 . Given that the Teichmüller lift is a homomorphism, we have

d2 = ω([d2]) = ω([d1])q = dq1. We now define the group T :
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• if [d2] = −[d1] or [d2] = −[d1]−1, we let T be the index-2 subgroup of G defined by
ker (G→ G1(`)→ G1(`)/2G1(`)). If we now repeat the construction of d1, d2 for T , we
find that [d2] = [d1], and that the order of T1(`) does not divide 4 (recall that the order of
G1(`) does not divide 8).

• if [d2] 6= −[d1]±1 we set T = G.

Suppose that L(T ) contains `ksl2(Z`)⊕ `ksl2(Z`): we are going to show that T ′ contains B`(p, p)
for p = 2k + 8 max{n1, n2}. Recall that T contains an element (g1, g2), where gi = diag(di, d

−1
i ),

and that we have set up our notation so that d2 = dq1 for some 1 ≤ q ≤ ord[d1]
2 . Consider now the

three matrices

M1 =

(
0 1
0 0

)
,M2 =

(
1 0
0 −1

)
,M3 =

(
0 0
1 0

)
and let π1 (resp. π2, π3) be the linear map sl2(Z`)→ Z` ·Mi giving the projection of an element
on its M1 (resp. M2,M3) component. A Z`-basis of the Lie algebra sl2(Z`)⊕ sl2(Z`) is given by
(Mi, 0), (0,Mj) for i = 1, 2, 3 and j = 1, 2, 3. Note that both L(T ) and L(N(T )) are stable under
conjugation by (g1, g2) (cf. [Lom14, Lemma 4.5]). Writing elements of sl2(Z`) ⊕ sl2(Z`) as the
6-dimensional vectors of their coordinates in the basis just described, the action of conjugating by
(g1, g2) is given by

(x1, x2, x3, x4, x5, x6) 7→ (d21x1, x2, d
−2
1 x3, d

2
2x4, x5, d

−2
2 x6).

In particular, if we denote by C the linear operator (x, y) 7→ (g1xg
−1
1 , g2yg

−1
2 ) (acting on the Lie

algebra sl2(Z`)⊕ sl2(Z`)), we have

1

`− 1

`−2∑
i=0

Ci(x1, x2, x3, x4, x5, x6) = (0, x2, 0, 0, x4, 0)

since
1

`− 1

`−2∑
i=0

d2i1 =
1

`− 1

d
2(`−1)
1 − 1

d21 − 1
= 0 (recall that d`1 = d1 and d21 6= 1), and similarly for d−21

and d±22 . It follows that if L(T ) or L(N(T )) contains the vector (x1, . . . , x6), then it also contains

the vector (x1, 0, x3, x4, 0, x6) and, for every integer j, its image (d2j1 x1, 0, d
−2j
1 x3, d

2j
2 x4, 0, d

−2j
2 x6)

under conjugation by (g1, g2) iterated j times. Consider the matrix V =


1 1 1 1
d21 d−21 d22 d−22

d41 d−41 d42 d−42

d61 d−61 d62 d−62

 :

this is a Vandermonde matrix, so its determinant is an `-adic unit as long as d21 6≡ d−21 (mod `),
d22 6≡ d−22 (mod `) and d21 6≡ d±22 (mod `). Recall that the orders of [d1], [d2] do not divide 4, so the
first two conditions are automatically satisfied. Furthermore, under our assumptions the equality
[d1]2 = [d2]±2 implies [d1] = [d2], that is, q = 1. Consider first the case q 6= 1: the matrix V is
then invertible over Z`, hence the standard basis vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
can be written as Z`-linear combinations of the rows of V . In turn, this implies that the vectors

(x1, 0, 0, 0, 0, 0), (0, 0, x3, 0, 0, 0), (0, 0, 0, x4, 0, 0), (0, 0, 0, 0, 0, x6)

can be written as Z`-combinations of the four vectors Cj(x1, 0, x3, x4, 0, x6) for j = 0, 1, 2, 3.
Equivalently, we have shown that if q 6= 1 the Lie algebras L(T ),L(N(T )) are stable under the
projection operators π1⊕0, π3⊕0, 0⊕π1, 0⊕π3. If, on the other hand, q = 1 (so g1 = g2), an even
simpler computation shows that L(T ),L(N(T )) are stable under the projection operators π1⊕ π1
and π3 ⊕ π3. We have the immediate identities

M1gi = d−1i M1, π1(M2gi) = 0, π1(M3gi) = 0, π1(gi) = 0 for i = 1, 2,

whence for any A ∈ GL2(Z`) we have π1Θ1(Agi) = d−1i π1(Θ1(A)) for i = 1, 2.
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Again we distinguish the cases q 6= 1 and q = 1. In the former, we know that (0 ⊕ π1)(L(T ))
is contained in L(T ), and that it is generated by an element of the form (0 ⊕ π1)(Θ2(h)), for a
certain h = (h1, h2) ∈ T . We can choose an integer m in such a way that h · (g1, g2)m belongs
to N(T ) (it suffices to choose m such that [h1g

m
1 ] = [Id] = [h2g

m
2 ]); for such an m, the element

Θ2(h · (g1, g2)m) lies in L(N(T )), and since L(N(T )) is stable under 0⊕ π1 it also contains

dm2 · (0⊕ π1) (Θ2(h · (g1, g2)m)) = dm2 (0, π1Θ1(h2g
m
2 ))

= (0, π1(Θ1(h2))).

Now L(T ) contains (0 ⊕ π1)(`ksl2(Z`) ⊕ `ksl2(Z`)) = 0 ⊕ `kZ` ·M1, so (0, `kM1) is a multiple
of (0 ⊕ π1)(Θ2(h)): the previous formula then shows that L(N(T )) contains 0 ⊕ `kZ` ·M1. An
analogous argument shows that L(N(T )) contains `kZ` ·M1 ⊕ 0: lemma 3.8 then implies that T ′

contains B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .
Suppose on the other hand that q = 1, that is, d1 = d2. Let us write, for the sake of simplicity,

g for g1 = g2 and d for d1 = d2. As we have seen, both L(T ) and L(N(T )), thought of as subsets
of sl2(Z`) ⊕ sl2(Z`), are stable under the maps πi ⊕ πi for i = 1, 2, 3. Hence L(T ) is the direct
sum of three rank-2 subalgebras Ri = (πi ⊕ πi)(L(T )), i = 1, 2, 3, with Ri open in Z`Mi ⊕ Z`Mi;
similarly, L(N(T )) is the direct sum of three algebras Si = (πi ⊕ πi)(L(N(T ))). We claim that
S1 = R1. If R1 is generated by the two elements (π1 ⊕ π1) (Θ2(w1)) and (π1 ⊕ π1) (Θ2(w2)) for
some w1, w2 ∈ T , then we can find integers m1,m2 such that w1(g, g)m1 and w2(g, g)m2 belong to
N(T ). It follows that for j = 1, 2 the algebra S1 contains

dmj (π1 ⊕ π1)(Θ2(wj · (g, g)mj )) = dmjd−mj (π1 ⊕ π1)(Θ2(wj)),

i.e. S1 = R1 as claimed. Now notice that by assumption L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`), so
R1 = (π1⊕π1)(L(T )) contains `kZ` ·M1⊕ `kZ` ·M1, and the same is true for (π1⊕π1)(L(N(T ))).
As above, we conclude that T ′ contains B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .

Finally, note that the (Borel, Borel) and (Split Cartan, Borel) cases are completely analogous:
we simply need to choose for (g1, g2) an element such that [g1] (resp. [g2]) generates T1(`)/N(T1(`))
(resp. T2(`)/N(T2(`))).

3.5 Case (Nonsplit Cartan, Nonsplit Cartan)

We follow an approach very close to that of the previous section. Using lemma 2.15 and the fact
that G(`) is the graph of an isomorphism G1(`)→ G2(`), we can find an element (g1, g2) of G such

that g`
2

i = gi and [gi] generates Gi(`); in a suitable basis we can write gi =

(
ai biεi
bi ai

)
, where εi

is an element of Z×` \Z
×2
` (that is to say, [εi] is not a square in F×` ). The condition that the order

of Gi(`) does not divide 8 implies aibi 6≡ 0 (mod `). For any `-adic unit ε consider now the three
matrices

M1(ε) =

(
0 ε
1 0

)
, M2(ε) = M2 =

(
1 0
0 −1

)
, M3(ε) =

(
0 −ε
1 0

)
.

A basis of sl2(Z`)⊕ sl2(Z`) is given by

(M1(ε1), 0), (M2(ε1), 0), (M3(ε1), 0), (0,M1(ε2)), (0,M2(ε2)), (0,M3(ε2)),

and again we write elements of sl2(Z`)⊕ sl2(Z`) as six-dimensional vectors in this basis. Let C be
the linear operator (from sl2(Z`)⊕ sl2(Z`) to itself) given by (x, y) 7→ (g1, g2)(x, y)(g1, g2)−1; once
again, L(G) and L(N(G)) are stable under C. The matrix of C in this basis is block-diagonal, the

blocks being given by Bi =

 1 0 0
0 1 + 2εib

2
i 2aibiεi

0 2aibi 1 + 2εib
2
i

 . Since the bottom-right 2 by 2 block

of Bi is simply g2i , the eigenvalues of Bi are 1 and the squares of the eigenvalues of gi. The
analogue of the condition [d1] 6= −[d2]±1 of the previous paragraph is ‘the only eigenvalue shared
by [B1] ∈ GL3(F`) and [B2] ∈ GL3(F`) is 1’. Thus in this case we define the group T as follows
(notice that 1 is not an eigenvalue of [gi]

2):
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1. for an element z ∈ Z`[
√
ε1,
√
ε2] denote by [z] its image in F`. By construction we have

ai±bi
√
εi = ω

([
ai ± bi

√
εi
])

, where ω is the Teichmüller lift. If [a1±
√
ε1b1]2 = [a2±

√
ε2b2]2,

then (if necessary) we apply on the second factor SL2(Z`) the change of basis induced

by the matrix S =

(
1 0
0 −1

)
to assume [a1 +

√
ε1b1]2 = [a2 +

√
ε2b2]2. We then set

T := ker (G→ G(`)→ G(`)/2G(`)) , which (since G(`) is cyclic) has index 2 in G. The
element (g1, g2)2 ∈ T projects to a generator of T (`), and we have

(a1 + b1
√
ε1)2 = ω

(
[a1 + b1

√
ε1]2

)
= ω

(
[a2 + b2

√
ε2]2

)
= (a2 + b2

√
ε2)2,

which – using the fact that a2i − εib
2
i = det gi = 1 – implies ε1b

2
1 = ε2b

2
2. Notice that

T , being of index 2 in G, is normal, hence its Lie algebra L(T ) is stable not just under
conjugation by elements of T , but also under conjugation by elements of G; the same is true
for L(N(T )) = L(N(G)). In particular, both these algebra are stable under conjugation by
(g1, g2), that is, they are stable under C.

2. if (a1 ±
√
ε1b1)2, (a2 ±

√
ε2b2)2 are all distinct in F` we simply set T = G. In this case the

squares of the eigenvalues of g1 and of g2 are distinct.

We now assume that L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`): we shall show that T ′ contains
B`(2k + 8 max{n1, n2}, 2k + 8 max{n1, n2}).

Suppose first that we are in subcase (2). Let p1(x) be the characteristic polynomial of B1, and
consider p1(C). This will be a block-diagonal operator whose first block is the null matrix and

whose second block is of the form

 0 0 0
0

A0

, with A invertible modulo ` (this follows at once

from the fact that the reduction modulo ` of this block can be computed as p1([B2]), and the only
eigenvalue that is common to [B1] and [B2] is 1). Note furthermore that by the Hamilton-Cayley
theorem the 2× 2 identity can be expressed as a polynomial in A, so that ultimately the diagonal
matrix with diagonal entries (0, 0, 0, 0, 1, 1) can be expressed a polynomial in C. Concretely, this
is the operator

Π :

((
h1 x1
y1 −h1

)
,

(
h2 x2
y2 −h2

))
7→

(0 0
0 0

)
,

 h2
x2 − ε2y2

2
ε2y2 − x2

2ε2
−h2


 ,

and we have just shown that L(T ) and L(N(T )) (being stable under C) are in particular also
stable under Π. As T2 contains B`(n2), there exists an element f1 of T1 such that (f1, R (`n2))
belongs to T . Taking the `(`2−1)-th power of this element shows that N(T ) contains the element(
f
`(`2−1)
1 , R

(
(`2 − 1)`n2+1

))
, and therefore L(N(T )) contains

1

`2 − 1
Θ2

(
f
`(`2−1)
1 , R

(
(`2 − 1)`n2+1

))
=

(
1

`2 − 1
Θ1

(
f
`(`2−1)
1

)
,

(
0 `n2+1

0 0

))
.

Applying Π and multiplying by 2ε2 we see that L(N(T )) contains

(
0,

(
0 ε2`

n2+1

−`n2+1 0

))
; by

lemma 3.8 we then find that T ′ contains {Id} × B`(10n2 + 2). Swapping the roles of T1, T2 the
same argument shows that T ′ contains B`(10n1 + 2) × {Id}, and we are done since this clearly
implies that T ′ contains B`(20 max{n1, n2}, 20 max{n1, n2}).

Next consider subcase (1). Recall that algebras L(T ) and L(N(T )) are stable under C. We
keep the notation Mi(ε) from subcase (2), and we let π1(ε) (resp. π2(ε), π3(ε)) be the linear
maps sl2(Z`) → Z` ·Mi(ε) giving the projection of an element on its M1(ε) (resp. M2(ε),M3(ε))
component. Using the fact that ε1b

2
1 = ε2b

2
2, one easily checks that

π1(ε1)⊕ π1(ε2) = − 1

4ε1b21

(
Id−2(1 + 2ε1b

2
1)C + C2

)
,
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from which we see that L(T ),L(N(T )) are stable under π1(ε1)⊕π1(ε2) and therefore, by difference,
also under π̃ : (x1, x2, x3, x4, x5, x6) 7→ (0, x2, x3, 0, x5, x6). We now set Λ to be the 6× 6 matrix of
C in the basis (M1(ε1), 0), (M2(ε1), 0), (M3(ε1), 0), (0,M1(ε2)), (0,M2(ε2)), (0,M3(ε2)); as we have
already seen in subcase (2), this is the block-diagonal operator with blocks given by 1, g21 , 1, g

2
2 . We

claim that π̃(L(T )) and π̃(L(N(T ))), seen as submodules of Z6
` , are stable under left multiplication

by Λ−1. Indeed, since the Lie algebras of T and of N(T ) are stable under conjugation by (g1, g2)
the claim follows from the identity

π̃
(
(g1, g2)−1(t1, t2)(g1, g2)

)
= Λ−1 · π̃ ((t1, t2)) ∀(t1, t2) ∈ sl2(Z`)2. (2)

Furthermore, one easily checks that, for all t ∈ T , we have π̃
(
Θ2

(
(g1, g2)2 · t

))
= Λ · π̃ (Θ2(t)) .

Let now w1, . . . , w4 ∈ T be such that π̃(L(T )) is generated by π̃(Θ2(w1)), . . . , π̃(Θ2(w4)). Since
[(g21 , g

2
2)] generates T (`), for i = 1, . . . , 4 there is an integer mi such that (g1, g2)miwi belongs to

N(T ) (that is, it is trivial modulo `): it follows that Θ2

(
(g21 , g

2
2)miwi

)
is in L(N(T )), and since

L(N(T )) is stable under both π̃ and Λ−1 we find

Λ−mi · π̃
(
Θ2

(
(g21 , g

2
2)miwi

))
= Λ−mi · Λmi · π̃(Θ2(wi)) = π̃ (Θ2(wi)) ∈ L(N(T )).

This easily implies L(N(T )) ⊇ π̃ (L(N(T ))) = π̃(L(T )) ⊇ π̃(`ksl2(Z`)⊕ `ksl2(Z`)). In particular,
L(N(T )) contains two elements (u1, 0) and (0, u2) with u1, u2 6≡ 0 (mod `k+1): by lemma 3.8 we
conclude that N(T )′ contains B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .

3.6 Case (SL2(F`), SL2(F`))

In this case we take T = G, and assume that L(T ) = L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`). We
shall prove that T ′ = G′ contains B`(4k, 4k). We consider the question of whether or not, for any
given m, the group G(`m) is the graph of an isomorphism G1(`m)→ G2(`m); the following lemma
covers the case when this does not happen:

Lemma 3.12. Let m be a positive integer. Suppose G contains an element of the form (g1, g2),
where g1 is trivial modulo `m but g2 is not (or symmetrically, g2 trivial modulo `m and g1 non-
trivial). Then G′ contains B`(4(m− 1), 4(m− 1)).

Proof. Notice first that we necessarily have m ≥ 2: indeed, G(`) is the graph of an isomorphism
G1(`) → G2(`), so if g1 is trivial modulo ` then g2 is trivial modulo ` as well. In particular,
(g1, g2) belongs to ker (G→ G(`)) = N(G). Now let x1 = R(`), y1 = L (`), h1 = D (`). By [Ser97,
IV-23, Lemma 3], since G1(`) = SL2(F`) we also have G1 = SL2(Z`); in particular, we can find
x2, y2, h2 ∈ G2 such that x = (x1, y1), y = (y2, y2) and h = (h1, h2) all belong to G. As G(`) is
the graph of an isomorphism G1(`)→ G2(`) and x1, y1 and h1 are all trivial modulo `, the same

must be true of x2, y2, h2. The elements x`
m−1

, y`
m−1

and h`
m−1

then satisfy

• their first coordinates topologically generate B`(m), by lemma 2.7 (3)

• their second coordinates are trivial modulo `m,

so the group they (topologically) generate contains an element of the form (g−11 , g′2), where g′2 is
trivial modulo `m. Thus G contains the product g = (g−11 , g′2)(g1, g2) = (Id, g′2g2), whose second
coordinate is congruent to g2 (and therefore nontrivial) modulo `m. It is immediate to check
that g is in N(G) (since its coordinates are trivial modulo `), hence L(N(G)) contains Θ2(g),
which is of the form (0, u) with u nontrivial modulo `m (lemma 2.12). Applying lemma 3.8 we
deduce that N(G) contains {Id} × B`(2(m − 1)) (in the notation of lemma 3.8 one can take
t = m − 1 and n2 = 0). To finish the proof, consider the group H topologically generated by

x′ = x`
2m−3

, y′ = y`
2m−3

, h′ = h`
2m−3

, where the exponents make sense since we already remarked
that m ≥ 2. Denote by H1, H2 the projections of H on the two components SL2(Z`). It is clear that
H1 ⊇ B`(2(m− 1)) and H2 ⊆ B`(2(m− 1)), so the group generated by H and {Id}×B`(2(m− 1))
(which as we have seen is a subgroup of G) contains B`(2(m− 1), 2(m− 1)), and we are done.
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We now show that for m = k + 1 the hypothesis of the previous lemma is satisfied. Indeed
suppose by contradiction that the projections G(`k+1) → G1(`k+1), G(`k+1) → G2(`k+1) both
have trivial kernel. Then Goursat’s lemma implies that G(`k+1) is the graph of an isomorphism
G1(`k+1)→ G2(`k+1), i.e. an automorphism of SL2

(
Z/`k+1Z

)
. By [Wan85] (see also [Won99, The-

orem 5(e)]), and since ` > 5, all such automorphisms are induced by conjugation, that is we can find

a matrix M ∈ GL2

(
Z/`k+1Z

)
such that G(`k+1) =

{
(x, y) ∈ SL2

(
Z/`k+1Z

)2 ∣∣ y = MxM−1
}
.

Consequently, if we still denote by the same letter any lift of M to GL2(Z`), we have

G ⊆
{

(x, y) ∈ SL2(Z`)2
∣∣ y ≡MxM−1 (mod `k+1)

}
.

Applying Θ2 and noticing that tr(MxM−1) = tr(x) we deduce

L(G) ⊆
{

(x, y) ∈ sl2(Z`)2
∣∣ y ≡MxM−1 (mod `k+1)

}
,

but this contradicts the hypothesis that L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`). Thus at least one
of the two projections G(`k+1) → Gi(`

k+1) has nontrivial kernel, and the previous lemma shows
that G′ contains B`(4k, 4k).

4 ` = 2, n = 2

In this section we prove:

Theorem 4.1. Let G be an open subgroup of GL2(Z2)2 whose projection modulo 4 is trivial.
Denote by G1, G2 the two projections of G on the factors GL2(Z2), and for i = 1, 2 let ni ≥ 3
be an integer such that Gi contains B2(ni). Suppose furthermore that for every (g1, g2) ∈ G we
have det(g1) = det(g2) ≡ 1 (mod 8). If L(G) contains 2ksl2(Z2)⊕ 2ksl2(Z2) for a certain integer
k ≥ 2, then G contains B2(12(k + 11n2 + 5n1 + 12) + 1, 12(k + 11n1 + 5n2 + 12) + 1).

By an argument similar to that used for the case of odd ` (and that will be carried out at the
end of this section) we can reduce the problem to the corresponding statement for SL2(Z2)2:

Theorem 4.2. Let G be an open subgroup of SL2(Z2)2 whose reduction modulo 4 is trivial. Denote
by G1, G2 the two projections of G on the factors SL2(Z2), and for i = 1, 2 let ni ≥ 3 be an integer
such that Gi contains B2(ni). If L(G) contains 2ksl(Z2) ⊕ 2ksl(Z2) for a certain integer k ≥ 2,
then G contains B2(6(k + 11n2 + 5n1 + 12), 6(k + 11n1 + 5n2 + 12)).

The proof of this theorem, although technically involved, relies on a very simple idea: we can
find an element of G of the form (Id, a), where a is not too close to the identity 2-adically, and
this easily implies the conclusion by [Lom14, Theorem 5.2], cf. lemma 4.3. In order to find a
we proceed by contradiction: if there is no such a, then G looks very much like the graph of a
map G1 → G2, and this imposes severe restrictions on its Lie algebra. Indeed, one can prove
that in this case L(G) agrees to high 2-adic order with the graph of a linear map x 7→ PxP−1.
Quantifying this notion of ‘being 2-adically very close to a graph’ (cf. proposition 4.20) gives a
contradiction with the fact that L(G) contains 2ksl(Z2)⊕ 2ksl(Z2).

Notation. For the whole section, the symbols G, G1, G2, and n1, n2 will have the meaning given
in the statement of theorem 4.2. We also set x1, y1, h1 (resp. x2, y2, h2) to be R(2n1), L(2n1),
D(2n1) (resp. R(2n2), L(2n2), D(2n2)): by construction, they are elements of G1 (resp. of G2).

We start to deploy the strategy just outlined by showing that it is in fact enough to find an
element (Id, a) as above:

Lemma 4.3. Let n ≥ 3. Suppose that G contains an element of the form (Id, a) (resp. (a, Id)),
with a nontrivial modulo 2n. Then G contains B2(6n + 24n2 + n1 + 18, 6n + 24n2 + 18) (resp.
B2(6n+ 24n1 + 18, 6n+ 24n1 + n2 + 18).)
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Proof. Consider the smallest normal subgroup H of G that contains (Id, a). This is clearly of the
form {Id}×H2, where H2 is the smallest normal subgroup of G2 containing a. The Lie algebra L
of H2 contains Θ1(a), so it is nontrivial modulo 2n by lemma 2.12. By normality of H2 in G2, L is
stable under conjugation by B2(n2), so lemma 2.4 says that L contains 2n+4n2+3sl2(Z2). Applying
[Lom14, Theorem 5.2] we deduce that H2 contains B2(6n+ 24n2 + 18), and we finish the proof as
we did for lemma 3.12.

We now come to the hard part of the proof, namely showing that if no such a exists, then G
is very close to being a graph. For any fixed integer t ≥ 3, we distinguish two possibilities:

1. There exist two elements (a, b) and (a, b′) of G with b 6≡ b′ (mod 2t), or equivalently, there
exists an element of G of the form (Id, b′′) with b′′ 6≡ Id (mod 2t). In this case we simply
apply lemma 4.3.

2. For every a ∈ G1 there exists a (necessarily unique) b ∈ G2(2t) such that, for every element
of G of the form (a, c), we have c ≡ b (mod 2t). In this case we write b = ϕ(a), so that ϕ is
a well-defined function G1 → G2(2t).

As it is clear, the key step in proving theorem 4.2 is to bound the values of t for which this
second case can arise. Let then t ≥ 3 be an integer for which we are in case 2. We choose a
function ψ : G1 → G2 such that

• ψ(a) ≡ ϕ(a) (mod 2t) for every a ∈ G1;

• (a, ψ(a)) belongs to G for every a ∈ G1.

As we shall see shortly, ϕ is actually a continuous group morphism; on the other hand, ψ does
not necessarily have any nice group-theoretic properties, but allows us to work with well-defined
elements of Z2 instead of congruence classes. We will also see that any such morphism ϕ is, in a
suitable sense, ‘inner’, a fact that will lead to a contradiction for t large enough. From now on,
therefore, we work under the following assumption:

Condition 4.4. The integer t ≥ 3 has the following property: for every a ∈ G1 there exists a
unique b ∈ G2(2t) such that, for every element of G of the form (a, c), we have c ≡ b (mod 2t).

To prove theorem 4.2 we now proceed as follows. Exploiting (integrated forms of) the com-
mutation relations [h, x] = 2x and [h, y] = −2y we show that we can fix a basis in which ψ(h1)
is diagonal (cf. lemma 4.10). We then prove that in this basis ψ(x1) and ψ(y1) are necessarily
triangular up to some 2-adically small error (proposition 4.14), and making use of the relation
[x, y] = h we further show that ψ(x1), ψ(y1) satisfy some additional constraints (which lead to
proposition 4.17). This proves that, up to some 2-adically small error, G is contained in the graph
of x 7→ PxP−1 for a suitable matrix P : the desired conclusion then follows easily by estimating
the 2-adic valuation of the error terms.

Lemma 4.5. ϕ defines a group morphism G1 → G2(2t).

Proof. Let a1, a2 be two elements of G1. Then (a1, ψ(a1))(a2, ψ(a2)) = (a1a2, ψ(a1)ψ(a2)) belongs
to G, so our assumption implies that ψ(a1)ψ(a2) ≡ ϕ(a1a2) (mod 2t). As ψ(a1) (resp. ψ(a2)) is
congruent to ϕ(a1) (resp. ϕ(a2)) modulo 2t the claim follows.

Lemma 4.6. ϕ is continuous.

Proof. Denote by π1, π2 : SL2(Z2)2 → SL2(Z2) the projections on the two factors. As x1, y1, h1
belong to G1 we can find a, b, c so that x′ = (x1, a), y′ = (y1, b), h

′ = (h1, c) all belong to G.

Consider then (x′)2
t

, (y′)2
t

, (h′)2
t

and the group H they generate (topologically). The projection

π1(H) contains x2
t

1 = R(2n1+t) and y2
t

1 = L(2n1+t), hence it is open in SL2(Z2) by an obvious

variant of lemma 2.7 (4). On the other hand, π2(H) is generated by a2
t

, b2
t

, c2
t

, so it is trivial
modulo 2t. It follows that for any g1 ∈ H we have ϕ(g1) = 1, so kerϕ is open and ϕ is continuous.
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Definition 4.7. Let g be an element of SL2(Z2) (resp. of a finite quotient SL2(Z/2mZ)) that is
trivial modulo 4, and let β be any 2-adic integer. Write β =

∑
n≥0 an2n, where each an is either 0

or 1. We set gβ =
∏
n≥0 g

an2
n

, which is well-defined since for every finite j only a finite number

of terms appearing in the product are nontrivial modulo 2j.

The continuity of ϕ then implies

Lemma 4.8. Let β be any 2-adic integer and g be an element of G1. We have ϕ(gβ) = ϕ(g)β.

Having dispensed with these necessary preliminaries we now begin with the proof proper. To
find an element satisfying the assumptions of lemma 4.3 we look first at (x1, ψ(x1)):

Lemma 4.9. If logψ(x1) vanishes modulo 2n1+n2 , then G contains B2(30n1 +24, 30n1 +n2 +24).

Proof. Exponentiating the hypothesis gives ψ(x1) ≡ Id (mod 2n1+n2). There exist a, b, c ∈ G1

such that x′ = (a, x2), y′ = (b, y2), h′ = (c, h2) belong to G. Consider (x′)2
n1
, (y′)2

n1
, (h′)2

n1
:

these three elements (topologically) generate a group H such that π1(H) is trivial modulo 2n1+1

(recall that a, b, c are already trivial modulo 4) and π2(H) contains B2(n1 + n2) (lemma 2.7).
It follows that H (hence G) contains an element of the form (w,ψ(x1)−1), where w is trivial

modulo 2n1+1. Therefore G contains the element (x1, ψ(x1))(w,ψ(x1)−1) = (x1w, Id), where
x1w ≡ x1 (mod 2n1+1) is nontrivial modulo 2n1+1. The claim follows from lemma 4.3.

It is clear that if we are in the situation of the previous lemma theorem 4.2 easily follows, so
next we ask what happens if logψ(x1) is not too close to zero 2-adically. For the sake of simplicity
we set α = (1 + 2n1)2. Note that h1x1h

−1
1 = xα1 , so we have ϕ(h1)ϕ(x1)ϕ(h1)−1 = ϕ(x1)α, or

equivalently ψ(h1)ψ(x1)ψ(h1)−1 ≡ ψ(x1)α (mod 2t); taking logarithms, which makes sense since
both sides of the equation are trivial modulo 4, we obtain (via lemma 2.2, which we shall use from
now on without further explicit mention)

ψ(h1) · logψ(x1) · ψ(h1)−1 ≡ α logψ(x1) (mod 2t). (3)

Now this equation shows that the operator ‘conjugation by ψ(h1)’ admits logψ(x1) as an
approximate eigenvector. If logψ(x1) is not too close to zero, this allows us to deduce properties
of ψ(h1):

Lemma 4.10. With the notation of theorem 4.2 and condition 4.4, let U = t − 3n1 − n2 − 3.
Suppose logψ(x1) 6≡ 0 (mod 2n1+n2) and U > 3n1. Then ψ(h1) is diagonalizable over Q2, with

eigenvalues λ1, λ2 ∈ Z2 that satisfy λ1 ≡ 1 + 2n1 (mod 2U ), λ2 ≡ (1 + 2n1)
−1

(mod 2U ).

Proof. Denote by Cψ(h1) the linear endomorphism of sl2(Z2) given by conjugation by ψ(h1), and
let p(x) be its characteristic polynomial. Note that tr(logψ(x1)) = log detψ(x1) = 0, so logψ(x1)
is in sl2(Z2). Also let λ1, λ2 be the eigenvalues of ψ(h1). An easy computation shows that
p(x) = (x− 1)

(
x− λ21

) (
x− λ22

)
(the same result can also be deduced from the properties of the

adjoint representation of sl2).
With a little abuse of notation, in the course of the proof we shall use congruences (modulo

powers of 2) that involve λ1, λ2: a priori, these might not be elements of Z2, so the precise meaning
of these congruences is that we work with the ideals generated by the relevant powers of 2 in the
ring of integers of F , where F is a suitable quadratic extension of Q2 that contains λ1, λ2; likewise,
we also extend v2 to F . By equation (3) we have

Cψ(h1)(logψ(x1)) = ψ(h1) (logψ(x1))ψ(h1)−1 = α logψ(x1) +O(2t),

so that logψ(x1) is approximately an eigenvector for Cψ(h1). We deduce from lemma 2.5 and
the assumption logψ(x1) 6≡ 0 (mod 2n1+n2) that p(α) ≡ 0 (mod 2t−n1−n2+1). Since ψ(h1) is
congruent to the identity modulo 4, it is easy to see that we have λ1 ≡ λ2 ≡ 1 (mod 4), so
v2(1 + 2n1 + λi) = 1 for i = 1, 2. Hence v2(p(α)), which is given by

v2
(
(1 + 2n1)2 − 1

)
+ v2(1 + 2n1 + λ1) + v2(1 + 2n1 + λ2) + v2(1 + 2n1 − λ1) + v2(1 + 2n1 − λ2),
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does not exceed (n1 + 1) + 1 + 1 + 2 maxi v2(1 + 2n1 − λi), so that

max
i
v2(1 + 2n1 − λi) ≥

v2(p(α))− n1 − 3

2
≥ t− 2n1 − n2 − 2

2
.

Up to exchanging λ1 and λ2 we can assume the maximum is attained for i = 1.

Set U ′ =

⌊
t− 2n1 − n2 − 2

2

⌋
. We have λ1 ≡ 1 + 2n1 (mod 2U

′
) and, if U ′ > 2n1 (a condition

that is implied by the hypothesis U > 3n1), also λ2 = λ−11 ≡ 1 − 2n1 + 22n1 (mod 22n1+1). It
follows in particular that v2(1 + 2n1 − λ2) = n1 + 1, so that we can improve our previous estimate
to

v2(1 + 2n1 − λ1) ≥ v2(p(α))− (n1 + 1)− 1− 1− (n1 + 1) ≥ t− 3n1 − n2 − 3,

that is λ1 ≡ λ−12 ≡ 1 + 2n1 (mod 2U ). Now since U > 3n1 the trace of ψ(h1) is given by

λ1 + λ2 = 1 + 2n1 + 1− 2n1 + 22n1 +O(23n1),

so
tr(ψ(h1))2 − 4 det(ψ(h1)) =

(
2 + 22n1 +O(23n1)

)2 − 4

= 22n1+2 (1 +O (2n1))

is a square in Z2 (since n1 ≥ 3). It follows that the eigenvalues of ψ(h1) lie in Z2, because

λ1,2 =
tr(ψ(h1))±

√
(trψ(h1))

2 − 4

2
is in Q2 (as the expression under square root is a square) and

is 2-integral (as p(x) is monic with 2-integral coefficients). It follows that ψ(h1) is diagonalizable
over Q2, and that its eigenvalues satisfy the given congruences.

We now start building a base-change matrix P such that G is contained (up to error terms
of large 2-adic valuation) in the graph of x 7→ PxP−1. As a first approximation, the following
corollary yields a matrix N such that N−1ψ(h1)N is congruent to h1 modulo a large power of 2:

Corollary 4.11. Under the hypotheses of the previous lemma, there exists a 2-integral matrix
N ∈ GL2(Q2) that satisfies:

1. N−1ψ(h1)N is diagonal (with diagonal entries λ1, λ2 as above);

2. v2(det(N)) ≤ n1 + 1.

Proof. Let w1, w2 be two eigenvectors for ψ(h1), associated resp. with λ1, λ2, and chosen so as to
be 2-integral and to have at least one coordinate that is a 2-adic unit. Let N be the matrix having
w1, w2 as columns: it is clear that N satisfies (1). Now if w1, w2 are linearly independent over F2

we are done, for then v2(detN) = 0; otherwise, up to rescaling w1, w2 and exchanging their two

coordinates, we can assume they are of the form w1 =

(
1
w′1

)
, w2 =

(
1
w′2

)
. The determinant of

N is simply w′2 − w′1, hence we have(
0

w′2 − w′1

)
≡ 0 (mod det(N)) ⇒ w2 ≡ w1 (mod det(N)).

Applying ψ(h1) to both sides of the last congruence we find λ2w2 = λ1w1 (mod det(N)), and
comparing the first coordinates of these vectors we obtain λ1 ≡ λ2 (mod det(N)). Since by the
previous lemma we have λ1 ≡ 1 + 2n1 (mod 22n1) and λ2 ≡ 1 − 2n1 (mod 22n1), we have in
particular 2n1+1 ≡ 0 (mod det(N)), whence the corollary.

Assuming the hypotheses of lemma 4.10, fix a matrix N as in the previous corollary. We
consider those elements (g1, ψ(g1)) of G such that N−1ψ(g1)N is 2-integral:
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Lemma 4.12. Assume that logψ(x1) does not vanish modulo 2n1+n2 and that U > 3n1, so that
we can find an N as above. Let g1 be an element of B2(2n1 + 1) ⊆ G1. Then N−1ψ(g1)N is
2-integral and trivial modulo 4.

Proof. As B2(2n1 + 1) is generated by L(22n1+1), R(22n1+1) and D(22n1+1) it is enough to show
the conclusion of the lemma holds for these three elements. Since the proof is virtually identical
in the three cases, we only consider R(22n1+1). We have R(22n1+1) = x2

n1+1

1 , hence

ψ(R(22n1+1)) ≡ ψ(x1)2
n1+1

(mod 2t);

as ψ(x1) ≡ Id (mod 4), the matrix ψ(x1)2
n1+1

is congruent to the identity modulo 2n1+3. Writing

ψ(x1)2
n1+1

as Id +2n1+3B for a certain 2-integral matrix B we have

N−1ψ(R(22n1+1))N = N−1
(
Id +2n1+3B

)
N = Id +N∗

(
2n1+3

det(N)
B

)
N,

where N∗ = det(N)N−1 is the adjugate matrix of N . Since v2(detN) ≤ n1+1, this last expression
is manifestly 2-integral and congruent modulo 4 to the identity.

Let N∗ be the adjugate matrix of N and D =

(
λ1

λ2

)
= N−1ψ(h1)N . By the previous

lemma, the following identity only involves 2-integral matrices:(
N−1ψ(h1)N

) (
N−1ψ

(
R(22n1+1)

)
N
) (
N∗ψ(h1)−1N

)
= N∗ψ(h1)ψ

(
R(22n1+1)

)
ψ(h1)−1N

≡ N∗ϕ(h1)ϕ(R(22n1+1))ϕ(h1)−1N (mod 2t)

≡ N∗ϕ
(
R(22n1+1)α

)
N (mod 2t)

≡ N∗ϕ
(
R(22n1+1)

)α
N (mod 2t).

Replacing ϕ by ψ and dividing through by det(N) we deduce

D
(
N−1ψ(R(22n1+1))N

)
D−1 ≡

(
N−1ψ(R(22n1+1))N

)α
(mod 2t−n1−1). (4)

This equation forces N−1ψ(R(22n1+1))N to be of a very specific form:

Lemma 4.13. There exists c ∈ 4Z2 such that N−1ψ(R(22n1+1))N ≡
(

1 c
0 1

)
(mod 2U−n1−2).

Proof. Note that since t − n1 − 1 > U we can in particular rewrite equation (4) modulo 2U , and

we know D ≡
(

1 + 2n1

(1 + 2n1)
−1

)
(mod 2U ). Recall that N−1ψ(R(22n1+1))N is 2-integral

and trivial modulo 4 by lemma 4.12, so its logarithm is well-defined. Since D and D−1 are both
2-integral, the same is true of DN−1ψ(R(22n1+1))ND−1. Let Ax = log

(
N−1ψ(R(22n1+1))N

)
and

write Ax = µx

(
0 1
0 0

)
+ µy

(
0 0
1 0

)
+ µh

(
1 0
0 −1

)
for certain µx, µy, µh ∈ Z2. We claim that

µh ≡ 0 (mod 2U−n1−1) and µy ≡ 0 (mod 2U−n1−2). Reducing equation (4) modulo 2U and taking
logarithms we get

α ·Ax ≡ DAxD−1 ≡
(
λ1 0
0 λ2

)
Ax

(
λ1 0
0 λ2

)−1
(mod 2U ),

and the right hand side can be computed explicitly in terms of µx, µh, µy. Using λ2 = 1/λ1 we
find

α ·Ax ≡ λ21µx
(

0 1
0 0

)
+ λ22µy

(
0 0
1 0

)
+ µh

(
1 0
0 −1

)
(mod 2U ),
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that is 
αµx ≡ λ21µx (mod 2U )

αµy ≡ λ22µy (mod 2U )

αµh ≡ µh (mod 2U ).

(5)

Furthermore, one easily sees that v2(α− λ22) = v2

(
(1 + 2n1)

2 −
(
1− 2n1 +O

(
22n1

))2)
= n1 + 2

and v2(α− 1) = n1 + 1. Rewriting the last formula in (5) as (α− 1)µh ≡ 0 (mod 2U ) shows that
µh ≡ 0 (mod 2U−n1−1), while αµy ≡ λ22µy (mod 2U ) implies µy ≡ 0 (mod 2U−n1−2). This proves

that Ax ≡
(

0 µx
0 0

)
(mod 2U−n1−2), and exponentiating we find

N−1ψ(R(22n1+1))N = expAx ≡ exp

(
0 µx
0 0

)
≡
(

1 µx
0 1

)
(mod 2U−n1−2).

We can then take c = µx, which is in 4Z2 since N−1ψ(R(22n1+1))N ≡ Id (mod 4) by lemma
4.12.

A completely analogous argument yields similar results for N−1ψ(L(22n1+1))N , hence:

Proposition 4.14. Assume that

• T := U − n1 − 2 = t− 4n1 − n2 − 5 is larger than 2n1 − 2 (that is, U > 3n1);

• G contains no element of the form (Id, b), where b 6≡ Id (mod 2t);

• logψ(x1) does not vanish modulo 2n1+n2 .

Then there exists a matrix N ∈ GL2(Q2), with 2-integral entries and whose determinant sat-
isfies v2(det(N)) ≤ n1 + 1, and scalars c, d ∈ 4Z2, such that

N−1ψ(h1)N =

(
λ1

λ2

)
≡ h1 (mod 2T ),

N−1ψ
(
R(22n1+1)

)
N ≡

(
1 c
0 1

)
(mod 2T ), N−1ψ

(
L(22n1+1)

)
N ≡

(
1 0
d 1

)
(mod 2T ).

Remark 4.15. As we shall see shortly, the product cd is 2-adically very close to 24n1+2, as one
would expect. However, it is not true in general that c, d, taken separately, are 2-adically very
close to 22n1+1. Let us give an example of this phenomenon, which will also motivate the choices
we make in the rest of the proof. Fix a positive integer n1 ≥ 3 and an integer p � n1, and let
G be the group generated by B2(p, p) and

{
(g1, g2) ∈ B2(n1)2

∣∣ g2 = g1
}
. In our notation one can

take ψ to be the identity, and a matrix N as in the statement of proposition 4.14 is given by(
2n1+1 0

0 1

)
; notice that this matrix cannot be obtained from the construction of N we gave in

corollary 4.11, but its simple form makes it easier to make our point. In this situation we have

N−1ψ(R(22n1+1))N =

(
1 2n1

0 1

)
, N−1ψ(L(22n1+1))N =

(
1 0

23n1+2 1

)
,

so c = 2n1 and d = 23n1+2 are quite far 2-adically from 22n1+1.

The parameters c, d are up to now completely free, and they cannot be controlled by only using
the relations h1x1h

−1
1 = xα1 , h−11 y1h1 = yα1 (which are essentially integrated forms of the usual

sl2-Lie algebra relations [h, x] = 2x, [h, y] = −2y). In order to say something meaningful about
them, we shall need to use an integrated form of the Lie algebra relation [x, y] = h, that is to say
we want to have some degree of control on commutators of the form L(a)R(b)L(a)−1R(b)−1. This
is made possible by the following simple lemma, whose proof is immediate by induction:
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Lemma 4.16. • For any pair (a, b) of elements of Z2 of valuation at least 1, the finite

products

−1∏
i=−n

R(a)(ab)
−i

·
(
R(a)L(b)R(a)−1L(b)−1

)
·
n∏
i=1

L(b)−(ab)
i

converge, as n → ∞, to(
1

1−ab 0

0 1− ab

)
.

• Let (a, b) be as above and (c, d) be any other pair of elements of 2-adic valuation at least 1.

The finite products

−1∏
i=−n

R(c)(ab)
−i

·
(
R(c)L(d)R(c)−1L(d)−1

)
·
n∏
i=1

L(d)−(ab)
i

converge to a

limit for n→∞, and this limit is of the form

(
? ?
? 1− cd

)
.

Apply this lemma to a = 22n1+1, b = 22n1+1: the infinite product

−1∏
i=−∞

R(a)(ab)
−i

·
(
R(a)L(b)R(a)−1L(b)−1

)
·
∞∏
i=1

L(b)−(ab)
i

converges to

( 1

1− 24n1+2
0

0 1− 24n1+2

)
= hβ1 , where β is defined by (1 + 2n1)−β = 1 − 24n1+2.

Applying ϕ (which, being continuous, commutes with infinite products) we deduce that

ϕ(h1)β =

−1∏
i=−∞

ϕ(R(a))(ab)
−i

·
(
ϕ(R(a))ϕ(L(b))ϕ(R(a))−1ϕ(L(b))−1

)
·
∞∏
i=1

ϕ(L(b))−(ab)
i

. (6)

By proposition 4.14 there exist c, d ∈ 4Z2 such that

N−1ψ(R(22n1+1))N = N−1ψ(R(a))N ≡ R(c) ≡
(

1 c
0 1

)
(mod 2T ),

N−1ψ(L(22n1+1))N = N−1ψ(L(b))N ≡ L(d) ≡
(

1 0
d 1

)
(mod 2T ).

(7)

Rewriting equation (6) in terms of ψ and multiplying by N (resp. N∗) on the right (resp. left) we
find

N∗ψ(h1)βN ≡ N∗
−1∏

i=−∞
ψ(R(a))(ab)

−i

· [ψ(R(a)), ψ(L(b))] ·
∞∏
i=1

ψ(L(b))−(ab)
i

N (mod 2t).

Further conjugating every term ψ(R(a)) and ψ(L(b)) by N , similarly to what we did in deriving
equation (4), using the congruences in (7), and dividing by detN , we end up with

(
N−1ψ(h1)N

)β ≡ −1∏
i=−∞

R(c)(ab)
−i

·
(
R(c)L(d)R(c)−1L(d)−1

)
·
∞∏
i=1

L(d)−(ab)
i

(mod 2T−n1−1).

Applying the second part of the previous lemma to R(c), L(d) we then obtain

hβ1 ≡
(
N−1ψ(h1)N

)β ≡ −1∏
i=−∞

R(c)(ab)
−i

·
(
R(c)L(d)R(c)−1L(d)−1

)
·
∞∏
i=1

L(d)−(ab)
i

≡
(
? ?
? 1− cd

)
(mod 2T−n1−1),

whence – comparing the bottom-right coefficients – we find 1− 24n1+2 ≡ 1− cd (mod 2T−n1−1).
In particular, if T ≥ 5n1 + 4, we must have v2(c) + v2(d) = 4n1 + 2, and by symmetry we can
assume that v2(c) ≤ 2n1 + 1.
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We deduce that d ≡ 24n1+2

c
(mod 2T−n1−1−v2(c)), and therefore d ≡ 24n1+2

c
(mod 2T−3n1−2).

Consider now the matrix M =

(
1 0
0 22n1+1/c

)
(which is 2-integral, since v2(c) ≤ 2n1 + 1). By

construction we have MR(22n1+1) = R(c)M , so that

MR(22n1+1) ≡ R(c)M ≡ N−1ψ(R(22n1+1))NM (mod 2T ),

and furthermore – since N−1ψ(h1)N is diagonal and congruent to h1 modulo 2T – we also have

Mh1 ≡ h1M ≡ N−1ψ(h1)NM (mod 2T ).

Finally, using what we just proved on d we find (for T ≥ 5n1 + 4)

ML(22n1+1) =

(
1 0

24n1+2/c 22n1+1/c

)
≡
(

1 0
d 22n1+1/c

)
≡ L(d)M ≡ N−1ψ

(
L(22n1+1)

)
NM (mod 2T−3n1−2).

Multiplying this last equation by M∗ =

(
22n1+1/c 0

0 1

)
on the left we get

detM · L(22n1+1) ≡M∗N−1ψ
(
L(22n1+1)

)
NM (mod 2T−3n1−2),

and similar ones hold for R(22n1+1), h1. Given that v2(detM) ≤ 2n1 + 1, dividing by detM we
find

(NM)−1ψ
(
L(22n+1)

)
NM ≡ L(22n+1) (mod 2T−5n1−3),

along with similar relations for R(22n1+1), h1 = D(2n1). As R(22n1+1), L(22n1+1), D(2n1) generate
B2(2n1 + 1) we have thus established

Proposition 4.17. For every g ∈ B2(2n1 + 1) we have (NM)−1ψ(g)(NM) ≡ g (mod 2T−5n1−3).

Notice that if we replace NM by λNM , for any λ ∈ Q2, then the previous proposition still
holds, simply because the factors of λ on the left hand side cancel out. We can then choose λ in
such a way that λNM is 2-integral and has at least one coefficient which is a 2-adic unit; we set
P := λNM for this value of λ. We now give a version of proposition 4.17 that applies to all of G1:

Proposition 4.18. The following congruences hold for every g ∈ G1:

P−1ψ(g)P ≡ g (mod 2T−7n1−2) and trψ(g) = tr g (mod 2T−7n1−2).

Remark 4.19. As promised at the beginning of the section, this is essentially the statement that
if G does not contain an element of the form (Id, b) with b 6≡ Id (mod 2t), then G is 2-adically
very close to being a graph.

Proof. Clearly v2(detP ) ≤ v2(detM) + v2(detN) ≤ 3n1 + 2, and for all g ∈ G1 and every
m ∈ N we have P ∗ψ (gm)P ≡ P ∗ϕ (gm)P ≡ P ∗ϕ (g)

m
P ≡ P ∗ψ (g)

m
P (mod 2t), so dividing by

detP we find P−1ψ (gm)P ≡ P−1ψ (g)
m
P (mod 2t−3n1−2). Now g is congruent to the identity

modulo 4, hence g2
2n1−1

belongs to B2(2n1 + 1), so applying proposition 4.17 and noticing that

T−5n1−3 < t−3n1−2 we find P−1ψ (g)
22n1−1

P ≡ P−1ψ
(
g2

2n1−1
)
P ≡ g22n1−1

(mod 2T−5n1−3).

Taking logarithms we obtain

22n1−1P−1 logψ(g)P ≡ 22n1−1(log g) (mod 2T−5n1−3),

whence P−1 logψ(g)P ≡ log g (mod 2T−7n1−2). Since log g is trivial modulo 4, we can exponenti-
ate both sides of the congruence to find P−1ψ(g)P ≡ g (mod 2T−7n1−2), as claimed. Taking the
trace of this last congruence also gives trψ(g) ≡ tr(g) (mod 2T−7n1−2).
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Let now (g1, g2) be an element of G. By the previous proposition we have

P

(
g1 −

tr g1
2

Id

)
≡ ψ(g1)P − tr g1

2
P ≡

(
ψ(g1)− trψ(g1)

2
Id

)
P (mod 2T−7n1−3),

and since ψ(g1) ≡ g2 (mod 2t) this implies PΘ1(g1) ≡ Θ1(g2)P (mod 2T−7n1−3). Recalling that
L(G) is the Z2-span of Θ2(G), this implies that for every (u1, u2) ∈ L(G) we have the congruence
Pu1 ≡ u2P (mod 2T−7n1−3). Taking into account all the assumptions we made along the way, we
have thus proved:

Proposition 4.20. Let G, n1, n2 be as in theorem 4.2 and t ≥ 3 be an integer. Assume:

1. G contains no element of the form (Id, b), where b 6≡ Id (mod 2t);

2. logψ(x1) does not vanish modulo 2n1+n2 ;

3. t− 11n1 − n2 − 8 ≥ 0 (that is, T − 7n1 − 3 ≥ 0; this also implies the condition U > 3n1 of
lemma 4.10).

Then for every (u1, u2) ∈ L(G) we have Pu1 ≡ u2P (mod 2t−11n1−n2−8), where P ∈ GL2(Q2)
is 2-integral and has at least one coefficient which is a 2-adic unit.

The result we were aiming for is now well within reach:

Proof. (of theorem 4.2) Suppose that L(G) contains 2ksl2(Z2) ⊕ 2ksl2(Z2): then L(G) contains

the elements (u1, u2) :=

(
2k
(

0 1
0 0

)
, 0

)
and (v1, v2) :=

(
2k
(

0 0
1 0

)
, 0

)
. Since one of the

coefficients of P is a 2-adic unit, at least one of the two congruences Pu1 ≡ u2P ≡ 0 (mod 2k+1)
and Pv1 ≡ v2P ≡ 0 (mod 2k+1) does not hold. In particular, the conclusion of the previous
proposition is false if t − 11n1 − n2 − 8 = k + 1. Thus if we let t = k + 11n1 + n2 + 9 at least
one of the three hypotheses must be false; for our choice of t, the inequality of condition (3) is
satisfied, so either (1) or (2) must fail. If (2) fails, then G contains B2(30n1 + 24, 30n1 + 24 + n2)
by lemma 4.9. On the other hand, if condition (1) is not satisfied, then lemma 4.3 implies that
G contains all of B2(6(k + 11n1 + 5n2 + 12) + n1, 6(k + 11n1 + 5n2 + 12)), which is contained in
B2(30n1 + 24, 30n1 + 24 + n2), and therefore contained in G independently of which hypothesis
(1) or (2) is the one that fails. Finally, note that the hypotheses of the theorem are symmetric in
G1, G2, so we can repeat the whole argument switching the roles of G1, G2, which shows that G
also contains B2(6(k + 11n2 + 5n1 + 12), 6(k + 11n2 + 5n1 + 12) + n2) and concludes the proof of
the theorem.

As promised, we can finally prove theorem 4.1, by an argument similar to that used to deduce
theorem 3.2 from theorem 3.1:

Proof. We let det∗ be as in the proof of theorem 3.1. Let Gsat = {λg
∣∣ g ∈ G,λ ∈ 1 + 4Z2},

denote by U the intersection Gsat ∩ SL2(Z2)2, and let U1, U2 be the two projections of U on the
factors SL2(Z2). Notice that U ′ = G′: by assumption, for every g ∈ G there exists λ ∈ Z2 such
that det∗ g = λ2; but then either λ or −λ is congruent to 1 modulo 4, so either g/λ or −g/λ
belongs to U , and we can apply lemma 2.11. Also remark that if G1 contains B2(n1), then the
same is true for U1: indeed for every g1 ∈ B2(n1) we know that there exists a certain g2 ∈ G2

such that (g1, g2) ∈ G. As det(g2) equals det(g1) = 1 by the assumptions on G, this shows
that (g1, g2) belongs to U as well, and therefore g1 belongs to U1. The same argument obviously
also works for U2, and furthermore U and G have the same Lie algebra (again by lemma 2.11).
Finally, U is trivial modulo 4 by construction. Applying theorem 4.2 to U we deduce that U
contains B2(6(k + 11n2 + 5n1 + 12), 6(k + 11n1 + 5n2 + 12)), and therefore G′ = U ′ contains
B2(12(k + 11n2 + 5n1 + 12) + 1, 12(k + 11n1 + 5n2 + 12) + 1) by lemma 2.8.
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5 Conclusion of the proof

Using the results of the previous two sections we are now in a position to show theorem 1.3 for all
n. Let us first remark that the inequality [G : H] ≤ 120 appearing in the statement of [Lom14,
Theorem 4.2] can be improved to [G : H]

∣∣ 24: this follows immediately from the same proof and
the simple remark that if G(`) is exceptional, then G contains a subgroup H, of index dividing
24, such that H(`) is cyclic of order dividing 6 or 10. With this small improvement, case n = 1
of theorem 1.3 is (amply) covered by theorems 4.2 and 5.2 of [Lom14]. We now consider the case
n ≥ 2, starting with the odd primes. If ` = 3 we take H = ker (G→ SL2(F3)n), for which the
claim follows directly from the fact that it is pro-` and from Pink’s theorem (theorem 3.4).

We can then assume ` ≥ 5, n ≥ 2. Denote by πi : SL2(Z`)n → SL2(Z`) the n canonical
projections and let πi1,i2 = πi1 × πi2 be the projection on the two factors numbered i1 and i2.
For m between 1 and n, construct inductively groups Hm as follows: apply [Lom14, Theorem
4.2] to π1(G) to find a subgroup K1 of π1(G) of index dividing 24 and having property (??) in
the notation of [Lom14] (or, if π1(G)′ = SL2(Z`), set K1 = π1(G)), and set H1 = π−11 (K1):
this is a subgroup of G of index dividing 24. Assuming we have constructed Km and Hm, apply
[Lom14, Theorem 4.2] to πm+1(Hm) to find a subgroup Km+1 of index dividing 24 and having
property (??), and set Hm+1 = π−1m+1(Km+1), again with the convention that Km+1 = πm+1(Hm)
if πm+1(Hm)′ = SL2(Z`). It is clear by construction that Hn is an open subgroup of G of index
dividing 24n. For 1 ≤ t ≤ n we also let nt be the minimal positive integer such that B`(nt)
is contained in πt(Hn). Notice now that for all m = 1, . . . , n − 1 the index [Hm : Hm+1] is
a divisor of 24, hence in particular coprime to ` ≥ 5. As B`(nt) is a pro-` group, it follows
that it is contained in πt(Hn) if and only if it is contained in πt(Hj) for all j = 1, . . . , n. Now
let (i1, j1), (i2, j2), . . . , (in(n−1)/2, jn(n−1)/2) be the list of all n(n − 1)/2 pairs (i, j) with i < j,
and construct inductively groups Him,jm (for m = 1, . . . , n(n − 1)/2) as follows. We start by
formally setting Hi0,j0 = Hn; then, assuming Him,jm has been constructed, we apply theorem 3.2
to πim+1,jm+1(Him,jm) and we define Him+1,jm+1 as follows:

1. if B`(20 max{nim+1
, njm+1

}, 20 max{nim+1
, njm+1

}) is contained in πim+1,jm+1
(Him,jm) we set

Him+1,jm+1
= Him,jm and Kim+1,jm+1

= πim+1,jm+1
(Him,jm);

2. otherwise, there exists an open subgroup Kim+1,jm+1 of πim+1,jm+1(Him,jm), of index dividing
482 and having properties (2a) and (2b) of theorem 3.2, in which case we define Him+1,jm+1

to be the inverse image in Him,jm of Kim+1,jm+1
.

Again, notice that the index
[
Him,jm : Him+1,jm+1

]
is prime to `, so that it follows inductively

that for every t = 1, . . . , n and every m = 1, . . . , n(n− 1)/2 the open subgroup B`(nt) is contained
in πt(Him,jm). We finally set H = Hin(n−1)/2,jn(n−1)/2

; by construction, it is a open subgroup of

G of index dividing 24n48n(n−1). Denote by τi : sl2(Z`)n → sl2(Z`) (resp. τi,j) the projection on
the i-th (resp. (i, j)-th) factor. Now suppose that L(H) contains `ksl2(Z`)⊕ . . .⊕ `ksl2(Z`) for a
certain k > 0. We have

L(Ki) ⊇ L(πi(H)) = τi(L(H)) ⊇ `ksl2(Z`),

so the properties of Ki = πi(Hi) given by [Lom14, Theorem 4.2] imply that it contains B`(4k). It
follows from the definition of the integers nt that we have nt ≤ 4k for all t. Consider now a pair
of indices i < j. As before we have L(Ki,j) ⊇ L(πi,j(H)) = τi,j(L(H)) ⊇ `ksl2(Z`)⊕ `ksl2(Z`), so
two cases arise (depending on whether we were in case (1) or (2) above):

1. either B`(20 max{ni, nj}, 20 max{ni, nj}) ⊇ B`(80k, 80k) is contained in πi,j(G),

2. or Ki,j contains B`(p, p) with p = 2k + max {2k, 8ni, 8nj} ≤ 34k.

Either way, we see that πi,j(G) contains B`(80k, 80k): once again, the index [πi,j(G) : πi,j(H)] is
prime to `, so the fact that πi,j(G) contains B`(80k, 80k) implies that πi,j(H) contains B`(80k, 80k).
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Since this holds for every pair of indices 1 ≤ i < j ≤ n, lemma 2.9 implies that H contains
n∏
i=1

B` (80(n− 1)k), as claimed.

Finally consider the case ` = 2. Define H to be the kernel of the reduction G→ SL2(Z/4Z)n.
Suppose that L(H) contains 2ksl2(Z2)⊕ . . .⊕2ksl2(Z2), and let Hi = πi(H), Hi,j = πi,j(H). Since
L(πi(H)) ⊇ 2ksl2(Z2), [Lom14, Theorem 5.2] implies that Hi contains B2(6k), and the integers ni
appearing in the statement of theorem 4.2 can all be taken to be 6k > 3. Similarly, L(Hi,j) contains
2ksl2(Z2) ⊕ 2ksl2(Z2), hence by theorem 4.2 the group Hi,j contains B2(582k + 72, 582k + 72):

lemma 2.9 then implies that H contains

n∏
i=1

B2 ((n− 1)(582k + 73)). Finally, as H is trivial modulo

4, it is clear that k ≥ 3, so we have 582k + 73 ≤ 607k and we are done.
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