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Disclaimer. The purpose of these notes is to give a quick, somewhat hands-on1 intro-
duction to the arithmetic theory of Abelian varieties from the point of view of their Galois
representations. They are not intended as a course book or as a complete reference for the
topic (far from it!): the reader is encouraged to complement them with the many great
sources already available either in print or on the web. Some personal favourites of mine
are Mumford’s classic book on abelian varieties [Mum70], the notes by Edixhoven, van
Geemen, and Moonen [EMvG], and Milne’s course notes [Mil12].

Acknowledgments. Many thanks go to Enis Kaya, Andrea Maffei, and Pietro Mercuri
for the extensive feedback I received from them while writing these notes. I’d also like to
thank Bas Edixhoven for an illuminating discussion about Jacobians, and Gabor Wiese,
Antonella Perucca, Shaunak Deo, Ilker Inam and Alexander Rahm for the organisation of
the summer school.

1at least, that was the intention. I’m afraid I might have failed...



CHAPTER 1

Introduction to abelian varieties

1. Preliminaries

1.1. Basic notation. We reserve the letter K to denote fields. When K is a number
field, that is a finite extension of the field Q of rational numbers, we denote by OK its ring
of integers. The letters p and ` will usually denote rational primes (that is, usual prime
numbers), while the symbol v will usually denote a prime ideal (a ‘finite place’) in the ring
of integers of some number field. The completion of OK at v will be denoted by OK,v and
the residue field at v by Fv.

The symbol C will usually denote a curve, and J will be the associated Jacobian variety
(to be defined later). We’ll use the letters A and B for abelian varieties.

A variety over a field is a scheme of finite type over that field, separated and geomet-
rically integral (that is, reduced and irreducible). In particular, varieties are geometrically
connected. A nice curve is a smooth projective variety of dimension 1.

1.2. Group schemes. The reader should be aware that the language of group schemes
is essential in developing some of the more advanced parts of the arithmetic theory of
abelian varieties. To keep these notes as elementary as possible we shall try to avoid this
language as much as possible, but it is still useful to have at least a vague idea of what it
is about:

Definition 1.1. Let S be a scheme. A group scheme over S is an S-scheme G
together with three morphisms

m : G ×S G → G, i : G → G, e : S → G,
called respectively the multiplication, inverse, and unit maps. They satisfy the obvious
axioms to endow the set of points G(A) (for any S-scheme A) with the structure of a group;
for example, associativity translates into the commutativity of the following diagram

G ×S G ×S G
(m,id)

//

(id,m)
��

G ×S G
m

��

G ×S G m
// G

and there are analogous diagrams that encode the fact that i gives the inverse and e the
unit for the group law.

Example 1.2. The following are two fundamental examples:
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6 1. INTRODUCTION TO ABELIAN VARIETIES

(1) The multiplicative group Gm,S. We start by defining Gm,Z: as a scheme, it is
given by Gm,Z = SpecZ[T, T−1]. In order to describe its group structure, we need
to specify three morphisms e, i and m as above. The identity section e is the map
of affine schemes induced by the map of rings

Z[T, T−1] → Z
T 7→ 1.

Likewise, the inverse i is induced by the map of rings

Z[T, T−1] → Z
T 7→ T−1

and multiplication m is induced by

Z[T, T−1] → Z[T1, T2, T
−1
1 , T−1

2 ]
T 7→ T1T2.

Notice that Z[T1, T2, T
−1
1 , T−1

2 ] ∼= Z[T1, T
−1
1 ] ⊗Z Z[T2, T

−1
2 ], and the latter is the

coordinate ring of Gm,Z×SpecZGm,Z. One checks immediately that, for any scheme
X, we have

Gm,Z(X) = HomSch(X,Gm,Z) = HomRing(Z[T, T−1], H0(X,OX)) = H0(X,OX)× :

here the second equality follows from the fact that Gm,Z is affine, while the third
is a consequence of the fact that a ring homomorphism ϕ : Z[T ]→ H0(X,OX) is
uniquely determined by a = ϕ(T ), and it factors via Z[T, T−1] if and only if a is
invertible in H0(X,OX).

The previous equalities justify the name multiplicative group: when evaluated
on X = Spec(A), where A is a ring, we get Gm,Z(X) = A×. We may also check
that the induced maps m : Gm,Z(X) × Gm,Z(X) → Gm,Z(X) and i : Gm,Z(X) →
Gm,Z(X) are the obvious ones. Let’s do it for the former. We are considering a
diagram of the form

X

ϕ1

##

ϕ2

))

(ϕ1,ϕ2)

''

Gm,Z ×SpecZ Gm,Z //

��
m

''

Gm,Z

Gm,Z Gm,Z

and we are interested in the composition m ◦ (ϕ1, ϕ2). We may assume that
X = Spec(A) is affine, in which case the maps ϕ1, ϕ2 are determined by a1 :=
ϕ1(T ) ∈ A× and a2 := ϕ2(T ) ∈ A×. We would like to describe m ◦ (ϕ1, ϕ2) and
check that it corresponds to a1a2 ∈ A×. Indeed, we have a corresponding diagram



1. PRELIMINARIES 7

of rings

A

Z[T1, T
−1
1 ]⊗Z Z[T2, T

−1
2 ]

hh

Z[T2, T
−1
2 ]oo

T2 7→a2
nn

Z[T1, T
−1
1 ]

T1 7→a1

SS

OO

Z[T, T−1]

m
ii

so that the composite map Z[T, T−1]
m−→ Z[T1, T

−1
1 ] ⊗Z Z[T2, T

−1
2 ] → A sends

T 7→ T1T2 7→ a1a2 as desired. The verification for the inverse is similar, and we
leave it to the reader.

The upshot of this discussion is that, for every scheme X, we may endow the set
Gm,Z(X) = H0(X,OX)× with the group structure induced by e, i and m, and this
group structure agrees with the natural multiplicative structure of H0(X,OX)×.

Finally, if S is a general base scheme, the multiplicative group over S is simply
Gm,S = Gm,Z×SpecZS, and for any test S-scheme X we again have canonical group
isomorphisms Gm,S(X) ∼= H0(X,OX)×.

(2) In a similar manner, we may also define the additive group Ga,S: again it suffices
to define Ga,Z, which as a scheme is simply SpecZ[T ]. A calculation similar to
the above shows that for any test scheme X we have Ga,Z(X) = H0(X,OX)
(equality as sets). We may then equip Ga,Z with the structure of a group scheme
by endowing it with the morphisms corresponding to the ring maps

e : Z[T ] → Z
T 7→ 0

,
i : Z[T ] → Z[T ]

T 7→ −T ,
m : Z[T ] → Z[T1, T2]

T 7→ T1 + T2

Finally, one checks that, given elements ϕ1, ϕ2 in Ga,Z(X), corresponding to
a1, a2 ∈ H0(X,OX), the map m◦ (ϕ1, ϕ2) is the element of Ga,Z(X) corresponding
to a1 +a2, and i◦ϕ1 is the element corresponding to −a1. In other words, for every
scheme X we have canonical group isomorphisms Ga,Z(X) ∼= (H0(X,OX),+).

Remark 1.3. More informally, when S is the spectrum of a field K, a group scheme
over S is a K-variety G whose K-points form a group, and such that:

(1) the identity element of G(K) is K-rational;
(2) the functions m : G(K) × G(K) → G(K) and i : G(K) → G(K) that give

the multiplication and inverse in the group are induced by algebraic morphisms
G×G→ G and G→ G (defined over K).

Group schemes over a field are often simply called algebraic groups.

Remark 1.4. Roughly speaking, group schemes over S should be thought of as alge-
braic groups parametrised by points of S.
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1.3. Abelian varieties. Let K be a field (not necessarily of characteristic 0). An
abelian variety over K is a reduced, connected and projective algebraic group: since
this seemingly innocuous definition hides quite a bit of sophisticated mathematics, let us
spend some time making the acquaintance of these objects.

Remark 1.5. (1) In the definition, one may replace projective with proper. It is
a theorem of Weil that the two definitions are equivalent: a reduced, connected,
proper algebraic group is automatically projective (for a proof see [Mil12, §7]).

(2) Since abelian varieties by definition are connected and possess a K-rational point,
they are also geometrically connected [Sta18, Tag 04KV].

(3) A theorem of Cartier shows that if char(K) = 0 all group schemes over K are
automatically reduced ([EMvG, Theorem 3.20]); this is not true in general over
fields of positive characteristic.

(4) It is a well-known fact ([EMvG, Proposition 3.17]) that all reduced group schemes
over a field are smooth. Combined with the previous remarks, this shows that if
char(K) = 0 one may simply define abelian varieties as connected, proper group
schemes over K.

Since we are all familiar with the notion of on abelian group, it would be quite discon-
certing if abelian varieties (or rather, the groups consisting of their rational points) were
not commutative. Luckily, the nomenclature is consistent:

Proposition 1.6. Any abelian variety is commutative, that is, the two maps

A× A → A
(x, y) 7→ x · y

and
A× A → A
(x, y) 7→ y · x

coincide, where we (temporarily) denote by · the multiplication map on A.

Proof. Since we are considering abelian varieties over a field, it suffices to work at
the level of K-points (notice that A is separated, so two morphisms are equal iff they are
equal at all closed points). It’s enough to show that the image of the map

A(K)× A(K) → A(K)
(x, y) 7→ y · x · y−1 · x−1

is the identity element eA of A(K). Now notice that the restriction of this map to {eA} ×
A(K) and to A(K)×{eA} is constantly equal to eA, and apply the Rigidity lemma (Lemma
1.8 below). �

Notation 1.7. Because of the previous proposition we shall usually denote the group
operation on an abelian variety additively, and we shall write 0A (or simply 0) for the
neutral element and −x for the opposite of x with respect to the group law.

http://stacks.math.columbia.edu/tag/04KV
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Lemma 1.8 (Rigidity lemma). Let f : A× B → C be a morphism of varieties over k.
If A is proper and f (A× {b0}) = f ({a0} ×B) = {c0} for some a0 ∈ A(k), b0 ∈ B(k), c0 ∈
C(k), then f(A×B) = {c0}.

Proof. Choose an open affine neighbourhood C0 of c0. By properness, π : A×B → B
is a closed map, hence Z = π(f−1(C \ C0)) is closed in B. A closed point b of B lies
outside Z if and only if f(A×{b}) ⊆ C0; by assumption b0 lies in B \Z, which is therefore
open and nonempty, hence dense (recall that our varieties are geometrically irreducible by
definition). Now pick any point b ∈ B \ Z and consider f(A × {b}): on the one hand,
the image of this map is contained in C0 by what we just said, and on the other, since
A× {b} ∼= A is proper and C0 is affine, f(A× {b}) is a point. We also know which point
it is: by assumption,

f(A× {b}) 3 f({a0} × {b}) ∈ f({a0} ×B) = {c0},

hence f(A×{b}) = {c0} for all b in the dense set B \Z. In particular f is constantly equal
to {c0} on the dense open set A× (B \ Z), hence it is constant as claimed. �

Proposition 1.9. Let f : A→ B be an algebraic morphism of abelian varieties. Then
f is the composition of a homomorphism with a translation.

Proof. Replacing f with g(x) = f(x) − f(0), we are reduced to showing that an
algebraic morphism g : A → B such that f(0A) = 0B is a homomorphism of abelian
varieties. Consider the map

ϕ : A× A → B
(a1, a2) 7→ g(a1) + g(a2)− g(a1 + a2) :

by the rigidity lemma, noticing that ϕ({0A} × A) = ϕ(A× {0A}) = {0B}, we obtain that
ϕ(A× A) = {0B}, that is, g(a1) + g(a2) = g(a1 + a2) as desired. �

1.4. Examples. Our main source of examples will be Jacobians, a special class of
abelian varieties canonically associated with curves. We will meet Jacobians soon; for
now, we can only describe very basic examples of abelian varieties:

Example 1.10. (1) Elliptic curves are abelian varieties. In fact, the term elliptic
curve is synonymous with abelian variety of dimension 1. Recall that an elliptic
curve is a nice genus 1 curve with a marked rational point : the rational point is
essential in defining the group law (in fact, Proposition 1.9 implies in particular
that the group law is uniquely determined by the choice of the neutral element).

(2) Let E1, . . . , Eg be elliptic curves: then E1 × · · · × Eg is a group scheme which is
connected, smooth and projective, hence an abelian variety (of dimension g). One
can prove that not all g-dimensional abelian varieties are of this form: in what
follows we shall see (many) examples of abelian varieties that are not products of
elliptic curves.
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2. Abelian schemes over arbitrary bases

For arithmetic applications it is extremely useful to have a notion of abelian variety
also over arbitrary bases – that is, we want to treat the general situation of an abelian
variety defined over an arbitrary base scheme S and not just over the spectrum of a field.
We will not dwell much on this topic, but here is the general definition:

Definition 2.1 (Abelian schemes over general bases). Let S be a scheme. A g-
dimensional abelian scheme over S is a group scheme A → S such that the structure
morphism A → S is of finite presentation, proper, smooth, with all fibers geometrically
connected and of dimension g.

Remark 2.2. If S is noetherian (which is the case in most arithmetic applications!)
then finite presentation can be replaced by finite type, a property that holds for any rea-
sonable morphism. Recall that π : A → S is of finite type if the following holds: there
is a cover of S by open affine subschemes Si = Spec(Ri) and a cover of every π−1(Si) by
open affine subschemes Aij = Spec(Bij), such that Bij is a finitely generated Ri-algebra
for every i, j.

This somewhat abstract definition essentially amounts to asking for a family of abelian
varieties As that varies algebraically with respect to the (geometric) point s ∈ S. The
usefulness of the definition lies in its ability to give a geometric framework for the notion of
reduction modulo p, which can be defined in concrete terms (e.g. using equations) for elliptic
curves, but is much harder to describe in such elementary terms for higher-dimensional
abelian varieties. It is of course also very useful to study the more geometrical problem of
understanding families of abelian varieties depending algebraically on some parameters (a
typical example being the Jacobian scheme of a family of curves).

Remark 2.3. Let A be an abelian variety over a number field K. It is not true in
general that A extends to an abelian scheme over OK (in fact, this almost never happens):
in particular, it is a famous theorem due to Fontaine [Fon85] and Abrashkin that there
are no abelian schemes over Spec(Z). On the other hand, there are some abelian varieties
that extend to the full ring of integers of a number field: one of the most famous and (to
my knowledge) earliest examples is the elliptic curve E over K = Q(

√
29) with equation

y2 + xy + a2y = x3,

where a = 5+
√

29
2
∈ O×K . This elliptic curve extends to an abelian scheme over all of OK ,

or equivalently, in more classical language, it has good reduction at all the primes of OK .

3. Two technical tools: the theorems of the square and of the cube

We collect in this section some technical results that will be useful in what follows. The
reader is not expected to spend much time meditating on these theorems, which are only
included for completeness (proofs of all these statements can be found in [Mum70]). For
the notation [n] see definition 5.11.



4. ABELIAN VARIETIES OVER C 11

Theorem 3.1 (Theorem of the cube). Let U, V,W be complete geometrically irreducible
varieties over K, and let u0 ∈ U(K), v0 ∈ V (K), w0 ∈ W (K) be base points. Then an
invertible sheaf L on U × V ×W is trivial if its restrictions to

U × V × {w0}, U × {v0} ×W, {u0} × V ×W
are all trivial.

Theorem 3.2 (Theorem of the square). For all line bundles L on A and for all points
a, b ∈ A(k) we have

τ ∗a+bL ⊗ L ∼= τ ∗aL ⊗ τ ∗bL,
where τx denotes translation by x.

Corollary 3.3. The following formula holds for all line bundles L and all integers n:

[n]∗L ∼= L⊗
n2+n

2 ⊗ [−1]∗L⊗
n2−n

2

Furthermore, if [L] ∈ Pic0(A), then [−1]∗L ∼= L−1, so that [n]∗L ∼= L⊗n.

4. Abelian varieties over C

The theory of complex abelian varieties (that is, abelian varieties over the complex
numbers) is already very rich, but the existence of the analytic uniformisation (see below)
makes it much more intuitive than the theory over general fields, so we start with this
case. Let A/C be an abelian variety. Notice that A(C) is a compact complex manifold of
dimension g endowed with a group structure compatible with the differential structure; in
other words, it is a compact complex Lie group of dimension g. We now show that – from
the point of view of differential geometry – this group has a very simple form:

Theorem 4.1 (Analytic uniformisation of complex abelian varieties). Let A be a g-
dimensional abelian variety over the complex numbers. Then there exists a lattice Λ ⊆ Cg

such that A(C) is isomorphic (as a Lie group) to Cg/Λ.

Proof. Write V = T0A for the tangent space at identity. From the differential ge-
ometry of Lie groups we know that for every v ∈ V there is a unique analytic group
homomorphism

ϕv : C→ A

with dϕv(0) = v. One knows that ϕ : V × C→ A is analytic. The exponential map is

exp : V → A
v 7→ ϕv(1).

It is clear that ϕv(t) = exp(tv) (by uniqueness of ϕv we have ϕv(st) = ϕtv(s), so the
formula follows setting s = 1). Moreover, exp : V → A is a group homomorphism: indeed

t 7→ exp(tx) exp(ty)

is a group homomorphism (because A is abelian); taking the derivative at 0 and using the
uniqueness of ϕx+y we obtain exp(tx) exp(ty) = exp(t(x + y)) as claimed. Finally, exp
is surjective because exp(V ) is a subgroup of A(C) that contains a neighbourhood of the
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identity (and A is connected). Now define Λ to be the kernel of exp: on the one hand it is
discrete, because exp is a local homeomorphism, and on the other Λ must have full rank
since Cg/Λ ∼= A is compact. �

Definition 4.2 (Complex tori). A complex torus is any complex analytic variety of
the form Cg/Λ for some g ≥ 1 and for some full-rank lattice Λ.

� Remark 4.3. It is not true that every complex torus is an abelian variety. The
precise conditions under which this happens are known as Riemann relations
(see remark 4.9 for a characterisation of abelian varieties among complex tori);
the problem is that a general complex torus does not admit an analytic em-
bedding in projective space.

Remark 4.4. Notwithstanding the previous remark, every complex torus of dimension
1 is an abelian variety (hence in particular an elliptic curve: the marked point is given
by the class in C/Λ of the zero vector in C). The Riemann conditions are automatic for
1-dimensional tori: see example 4.12.

Proposition 4.5 (Torsion points of complex abelian varieties). Let n be a positive
integer. The group

A[n] = {x ∈ A(C) : nx = x+ · · ·+ x︸ ︷︷ ︸
n times

= 0}

is isomorphic to (Z/nZ)2g.

Proof. By analytic uniformisation it suffices to understand the n-torsion points of the
group Cg/Λ ∼= R2g/Λ. As an abstract group, this is isomorphic to R2g/Z2g, because up to
a change of basis in R2g we can assume that Λ is the standard lattice1 Z2g. Thus the group
of n-torsion points of A is isomorphic to

(R/Z)2g [n] ∼=
(
R
Z

[n]

)2g

∼=
(
S1[n]

)2g ∼= (Z/nZ)2g ,

where we have denoted by G[n] the n-torsion points of an abstract abelian group G. �

Remark 4.6. Implicit in this proof is the fact that any complex abelian variety is
isomorphic to (S1)g as a topological space, and in fact also as a real analytic variety. All
the richness of the theory comes from the complex structure!

1notice that this statement is not true if we want to also preserve the complex structure! This is the
reason why we replaced Cg with R2g
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We now come to the existence of an embedding in projective space. In the interest of
concreteness, we describe only one of the many possible definitions of a polarisation2 and
of the dual abelian variety:

Definition 4.7 (Dual abelian variety, analytic setting). Let V = Cg and write A =

V/Λ. Let V
∨

be the space of C-antilinear functionals V → C. The vector space V
∨

contains
a natural lattice, namely3

Λ∨ =
{
ψ ∈ V ∨ : =ψ(Λ) ⊆ Z

}
,

and one can check that the rank of Λ∨ is maximal, so that V
∨
/Λ∨ is again an abelian

variety, called the dual abelian variety of A.

Definition 4.8 (Polarisation, analytic setting). We continue with the notation of defi-
nition 4.7. Let H : V ×V → C be a Hermitian form (linear in the first argument, antilinear
in the second). We say that H is a polarisation if it is positive-definite and =H|Λ×Λ is
integer-valued.

Remark 4.9. A complex torus Cg/Λ is a complex abelian variety if and only if it
admits at least one polarisation.

Definition 4.10 (Type of a polarisation). Linear algebra over Z (essentially the ele-
mentary divisors theorem) shows that in a suitable basis of Λ the matrix representation of
=H|Λ×Λ takes the form

(
0 D
−D 0

)
, where D =


d1

d2

. . .
dg


with the di positive integers such that d1 | d2 | · · · | dg. The vector (d1, . . . , dg) is called the
type of the polarisation; one also sets d(H) =

∏
di.

Remark 4.11. A polarisation induces a map

λH : V → V
∨

v 7→ H(v, ·)
which is surjective and satisfies λH(Λ) ⊆ Λ∨. In particular, it induces a surjective analytic

homomorphism λH : V/Λ→ V
∨
/Λ∨ which is easily seen to have finite kernel (we will soon

call such morphism isogenies). The polarisation H is said to be principal if λH is an
isomorphism; this happens precisely when d(H) = 1.

2this is a fairly ill-defined term, in the sense that in different contexts it might mean very different
things: an ample divisor on A, a certain bilinear form, or an isogeny from A to A∨ (see below) might all
be reasonably called polarisations. We shall not describe the equivalence between the various notions in
detail: the interested reader may consult, for example, the book by Birkenhake and Lange [BL04, §4.1],
which gives a very clear picture of the situation over the complex numbers.

3here = denotes the imaginary part
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Example 4.12 (Canonical polarisation of an elliptic curve). We now show that every
elliptic curve over C admits a canonical principal polarisation. Up to a C-linear change of
variables, we may assume that the lattice Λ is Z · 1⊕Z · τ , with τ in the upper half-plane.
To define a polarisation we need to define a positive-definite Hermitian form C×C whose
imaginary part takes integer values on 1 and τ = a+ bi. A Hermitian scalar product on C
is uniquely defined by its value on (1, 1), so we look for a polarisation of the form

H : C× C → C
(z1, z2) 7→ γz1z2;

in order for H to be Hermitian and positive definite, γ needs to be real and positive.
Write E := =H; one checks that E is skew-symmetric (this is always true: if H is a

polarisation, E = =H is skew-symmetric), hence we have E(1, 1) = E(τ, τ) = 0; the only
requirement is then E(τ, 1) ∈ Z, that is, γ=τ ∈ Z. Since =τ > 0, we can choose γ := 1

=τ .
We then obtain the polarisation

H(z1, z2) =
z1z2

=τ
.

It is also easy to see that H is a principal polarisation (and in fact it’s the unique principal
polarisation of E). Assuming the previous remark it would be enough to notice that in

the basis {τ, 1} the matrix of =H is

(
0 1
−1 0

)
to deduce that d(H) = 1 and that H

is a principal polarisation. We check this by hand by finding the lattice Λ∨. A linear
functional ψ lies in Λ∨ if and only if =ψ(1) ∈ Z and =ψ(τ) ∈ Z. Clearly ψ is determined
by ψ(1) = a+ bi with b ∈ Z; writing τ = <τ + i=τ we have

ψ(τ) = ψ(<τ + i=τ) = <τψ(1)− i=τψ(1)

= <τ(a+ bi)− i=τ(a+ bi) = (a<τ + b=τ) + i(b<τ − a=τ),

so that =ψ(τ) = b<τ − a=τ . This is equal to an integer n if and only if

a =
b<τ − n
=τ

.

Hence ψ(1) = a + bi =
b<τ + bi=τ − n

=τ
=

bτ − n
=τ

, and therefore ψ = H(λ, ·) for λ =

bτ − n ∈ Λ. This implies that λH : V → V
∨

induces an isomorphism of Λ with Λ∨, hence

an isomorphism λH : V/Λ ∼= V
∨
/Λ∨ as claimed.

Finally, we remark that it is a general fact that an elliptic curve over any field K admits
precisely one polarisation of degree d2 for every d ≥ 1 (see e.g. [Con04]).

We conclude this section with a result which is actually valid over any algebraically
closed field, but that is easier to prove over C:

Theorem 4.13. Every abelian variety A/C is C-isogenous to a principally polaris-
able abelian variety, that is, there is a surjective analytic homomorphism ϕ from A to a
principally polarisable abelian variety A′ such that ϕ has finite kernel.
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Proof. Write A = Cg/Λ, choose any polarisation H (at least one exists, because A is
an abelian variety and not just a complex torus), and fix a Z-basis τ1, . . . , τg, τg+1, . . . , τ2g

of Λ such that the matrix of =H is of the form

=H =

(
0 D
−D 0

)
with D = diag(d1, . . . , dg). Now consider the lattice Λ′ :=

⊕g
i=1 Z ·

1
di
τi ⊕

⊕g
i=1 Z · τg+i. It

is immediate to see that Λ′ is an over-lattice of Λ, and that with respect to the obvious

basis { 1
di
τi, τg+i}i=1,...,g of Λ′ the matrix representing =H is

(
0 Ig
− Ig 0

)
, so that the abelian

variety A′ = Cg/Λ′ is principally polarised. Now simply observe that there is an isogeny
A = Cg/Λ → Cg/Λ′ = A′ induced by the identity of Cg (the kernel is the finite group
Λ′/Λ). �

5. Isogenies

Definition 5.1 (Group scheme homomorphism, Hom(A,B)). Let (G1,m1, i1, e1) and
(G2,m2, i2, e2) be group schemes over a common base S. A homomorphism of group
schemes f : G1 → G2 is a morphism of S-schemes such that f◦e1 = e2, m2◦(f×f) = f◦m1

and i2 ◦ f = f ◦ i1. If f : G1 → G2 is a group scheme homomorphism then one defines ker f
in the obvious way, namely as the fiber product

ker f //

��

G1

f
��

S e2
// G2

ker f is then a subgroup scheme of G1 (with the obvious definition: a subscheme which
inherits a structure of group scheme when endowed with the suitable base changes of the
maps m1, i1, e1).

When A,B are abelian varieties we shall say that f is a homomorphism of abelian
varieties, or simply a homomorphism. The set of all K-homomorphisms A → B is a
group in the obvious way, and is denoted by HomK(A,B).

Definition 5.2. Let f : X → Y be a finite surjective morphism between algebraic
varieties over a field K. The degree of f is the degree of the finite field extension of the
function field K(X) over f ∗K(Y ).

Definition 5.3. Let A,B be abelian varieties over a field K. A K-isogeny between
A and B is a homomorphism A → B defined over K and such that kerA is finite. The
degree of an isogeny ϕ is its degree in the sense of the previous definition (see proposition
5.5 below).

Remark 5.4. The degree of an isogeny ϕ agrees with the order of kerϕ, where order
means rank as a finite group scheme. When the isogeny is separable (which is always the
case in characteristic zero), the order of kerφ is really the number of geometric points of
kerφ.
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It is useful to know that isogenies can be characterised in many equivalent ways: the
following standard result can be found for example in [Mil12, Proposition 8.1].

Proposition 5.5. For a homomorphism f : A→ B of abelian varieties, the following
statements are equivalent:

(1) f is an isogeny;
(2) dimA = dimB and f is surjective;
(3) dimA = dimB and ker f is a finite group (scheme);
(4) f is finite, flat, and surjective.

Remark 5.6. Notice in particular that a K-isogeny ϕ : A→ B can only exist if A and
B have the same dimension, see also definition 5.13 and remark 5.14.

Remark 5.7. It is often useful to think about isogenies in geometric/topological terms:
over C, for example, an isogeny ϕ : A → B induces a covering map ϕ : A(C) → B(C),
and this map is Galois with group kerϕ. More generally, over a field of characteristic 0
isogenies are étale4 maps. Even more generally, an isogeny of degree n is étale over any
field K such that (n, charK) = 1. The reason for this is that the group structure allows
one to carry étaleness from one point to another, and étaleness at zero follows from the
fact that [n] (see definition 5.11) induces multiplication by n on the tangent space at 0 of
any abelian variety, and an isogeny of degree n is a factor of [n].

Remark 5.8. It is clear that the degree is multiplicative: if f : A→ B and g : B → C
are isogenies we have

deg(g ◦ f) = deg(g) deg(f).

Definition 5.9 (Endomorphism ring). The (K-rational) endomorphism ring of A is

EndK(A) =

{
f : A→ A

∣∣ f homomorphism
defined over K

}
.

For f ∈ EndK(A) we define deg(f) as before in case f is an isogeny, and we set deg(f) = 0
otherwise.

Remark 5.10. Notice that a homomorphism f : A→ A that is not an isogeny cannot
be surjective, and that the composition of two endomorphisms, at least one of which fails
to be surjective, cannot be surjective. This implies that deg : EndK(A)→ N satisfies

deg(fg) = deg(f) deg(g)

for every pair of elements f, g ∈ EndK(A).

Definition 5.11 (Action of Z on A). The ring EndK(A) contains a canonical copy of
the integers: indeed, for every n ∈ N the map

[n] : A → A
x 7→ x+ · · ·+ x︸ ︷︷ ︸

n times

4recall that étale is the algebro-geometric version of covering map
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is an endomorphism of A. We further define [−1] to be the map giving the inverse for the
group law, and for n > 1 we define [−n] as the composition of [n] and [−1]. This gives a
canonical identification n 7→ [n] of Z with a subring of EndK(A). One often says that A
has trivial endomorphisms over K if n 7→ [n] induces an isomorphism Z ∼= EndK(A).

Once we have the isogenies [n] we can look at their kernels; these will play an important
role in what is to follow:

Definition 5.12. Let A be an abelian variety over the field K and let n be a positive
integer. We define A[n] to be the kernel of [n] : A(K) → A(K). We call A[n] the group
of n-torsion points of A.

Definition 5.13 (Isogenous abelian varieties). We say that A is isogenous to B, and
write A ∼ B, if there exists an isogeny ϕ : A→ B.

Remark 5.14 (Isogeny is an equivalence relation). ∼ induces an equivalence relation.
Indeed, it is clear that ∼ is reflexive and transitive5, and it suffices to check that it is
symmetric. Suppose that ϕ : A → B is an isogeny: we want to construct an isogeny
B → A in the opposite direction. Since kerϕ is a finite group (scheme), it is in particular
of finite exponent N , so kerϕ ⊆ ker[N ] (also as group schemes). Consider the following
commutative diagram:

A

π1
��

[N ]
//

π2

##

ϕ

$$

A

A/ kerϕ

ψ

��
π

))

B χ
// A/ ker[N ]

ω

OO

We notice that ψ exists and is an isomorphism because of the universal property of the
quotient A→ A/ kerϕ; moreover, since kerϕ is contained in ker[N ], one sees that there is
a homomorphism π as in the diagram (in fact, it is nothing but the canonical projection

from A/ kerϕ to A/ kerϕ
A[N ]/ kerϕ

). In particular we may define χ := π ◦ψ−1. Finally, using again

the universal property of the quotient one also sees that ω is an isomorphism. Putting
everything together we may define a homomorphism B → A as the composition ω ◦ χ =
ω ◦ π ◦ψ−1; this homomorphism is in fact an isogeny because ω and ψ−1 are isomorphisms
and π is an isogeny.

The argument in the previous remark implies in particular:

Proposition 5.15. Let f : A→ B be an isogeny of degree d. There exists an isogeny
g : B → A such that g ◦ f = f ◦ g = [d].

5if A ∼ B and B ∼ C, then we have isogenies ϕ1 : A → B and ϕ2 : B → C, so ϕ2 ◦ ϕ1 is an isogeny
A→ C
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Remark 5.16. It is sometimes useful to work in the category S of abelian varieties (over
K) up to isogeny. This is the category whose objects are abelian varieties over K and such
that HomS(A,B) = HomK(A,B) ⊗Z Q. The previous remark, together with Poincaré’s
complete reducibility theorem (see theorem 7.1), implies that S is a semisimple category :
every object is a direct sum of simple objects. In less fancy language, this simply means
that every abelian variety is isogenous to the direct product of simple abelian varieties.

Proposition 5.17. For every positive integer n, the degree of [n] is n2g.

Proof. In order to compute the degree of [n] we look at its action on a very ample
line bundle L. One can always find a symmetric ample line bundle, namely an ample L
such that [−1]∗L ∼= L: indeed, ifM is any ample line bundle, L :=M⊗ [−1]∗M is ample
and symmetric. Taking a sufficiently large power will make it very ample; we still call L
the resulting line bundle.

Corollary 3.3 implies that [n]∗L ∼= L⊗n2
– notice that this is in particular compatible

with the assumption [−1]∗L ∼= L. It follows that [n]∗L|ker[n]
∼= L⊗n2|ker[n] is both trivial and

very ample, which is only possible if ker[n] is zero-dimensional (hence [n] is an isogeny).
Furthermore, writing L as O(D), we have

deg[n] (D, . . . , D) = ([n]∗D, · · · , [n]∗D) =
(
n2D, · · · , n2D

)
= n2g (D, . . . , D)

where (D, . . . , D) denotes the intersection product (of divisors). In order to conclude it
suffices to show that (D, . . . , D) is nonzero, but this is easy, because since L is very ample
(hence it induces an embedding A ↪→ PN) we may compute this intersection product as
the intersection product of g general hyperplane sections of A ↪→ PN , and this is clearly
positive. �

Definition 5.18 (Abelian subvarieties). Let A/K be an abelian variety. An abelian
subvariety is a connected subgroup scheme B ⊆ A, that is, a subvariety of A that is
itself an abelian variety with the induced operations. An abelian variety A/K is said to
be simple (or K-simple, if we want to stress the field of definition) if the only abelian
subvarieties of A are A itself and {0A}. When A ×K K is simple, one says that A is
geometrically simple or absolutely simple: clearly absolutely simple implies simple,
but the converse implication does not hold (for an example see section 1.2 in chapter 3).

6. The dual abelian variety, polarisations, and the Weil pairing

We now introduce the dual abelian variety of an abelian variety A. The reader
familiar with elliptic curves may never have heard of the notion, because for an elliptic
curve E the dual abelian variety is E itself, and the distinction is almost never made.
With varieties of higher dimension, however, A and its dual are often not isomorphic and
it becomes important to distinguish them.

Roughly speaking, the dual abelian variety of A parametrises (certain kinds of) line
bundles on A. More precisely, we define Pic0(A) as the set of line bundles L on A which
satisfy τ ∗aL ∼= L for all a ∈ A(K), where τa denotes translation by a. We may then define
the dual abelian variety as follows:
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Definition 6.1 (Dual abelian variety). A pair (A∨,P), where A∨ is an abelian variety
and P is a line bundle on A×A∨, is a (the) dual abelian variety of A if the following holds:

(1) P|A×{b} is in Pic0(Ab)
(2) P|{0}×A∨ is trivial
(3) (A∨,P) is universal among such pairs, that is, the following universal property

holds: for all pairs (T,L) consisting of a variety and an invertible sheaf L on
A× T that satisfies
(a) L|A×{t} is in Pic0(At)
(b) L|{0}×T is trivial

there is a unique regular map α : T → A∨ such that L ∼= (1× α)∗P.

Remark 6.2. Of course one should show that the dual abelian variety exists ! This is
done in [Mum70]. One can also prove further properties of A∨, namely, it is functorial in
A and is a good duality, in the sense that (A∨)∨ is canonically isomorphic to A itself.

Remark 6.3. An equivalent way of stating the universal property is that

Mor(T,A∨)↔
{

line bundles L on A× T
satisfying (a), (b)

}
/ ∼,

where the set on the left denotes the space of regular maps T → A∨ and∼ is isomorphism of
line bundles. Applying this characterisation to T = Spec(K) we obtain A∨(K) = Pic0(A).

We describe a standard way to construct maps A→ A∨:

Definition 6.4 (Mumford’s construction). Let L be a line bundle on AK. We define

λL : AK → A∨
K

a 7→ τ ∗aL ⊗ L−1,

where τa is translation by a; it follows from the theorem of the square (and the fact that a
homologically trivial line bundle is anti-symmetric) that λL is a homomorphism.

Remark 6.5. Line bundles L in Pic0(A) are precisely those for which λL is the zero
map.

We have already met polarisations in the context of complex abelian varieties (see
definition 4.8): we now introduce their algebraic counterparts.

Definition 6.6 (Polarisation, algebraic setting). A K-polarisation of the abelian
variety A/K is a K-isogeny ϕ : A → A∨ such that over K ϕ is of the form λL for some
ample line bundle L. Unfortunately, this is not quite the same as requiring that ϕ is of the
form λL already over K.

A principal polarisation is a polarisation which induces an isomorphism A ∼= A∨;
notice that principal polarisations need not exist if dimA > 1. A pair (A, λ), where A is an
abelian variety and λ is a principal polarisation, is usually called a principally polarised
abelian variety, or PPAV for short.
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Remark 6.7. Let A/K be an abelian variety over an arbitrary field. Then A and
A∨ are isogenous (but not necessarily isomorphic) over K. Proving this is harder than it
sounds, and is essentially equivalent to the fact that A is projective. In fact, Mumford’s
strategy to show that A and A∨ are isogenous was to prove that λL is surjective with finite
kernel whenever L is ample; if one chooses L defined over K, then also the resulting isogeny
is defined over K.

One has the following useful fact:

Theorem 6.8. Every abelian variety A/K is K-isogenous to a principally polarisable
abelian variety.

Remark 6.9. For a proof in the complex case see theorem 4.13. The proof in the general
case (see e.g. [Mum70, Corollary 1 on page 234]) is conceptually the same but technically
more complicated: one needs to rephrase the present elementary argument in the language
of section of line bundles, and interpret our quotient Λ′/Λ as a certain subgroup of kerλL,
where L is the ample line bundle defining the polarisation. For the sake of completeness,
let us point out that the finite subgroup G := Λ′/Λ of A we considered is precisely a
maximal subgroup of ker (λh : A→ A∨) with the property =H|G×G ⊆ Z: one can make
sense of this description for abelian varieties over arbitrary algebraically closed fields, and
it is using this description that Mumford proves this theorem in full generality.

Definition 6.10 (Dual homomorphism). Let A/K,B/K be abelian varieties. Given
any K-homomorphism ϕ : A → B, there is a dual homomorphism ϕ∨ : B∨ → A∨ con-
structed by applying the universal property of A∨ with T = B∨ and L = (ϕ × 1)∗PB×B∨
(notice that this is a line bundle on A× B∨) to obtain a map B∨ = T → A∨. Concretely,
at the level of points, ϕ∨ is simply the pullback of line bundles from B to A:

ϕ∨ : B∨(K) = Pic0(B) → A∨(K) = Pic0(A)
L 7→ ϕ∗L

That f∨ is itself an isogeny is not obvious; for a proof, see for example [EMvG,
Theorem 7.5] or [Mum70, p. 143].

Theorem 6.11 (Properties of the dual isogeny). Let f : A → B be an isogeny and
write N for the kernel of f . Then the dual map f∨ : B∨ → A∨ is an isogeny, and its finite
kernel K∨ is the dual of K in the sense of Cartier duality. In particular, deg(f∨) = deg(f).

Remark 6.12. Cartier duality over fields of positive characteristic can be quite com-
plicated. Over fields of characteristic zero, however, the Cartier dual is easy to describe:
if G is a finite commutative group of order N ,

G∨ = Hom(G(K), µN(K)).

More precisely: a finite group scheme G∨ is described by a finite abstract group H, to-
gether with an action of Gal

(
K/K

)
on H. In this case the underlying finite group H is

Hom(G(K), µN(K)), and the Galois action is the natural one.
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Definition 6.13 (Rosati involution). Fix a K-polarisation λ : A → A∨ of degree d,

and recall (remark 5.14) that there is an isogeny λ̂ : A∨ → A such that λ̂ ◦ λ = [d]. Given
an endomorphism ϕ : A→ A we define

ϕ† =
1

d
λ̂ ◦ ϕ∨ ◦ λ ∈ EndK(A)⊗Q.

Remark 6.14. The equality (ϕ†)† = ϕ holds; it can be proven (see corollary 10.12) by
exploiting the relation between the Rosati involution and the Weil pairing.

Definition 6.15 (Weil pairing). For every n there is a canonical pairing

en : A[n]× A∨[n]→ Gm[n] = µn

defined as follows. Let t ∈ A[n] and L ∈ A∨[n]. By definition we have nt = 0 and
L⊗n ∼= O. An application of the theorem of the cube gives [n]∗L ∼= L⊗n ∼= O, so we may
fix an isomorphism u : O → [n]∗L. Denote by τt : A → A the morphism translation-by-t.
Pulling back the isomorphism u : O → [n]∗L via τt we obtain

τ ∗t u : τ ∗t O → τ ∗t [n]∗L ∼= ([n] ◦ τt)∗L = [n]∗L.
Recalling that τ ∗t O = O, it follows in particular that u◦(τ ∗t u)−1 is an isomorphism of [n]∗L;
an automorphism of a line bundle on the complete variety A can only be multiplication by

an element ζ of H0(AK ,O×) = K
×

, and we define en(t,L) = ζ. It is clear from the
definition that

1 = en(nt,L) = en(t,L)n = ζn,

so ζ is in fact an n-th root of unity.

Remark 6.16. If A = E is an elliptic curve, the identification E ∼= E∨ given by the
canonical principal polarisation allows one to define the Weil pairing directly as a map
E[n]×E[n]→ µn. In the general case, if (A,L) is a polarised abelian variety one may still
define a Weil pairing by the formula

eLn : A[n]× A[n] → µn
(t1, t2) 7→ en (t1, λL(t2)) .

When L is not a principal polarisation, however, this pairing may have a nontrivial kernel
on the right.

Theorem 6.17 (Properties of the Weil pairing). The following hold:

(1) We have

emn(P,Q)m = en(mP,mQ) for P ∈ A[mn], Q ∈ A∨[mn],

that is, the constructions of the Weil pairing on different torsion groups A[n] are
all compatible.

(2) The Weil pairing is perfect, that is, the kernel on both sides is trivial.
(3) The Weil pairing is Galois-equivariant: for any σ ∈ Gal

(
K/K

)
and for any pair

P ∈ A[n], Q ∈ A∨[n] we have

en(σP, σQ) = σ(en(P,Q)).
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(4) For any isogeny ϕ : A→ B with kernel contained in A[n] we have

{y ∈ A∨[n] : en(x, y) = 0 ∀x ∈ kerϕ} = kerϕ∨.

(5) The Weil pairing is compatible with the duality of isogenies, in the sense that if
f : A→ B is an isogeny then we have

en(f(x), y) = en(x, f∨(y))

for all x ∈ A[n] and y ∈ B∨[n].
(6) For any polarisation L, the Weil pairing eLn introduced above is skew-symmetric

on A[n].

7. Poincaré’s total reducibility theorem

Theorem 7.1. The following hold:

(1) Let A/K be an abelian variety and let B/K be an abelian subvariety of A/K.
There exists an abelian subvariety C of A, also defined over K, such that

B × C → A
(b, c) 7→ b+ c

is an isogeny. The subvariety C is often called a complement to B in A.
(2) Let A/K be an abelian variety. There exist K-simple abelian K-subvarieties

A1, . . . , An of A such that

A1 × · · · × An → A
(a1, . . . , an) 7→ a1 + · · ·+ an

is an isogeny.

Sketch of proof (fields of characteristic 0). The second statement follows
from (1) by induction (and the fact that a proper abelian subvariety of A has strictly
smaller dimension than A). For (1), fix an ample line bundle L on A and consider the
homomorphism of abelian varieties

ϕ : A
λL−→ A∨

i∨−→ B∨.

The connected component of the kernel of ϕ passing through 0A is a connected, proper
algebraic group, hence an abelian variety6. Call it C. One has

dimC ≥ dim ker(i∨) ≥ dim(A∨)− dim(B∨) = dim(A)− dim(B).

We now show that B and C intersect in finitely many points: indeed (i∨ ◦ λL)|B = λL|B ,
which is an isogeny B → B∨ (hence has finite kernel) since L|B is ample. This implies that

B × C +−→ A is a homomorphism of abelian varieties with finite kernel, hence dim(B) +
dim(C) ≤ dim(A). Combined with our previous inequality, this yields dim(B) + dim(C) =

dim(A), and since B × C +−→ A has finite kernel it is an isogeny. �

6since char(K) = 0
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Remark 7.2. The isogeny in Poincaré’s theorem is usually not an isomorphism. When
n = 2 (i.e. there are two simple subvarieties A1, A2 of A such that the sum + : A1×A2 → A
is an isogeny), the kernel of the sum is essentially the intersection A1 ∩ A2.

8. The Mordell-Weil theorem

Even though we won’t make much use of this theorem, no introduction to the arithmetic
theory of abelian varieties would be complete without a mention of the famous Mordell-Weil
theorem:

Theorem 8.1 (Mordell-Weil). Let A/K be an abelian variety over a number field. The
group A(K) of its rational points is finitely generated, that is, there exist a number r ∈ N
and a finite abelian group T such that

A(K) ∼= Zr ⊕ T.

The number r is called the rank of A/K.

9. Jacobians

After the previous general introduction we now turn to more concrete objects; ac-
cordingly, we also try to make the exposition more detailed and down-to-earth. We start
by considering Jacobians, which are (principally polarised) abelian varieties canonically
associated with curves. By a curve defined over K we shall usually mean a smooth, pro-
jective, geometrically integral K-algebraic variety of dimension 1; thus, for example, the
reader should be warned that “the curve y2 = f(x), defined over Q” will really mean “the
unique smooth projective curve over Q birational to the affine curve {y2 = f(x)} ⊆ A2

Q”.

9.1. Divisors and their classes. Assume that K is a perfect field and let C be a
curve over K.

Definition 9.1. The group of divisors DivC is the free abelian group generated by
the set C(K). An element of this group is called a divisor, and is nothing but a formal
linear combination of K-rational points with integral coefficients. A divisor is effective if
all its coefficients are non-negative.

We shall represent divisors in the form D =
∑k

i=1 niPi, where k ∈ N, ni ∈ Z and

Pi ∈ C(K) for i = 1, . . . , k.

So far, this definition only depends on the K-points of C, hence it is not too suitable
to study the arithmetic of C over K: we need to know what it means for a divisor to be
defined over K. The definition is straightforward:

Definition 9.2. The group Gal
(
K/K

)
acts on C(K) in a natural way, hence it also

acts on DivC. The fixed points for this action form a subgroup, which we denote by DivC(K)
and whose elements we call K-rational divisors.
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Remark 9.3. If all the points P1, . . . , Pr are rational, a divisor D =
∑
niPi is certainly

K-rational, because Gal
(
K/K

)
acts trivially on the Pi. However, a divisor can be K-

rational even if the corresponding Pi are not: consider for example the curve C : x2 +y2 =
−1/Q. The divisor (0, i) + (0,−i) is Q-rational, but the points (0, i) and (0,−i) are not
defined over Q.

We also remark that there is an obvious numerical invariant attached to a divisor,
namely its degree:

Definition 9.4 (Degree of a divisor). The degree of a divisor D =
∑k

i=1 niPi is

degD =
∑

ni ∈ Z.

We interpret deg as a group homomorphism DivC → Z; its kernel will be denoted by Div0
C

(the subgroup of divisors of degree 0).

Definition 9.5 (Divisor of a function). Let f ∈ K(C) \ {0} be a rational function on
C. The divisor of f is

div(f) =
∑
P

vP (f),

where the sum is over all the points of C(K). Here vP (f) is the order of vanishing of f at
P ; if f has a pole of order k at P , then vP (f) = −k.

Remark 9.6. Any nonzero rational function has only finitely many zeroes and poles,
hence the sum defining div(f) is finite and div(f) is indeed a divisor.

Definition 9.7 (Principal divisor). A divisor is said to be principal if it is of the
form div(f) for some nonzero rational function f ∈ K(C). One checks without difficulty7

that a principal divisor has degree 0 (a rational function has as many zeroes as poles). We
denote by PrincC < Div0

C the subgroup of principal divisors.

Definition 9.8 (Picard group). We define

PicC = DivC /PrincC

and

Pic0
C = Div0

C /PrincC ;

equivalently, we observe that deg : DivC → Z descends to deg : PicC → Z, and we define
Pic0

C to be the kernel of deg.

Definition 9.9. Two divisors D1, D2 are said to be linearly equivalent (written as
D1 ∼ D2) if they differ by a principal divisor. We denote by [D] the class of the divisor D
in PicC.

7if g is a non-constant morphism C → P1, one has deg(div(f)) = deg(g∗(div(f))) = deg div(g∗f).
Hence it suffices to treat the case C = P1, which is obvious. Here the push-forward operator on functions
g∗ is the norm of the field extension K(P1) ⊆ K(C).
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Notation 9.10. We shall also write (for example) PrincC(K) or DivC(K) when we
want to stress that we are considering these as sets (DivC ,PrincC have in principle a richer
structure).

By analogy to the definition of DivC(K), we now define th group PrincC(K) as the
Gal

(
K/K

)
-invariant subgroup of PrincC(K). Notice that PrincC(K) is a Galois sub-

module of Div0
C(K), which is in turn a Galois submodule of DivC(K). This allows us to

take quotients in the category of Galois modules, and finally leads to the definition of the
K-points of Pic0

C :

Definition 9.11. We set

Pic0
C(K) =

(
Div0

C(K)

PrincC(K)

)Gal(K/K)

and

PicC(K) =

(
DivC(K)

PrincC(K)

)Gal(K/K)
.

Remark 9.12. It is not true in general that an element of PicC(K) (that is, a K-
rational divisor class) can be represented by a K-rational divisor: in other words, PicC(K)

is not the same as PicC(K)Gal(K/K): see example 9.14 below.

The following remark can be very useful in more advanced contexts, but can be safely
skipped on a first reading:

Remark 9.13. In fancier language, we have an exact sequence of Galois modules

0→ PrincC(K)→ Div0
C(K)→ Pic0

C(K)→ 0,

and taking invariants under Gal
(
K/K

)
we get a long exact sequence in cohomology

0→ PrincC(K)→ Div0
C(K)→ Pic0

C(K)Gal(K/K) → H1(K,PrincC(K)),

where the last arrow may in general not be surjective. More precisely, since we also have

0→ K
× → K(C)× → PrincC(K)→ 0,

we may again take cohomology to find

0→ K× → K(C)× → PrincC(K)

→ H1(ΓK , K
×

) = 0→ H1(ΓK , K(C)×)→ H1(ΓK ,PrincC(K))

→ H2(ΓK , K
×

) = Br(K),

where we have used Hilbert’s theorem 90 (H1(K,K
×

) = 0) and which already shows that

the obstruction to surjectivity of the natural map PicC(K)→ PicC(K)Gal(K/K) should be
measured by elements in the Brauer group of K.

To be even more precise (and even fancier), consider the structure map π : C →
Spec(k). By the usual interpretation of divisors as line bundles, one may define the Picard
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scheme of C as H1(C,Gm); we now see how the Picard schemes of C and CK fit in a natural
exact sequence. Recall the following form of the spectral sequence of composed functors:
for a morphism of schemes f : Y → X and for a sheaf F on Y there is a second-page
spectral sequence Hp(X,Rqf∗F)⇒ Hp+q(Y,F). Taking the sequence of low-degree terms
for the case Y = C,X = Spec(K) and F = Gm yields

0→ H1(K, π∗Gm)→ H1(C,Gm)→ H0(K,R1π∗Gm)→ H2(K, π∗Gm),

or, in more familiar terms,

0→ H1(K,K
×

)→ H1(C,O×C )→ H0(K,H1(CK ,O×C ))→ H2(K,K
×

),

that is,

0→ 0→ PicC(K)→ PicC(K)Gal(K/K) → Br(K).

The next term in the exact sequence is the so-called algebraic Brauer group of C. Note
that we have used the equality H1(C,O×C ) = PicC(K), which follows from the fact (that
we haven’t proven) that the Picard group of C can be interpreted as H1(C,Gm) also over
non-algebraically closed fields.

Example 9.14. We show that there exist curves C over fields K with the property
that not all points in Jac(C)(K) are represented by K-rational divisors. Consider the
curve C : y2 = −3(x8 + 1). Let e1, e2, e3, e4 ∈ Q be the roots of x4 − i = 0 and let
O =∞+ +∞− be the polar divisor8 of the function x. Then the divisor

D = (e1, 0) + (e2, 0) + (e3, 0) + (e4, 0)

is defined over Q(i), and we now show that its divisor class is defined over Q. Write
D′ = σ(D) = (e′1, 0) + (e′2, 0) + (e′3, 0) + (e′4, 0), where σ is the unique nontrivial element of
Gal (Q(i)/Q) and the e′i are the roots of x4 + i in Q. Now notice that 2D− 4O is principal
(since it is the divisor of x3+i), hence D ∼ 4O−D; on the other hand, div(y) = D+D′−4O,
so

D +D′ ∼ 4O.

Hence D′ ∼ 4O − D ∼ D, and the divisor class [D] is defined over Q. Finally, we show
that there is no Q-rational divisor whose divisor class is [D]. It is easy to see that D is not
linearly equivalent to the canonical divisor. Suppose E is a Q-divisor linearly equivalent
to D; since deg(E) = deg(D) = 4 and D is not in the canonical class, Riemann-Roch (over
Q) implies that E is in turn Q-linearly equivalent to a Q-rational effective divisor. Hence
we may assume that E is effective. The space

LK(D) = {f : div f ≥ −D}
has dimension 2 by Riemann-Roch, and one checks easily that it is generated by 1 and
y

x4 − i
. We can therefore write the general (noncostant) member of this space as

ft =
y − t(x4 − i)

x4 − i
;

8i.e.
∑

P :vP (f)<0−vP (f)P
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the general effective divisor linearly equivalent to D is therefore D + div(ft). We show
that no divisor of such form is Q-rational. Notice first that ft is finite at infinity, so the
polar divisor of ft is supported on the obvious affine chart of y2 = −3(x8 + 1); we can
write div(ft) = (ft)0 − (ft)∞ with (ft)∞ supported on our affine chart. Since deg(ft)∞ =
deg(ft) = 4 (with at most finitely many exceptions, that don’t lead to solutions) and
(ft)∞ ≤ D we have (ft)∞ = D. We now study the divisor of zeroes of ft. The zeroes of ft
are contained in the solutions to the system{

y = t(x4 − i)
y2 = −3(x8 + 1),

which (replacing the first equation in the second) gives{
y = t(x4 − i)
t2(x4 − i)2 = −3(x4 − i)(x4 + i)

⇒

{
y = t(x4 − i)
(x4 − i)(x4(t2 + 3) + i(3− t2)) = 0

Since we already know that (ei, 0) is not a zero of ft (in fact, it is a pole), the divisors of
zeroes of ft is given by

∑
(xj, yj), where the xj are the roots of the equation x4(t2 + 3) +

i(3 − t2) = 0 and yj = t(x4
j − 1). Assume that t2 6= −3 (this case being easy to exclude);

notice that the y-coordinates of the four points in the support of (ft)0 are all equal to
t(x4

1− i) = −6 it
t2+3

; it follows that the divisor of zeroes of ft is Q-rational if and only if the
following hold:

(1) it
t2+3

is rational;

(2) x1, x2, x3, x4 are roots of a polynomial with rational coefficients, that is, i(t2−3)
t2+3

is
rational.

A short computation now shows that, writing t = a+bi, this is only possible if (a2 +b2)2 =
±3, that is, if and only if ±3 is a norm in the extension Q(i)/Q. It is well-known that this
is not the case, hence the rational divisor class [D] cannot be represented by a rational
divisor. Notice that O is also a rational divisor, hence [D − 2O] is a rational divisor class
of degree 0 (that is, a point in Jac(C)(Q)) which is not represented by a rational divisor.

Remark 9.15. After this somewhat long and computational example, let me mention

that for many curves one does in fact have JacC(K) = JacC(K)Gal(K/K): this equality
holds for all curves with a rational point, and it also holds for rational divisor classes of
degree 1 for curves with a point in every completion of K ([CM96]). To prove the equality

PicC(K)Gal(K/K) = PicC(K) in the case C(K) 6= ∅ one may notice that (with the notation
of remark 9.13) a rational point gives a section of π : C → Spec(K), hence by functoriality

a retraction of the canonical map PicC(K)→ PicC(K)Gal(K/K).

Theorem 9.16 (Jacobian of a curve). Let C be a nice curve over K. There is an abelian
variety J over K such that there is an isomorphism of Gal

(
K/K

)
-modules Pic0

C
∼= J(K).

This abelian variety J is called the Jacobian variety, or just the Jacobian, of C. The
dimension of J agrees with the genus of C.
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Remark 9.17. Jacobian varieties are principally polarised (even when C(K) = ∅):
when C(K) 6= ∅ and g ≥ 2, the (linear equivalence class of a) divisor giving the principal
polarisation may be obtained as the image of any map of the form

Symg−1(C) → Jac(C)
(P1, . . . , Pg−1) 7→ P1 + . . .+ Pg−1 − (g − 1)O,

where O is a point in C(K).
Suppose that C(K) is nonempty and fix a point P ∈ C(K). We can associate with this

point an embedding of C in Jac(C): identifying Jac(C) ∼= Pic0
C(K), we may define a map

C → Pic0
C(K) ∼= Jac(C) by the formula Q 7→ [Q − P ]. We’ll see below in example 9.20

that in the case when C = E is an elliptic curve and P = O is the origin of the group law
the map E → Jac(E) thus defined is an isomorphism.

As is the case for many important objects in algebraic geometry, Jacobians also satisfy
a useful universal property:

Proposition 9.18 (Universal property of the Jacobian). Let C/K be a nice curve with
Jacobian J/K. Fix a rational point P ∈ C(K) and denote by i : C → J the corresponding
embedding of C into its Jacobian. Then J satisfies the following universal property: for
any abelian variety A and for any algebraic morphism f : C → A such that f(P ) = 0A
there is a unique homomorphism of abelian varieties g : J → A such that the following
diagram commutes:

C

f ��

i
// J

g
��

A

Remark 9.19. To be more precise, this is the universal property of the Albanese variety
of the pair (C,P ) (that is: the Albanese variety is by definition the initial object with
respect to maps from (C,P ) to abelian varieties that carry P to the neutral element). The
point is that – assuming for simplicity that K is perfect – the Albanese variety of (C,P )
is naturally isomorphic to the dual of Pic0

C . Finally, one obtains Alb(C,P ) ∼= (Pic0
C)∨ ∼=

(Pic0
C), because Jacobians are canonically principally polarised.
To construct the isomorphism Alb(C,P ) ∼= Pic0

C , notice that given a map from C to
an abelian variety A carrying P to 0A we obtain by pullback a map

PicA → PicC ,

which maps the connected component of the identity of the former into the connected
component of the identity of the latter, whence a map

Pic0
A → Pic0

C ,

and finally, by duality, a homomorphism

(Pic0
C)∨ → (Pic0

A)∨.
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Now our discussion of dual abelian varieties (section 6) implies that (Pic0
A)∨ ∼= (A∨)∨ ∼= A,

so all in all from a map of pointed varieties (C,P ) → (A, 0A) we have constructed a
homomorphism (Pic0

C)∨ → (Pic0
A)∨ ∼= A. One can then show that the composition

C → (Pic0
C)∨ → A

is the original map we started with.

Example 9.20 (An elliptic curve is its own Jacobian). Let E/K be an elliptic curve. We
shall show that E is isomorphic to its Jacobian variety by using the classical construction
of the group law on an elliptic curve.

We claim that any divisor of degree 0 on E is linearly equivalent to a divisor of the form
P − O, where O is the origin of the group law on E and P is a point on E. To see this,
embed E as a plane cubic in P2 (with the origin of the group law being the point [0 : 1 : 0]).
Now any line different from the line at infinity meets E at three points P1, P2, P3 in the
affine plane; the divisor of such a line is therefore P1+P2+P3−3O. Now fix two points P,Q
lying in the affine part of E (not both on the same vertical line). Then the line through
P and Q meets E exactly at a third point R (possibly coincident with P or Q), so the
divisor of the rational function corresponding to this line is P +Q+R−3O. It follows that
P +Q ∼ 3O−R. On the other hand, if R and R′ lie in the finite plane on the same vertical
line, then the line in question is x− x(R) = 0, which has zeroes at R,R′ and has a double
pole at [0 : 1 : 0]. It follows that R+R′ ∼ 2O. Combined with P +Q ∼ 3O−R, this yields
P +Q ∼ 3O−R ∼ 3O− (2O−R′) = O+R′. On the one hand, this recovers the classical
construction of the addition law on elliptic curves; on the other, it gives us an algorithm to
transform any divisor of the form

∑k
i=1 Pi into one of the form (k−1)O+Q. Now consider

a general divisor of degree 0, D =
∑k

i=1 Pi −
∑k

j=1Qj. We already know how to construct

points Q′j such that Qj +Q′j ∼ 2O, so D is linearly equivalent to
∑k

i=1 Pi+
∑k

j=1(Q′j−2O);

applying our reduction algorithm to
∑k

i=1 Pi+
∑k

j=1 Q
′
j, we find that it is linearly equivalent

to a divisor of the form R+ (2k− 1)O, where R is a single point on E. Putting everything
together, we obtain as desired

D ∼ R + (2k − 1)O − 2kO = R−O.

It follows in particular that the map E → Pic0(E) given by P 7→ [P −O] is surjective, and
it’s not hard to see that it is injective (if P −O were a principal divisor, P −O = div(f),
then f : E → P1 would be a map of degree 1, hence an isomorphism, which is impossible
since E has genus 1 while P1 has genus 0).

Remark 9.21. I find it very useful to think of the Jacobian of a curve C as the abelian
variety whose regular differentials are the same as those of C. More precisely, let i : C ↪→ J
be the embedding induced by the fixed rational point on C. Then there is a canonical
pullback map

i∗ : H0(J,Ω1
J)→ H0(C,Ω1

C),

and the defining property of the Jacobian is essentially that this map is an isomorphism.
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Proposition 9.22 (Automorphisms of a curve induce automorphisms of its Jacobian).
Let α : C → C be an automorphism of a nice curve of genus at least 2. Then α induces
a nontrivial automorphism α : Jac(C) → Jac(C); in other words, Aut(C) embeds into
Aut(Jac(C)).

Proof. The map induced by α on Jac(C) is not hard to construct using the universal
property; here is a concrete description: the divisor class [D] = [

∑
Pi −

∑
Qj], of degree

0, is sent to [α(D)] := [
∑
α(Pi) −

∑
α(Qj)]. This definition is well posed, because if

D = div(f) is principal then α(D) = div(f ◦ α) is again principal.
Now we show that nontrivial automorphisms of C induce nontrivial automorphisms of

Jac(C). Let Q be a point such that α(Q) 6= Q,P and suppose that α(i(Q)) = i(Q), that
is, [α(Q) − α(P )] = [Q − P ]. Then D := α(Q) − α(P ) + P − Q is principal, so it is the
divisor of a function f : C → P1 of degree 2; by definition, this is only possible if C is
hyperelliptic. So if C is not hyperelliptic we are done; if instead C is hyperelliptic we
distinguish three cases:

(1) C is hyperelliptic and α(P ) = P . Then [α(Q)− α(P )] = [Q− P ] implies [α(Q)−
Q] = 0, which means that α(Q) − Q is the divisor of a function fQ : C → P1 of
degree 1, contradiction.

(2) C is hyperelliptic, α(P ) 6= P , and there is a 2-to-1 function x : C → P1 such that
x(P ) = 0 and x(α(P )) = ∞. If α induces the identity on the Jacobian, then for
every Q (with at most finitely many exceptions) we have that α(Q)−α(P )+P−Q
is the divisor of a function fQ of degree 2 to P1. We recall that every hyperelliptic
curve of genus at least 2 is hyperelliptic in a unique way; hence fQ is a rational

function of x : C → P1, and we may write fQ =
aQx+bQ
cQx+dQ

for some constants aQ,

bQ, cQ, dQ. Since fQ(P ) = 0 =
bQ
dQ

we obtain bQ = 0, and since fQ(α(P )) =∞ we

obtain cQ = 0. It follows that div(fQ) is independent of Q, but this contradicts
the fact that div(fQ) = α(Q)−Q+ P − α(P ).

(3) C is hyperelliptic, α(P ) 6= P , and for all 2-to-1 functions x : C → P1 we have
x(P ) = x(α(P )). This immediately leads to a contradiction, because the functions
fQ (defined as above) are 2-to-1 and take different values at P, α(P ).

�

9.2. Jacobians vs general abelian varieties. In the limited scope of the present
course there isn’t nearly enough time to properly discuss moduli spaces, so we only make
a few remarks that might be useful to get a feeling for the general theory. In dimension
g = 1, all genus 1 curves with a marked point are elliptic curves; they are all principally
polarised (we proved this for elliptic curves over C in example 4.12, but the same holds
over any field) and isomorphic to their Jacobian (example 9.20). Hence in dimension 1 the
notions of abelian variety, principally polarised abelian variety and Jacobian are all the
same.

Starting with dimension 2 there are non-principally polarised abelian varieties, but any
principally polarised abelian variety is a Jacobian (or the product of two elliptic curves
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with the product polarisation). Furthermore, it’s not hard to prove that every genus 2
curve is hyperelliptic, so we have{

Jacobians of genus 2
hyperelliptic curves

}
= {genus 2 Jacobians}

'
{

principally polarised
abelian surfaces

}
( {abelian surfaces}.

In dimension 3 one has{
Jacobians of genus 3
hyperelliptic curves

}
( {genus 3 Jacobians}

'
{

principally polarised
abelian threefolds

}
( {abelian threefolds},

where as before ' denotes equality up to the (very thin) subset of principally polarised
abelian varieties that are isomorphic (and not just isogenous) to products of PPAVs of
smaller dimension. Finally, from dimension 4 onward, all 4 sets are genuinely distinct. In
a suitable sense, which we cannot make precise here, when considering abelian varieties of
dimension g the situation is the following:

(1) the moduli space of hyperelliptic curves of genus g has dimension 2g − 1;
(2) the moduli space of curves of genus g (hence of Jacobians, considered together

with their principal polarisation9) has dimension 3g − 3;
(3) the moduli space of principally polarised abelian varieties of dimension g has

dimension g(g+1)
2

;
(4) there exists a (countably) infinite number of different types of polarisations; recall

however that over an algebraically closed field any abelian variety is isogenous to
a principally polarised one (theorem 6.8).

It is quite clear from the previous list that Jacobians become more and more sparse
in the space of all the PPAVs of a given dimension; however, Jacobians are still very
interesting to study, for many reasons, including the following perhaps surprising result
which unfortunately we won’t have the time to prove (the interested reader can find a
proof in [Mil12, Theorem 10.1]):

Theorem 9.23. Let K be a field. Every abelian variety A/K is the quotient of some
Jacobian.

Remark 9.24. Notice that in general the dimension of the Jacobian in question will
be much larger than that of A.

Sketch of proof. We may assume dimA > 1. By embedding A in some projective
space PN and applying Bertini’s theorem10 sufficiently many times, we find a smooth
irreducible curve C given by the intersection of A with a linear subspace of PN . This

9it is a theorem of Torelli that one can recover a curve from its polarised Jacobian
10this argument, as stated, requires the ground field to be infinite; the result, however, is true over

any field
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induces a map J(C)→ A, which we want to show to be surjective. If it is not, then let A1

be the image of J(C) in A and let A2 be a complement. By pulling back C along the map

π : A1 × A2
1×n−−→ A1 × A2

+−→ A

we obtain a curve π∗(C) which is not connected (because its projection to C2 is a finite
number of points, and not a single point provided that n > 1). This can be shown to be a
contradiction. �

9.3. Example: adding points on a Jacobian. We take the curve of this example
from [CF96]. Consider the curve

C : y2 = x(x− 1)(x− 2)(x− 5)(x− 6);

C has a single point at infinity, which we denote by∞; we embed C into Jac(C) by sending
∞ to [0] ∈ Jac(C)(Q).

We now define divisor classes (of degree 0)

A = [(0, 0) + (1, 0)− 2∞] and B = [(2, 0) + (3, 6)− 2∞]

on the Jacobian of C. We show some manipulations involving the points A and B on the
Jacobian; in particular, we want to determine a divisor D1 +D2−2∞ on C that represents
the same divisor class as A+B.

We first find a function vanishing at all the points in the support of A and B: for
example, f : y − x(x− 1)(x− 2) works. Substituting this into the equation for C we find
x(x− 1)(x− 2)(x− 3)(x2 − x+ 10) = 0. Thus the divisor of the function f is

(0, 0) + (1, 0) + (2, 0) + (3, 6) + C1 + C2 − 6∞ = A+B + C1 + C2 − 2∞,
where

C1 =

(
1

2
+

1

2

√
−39, 15− 5

√
−39

)
, C2 =

(
1

2
− 1

2

√
−39, 15 + 5

√
−39

)
.

Since [div f ] = [0] in Jac(C), we have thus proven

[A+B] = [A+B − div f ] = [2∞− C1 − C2].

Suppose we want to find a representative of the form [D1 +D2−2∞]: then we need to find
a function with divisor C1 + C2 + D1 + D2 − 4∞. But we already know such a function!
Indeed, C1, C2 are zeroes of x2 − x+ 10 which, being of degree 4 and regular on the affine
chart of our curve, satisfies exactly

div(x2 − x+ 10) = C1 + C2 +D1 +D2 − 4∞
with

D1 =

(
1

2
+

1

2

√
−39,−15 + 5

√
−39

)
, D2 =

(
1

2
− 1

2

√
−39,−15− 5

√
−39

)
.

Hence A+B = [D1 +D2−2∞] on Jac(C); notice that once we find A+B = [2∞−C1−C2]
we also obtain the same conclusion by observing that the hyperelliptic involution induces
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− id on the Jacobian (exercise 1.9), which means that (denoting by P the point (x,−y)
when P = (x, y)) we have

ι(P ) = −ι(P )⇔ [P −∞] = [∞− P ].

Applying this in our particular example we obtain

A+B = [2∞− C1 − C2] = [−2∞+ C1 + C2] = [D1 +D2 − 2∞].

10. Torsion points, the Tate module

In this course we are mainly interested in the torsion points of abelian varieties. Recall
the definition of the group of n-torsion points of an abelian variety:

Definition 10.1 (See definition 5.12). Let A be an abelian variety over the field K
and let n be a positive integer. We define A[n] to be the kernel of [n] : A(K)→ A(K). We
call A[n] the group of n-torsion points of A.

Remark 10.2. The more scheme-theoretically minded reader will notice that A[n] can
in fact be defined as a group scheme over K: indeed [n] : A→ A is an isogeny defined over
K, hence its kernel is a subgroup scheme of A defined over K. This point of view leads
to more natural (or at least more intrinsic) definitions, but we shall not pursue it further
here. It is however very fruitful from an arithmetic point of view to try and understand
the scheme A[n] when A is defined over a more general base scheme than simply a field.

Theorem 10.3. Let K be a field of characteristic zero and A/K be a g-dimensional
abelian variety. Then A[n] is isomorphic to (Z/nZ)2g as an abstract group.

We give a quick and dirty argument; for a more conceptual one, see the proof of theorem
10.5 below.

Proof. All we care about (equations defining the abelian variety, the multiplication
map, the inverse, etc) are defined over a finitely generated extension of Q. Any such
extension can be embedded in C, hence it is enough to consider the case K = C, which we
saw in Proposition 4.5. �

Remark 10.4. The reduction to the case K = C in the above proof is often quoted as
the Lefschetz principle: quoting from Wikipedia, true statements of the first order theory
of fields about C are true for any algebraically closed field K of characteristic zero.

More generally, one has

Theorem 10.5. Let K be a field and A/K be a g-dimensional abelian variety. Let n be
an integer which is prime to the characteristic of K: then A[n] is isomorphic to (Z/nZ)2g

as an abstract group.

Proof. For any divisor n′ of n, the isogeny [n′] is finite, étale11, and of degree (n′)2g.
Hence ker[n′] consists of (n′)2g distinct geometric points (it is an étale group scheme of

11since (n, char(K)) = 1 by assumption
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rank (n′)2g); since this holds for every divisor n′ of n, the only possible group structure for
A[n] is (Z/nZ)2g. �

Example 10.6. Theorem 10.3 is very much false in positive characteristic. For exam-
ple, if E/Fp is an elliptic curve, then E[p] can never have order p2: the group E[p] can
either be trivial, in which case we say that E is supersingular, or it can have order p, in
which case we say that E is ordinary.

The reason of the failure of E[p] to have order p2 is to be found in the fact that [p]
can be written as Ver ◦Frob, where the Frobenius morphism Frob is purely inseparable of
degree p (more generally, for a g-dimensional abelian variety one has [p] = Ver ◦Frob with
Frob purely inseparable of degree pg).

Here Ver is the Verschiebung operator, defined as follows: let G be a finite commutative
group scheme over a field of characteristic p. Then we have a Cartier dual G∗, with an
associated Frobenius morphism FrobG∗ G

∗ → (G∗)(p) = (Gp)∗. Verschiebung is the dual of
FrobG∗ , so it is a group scheme homomorphism from Gp to G.

Definition 10.7 (Tate module). Let A/K be an abelian variety and let ` be a prime
number different from char(K). The `-adic Tate module of A is

T`(A) = lim←−
n→∞

A[`n],

where the transition morphisms are given by multiplication by `.

Remark 10.8. Concretely, an element of T`(A) is an infinite sequence {a0, a1, a2, . . .}
of torsion points of A such that

(1) ai ∈ A[`i] for all i ≥ 0;
(2) `ai+1 = ai for all i ≥ 0.

Remark 10.9. We have already seen that A[`n] ∼= (Z/`nZ)2g (the isomorphism is not
canonical, however); by passing to the limit in n we obtain that there is a (non-canonical)
isomorphism T`(A) ∼= Z2g

` .

Definition 10.10. It is sometimes useful to consider the adelic Tate module: by
definition, it is the projective limit of the system of n torsion points along the transition

maps given by A[km]
[k]−→ A[m]. We have

T̂ (A) = lim←−
n:(n,char(K))=1

A[n] =
∏

` prime
`6=char(K)

T`(A)

Another useful variant of the Tate module is the so-called rational Tate module
V`(A) := T`(A)⊗Z`

Q`.

Remark 10.11. As a consequence of theorem 6.17 part (1) one sees immediately that
passing to the limit over those n of the form `k we may construct a perfect bilinear Weil
pairing

〈·, ·〉` : T`(A)× T`(A∨)→ lim←−
n

µn = Z`(1).
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By composing with an isogeny corresponding to a polarisation L we also obtain a skew-
symmetric pairing

〈·, ·〉`,L : T`(A)× T`(A)→ Z`(1)

which is a non-degenerate bilinear form on V`(A).

Corollary 10.12. The Rosati map satisfies (ϕ)†† = ϕ.

Proof. Let ϕ be an endomorphism of A and fix a prime ` which does not divide the
degree of ϕ. We have

〈ϕ(P ), Q〉`,L = 〈ϕ(P ), λL(Q)〉` = 〈P, ϕ∨ ◦ λL(Q)〉` = 〈P, ϕ†(Q)〉`,L.
It follows that ϕ 7→ ϕ† is the adjunction map for the non-degenerate bilinear form 〈·, ·〉`,L,
hence it is involutive. �





CHAPTER 2

Galois representations

The purpose of this lecture is to (re)describe the family of compatible Galois represen-
tation attached to an abelian variety over a number field and to provide the reader with a
bag of tricks that might be useful in determining properties of these Galois representations.

1. The Galois representation

It is customary to study Galois representations one prime at a time: while this is not
strictly necessary, it often makes matters easier. For this reason, in what follows we shall
fix a prime ` and only consider modulo-` and `-adic representations. From now on, A is a
fixed abelian variety over a field K (which will usually be either a number field or a finite
field).

The crucial remark is that the coordinates of the points in the finite set A[`n] are
algebraic, so that there is a natural action of the absolute Galois group Gal

(
K/K

)
on

the points of A[`n]. It is clear that when Galois acts on a point in A(K) we get a new
point in A(K), and that the fixed points of this action are precisely the K-points of A (in
particular, 0A is fixed under the Galois action).

More precisely, we notice that Galois also acts on the finite setA[`n]. Since the equations
that define A and the group law have coefficients in K, one sees easily that

[n]σ(P ) = σ([n]P )

for all σ ∈ Gal
(
K/K

)
, P ∈ A(K) and n ∈ Z. In particular, if P is a n-torsion point,

then so is [n]P : it follows that Gal
(
K/K

)
acts on A[`n]. Moreover, since σ(P + Q) =

σ(P )+σ(Q), the Galois action is compatible with the obvious structure of Z/`nZ-module of
A[`n]. Combining the previous remarks, we see that the following definition is well-posed:

Definition 1.1 (Galois representation attached to A). Let A/K be an abelian variety
over a field, let ` be a prime number1, and let n be a positive integer. There is a natural
action of Gal

(
K/K

)
on A[`n], or, which is the same, a natural representation

ρ`n : Gal
(
K/K

)
→ AutZ/`nZ (A[`n]) .

Remark 1.2. The representations ρ`n are continuous: this amounts to saying that
they factor through a finite quotient of Gal

(
K/K

)
, and this is clear, because ρ`n becomes

trivial upon extending the base field to K(A[`n]), the field obtained from K by adjoining
the coordinates of all the `n torsion points. Notice that – since there are only finitely many

1in all our applications, ` will be different from the characteristic of K

37
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torsion points and each of them has algebraic coordinates – the field K(A[`n]) is a finite
extension of K.

Remark 1.3. Understanding the representations ρ`n can be quite complicated when `
is equal to the characteristic p of K: we shall steer clear of these difficulties and focus on
the case ` 6= p.

The general problem we would like to solve is that of describing (as precisely and as
concretely as possible) the image of the Galois representations ρ`n . In order to dispense
with the dependence on n, it is often useful to pass to the limit n→∞ and work with the
so-called `-adic representation

ρ`∞ : Gal
(
K/K

)
→ Aut(T`A).

This representation is again continuous and will be our main object of study. We shall use
the informal term image of Galois to refer to either the groups

G`n := ρ`(Gal
(
K/K

)
) ⊆ Aut(A[`m])

or their `-adic counterpart,

G`∞ := ρ`∞(Gal
(
K/K

)
) ⊆ Aut(T`(A)).

These groups do of course depend on ` but – in a sense that will be made precise later –
they are conjectured to be very similar to each other.

Notation 1.4. Let A/K be an abelian variety of dimension g and let ` 6= char(K)
be a prime number. We fix once and for all Z`-basis of T`(A) (recall from remark 10.9
that T`(A) is free of rank 2g over Z`); upon reduction modulo `, this basis also induces a
F`-basis of the 2g-dimensional vector space A[`]. With this choice, the groups G` and G`∞

can respectively be identified with subgroups of GL2g(F`) and GL2g(Z`); in what follows we
shall make this identification without further comment.

2. Algebraic cycles constrain the action of Galois

A guiding principle in the study of Galois representation is that

if the image of Galois is small, there must be a good reason!

We now try to explain what this principle means in practice. Recall that an algebraic
cycle is, roughly speaking, a formal linear combination of (irreducible reduced closed)
subvarieties.

2.1. Weil pairing: the image of Galois is contained in GSp. Let A be principally
polarised, so that we may identify A with A∨. The `-adic Weil pairing

〈·, ·〉` : T`A× T`A→ Z`(A)

is Galois-equivariant, that is, for all σ ∈ Gal
(
K/K

)
and for all t1, t2 ∈ T`(A) we have

〈σ(t1), σ(t2)〉` = σ(〈t1, t2〉`).
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This means in particular that G`∞ (respectively G`) is contained in the subgroup of
Aut(T`(A)) (resp. of Aut(A[`])) consisting of those automorphisms M that satisfy

〈Mv,Mw〉` = λ(M)〈v, w〉`,
for some λ(M) ∈ Z×` (respectively F×` ). This group deserves a name:

Definition 2.1 (General symplectic group). Let (V, 〈·, ·〉) be a finite-rank free module
over the ring R endowed with a skew-symmetric bilinear form 〈·, ·〉. The general sym-
plectic group of (V, 〈·, ·〉) is the subgroup of GL(V ) given by

GSp(V, 〈·, ·〉) = {M ∈ GL(V )
∣∣ ∃λ(M) ∈ R× : 〈Mv,Mw〉 = λ(M)〈v, w〉 ∀v, w ∈ V }

The map M 7→ λ(M) is a homomorphism from GSp(V, 〈·, ·〉) to R×; its kernel is by
definition the symplectic group of (V, 〈·, ·〉). By abuse of notation we will usually denote
GSp(V, 〈·, ·〉) by GSp(V ).

Remark 2.2. Given our implicit choice of basis of T`(A) we shall usually consider G`∞

as being a subgroup of GSp2g(Z`).

Example 2.3 (Elliptic curves). As with other higher-dimensional phenomena, the fact
that G`∞ is contained in GSp2g(Z`) rather than just GL2g(Z`) is not easy to notice when
g = 1. Indeed, it is immediate to check that for V = Z2

` equipped the standard symplectic

form 〈
(
x1

y1

)
,

(
x2

y2

)
〉 = x1y2 − y1x2 one has GSp2(V ) = GL2(V ): in the case of elliptic

curves the existence of the Weil pairing does not impose any restriction on the image of
Galois.

Remark 2.4. This restriction on the image of Galois should be though of as being an
avatar of the existence of a polarisation, which in turn is an algebraic cycle on A × A∨.
Indeed, let Γ ⊂ A × A∨ be the graph of the principal polarisation λL. Since λL is a
homomorphism of abelian varieties we have λL(A[`n]) ⊆ A∨[`n], and when we consider the
action of σ ∈ Gal

(
K/K

)
on P ∈ A[`n] we obtain

σ(P, λL(P )) ∈ σ(Γ) = Γ,

so that (σ(P ), σ(λL(P )) is again a point of Γ. This imposes a nontrivial restriction on the
action of σ, which manifests itself in the containment G`∞ ⊆ GSp(T`(A)).

Remark 2.5. We notice that we have the useful formula

λ(ρ`∞(σ)) = χ`(σ),

where λ is the multiplier GSp(T`(A)) → Z×` and χ` is the cyclotomic character. This is
true essentially by definition: indeed we know that

〈ρ`∞(σ)(P ), ρ`∞(σ)(Q)〉` = ρ`∞(σ) (〈P,Q〉`) ,
and on the other hand the action of Galois on the root of unity 〈P,Q〉` is by definition the
cyclotomic character. It is also useful to notice that (in full generality) we have an equality
between the group homomorphisms GSp2g(V )→ R× given by λg and by det.
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Remark 2.6. It is interesting to understand what happens if A carries no principal
polarisation: see exercise 1.10.

2.2. Endomorphisms. By the same reasoning as in remark 2.4, one sees that the
existence of nontrivial K-endomorphisms of A automatically leads to restrictions for the
image of Galois: indeed, if ϕ : A → A is an endomorphism of A defined over K, for any
torsion point P ∈ A[`n] and for every σ ∈ Gal

(
K/K

)
we have

σ(ϕ(P )) = ϕ(σ(P )),

an equality which should be interpreted as saying that the knowledge of the action of σ(P )
is enough to determine the action of σ on ϕ(P ). Clearly this is (in general) a nontrivial
restriction on the possible automorphisms of T`(A) which can lie in the image of Galois.

Remark 2.7. This discussion applies in particular to the endomorphisms [n] of A,
but all that can be deduced from the existence of these endomorphisms is the fact that σ
acts Z`-linearly on T`(A); this fact is already subsumed by our very notation, since we are
considering the image of Galois as a subgroup of GL(T`(A)).

Remark 2.8. As in remark 2.4, the restrictions on the image of Galois coming from
the existence of nontrivial endomorphisms can be interpreted as the existence of suitable
algebraic cycles, namely the graph of the endomorphism itself in A× A.

A special case is that of decomposable abelian varieties: if A is isomorphic to B × C,
then T`(A) decomposes as T`(B)⊕T`(C), and the image of Galois will – in a suitable basis
– act through block-diagonal matrices. If A is only isogenous to a product B × C the
same is true after tensoring with Q`: more precisely, while it is not true in general2 that
T`(A) ∼= T`(B) ⊕ T`(C), it is true that V`(A) ∼= V`(B) ⊕ V`(C) (recall that V`(A) is the
rational Tate module T`(A) ⊗Z`

Q`); this means that the action of Galois may be put in
block-diagonal form after a change of basis that may involve denominators.

Remark 2.9. Notice that if A is isogenous to a product B×C then A cannot be simple,
and in particular it admits nontrivial endomorphisms. Indeed we have the following maps
at our disposal:

(1) an isogeny A→ B × C, by assumption;
(2) isogenies A→ A∨, A∨ → A, B → B∨, by remark 6.7.
(3) an isogeny B∨ × C∨ → A∨, by duality

We then obtain a homomorphism

A→ B × C π1−→ B → B∨
ι1−→ B∨ × C∨ → A∨ → A

whose image is easily seen to have dimension equal to dim(B) 6= 0, dimA (hence in partic-
ular this endomorphism cannot be of the form [n]).

2the problematic ` are those that divide the degree of the isogeny
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2.3. 0-dimensional cycles: torsion points and isogenies. Suppose that A(K)tors

is nontrivial, and let P ∈ A(K)tors be a point of order `k. Then we have σ(P ) = P , that
is, the group G`n is contained in the group of automorphisms of A[`n] that fix P .

More generally, if there is a nontrivial isogeny f : A→ A′ of degree N defined over K,
then ker f is a Galois-stable subgroup of A[N ]. If `n | N , this implies in particular that
G`n stabilises a Z/`nZ-free submodule of rank 1 in A[`n], thus imposing another restriction
on G`n .

2.4. Tate’s conjecture. Given its extreme importance we take a moment to state
Tate’s conjecture on homomorphisms (now a theorem of Faltings [Fal83] for number fields;
Tate himself proved in [Tat66] the version for finite fields):

Theorem 2.10 (Faltings, Tate). Let A,B be abelian varieties defined over a common
field K (either a number field or a finite field). There is a natural isomorphism

HomK(A,B)⊗Z Q`
∼= HomGal(K/K)(V`(A), V`(B)),

where HomGal(K/K)(V`(A), V`(B)) denotes the group of Q`-linear homomorphisms

g : V`(A)→ V`(B)

that satisfy
σ(g(v)) = g(σ(v)) ∀v ∈ V`(A),∀σ ∈ Gal

(
K/K

)
.

Remark 2.11. Thanks to the work of many people over the years (with particularly
important contributions by Zarhin), Tate’s conjecture is now a theorem over any field
finitely generated over its prime field.

Remark 2.12. This is an incredibly powerful result: it reduces the problem of studying
maps between abelian varieties (which might seem to be highly non-linear objects) to that
of understanding certain linear objects. It is not unreasonable to consider this theorem as
a sophisticated version of analytic uniformisation: over C we have a vector space, namely
H1(A(C),C), containing a lattice, namely H1(A(C),Z), and maps between abelian varieties
can be described as linear maps between C-vector spaces that behave in a certain way with
respect to the respective lattices. Here the lattice H1(A(C),Z) is replaced by the Z`-lattice
T`(A), the ambient vector space by V`(A), and the action of Galois ensures that the maps
in question are defined over the correct ground field.

When K is a finite field, Gal
(
K/K

)
is (pro)cyclic, generated by Frobenius, so the

Galois action on V`(A), V`(B)) is completely determined from the characteristic polynomial
of Frobenius (see definition 5.5). This leads to the following

Theorem 2.13 (Tate). Let A,B be abelian varieties over a finite field K. Let pA(t),
pB(t) be the corresponding characteristic polynomials of Frobenius. Given any extension L
of Q, write pA(t) =

∏
f f(t)af and pB(t) =

∏
f f(t)bf for the factorisation of pA(t), pB(t)

in L[t]. Define

r(pA, pB) =
∑
f

deg(f)afbf .
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Then:

(1) r(pA, pB) is independent of L;
(2) rank HomGal(K/K)(A,B) = r(pA, pB).

Combining this fact with Honda-Tate theory [Wat69] [WM71] one obtains:

Theorem 2.14. Let A be a non-zero abelian variety defined over Fp where p is a prime.
Assume that pA(t) is not divisible by t2 − p. If pA(x) =

∏s
i=1Qi(t)

mi, where the Qi(t) are
distinct monic irreducible polynomials in Z[t], then A is isogenous to

∏s
i=1A

mi
i , where Ai

is a simple abelian variety over Fp satisfying pAi
(t) = Qi(t).

Finally, theorem 2.13 (applied to B = A) gives:

Theorem 2.15. Let K be a finite field and assume that A/K is a simple K-abelian
variety of dimension g. Then

rank EndK(A) = deg(pA) = 2g.

In this case, since the Frobenius of K induces an automorphism of K with characteristic

polynomial pA(t), we see that EndK(A)⊗Q ∼= Q[t]
(pA(t))

; this is a CM field of degree 2g.

3. The Mumford-Tate conjecture and independence of `

I feel compelled to at least mention the Mumford-Tate conjecture, and this sounds like
the appropriate moment to do so. Roughly speaking, the Mumford-Tate conjecture asserts
that all the restrictions on G`∞ should come from algebraic cycles; its precise form is a
little complicated to state, so I will limit myself to giving the following very vague version:

Conjecture 3.1 (Mumford-Tate-Serre). Let A be an abelian variety over a number
field K. There is an algebraic subgroup MT(A) of GL2g,Q, defined over Q, with the following
properties:

(1) MT(A) depends only on the geometry of A, that is, it only depends on A(C) (for
any embedding K ↪→ C);

(2) there is a finite extension of K such that the following hold:
(a) seeing GL(T`(A)) ∼= GL2g(Z`) inside GL2g(Q`), the group ρ`∞(Gal

(
K ′/K ′

)
)

is contained in MT(A)(Q`)
(b) ρ`∞(Gal

(
K ′/K ′

)
) is open (for the `-adic topology) inside MT(A)(Q`).

Remark 3.2. Even though the full conjecture remains open, various parts of it (and
several special cases) have been proven: there is a precise description of the group MT(A)
(which does indeed depend only on A(C), and which by work of Deligne does not depend
on the embedding of K in C); part (2a) has also been proven by Deligne, and for part
(2b) one does at least know that ρ`∞(Gal

(
K ′/K ′

)
) is open (in the `-adic topology) in its

Zariski closure. What we don’t know is whether this Zariski closure is all of MT(A)(Q`)!

Remark 3.3. The Mumford-Tate conjecture gives a precise meaning to the following
vague intuitions:
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(1) independence of `: indeed, it says that the different G`∞ are all interpolated by a
single Q-algebraic group

(2) the image of Galois is as large as it can be, once the obvious restrictions have
been taken into account: loosely speaking, all the restrictions on G`∞ should come
from algebraic cycles, and MT(A) is defined so as to capture the existence of all
algebraic cycles. Therefore part (2b) of the conjecture says that the image of
Galois is – up to some finite index – as large as it can be, given the geometric
restrictions encoded by MT(A).

4. The Good, the Bad, and the Semistable (reduction)

This is a technical section, which will be needed in the following when we’ll need to
work with Frobenius elements and their characteristic polynomials.

Definition 4.1 (Good and bad reduction). Let A/K be an abelian variety over a
number field and let v be a place of K. Recall that we denote by OK,v the completion
of the ring of integers of K at the place v. We say that A has good reduction at v if
A → Spec(K) extends to an abelian scheme A over Spec(OK,v) (whose generic point we
identify with Spec(K)), otherwise we say that A has bad reduction at v. We say that A
has good reduction (without specifying a place v) if it has good reduction at all places of K.

Notation 4.2. Let A/K be an abelian variety over a number field, and let v be a
place of good reduction for A. We shall simply write A(Fv) to mean A(Fv), where A →
Spec(OK,v) is an abelian scheme extending AKv .

We shall also need some more technical definitions:

Definition 4.3 (Néron model). Let A/K be an abelian variety over a number field
(or a local field). The Néron model of A is a smooth separated but in general not proper
group scheme A → Spec(OK) with the following property, called the Néron mapping
property: if X is a smooth separated scheme over OK then any K-morphism of the
generic fibres XK → AK can be extended to a unique R-morphism from X to A.

It is a deep theorem (due in its original form to Néron [Nér64], and in full generality
to Raynaud [Ray66]) that (semi)abelian varieties over the fraction field of a Dedekind
domain admit a Néron model. Once we have a Néron model we may use it to define the
notion of semistable reduction:

Definition 4.4 (Semistable reduction). Let A/K be an abelian variety with Néron
model A/OK. We say that A has semistable reduction at v if the connected component
of the identity of A×OK

Fv is an extension of an abelian variety by a torus. We say that
A has semistable reduction if it does at every place v of K.

Remark 4.5. In other words, A has semistable reduction at v if the special fiber at v
of A fits into an exact sequence

0→ T → A0
v → B → 0,
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where T is a torus and B an abelian variety. For A not to have semistable reduction
essentially means that T (which always exists as a linear algebraic group) has some factors
isomorphic to Ga.

For future use we note that one may attach a further numerical invariant to a place of
semistable reduction:

Definition 4.6 (Toric rank). Let A/K have semistable reduction at v. Write

0→ T → A0
v → B → 0

for the canonical exact sequence involving the identity component of the special fiber of A
at v. The toric rank of A at v is simply dim(T ); it is equal to 0 precisely when A has
good reduction at v.

Finally, we deal with the change of reduction type induced by an extension of the
ground field:

Definition 4.7 (Potentially good/semistable reduction). Let L/K be a finite exten-
sion of fields. We say that A acquires good reduction over L (respectively acquires
semistable reduction over L) at v if A×KL has good (respectively semistable) reduction
at all places of OL lying above v.

Finally, we say that A has potentially good (respectively potentially semistable)
reduction at v if there exists some extension L/K such that A acquires good (semistable)
reduction at v over L.

Remark 4.8. When working with elliptic curves one often uses the term multiplica-
tive reduction to refer to what we’re calling semistable reduction. In higher dimensions,
however, the distinction is important.

The reader familiar with elliptic curves might also want to think about the following
possible definition of multiplicative reduction: an elliptic curve has multiplicative reduction
at v if and only if the group of the smooth points in the reduction is isomorphic (possibly
after a quadratic extension) to Gm.

Remark 4.9. Good, bad and semistable reduction are really local problems: these
definitions could (and in fact should) be given in the context of abelian varieties defined
over local fields. In that setting, given an abelian variety A→ Spec(K) where K = Frac(R)
is the field of fractions of a DVR R, we say that A has good reduction if there exists an
abelian scheme A → Spec(R) whose generic fiber is A.

The two fundamental theorems one should always have in mind are the following:

Theorem 4.10 (Finiteness of the set of places of bad reduction). Let A/K be an abelian
variety over a number field. Then A has good reduction at all but finitely many places of
K.

Proof. Follows from the general principle known as spreading out. More specifically,
since A→ Spec(K) is defined over the generic point of Spec(OK), it can be extended (as a
variety, not necessarily as an abelian scheme) to some open subset of Spec(OK). The same
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holds for the multiplication, inverse, and unit maps; since the intersection of open subsets
is open, this implies that we can find a common open subscheme S of Spec(OK) over which
A, m, i, and the unit section all extend. Given that the maps satisfy the commutative
diagrams that encode the property of being a group generically, they also satisfy the same
properties over S: this means precisely that there is an abelian scheme A → S with generic
fibre A. The places of bad reduction of A are then contained in the finite set Spec(OK)\S.

In layman’s terms, the argument is simply the following: choose any set of equations
for A and for the morphisms that give A its group structure. Let T be the set of primes
of OK that divide the denominator of at least one coefficient of at least one equation of
the given presentation (there are only finitely many of them); on Spec(OK) \ T the given
equations already define an abelian scheme. �

Theorem 4.11 (Semistable reduction theorem, local case (Grothendieck [GRR72])).
Let A/K be an abelian variety over a local field. Then A has potentially semistable reduc-
tion.

Corollary 4.12 (Semistable reduction theorem, global case). Let A be an abelian
variety over a number field. Then A has potentially semistable reduction at all the places
of K.

We also quote another result for which, as demonstrated by figure 1, it is not easy to
find a good reference:

Theorem 4.13. Let A/K be an abelian variety; we consider the reduction properties
of A either over R (if K = Frac(R) is local) or at a fixed place of K (if K is a number
field).

(1) Suppose that A has good reduction. Then A has semistable reduction.
(2) Suppose that A has good reduction. Then for any field extension L/K the abelian

variety AL also has good reduction (at all the places of L above v, when K is a
number field)

(3) Suppose that A has bad semistable reduction. Then for any field extension L/K
the abelian variety AL has bad semistable reduction (at all the places of L above
v, when K is a number field)

We finish this paragraph by giving some useful information on the reduction type of a
Jacobian:

Theorem 4.14 (Bad reduction of a Jacobian). Let C/K be a smooth projective geo-
metrically irreducible curve of genus g ≥ 2. The Jacobian J of C, considered as an abelian
variety over K, has good reduction at v whenever C does3 (but the converse implication
does not hold: it is possible for J to have good reduction at v even when C has bad reduction
there). Moreover, J has semistable reduction at v whenever C admits a semistable model
over OK,v, that is, there is a model C over OK,v whose special fiber has only ordinary double
points as singularities.

3in the obvious sense: C extends to a smooth curve over Spec(OK,v)
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Figure 1. Good riddance indeed

We also have the following theorem, which is very useful when working with Jacobians:

Theorem 4.15 ([BLR90, Example 8 p. 246]). Suppose C/K is a curve with semistable
reduction at v and let J = Jac(C). Then J has semistable reduction at v, and its toric
rank is equal to the rank of H1(X(CFv),Z), where X(CFv) is the dual graph4 of the special
fibre of a semistable model C of C.

Example 4.16 (Hyperelliptic curves with toric rank 1). Let C : y2 = f(x) be a
hyperelliptic curve over Q. Suppose that some prime p 6= 2 divides the discriminant of
f(x) exactly once: then Jac(C) has bad semistable reduction of toric rank 1 at p. Indeed,
the hypothesis implies that the equation y2 = f(x) gives a semistable model of C over
Zp, with special fibre y2 = (x − a)2g(x), where g(x) has not multiple roots modulo p and
(g(x), x − a) = 1. This implies that dual graph is a single vertex with a loop (the only
irreducible component intersects itself), so that the homology group H1(X(CFp),Z) has
rank 1.

5. Characteristic polynomials of Frobenius

Characteristic polynomials of Frobenius constitute one of the main tools in study of
the Galois representations attached to abelian varieties, both from a theoretical point of
view and for practical purposes. Before discussing them, however, we need to recall some
basic terminology from algebraic number theory.

Let v be a place of K. Fix a place v of K extending v (or, equivalently, an embedding
K ↪→ Kv). The choice of v induces identifications of Gal

(
Kv/Kv

)
with the decomposition

group Dv = D(v/v), which contains the canonical inertia subgroup Iv = I(v/v). Different
choices of v are conjugated under Galois, hence in particular all the possible decomposition
and inertia groups above v are conjugated under Galois.

4this is the multi-graph having a vertex for every irreducible component of C ×OK,v
Fv and an edge

(possibly a loop) between components Ci and Cj if Ci and Cj meet at a double point
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Definition 5.1. Let A/K be an abelian variety and let v be a place of K. Let ` be
a prime number. We say that the representation ρ`n (or ρ`∞) is unramified at v if for
some (hence all) choices of an inertia subgroup Iv = I(v/v) we have ρ`n(Iv) = {1} (resp.
ρ`∞(Iv) = {1}).

Remark 5.2. The definition is independent of the choice of v. This follows immediately
from the fact that all inertia subgroups at v are conjugated.

Luckily, ρ`∞ is unramified at most places of K (recall from theorem 4.10 that every
abelian variety A/K has good reduction at all but finitely many places of K):

Theorem 5.3. For every ` and n, the representations ρ`n and ρ`∞ attached to A are
unramified away from ` and from the places of bad reduction of A.

This result is a consequence of the smooth proper base change theorem in étale coho-
mology, so we omit its proof. The statement itself, however, is really quite crucial in many
applications!

The property of being unramified is extremely important. It leads in particular to the
following definition:

Definition 5.4. Let v be a place of K at which A has good reduction. Then Dv/Iv is
pro-cyclic, generated by an element which we call (improperly) the Frobenius at v. We
also denote by Frobv any lift of this element to Gal

(
K/K

)
: notice that Frobv is well-defined

only up to Iv and to the conjugation action of Gal
(
K/K

)
.

Let now ` be a prime not divisible by `. By theorem 5.3 we have that ρ`∞(Iv) =
{1}, which implies that ρ`∞(Frobv) is well-defined up to conjugation. Finally, since the
characteristic polynomial of an endomorphism depends only on its conjugacy class, we
may define

fv,`(t) := det (t Id−ρ`∞(Frobv)) ,

which is a well-defined polynomial in Z`[t], independent of all the choices we made in
defining Frobv.

There is an obvious analogue of this definition in the case of finite fields:

Definition 5.5. Let A/K be an abelian variety over a finite field of characteristic p.
Choose a prime ` 6= p: the characteristic polynomial of Frobenius is defined as

pA(t) = det(ρ`∞(Frob)− t Id) ∈ Z[t].

5.1. Compatibility. The extreme usefulness of these characteristic polynomials of
Frobenius lies in the following (very deep) result, which combines input from many people
but which was ultimately proved by Deligne [Del74]:

Theorem 5.6 (Compatibility and the Weil conjectures). The following hold:

(1) The polynomials fv,`(t) have integral coefficients and do not depend on the choice
of v (provided that v - `)
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(2) the roots of fv,`(t) ∈ Z[t] ⊂ C[t] come in g conjugate pairs τ1, τ1, . . . , τg, τg. Every

τi is a Weil number: its absolute value is #F
1/2
v under any embedding of Q in

C.

In the light of this theorem it makes sense to introduce the following definition:

Definition 5.7. Notation as above. We set

fv(t) := fv,`(t)

for any prime ` not divisible by v.

We can at least check that this is compatible with what we discussed in remark 2.5:

Remark 5.8. Let σ := ρ`∞(Frobv) (for an arbitrary determination of Frobv). The
constant term of fv(t) is given by det(σ), which according to remark 2.5 is equal to λ(σ)g =
χ`(Frobv)

g = (#Fv)g. On the other hand, by theorem 5.6 we know that the constant term
of fv is equal to the product

g∏
i=1

τiτi =

g∏
i=1

|τi|2 =

g∏
i=1

#Fv = (#Fv)g.

6. Characteristic polynomials of Frobenius for Jacobians

We finally come to our first properly explicit/computational topic. How does one go
about determining fv(t) when A is the Jacobian of some nice curve? The answer is again
provided by work of Weil (and Deligne):

Theorem 6.1 (Zeta functions of curves over finite fields). Let C/Fq be a smooth pro-
jective curve over the finite field with q = pn elements. Define the local zeta function by
the formula

Z(C, s) = exp

(
∞∑
m=1

#C(Fqm)

m
q−ms

)
.

Then the following hold:

(1) Z(C, s) is a rational function of t = q−s

(2) we can write

Z(C, s) =
PC(t)

(1− t)(1− qt)
for a certain polynomial PC(t) of degree 2g with integer coefficients.

(3) the roots of PC(t) ∈ Z[t] ⊂ C[t] come in g conjugate pairs τ1, τ1, . . . , τg, τg. Every
τi is a Weil number of weight −1, that is, under every embedding in C it has
absolute value q−1/2, and τiτi = q−1.

The usefulness of this theorem (and the connection to our computational problems)
comes from the following additional result:
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Theorem 6.2. Let C/K be a nice curve having good reduction at v. Then fv(t) agrees
with t2gPCFv

(1/t), where CFv is the curve over Fv deduced from (a smooth OK,v-model of)
C by reduction modulo v.

Remark 6.3. By expanding formally the definition of Z(C, s) and matching coeffi-

cients between this representation and the representation Z(C, s) = PC(t)
(1−t)(1−qt) one sees

that the g = g(C) numbers #C(Fq), . . . ,#C(Fqg) are sufficient to uniquely determine the
polynomial PC(t). Moreover, the symmetry condition (τ is a root then so is 1

qτ
) ensures

that writing PC(t) =
∑2g

i=0 ait
i the coefficients ai satisfy ag+i = qiag−i.

Example 6.4. Let us see how this works in practice for the curve C : y2 = x5 + x+ 2
defined over Fp for p = 7. It is useful to write Nm for #C(Fpm). One may compute directly
(that is, using some computer algebra system) that N1 = 10 and N2 = 46 (don’t forget
that there is a point at infinity!).

Now write PC(t) = p2t4 − pa1t
3 + a2t

2 − a1t + 1 (the shape of the polynomial follows
from Remark 6.3, and the minus sign in front of the coefficient a1 is for consistency with
some familiar formulas in the case of elliptic curves, see below). Expanding the ratio

PC(t)

(1− t)(1− pt)
formally as a power series in t we obtain

Z(C, s) = 1 + t(−a1 + p+ 1) + t2
(
−a1p− a1 + a2 + p2 + p+ 1

)
+O

(
t3
)
,

while from the defining formula for Z(C, s) we get

Z(C, s) = exp

(
N1t+

N2

2
t2 +O(t3)

)
= 1 +N1t+

1

2
N2t

2 +
1

2
N2

1 t
2 +O(t3)

from which we get the formulas

a1 = p+ 1−N1, a2 =
1

2
(N2 +N2

1 )− (p+ 1)N1 + p.

While the formula for a2 might not be very enlightening, the formula for a1 should be
familiar: it’s precisely the definition of the so-called trace of Frobenius (very often
denoted by ap) for elliptic curves!

More generally, we have:

Proposition 6.5. We have the following general formula: writing PC(t) =
∏2g

i=1(αit−
1), for every m ≥ 1 we have

#C(Fqm) = qm + 1−
2g∑
i=1

αmi .
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Remark 6.6 (Number of Fq-rational points of the Jacobian). If we are interested in
the arithmetic of the Jacobian itself (rather than the arithmetic of C), another formula
which often comes in handy is the equality

# Jac(C)(Fq) = PC(1).

The quickest proof of this equality I know goes through the Lefschetz trace formula:
the number of fixed points of Frobenius is equal to the alternating sum of traces of Frob
on H i

ét(J,Q`), that is,

#J(Fq) = #J(Fq)Frob

=

2g∑
i=0

(−1)i tr
(
Frob

∣∣ H i
ét(J,Q`)

)
=

2g∑
i=0

(−1)i tr
(
Frob

∣∣ ΛiH1
ét(J,Q`)

)
=

2g∑
i=0

(−1)i
∑

H⊆{1,...,2g}
|H|=i

∏
h∈H

αh

= PC(1).

7. Torsion in the Jacobian

We may now ask a very concrete computational question:

Question 7.1. Let C/Q be a nice curve of genus g with Jacobian J . How does one
compute the torsion of J(Q)?

To my knowledge, the answer is fully known only for g ≤ 2, and work is being done on
the g = 3 case. The reason for these restrictions is described in the following remark:

Remark 7.2 (Torsion of the Jacobian, global approach). There is a notion of canonical

height on Jacobians. If one denotes by ĥ this canonical height and by h some näıve height
on divisors, then |h − ĥ| is bounded by an absolute constant c = c(J), and furthermore

one knows that ĥ([D]) = 0 if and only if [D] is a torsion point. Therefore a possible
approach to computing J(Q)tors is as follows: one determines c from the equations of C,
and then enumerates all points on the Jacobian up to näıve height c. This finite (and
computable) set of divisor classes contains all the torsion points in J(Q). This leaves us
with two problems:

(1) enumerating divisors: this is computationally challenging when the genus in-
creases. As a first approximation, consider that a divisor class on J of height
bounded by c can be represented by a divisor D = [P1 + . . .+Pg − g∞], where ∞
is a fixed rational point5 and the näıve height of each of the Pi is bounded by c.

5of course the situation is even more complicated if there is no rational point at all!
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Since the height in question is typically a logarithmic measure of size, one needs
to enumerate all rational points with numerator and denominator up to ec, and
then take all possible multi-sets of size at most g built from these points. It is not
hard to image how this computation might quickly become unfeasible.

We note however that in order to test whether a given divisor is a torsion point
one needs an a priori bound on its torsion order. This is typically obtained by
the techniques we shall see in the following example (namely computing in J(Fp)
for some small prime p).

(2) More importantly, explicit values for the constant c have only been worked out for
small values of g: the theory is very well understood for g = 1 (elliptic curves) and
there are satisfactory answers also for g = 2 [MS16], but for g ≥ 3 no complete
answer is known (see however [Sto17] for recent progress on the g = 3 case).

However, given a concrete curve C one may often gain a fairly good idea of what the
torsion subgroup of Jac(C)(Q) looks like by studying the action of Galois on torsion points:

Example 7.3. Let C be the curve over Q defined by y2 + (x2 + x+ 1)y = −x6 and let
J be its Jacobian. We determine the torsion in J(Q).

(1) We check that C has bad reduction only at 83, 139
(2) By point-counting we determine that for p = 3 the characteristic polynomial of

Frobenius is f3(t) = t4− t3− 3t+ 9, while for p = 5 we have f5(t) = t4− t3 + 4t2−
5t+ 25.

(3) Assume that P ∈ J(Q) is a torsion point of order N , and let `k be a prime power
dividing N . Then the representation ρ`k has a fixed point, which means that
(for all primes p 6= ` at which C has good reduction, p 6= `) the characteristic
polynomial of the Frobenius at p must have 1 as a root modulo `k. This means in
particular that `k is either a power of 3 or it divides f3(1) = 6, hence `k ∈ {2, 3k}.
For the same reason, `k is either a power of 5 (which we have already ruled out)
or it divides f5(1) = 24. Combining these two pieces of information we obtain
`k ∈ {2, 3}.

(4) This already shows that J(Q)tors is killed by 6. By using exercise 1.8, we check
that there is no 2-torsion in J(Q). This implies that J(Q)tors is either trivial or
has order 3.

(5) Checking more characteristic polynomials of Frobenius, a factor of 3 keeps popping
up, so we suspect there might be 3-torsion in the Jacobian after all.

(6) We notice two obvious rational points on C, namely P1 = (0, 0) and P2 = (0,−1).
From these two points we obtain a point in J(Q), namely [D] where D is the
divisor P2 − P1. Notice that [D] 6= 0 for an argument we have already used many
times: if [D] = 0, then D = div(g) with g : C → P1 of degree 1, which is not
possible since C and P1 are not isomorphic.

(7) We show that 3[D] = 0: this will imply J(Q)tors = {0, [D], [2D]}. We need to find
a function which vanishes at (0,−1) of order 3. Such a function will necessarily
be of the form f = a(x)y + b(x) with a(x), b(x) rational functions; replacing in
the equation for C we find that the x-coordinates of the zeroes of f in the affine



52 2. GALOIS REPRESENTATIONS

patch are to be found among the solutions toy = −b(x)/a(x)(
−b(x)
a(x)

)2

+ (x2 + x+ 1)
(
−b(x)
a(x)

)
= −x6.

Since −x6 vanishes at (0,−1) with high order, we’d like the left-hand side to do
the same. Hence we may try setting it equal to 0, which gives

b(x)

a(x)
= (x2 + x+ 1),

that is, f = a(x)(y + x2 + x+ 1). Since we have already observed that f vanishes
only at points with x = 0, for these points we have either a(0) = 0 or y = −1.
Since we want f to only vanish at P2, it suffices to choose a(0) 6= 0. The simplest
choice a(x) = 1 leads to

div(f) = 6P2 − 3(∞1 +∞2),

where ∞1,∞2 are the two points at infinity on C; this doesn’t quite work yet.
Thus we now need to choose a(x) so that div(a) = 3(∞1 +∞2)− 3P1− 3P2, that
is, a(x) needs to have zeroes at infinity and poles precisely where x vanishes. It
is then immediate to deduce that we need to take a(x) = 1

x3
, which does indeed

have a pole of order 3 at both P1, P2 and a triple zero at each point at infinity.
Putting everything together, we have that

3D = div

(
y + x2 + x+ 1

x3

)
= div

(
x3

y

)
and therefore 3[D] = 0 ∈ J(Q).

Having treated this example with a minimal amount of theory, we point out that in fact
one has finer tools to compare the torsion in Jac(C)(Q) with the finite groups Jac(C)(Fp):

Theorem 7.4 (Torsion injects in the reductions). Let A/K be an abelian variety over
a number field. Let v be a place of K of characteristic p and let suppose that A has good
reduction at v. Finally, let A(K)′tors denote the subgroup of A(K)tors whose points have
order prime to p. Then the natural reduction map

A(K)′tors → A(Fv)
is injective.

Sketch of proof. It suffices to do this one prime at a time, namely, it suffices to
show that for ` 6= p we have an injection A(K)[`∞]→ A(Fv), where A(K)[`∞] denotes the
`-primary component of A(K)tors. By the Mordell-Weil theorem 8.1 the group A(K)tors

is finite, so we can choose n � 0 such that A(K)[`∞] = A(K)[`n]. Let A → Spec(OK,v)
be an abelian scheme extending A → Spec(Kv); the extension A exists since A has good
reduction at v.

We know that A[`n] is an étale group scheme over Kv (remark 5.7), but in fact it is
also étale over OK,v, because ` 6= p is invertible in OK,v. It follows that A[n] has precisely
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`2ng points over the maximal unramified extension Onr
v of OK,v (that is, the integral closure

of OK,v inside the maximal unramified extension of Kv). Similarly, A[n] has `2ng rational

points over Fv. By Hensel’s lemma (and étaleness), each point in A[n]
(
Fv
)

lifts to a unique
point in A[n] (Onr

v ), which implies that the reduction map

A[`n](Onr
v )→ A[`n](Fv)

is a bijection (since it is surjective between sets of the same cardinality). In particular, by
restricting to OK,v ⊆ Onr

v we obtain an injective map

A[`n](Kv) = A[`n](OK,v)→ A[`n](Fv),
where the first equality follows from the properness of A and the obvious fact that

A[`n](Kv) = A(Kv)[`
n], A[`n](OK,v) = A(OK,v)[`n].

�

Remark 7.5. In fact, it is even true that A(Q)tors → A(Fp) is injective, provided that
p ≥ 3 is a prime of good reduction of A.

8. The existence of transvections; Chris Hall’s trick

Frobenius elements are very useful to control the image of Galois, but (due to the
fundamental results of Faltings) they only provide semisimple elements in Aut(V`A). It is
sometimes useful to have a source of unipotent elements to work with: in this direction a
very useful trick was introduced by Chris Hall in [Hal11]. We state it in its simplest form:

Theorem 8.1. Let A/K be an abelian variety with Néron model A. Suppose there
exists a place v of K at which A has semistable reduction of toric rank 1 (see definition
4.6). Let ` be a prime which does not divide the Tamagawa number6 of A at v. Then G`∞

contains a transvection, that is, an automorphism M such that the image of M − I is a
saturated7 Z`-module of rank 1.

9. Raynaud’s theorem: the action of the inertia at `

As we have seen, Frobenius polynomials capture essentially all the information con-
cerning our Galois representations when we restrict to the decomposition group of a place
at which the representation is unramified. Even when the underlying abelian variety has
good reduction everywhere, however, this is not the full story, because of the action of the
inertia at primes of characteristic `. This is a very rich subject (and the starting point of
p-adic Hodge theory), so we content ourselves with describing a single (very useful) result
due to Raynaud [Ray74]:

Theorem 9.1. Suppose A/K has good reduction at v (a place of K characteristic `)
and consider the action of the inertia subgroup at v on A[`]. Let W be a Jordan-Hölder
simple constituent of the I(v)-module A[`]. Then:

6write A for the Néron model of A and consider the exact sequence 0 → A0 → A → Φ → 0. The
Tamagawa number of A at v is Φ(Fv).

7that is, if kv belongs to the image of M − I then v belongs to the image of M − I
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(1) the wild inertia subgroup acts trivially, so that the action of I(v) factors through
the tame inertia group I tv

(2) if dim(W ) = n, one can endow W with the structure of a F`n-vector space of
dimension 1 in such a way that the action of I tv is given by a character ψ

(3) there are exponents e1, . . . , en such that:
(a) ψ = ϕe11 . . . ϕenn , where the ϕi are the n fundamental characters of level n;
(b) ei ≤ e = e(v|`), the absolute ramification index of v over `.

10. The isogeny theorem

As a final tool in the study of Galois representations we mention an incredibly powerful
and deep result due to Masser and Wüstholz [MW93] (subsequently improved by Gaudron
and Rémond [GR14]):

Theorem 10.1 (Isogeny theorem). There is an (explicit) function f(g, d, h) with the
following property. For every number field K of degree at most d and for every pair of
g-dimensional abelian varieties A/K, B/K such that there exists a K-isogeny between A
and B, there exists a K-isogeny ψ : A→ B of degree bounded by f(g, d, h(A)), where h(A)
is the semistable Faltings height of A8.

8we shall not define this notion here; we only remark that h(A) is a measure of the arithmetic com-
plexity of A, and in the case of an elliptic curve E it agrees (up to bounded error) with 1

12h(j(E)), where

j(E) is the usual j-invariant and h denotes the logarithmic Weil height



CHAPTER 3

Endomorphism algebras, complex multiplication, and examples

1. Endomorphism algebras

The purpose of this section is to recall the following theorem of Albert, which is often
very helpful to determine the endomorphism algebra of an abelian variety:

Theorem 1.1 (Albert classification, [Alb34], [Alb35], [Mum70, Page 202]). Let A/C
be a simple abelian variety and let D := End0

C(A) = EndC(A) ⊗Z Q. Denote by L be the
center of D (a number field) and by L0 the subfield of L fixed by the Rosati involution.
Let furthermore e = [L : Q], e0 = [L0 : Q], d2 = dimL(D) and g = dim(A). Then L0 is a
totally real field, [L : L0] is either one or two, and if [L : L0] = 2, then L is a CM field.
Moreover, in this case it is always possible to choose a polarisation λ in such a way that
the corresponding Rosati involution is complex conjugation.

The following are the only possibilities for D (the fourth column displays numerical
constraints that e0, e, d and g must satisfy):

Type e d Description

I(e0) e0 1 e0|g
D = L, a totally real field of degree e0

over Q

II(e0) e0 2 2e0|g
D is a quaternion algebra over the totally
real field L, split at all the infinite places
(‘totally indefinite quaternion algebra’)

III(e0) e0 2 2e0|g
D is a quaternion algebra over the totally
real field L, inert at all the infinite places
(‘totally definite quaternion algebra’)

IV(e0, d) 2e0 any e0d
2|g L is a CM field and D is a division ring

of degree d over L

Remark 1.2. There is a similar result in positive characteristic; the only difference is
that some of the numerical restrictions become less stringent.

We don’t discuss the proof of this theorem (which depends on the properties of the
Rosati involution – mainly its positivity – and on a careful study of its action on D), but
quickly explain where the numerical restrictions come from:

Proposition 1.3. Let A/C be a simple abelian variety of dimension g and let D be its
endomorphism algebra. The degree [D : Q] divides 2g.

55
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Proof. D acts faithfully on the 2g-dimensional Q-vector space H1(A(C),Q). In char-
acteristic zero, if V is a representation of a division algebra R/Q we have

dimQ(R) | dimQ(V ).

�

Remark 1.4. A result of Shimura [Shi63] implies that most of the algebras in the
Albert classification actually appear as endomorphism algebras of complex abelian vari-
eties. More precisely, given an integer g and an algebra D whose invariants (e, d) sat-
isfy the restrictions in Albert’s theorem, there is a simple abelian variety A/C such that

End0(A) ∼= D, unless D is of type III (resp. IV) and the quotient g/(2e) (resp.
g

e0d2
) is

either 1 or 2 (see [Mum70], page 203). Even for these exceptional cases, Shimura proved
a complete classification result [Shi63, §4].

Example 1.5. If A is a simple abelian surface over C with endomorphism algebra D,
the center of D does not contain an imaginary quadratic field and D is not of type III.

Remark 1.6. A specialisation argument shows that Shimura’s theorem still holds if
one replaces C by Q.

When working with endomorphism algebras it is sometimes useful to consider the so-
called reduced degree:

Definition 1.7. Given a semisimple Q-algebra D of finite dimension, write D ∼=
⊕

Di

with every Di simple. Denoting by Ki the center of Di (Ki is then a number field), there
exist integers di such that [Di : Ki] = d2

i ; the reduced degree of D is

[D : Q]red =
∑
i

di[Ki : Q].

Proposition 1.8. Let A/C be a simple abelian variety of dimension g. Then the
inequality [EndC(A) : Q]red ≤ 2g holds, with equality if and only if EndC(A) is a CM field
of degree 2g. More generally, if A/C is any abelian variety, then we have [EndC(A) :
Q]red ≤ 2g. If equality holds, EndC(A) is a product of matrix algebras over fields.

Definition 1.9. An abelian variety A (not necessarily simple) for which equality is
attained (that is, [EndC(A) : Q]red = 2g) is called a CM abelian variety.

1.1. Behaviour under reduction, ordinarity. We quickly discuss the relationship
between the endomorphism algebra of an abelian variety over a number field K and that
of any of its reductions. The crucial fact is the following:

Theorem 1.10 ([ST61, Proposition 6.1]). Let A be an abelian variety over a number
field K and let v be a place of good reduction for A. The natural map

End(A)⊗Q→ End(Av)⊗Q

is injective.
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It is also interesting to understand how the endomorphisms of an abelian variety over
a finite field change upon extension of the ground field. We shall need a definition:

Definition 1.11 (Ordinary abelian variety). Let A be an abelian variety over a field
K of characteristic p. We say that A is ordinary if A[p](K) has order pdimA.

We give a concrete characterisation of ordinarity for abelian varieties of small dimension;
for the following two results, see [Gon98] and [WM71, § III]:

Proposition 1.12. Let A/K be an abelian variety over a field of characteristic p.
Then:

(1) if dimA = 1 (i.e. A is an elliptic curve), then A is ordinary if and only if it is
not supersingular, that is, if and only if the trace of Frobenius is not 0.

(2) if dimA = 2, write f(t) = t4 +pat3 +bt2 +at+p2 for the characteristic polynomial
of Frobenius. Then A is ordinary if and only if p - b.

In general, A is ordinary if and only if πA + q/πA is prime to p, where |F| = q = ph and
πA ∈ C is any root of the characteristic polynomial of the Frobenius of A.

Theorem 1.13. Let A be an abelian variety over a finite field F. Suppose that A is
ordinary and simple: then EndF(A) = EndF(A).

1.2. Examples. Let’s now give an example of how, in some cases, one may use the
Albert classification to quickly establish the structure of End(Jac(C)):

Example 1.14 (Maximal complex multiplication). Consider the curves Cp : y2 = xp+1

and their Jacobians Jp. It is apparent that (over Q) there is an action of ζp on Cp, which

induces an embedding Z[ζp]
× ↪→ EndQ(Jp)

×. Let A be a simple factor of Jp over Q on

which ζp acts nontrivially. Then D := End0
Q(A) is a division algebra that contains Z[ζp],

hence contains Q(ζp). Notice that dimA ≤ dim Jp = g(Cp) = p−1
2

and that A contains the

subalgebra Q(ζp), of dimension p−1 = 2g(Cp). By proposition 1.3 we obtain dim(A) ≥ p−1
2

,
hence A = Jp, which is therefore absolutely simple. Moreover, one sees easily by going
through Albert’s list that D must coincide with Q(ζp):

(1) D cannot be of type I, because Q(ζp) does not embed in a totally real number
field;

(2) D cannot be of type II or III: if it were, the embedding Q(ζp) ↪→ D would give
[D : Q] ≥ p − 1, and on the other hand [D : Q] = 4e0 | 2g = p − 1, which would
imply D = Q(ζp), which is a contradiction since Q(ζp) is commutative and D is
not.

(3) therefore D is of type IV. As before, one has [D : Q] ≥ p − 1 and [D : Q] =
2e0d

2 ≤ 2g = p− 1, whence D = Q(ζp) as claimed.

Finally, since Z[ζp] is a maximal order in Q(ζp), we obtain EndC(Jp) = Z[ζp].

Example 1.15 (Picard curves). Consider a genus 3 curve of the form

C : y3 = f(x),
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where f(x) is a separable polynomial of degree 4. Then there is an action of ζ3 on C, and
therefore also on J = Jac(C). Assume that J is geometrically irreducible: what can its
geometric endomorphism algebra look like? It’s certainly not type II or III in the Albert
classification, because these only arise for even g. It’s not an algebra of type I either,
because the field Q(ζ3) cannot be embedded in a totally real number field. So it is of type
IV, and since g = 3 we must have d = 1 and e0 ∈ {1, 3}. Hence the endomorphism algebra
of J is a CM field: more precisely, it is either quadratic imaginary (in which case it is
Q(ζ3): this is the general case), or a sextic CM field given by the compositum of Q(ζ3)
with a totally real cubic field.

Example 1.16 (Curve of genus 3 whose Jacobian maps to the square of an elliptic
curve). Consider the genus-3 curve

C : y2 = x8 + 3x4 + 1

and its Jacobian J . Then Aut(C) contains (at least) the hyperelliptic involution and the
two isomorphisms α2 : (x, y) 7→ (ix, y) and α3 : (x, y) 7→ (1/x, y/x4). Notice that

α2α3(x, y) = (i/x, y/x4) 6= (−i/x, y/x4) = α3α2(x, y),

so that Aut(C) is not commutative. However, we know that Aut(C) embeds in End(J)×;
suppose now that J is geometrically simple. Then Albert’s classification implies that
D := End0

C(J) is a field, which contradicts the fact that D× contains the non-commutative
group Aut(C). Hence we recover from Albert’s classification the fact (obvious by just
staring at the equation of the curve for three or more seconds!) that J cannot be simple.
But looking at the endomorphism ring tells us more: indeed it’s immediate to see that
C admits at least two independent maps towards elliptic curves, so J is (geometrically)
isogenous to the product of three elliptic curves E1, E2, E3. Suppose that the Ei are pairwise
non-isogenous (geometrically): then D ∼=

∏3
i=1 End0

C(Ei), which is commutative since the
endomorphism ring of an elliptic curve is always commutative in characteristic zero. Again
we find a contradiction with the fact that Aut(C) embeds in D×! It follows that at least
two of the three elliptic curves are geometrically isogenous.

Finally, we prove that 2 of these 3 elliptic curves are isogenous, but the third one is
not. We compute that f3(t) = (t2 − 2t+ 3)(t2 + 3)(t2 + 2t+ 3), which means (by theorem
2.14) that JF3 is isogenous to the product of three elliptic curves Ẽ1, Ẽ2, Ẽ3, precisely one
of which (say Ẽ2) is supersingular. Since supersingularity is a geometric property (and it
depends only on the isogeny class), we find that even over F3 the curves Ẽ1 and Ẽ2 cannot
become isogenous. This in turn implies that over Q (or even over C) not all the elliptic
curves Ei are isogenous. Thus the decomposition of JQ up to isogeny is E2

1 × E2, with
E1, E2 not isogenous.

As a final remark, notice that Ẽ1 and Ẽ3 are (up to isogeny) quadratic twists of each
other, hence, after a quadratic extension of Fp, they become isogenous. This is consistent
with the decomposition JQ ∼ E2

1 × E2.

Example 1.17 (A simple, not absolutely simple abelian surface). Consider the Jaco-
bian J of the curve C : y2 = x5−3x4+3x2+x (LMFDB). A quick computation reveals that

http://www.lmfdb.org/Genus2Curve/Q/10240/c/10240/1
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the characteristic polynomial of the Frobenius at 7 is t4−10t2+49, which is irreducible over
Q; this immediately implies that J is F7-irreducible, hence also Q-irreducible. However,
we notice that AutQ(i)(C) contains α : (x, y) 7→

(−1
x
, iy
x3

)
, which induces an automorphism

α on J . Notice that α 6= − id on J since − id is induced by the hyperelliptic involution
(exercise 1.9), so β1 := α− Id and β2 := α+ Id are both nontrivial endomorphisms. Since
their product is zero (but neither is trivial), one sees immediately that β1, β2 have kernels
of positive dimension. The identity components E1, E2 of these kernels are abelian subva-
rieties of J , which is therefore not simple: since J is a surface, E1, E2 are forced to be of
dimension 1 (hence elliptic curves), which proves that JQ(i) ∼ E1 × E2.

Example 1.18 (Real multiplication by Z
[

1+
√

5
2

]
). We take this example from [KM16].

Consider the curve
C : u2 = h(t) := t5 − t4 + t3 + t2 − 2t+ 1

with Jacobian J . Define Z to be the curve

Z :

{
u2 = h(t)

t2x2 − x− t+ 1 = 0

The obvious map ϕ : Z → C given by (t, u, x) 7→ (t, u) is a 2-to-1 cover, but there is also
a further map Z → C given by

ψ : (u, t, x) 7→
(
x,
u

t3
(1− x(t+ 1))

)
.

One may check that T := ψ∗ϕ
∗ is an endomorphism of J with minimal polynomial T 2 −

T − 1, hence it generates a subring of End0
Q(J) isomorphic to Z

[
1+
√

5
2

]
.

We now show that Z
[

1+
√

5
2

]
is the full ring of endomorphisms of JQ.

First we compute f3(t) = t4+3t3+7t2+9t+9 and f5(t) = t4+2t3+6t2+10t+25; as f3(t)
is irreducible over Q, this implies that JQ is simple. Further manipulations of f3(t) (see
exercise 2.15) show that J is geometrically simple, and that its geometric endomorphism
ring is commutative. It follows from theorem 1.1 that D := End0

Q(J) is a field, and

we already know that it contains Q(
√

5). Hence there are only two possibilities: either
D = Q(

√
5), or D is a quartic CM field.

One checks (using proposition 1.12) that J is ordinary at 3 and 5, which implies (by
theorems 1.13 and 2.15) that End0

F3
(J) = EndF3(J) = Q[t]/(f3(t)) =: F3 and End0

F5
(J) =

EndF5(J) = Q[t]/(f5(t)) =: F5. It follows that if D were a quartic CM field, the three fields
F3, F5 and D should all coincide. It is easy to see (for example computing discriminants)
that this does not happen, so D cannot be a CM field. Finally, since D = Q(

√
5) and

Z
[

1+
√

5
2

]
is the unique maximal order of D, we deduce as desired that EndQ(J) = Z

[
1+
√

5
2

]
.

2. Complex multiplication

In this final paragraph we quickly review the theory of complex multiplication from the
point of view of Galois representations.
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In this section A will be a g-dimensional abelian variety defined over a number field1 K
of CM type (see definition 1.9). The general principle is that everything about CM abelian
varieties is well understood, but of course turning this vague (and optimistic) statement
into actual computations can be challenging at times! See for example Exercise 2.14.

The most important results (due variously to Shimura, Taniyama, Weil, Serre and Tate,
and nicely explained in [ST68]) are as follows.

(1) A has potential good reduction at all places of K.
(2) from now on, suppose that A/K has complex multiplication defined over K – that

is, EndK(A) = EndK(A). Let E := End0
K(A) be the field of complex multiplication

and let R = EndK(A). Then V`(A) is a free E` := E⊗Q`-vector space of dimension
1, and T`(A) is a free R` := R ⊗ Z`-module of rank 1 provided that ` does not
divide the index of R inside the maximal order of E. Moreover, an element of E`
carries T`(A) to itself if and only if it is contained in R`.

(3) Using this, we may identify the Galois representation

ρ`∞ : Gal
(
K/K

)
→ Aut(T`(A))

with a representation

ρ`∞ : Gal
(
K/K

)
→ R×` .

(4) For each place v of K there is a homomorphism

ϕv : I(v)→ µ(E)

from the inertia group at v to the group of roots of unity in E. The fixed field of
its kernel is the minimal extension of K over which A acquires good reduction at
the places above v; in particular, ϕv is trivial if A has good reduction at v.

(5) let nv be the minimal integer such that ϕv is trivial on the nv-th ramification
group I(v)(nv) (in the upper numbering). Then the exponent of the conductor of
A at v is equal to 2 dim(A)nv.

(6) there is a map ψ`, which we describe below, such that for every idèle a ∈ IK we
have

ρ`∞(a) = ε(a)ψ`(a
−1
` ),

where a` is the component of ` along the places of characteristic `.
(7) ε agrees with ϕv upon restriction to Uv(K), the group of units of the ring of

integers of the completion Kv.

In order to describe the map ψ` we need to introduce some further concepts specific to
CM abelian varieties:

Definition 2.1 (CM field). A CM field is a totally imaginary quadratic extension E
of a totally real number field E0.

Definition 2.2 (CM type). Let E be a CM field and let G := Hom(E,Q) be the set of
field embeddings of E in Q. The elements of G come naturally in pairs, since if ϕ : E ↪→ Q

1it is a theorem that complex abelian varieties of CM type can be defined over a number field
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is an embedding, then so is ϕ (obtained by post-composing ϕ with complex conjugation2);
moreover, since E is totally imaginary, ϕ and ϕ are distinct. A CM type for E is a subset
Φ of G such that Φ ∪ Φ = G and Φ ∩ Φ = ∅.

Definition 2.3 (CM type of an absolutely simple CM abelian variety). Let A/K be
an absolutely simple abelian variety, admitting complex multiplication (over K) by the field
E. The tangent space at the identity of AK is a K-module and an E-module, and the
two actions are compatible: it follows that this tangent space is a (E ⊗K)-bimodule, so it
decomposes as TidAK

∼=
∏

ϕ∈ΦKϕ, where Kϕ is a 1-dimensional K-vector space on which

E acts through the embedding ϕ : E ↪→ K, and Φ is a subset of Hom(E,K) of cardinality
g. The set Φ of embeddings that appear in this decomposition is a CM type for E, and we
say that A admits complex multiplication by the CM type (E,Φ).

Example 2.4. Consider for example the Jacobian J of the curve C : y2 = x5 + 1.
Identifying the tangent space V to J at the identity to the dual ofH0(J,Ω1

J) ∼= H0(C,Ω1
C) =

〈dx
y
, x dx

y
〉, one sees that the action of ζ5 on V is given by

ζ∗
dx

y
= ζ

dx

y
, ζ∗

x dx

y
= ζ2dx

y
,

hence (taking the duality into account) the two nontrivial embeddings Q(ζ5) ↪→ Q that
appear in the CM type of A are those characterised by ζ5 7→ ζ−1

5 , ζ5 7→ ζ−2
5 .

Definition 2.5 (Reflex type). The reflex type of a CM type Φ on the CM field E is
a pair (E∗,Φ∗) defined as follows.

(1) the field E∗ is the fixed field of {σ ∈ Gal
(
Q/Q

)
: σΦ = Φ}

(2) the type Φ∗ is obtained as follows. Let L be the Galois closure of E, G = Gal(L/Q)
and H = Gal(L/E). Then one may identify Hom(E,Q) with the quotient H \G,
and the CM type Φ for E lifts naturally to a CM type ΦL for L. Let Φ∗L be the
CM type given by {φ−1 : φ ∈ ΦL}. Then Φ∗L is induced from a unique CM type Φ∗

on E∗, called the reflex type.

Theorem 2.6. Let A/K be an abelian variety of CM type, with CM defined over K.
Then the reflex field E∗ is contained in K.

The proof is essentially immediate: if the action of complex multiplication is defined
over K, then Gal

(
K/K

)
preserves the characters showing up in T0(A) (considered as a

representation of the CM field E), hence for every σ ∈ Gal
(
K/K

)
we have σΦ = Φ, that

is, Gal
(
K/K

)
fixes the reflex field of (E,Φ).

Definition 2.7. Given a CM field E and a CM type Φ, we define the reflex norm
associated with Φ to be the map

NΦ : (E∗)× → E×

x 7→
∏

φ∈Φ∗ φ(x)

2complex conjugation is not well-defined on Q, but it can be shown that any determination of complex
conjugation will induce the same automorphism on the Galois closure of a CM field
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One can show that NΦ is well-defined, in the sense that NΦ((E∗)×), which is a priori only

a subset of Q×, is in fact contained in E×.

Example 2.8. We continue with the field E = Q(ζ5) and the CM type corresponding
to the embeddings ζ5 7→ ζ3

5 , ζ5 7→ ζ4
5 . Since E/Q is Galois, one sees that the reflex field is

E itself, while the reflex type is given by the two embeddings that send ζ5 7→ ζ5, ζ5 7→ ζ2
5 .

The reflex norm is therefore

NΦ(a0 + a1ζ5 + a2ζ
2
5 + a3ζ

3
5 ) = (a0 + a1ζ5 + a2ζ

2
5 + a3ζ

3
5 )(a0 + a1ζ

2
5 + a2ζ

4
5 + a3ζ5)

We are finally ready to describe the map ψ` which, by the results described above, is
(essentially) the representation ρ`∞ :

Definition 2.9. We define ψ` to be the composition of NK/E∗ with the reflex norm
NΦ : E∗ → E. Here NK/E∗ is the norm from K⊗Q` to E∗⊗Q`, which makes sense because
by theorem 2.6 the field E∗ is contained in K, and NΦ is the reflex norm corresponding to
the CM type of A.

We finish with one last example: the determination of the reflex type in a non-Galois
case.

Example 2.10. Consider the field E = Q[x]/(x4+13x2+41). This is a quartic CM field
with totally real subfield equal to Q(

√
5). The extension E/Q is not Galois, and its Galois

closure L is given by Q
(
±i
√

1
2

(
13±

√
5
))

. The Galois group of L over Q is isomorphic

do D4 and is generated by two elements, s of order 2 (with fixed field E), and r of order 4
(with fixed field Q(

√
205)). Complex conjugation in Gal(L/Q) is given by r2, whose fixed

field (i.e. the maximal totally real subfield of L) is generated by a root of x4−15x3 +48x2−
15x + 1. A CM type for E is given by a subset of Hom(E,L) = Gal(L/Q)/Gal(L/E) =
〈r, s〉/〈s〉. We consider the CM type Φ = {id Gal(L/E), rGal(L/E)}. There are 4 elements
in Gal(L/Q) that map to Φ under restriction, namely ΦL = {id, s, r, rs}. Their inverses
are given by Φ∗L = {id, s, r−1, rs}. We now describe the reflex field: we need to study the
group

Gal(L/E∗) = {g ∈ Gal(L/Q) : gΦL = ΦL}.
Notice that Gal(L/E∗) is contained in ΦL (indeed, for every g ∈ Gal(L/E∗) we must have
g · id ∈ ΦL, hence g ∈ ΦL). It’s clear that r, s do not belong to Gal(L/E∗), but rs does:
indeed rs · {id, s, r, rs} = {rs, r, rsr, id} = {rs, r, s, id}. It follows that the reflex field E∗ is
the field fixed by rs (which is isomorphic to Q[x]/(x4 + 19x2 + 80)), with CM type induced
by Φ∗L. Notice that

Hom(E∗, L) = Gal(L/Q)/Gal(L/E∗) = 〈r, s〉/〈rs〉
= {id Gal(L/E∗), rGal(L/E∗), r2 Gal(L/E∗), r3 Gal(L/E∗)}

,

and recall that the reflex type is given by those elements of this set that are restrictions of
elements in Φ∗L. It’s immediate to see that id and rs belong to the same coset under the
action of Gal(L/E∗), and the same is true for s and r−1 = srs, hence the reflex type Φ∗ is
given by Φ∗ = {id Gal(L/E∗), r−1 Gal(L/E∗)} = {id Gal(L/E∗), r3 Gal(L/E∗)}.
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Exercises

The division of exercises in “level 1” and “level 2” is entirely subjective. You are
encouraged to look at all the exercises and spend some time thinking about a strategy;
then choose your favourite problems and try to put your strategy in practice, possibly with
the help of a computer.

1. Level 1 problems

Exercise 1.1 (Commutativity of abelian varieties, slightly different proof). Using the
fact that the map x 7→ x−1 is algebraic, show that an abelian variety is commutative.

Exercise 1.2 (Uniqueness in Poincaré’s theorem). Assume that AutK(A) is a finite
group. Prove that the decomposition in Poincaré’s theorem is unique (that is, there exist
unique simple abelian subvarieties A1, . . . , An of A such that the sum is an isogeny A1 ×
· · ·×An → A). Show with an example that uniqueness of the decomposition does not hold
in general.

Exercise 1.3. Let A → B be a surjective homomorphism of abelian varieties. Prove
that B is isogenous to a subvariety of A. Let A→ B be an injective homomorphism: prove
that there is a surjective homomorphism B → A (hence, up to isogeny, “homomorphisms
of abelian varieties go in both directions”).

Exercise 1.4. Prove the claim made in remark 4.11; more precisely, show that the
kernel of λH : A→ A∨ has order d(H)2.

Exercise 1.5. Prove that an abelian variety over C can never be embedded as a
hypersurface in projective space unless it is an elliptic curve. Find an abelian surface (that
is, an abelian variety of dimension 2) which can be embedded in P8.

Hint. It can be useful to apply the Lefschetz theorem.

Exercise 1.6. Show that the polarisation introduced in example 4.12 is indeed canon-
ical (that is, it does not depend on our choice of representatives 1, τ for the lattice).

Exercise 1.7. Compute the order of GSp2g(F`) and compare it with that of GL2g(F`).

Exercise 1.8. Let C/K be the hyperelliptic curve y2 = f(x), where f(x) is a separable
monic polynomial of degree 5 and K is a field not of characteristic 2. Describe a F2-basis
for the F2-vector space Jac(C)[2](K). How does the answer change if f(x) is not monic?
How does it change if it has degree 6?

Hint. See exercise 2.3.
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Exercise 1.9. Let C be the curve given by y2 = f(x) (with f(x) separable of degree
5), and let∞ be the point at infinity of C. Embed C into its Jacobian J via P 7→ [P −∞].
Let ι be the involution ι(x, y) = (x,−y) of C; as we have seen (proposition 9.22), ι induces
an automorphism of J . Prove that this automorphism is multiplication by −1.

Exercise 1.10. Assume that A carries a polarisation of degree d (not necessarily
equal to 1). What can be said on the image of Galois? Is it still contained in the general
symplectic group?

Hint. A useful way to think about problems where isogenies are involved is the fol-
lowing: in the category of abelian varieties up to isogeny, A and A∨ are isomorphic. At
the level of Tate modules, this implies (among other things) that V`(A) and V`(A

∨) are
isomorphic (notice that these are Q`-vector spaces and not Z`-modules, though!). In par-
ticular, a polarisation of any degree induces an alternating form on V`(A). And now you
should try to work out what this implies for the Weil pairing T`(A)× T`(A∨)→ Z`(1)...

Exercise 1.11. Find a genus 2 curve C/Q whose Jacobian has good reduction away
from 2. Is it possible that Q(J [2]) = Q?

Exercise 1.12. Play the following game with a partner. Ask them to query the
LMFDB for genus 2 curves with Sato-Tate group G3,3 and with Q-simple Jacobian1.
They choose such a curve C and tell you the equation; you need to guess the algebra
End0

Q(Jac(C)). You are only allowed to compute characteristic polynomials of Frobenius
– but of course you may use your favourite computer algebra system.

Exercise 1.13. Let C/Q be a curve of genus 2 with good reduction at p. Find a
formula for the characteristic polynomial of the Frobenius at p in terms of #C(Fp) and
#C(Fp2). Same question with C/Q of genus 3, using #C(Fp3) as well as #C(Fp), #C(Fp2).

Exercise 1.14. Using remark 7.5, determine the torsion subgroup of J(Q), where J
is the Jacobian of y2 = x5 + 1.

Exercise 1.15. Prove that the group of rational points of the Jacobian of y2 = x5−x+1
has rank at least 1.

Exercise 1.16. Assuming theorem 6.1 prove proposition 6.5.

Exercise 1.17. Consider the curves Ca : y2 = x5−2x4−x3−ax2+x for a ∈ [1, 100]∩N.
Determine for which values of a in this range the abelian variety Ja = Jac(Ca) is Q-simple.

Exercise 1.18. How many different CM types does a CM field E possess?

2. Level 2 problems

Exercise 2.1 (B. Poonen). If A is a g-dimensional principally polarised abelian variety
over K with EndK(A) = Z, and G is a finite subgroup of A whose order n is not a g-th
power, then B := A/G is an abelian variety that admits no principal polarization. Show
that the assumption on EndK(A) is necessary.

1these conditions are equivalent to the geometric endomorphism algebra of the Jacobian being a real
quadratic field and to all the endomorphisms being defined over Q
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Exercise 2.2 (Serre’s lifting lemma). In this exercise we describe a useful lemma,
originally due to Serre, which allows one to deduce `-adic information from mod-` data.

(1) Let ` ≥ 5 and G be a closed subgroup of GSp2g(Z`). Suppose that the reduction
of G modulo ` contains Sp2g(F`): prove that G contains Sp2g(Z`). If we further
assume that the reduction of G modulo ` is all of GSp2g(F`), can we deduce that
G = GSp2g(Z`)?

(2) Deduce that if A/Q is a principally polarised abelian variety such that Im ρ`
contains Sp2g(F`), then Im ρ`∞ = GSp2g(Z`).

(3) Can you find similar statements that apply to other subgroups of GL2g?

Exercise 2.3. Let K be a field of characteristic different from 2 and let C : y2 =∏2g+1
i=1 (x − αi) be a hyperelliptic curve defined over K (with αi ∈ K). Let Pi = (αi, 0)

and let ∞ denote the unique point at infinity of C. Show that {[Pi −∞]}2g
i=1 is a basis of

Jac(C)[2]. Compute, for all i, j, the Weil pairing between [Pi −∞] and [Pj −∞].

Exercise 2.4. Prove that the Jacobian of the curve y2 = x8 + 3x6 +x4 + 3x2 + 1 splits
up to isogeny as the product of three elliptic curves (try to keep your computations to a
minimum).

Exercise 2.5. Let J/Q be the Jacobian of the curve y2 = x5 + x + 1. Determine
#J(Q)tors. Same question for the Jacobian of the curve y2 + y(x3 + 1) = −x− 1.

Exercise 2.6. Consider the curve X1(13) : y2 + (x3 + x + 1)y = x5 + x4. Using
information from the LMFDB if necessary, determine the size of the image of the Galois
representation ρ19 attached to the Jacobian of X1(13). Can you also determine the image
of ρ19 up to conjugacy?

Hint. This is a hard exercise; here is one way of doing it (which assumes all the
information from the LMFDB):

(1) show that the order of G19 divides 6 · 19 · 18
(2) prove that #G19 is divisible by 6 · 18
(3) observe that if 19 - #G19, then all the 19-torsion of J is defined over Q(ζ13, ζ19)
(4) use information coming from the reduction of J at p = 1483 to decide whether or

not 19 | #G19.

Note. This is a famous curve! Knowing the structure of J(Q)tors[19] allowed Tate
and Mazur [MT74] to prove that there are no elliptic curves over Q admitting a rational
13-torsion point.

Exercise 2.7. Consider a general hyperelliptic curve C : y2 = f(x) over Q.

(1) Prove that C has good reduction at all primes that don’t divide 2 disc(f(x)).
(2) Show that for every prime p there exists an abelian surface A/Q with good reduc-

tion away from 2p.

Exercise 2.8. Consider the curves

C1 : y2 + (x3 + x2 + x+ 1)y = −12x6 − 15x5 + 9x4 + 31x3 + 9x2 − 15x− 12

http://www.lmfdb.org/Genus2Curve/Q/169/a/169/1
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and

C2 : y2 + y = −x6 − 9x5 − 22x4 + 3x3 + 37x2 − 24x+ 4.

Let J1, J2 be the corresponding Jacobians. One can show that J1(Q) ∼= Z/3Z and J2(Q) ∼=
Z/15Z. However, for any prime p of good reduction of C1, one has #J1(Fp) ≡ 0 (mod 5).
Can you make a guess as to why this happens?

Exercise 2.9. Let C/Q be a genus 2 curve with good reduction away from 2.

(1) Prove that J = Jac(C) admits a rational 2-torsion point.
(2) What is the minimal order of J(Q)tors for such a curve?

Hint. It might be possible to solve this problem without the help of a computer, but
https://hobbes.la.asu.edu/NFDB/ will probably come in handy.

Exercise 2.10. Let J be the Jacobian of the curve C : y2 = x5− x4− x3− x2 + x− 1.
It is known that EndQ(J) is Z[

√
2]. Prove that for p ≡ 1, 3 (mod 8) the characteristic

polynomial of the Frobenius at p is of the form t4 + 2at2 + p2 for some integer a (it may
be useful to consult [FKRS12]).

Exercise 2.11. Consider the Jacobian J/Q of the curve y2 + y = x5− 2x4 + 2x3− x2.
Determine for which primes ` there is a Q-rational isogeny of degree ` from J to another
abelian variety.

Hint. Here is a possible way to attack this problem:

(1) Assume that J [`] admits a cyclic submodule H ∼= F` which is stable under Galois.
This induces a character ψ : Gal

(
K/K

)
→ Aut(H) ∼= F×` which is unramified

outside ` and the primes of bad reduction of J .
(2) Show that ψ = εχi`, where ε is ramified at most at the primes of bad reduction of

J and i ∈ 0, 1 (you will need theorem 9.1).
(3) It follows (why?) that the conductor of ρ` is divisible by cond(ε)2.
(4) In the case at hand, this implies that ε is trivial.
(5) Hence we have that for every p of good reduction the characteristic polynomial of

ρ`(Frobp) (which is just the reduction modulo ` of fp(t)) has a root of the form
χ`(Frobp)

i for some i = 0, 1. Moreover, χ`(Frobp)
i ≡ pi (mod `).

(6) This should be enough to reduce the problem to a finite list of cases.

Exercise 2.12. Let A/K be an abelian variety over a field of characteristic 0. Let
R = EndK(A), D = End0

K(A), and let S be an order in D that contains R. Prove that A
is K-isogenous to a K-abelian variety B such that EndK(B) = S.

Exercise 2.13 (Silverberg [Sil92]). Let A,B be abelian varieties over a field K of
characteristic 0. Let N ≥ 3 be a positive integer and let L = K(A[N ], B[N ]). The
purpose of this exercise is to show that the action of Gal

(
L/L

)
on HomK(A,B) is trivial,

or, in other words, that all the K-homomorphisms from A to B are defined over L. Let
Λ := HomK(A,B).

You will need the following lemma: for every r and N ≥ 3, GLr(Z) → GLr(Z/NZ) is
injective on finite subgroups.

https://hobbes.la.asu.edu/NFDB/
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(1) Suppose G is a finite group, Λ is a Z[G]-module which is a finitely generated free
Z-module, and N is an integer greater than 2. If σ ∈ G and (σ− 1)Λ ⊆ NΛ, then
g(λ) = λ for every λ ∈ Λ.

(2) Let H = {σ ∈ Gal
(
K/K

)
: σ(λ) = λ ∀λ ∈ Λ} and

HN := {σ ∈ Gal
(
K/K

)
: (σ − 1)(λ) ∈ NΛ ∀λ ∈ Λ}.

Let FN be the fixed field of HN . Prove that HN = H and that every element of Λ
is defined over HN .

(3) Let KN be the fixed field of

{σ ∈ Gal
(
K/K

)
: σ(λ) = λ ∀λ ∈ Hom(A[N ], B[N ])}.

Prove that FN is contained in KN .
(4) Deduce the theorem.

Exercise 2.14. Let C/Q be the curve given by the equation y2 = x5 + 1 and let J/Q
be its Jacobian. Determine, for every prime p > 5 with p 6≡ 1 (mod 5), the number of
Fp-points of J . Equivalently, determine the number of Fp- and Fp2-points of the curve
y2 = x5 + 1.

Hint. This can be a hard problem. Here is a sketch of solution:

(1) Reduce to working over K = Q(ζ5)
(2) the only places of bad reduction of C are 2 and 5, hence the only places of bad

reduction of C/K are contained in {2, 1− ζ5}
(3) the conductor of C over Q(ζ5) is 24(1 − ζ5)4. This implies that ϕv (for v = 2 or

v = 1− ζ5) is trivial on the principal units.

(4) if p ≡ −1 (mod 5) is written in the form p = (a+ bω)(a+ bωσ), where ω = −1+
√

5
2

and σ is the generator of Gal(Q(
√

5)/Q), then (a+ bω) ≡ ±2 (mod 1− ζ5)
(5) let c be the idèle whose v-component is 1 for all v, except for v = a+ bω, where it

takes the values a+bω. Then ρ`(c) = ρ`(c
′), where c′ is the idèle with v-component

equal to 1
a+bω

for v 6= a + bω and c′a+bω = 1. Now you are reduced to computing

ψ`(a+ bω) and ϕv(
1

a+bω
) for all v

(6) for v = 2, the algebraic number a+ bω has order dividing 3 in the residue field Fv,
hence its image via ϕv is trivial

(7) finally, for v = 1− ζ5, the image in Fv ∼= F5 of 1
a+bω

is ±2, which is a generator of

F×5 . This should tell you the value of ϕv(a+ bω).
(8) putting everything together, you should now have a simple formula for the trace

of Frob2
p.

Exercise 2.15. In this exercise we consider the situation of example 1.18.

(1) Prove that T has minimal polynomial T 2 − T − 1 as claimed.
(2) Let A/K be an abelian surface such that EndK(A) is a (nonsplit) quaternion

algebra. Prove that the reduction of A at any place of K (where it has good
reduction) is the square of an elliptic curve. Use this fact to deduce that EndQ(J)
is commutative.
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(3) Prove that J is geometrically simple.
(4) Let A be the Jacobian of Z. Can you determine EndQ(A)?
(5) Challenge (that has little to do with Galois representations): decompose Jac(Z) ∼∏

Ani
i up to isogeny over Q, with the Ai absolutely simple. Choosing a suitable

isogeny allows you to assume that each Ai is a Jacobian over Q. Can you find
equations for all the corresponding curves?

Hint (for parts (2) and (3)). Given an abelian surface A/Q there exists a Galois
extension L/Q over which all the endomorphisms of A are defined and such that Gal(L/Q)
has exponent dividing 12 (see [FKRS12], or deduce this fact from exercise 2.13).

Hint (for part (4)). It can be computationally difficult to determine characteristic
polynomials of Frobenius for Z; here are the first three (there is bad reduction at 2):

(1) p = 3, f3(t) = (t2 − t+ 3)(t2 + t+ 3)(t4 + 3t3 + 7t2 + 9t+ 9)2

(2) p = 5, f5(t) = (t2 − t+ 5)(t2 + t+ 5)(t4 + 2t3 + 6t2 + 10t+ 25)2

(3) p = 7, f7(t) = (t2 − 4t+ 7)(t2 + 2t+ 7)(t4 + 7t3 + 25t2 + 49t+ 49)2

3. Projects

Exercise 3.1. Zarhin [Zar00] has proven the following remarkable theorem:

Theorem 3.2 (Zarhin). Let f(x) be a separable polynomial of degree n ≥ 5 with coef-
ficients in a number field K. Let C be the hyperelliptic curve y2 = f(x), and suppose that
the Galois group of f(x) over K is either An or Sn. Then for the Jacobian J of C we have
EndK(J) = Z.

The aim of this project is to find similar criteria which give information on EndK(J)
(or EndK(J)) in terms of properties of the Galois group G of f(x): here are two possible
extensions for you to think about.

(1) are there assumptions on G (weaker than G containing An, of course) that ensure
that J is geometrically irreducible?

(2) fix a (small) value of g and a proper subgroup H of An. Is there a polynomial fH(x)
of degree n with Galois group H and such that the Jacobian JH of y2 = fH(x) has
(geometrically) nontrivial endomorphism ring? If the answer is yes, then you have
found an abelian variety with an ‘interesting’ Galois representation (nontrivial
endomorphisms and prescribed structure on JH [2]). If the answer is no, you have
found a strengthening of Zarhin’s theorem.

Exercise 3.3 (small torsion of non-hyperelliptic Jacobians). The purpose of this ex-
ercise is to investigate the geometry of torsion points of small order on Jacobians of non-
hyperelliptic curves.

(1) Let C be a genus-3 non hyperelliptic curve, presented as a smooth plane quartic
F (X, Y, Z) = 0. Can you describe the 2-torsion in J = Jac(C) in terms of the
geometry of F? [This is known, but I’m not sure where to find it in the literature].



3. PROJECTS 69

(2) Can you find a similar geometric description for a non-hyperelliptic genus 4 curve
presented as the intersection of a quadric and a cubic in P3? [I haven’t tried to
solve this exercise].

(3) Can you find further interesting classes of curves C for which some of the groups
Jac(C)[`] are easy to describe in geometric terms?

Exercise 3.4 (A surjectivity criterion in genus 2). As described in Sara’s lectures on
elliptic curves, there is a surjectivity criterion for Galois representations attached to elliptic
curves (due to Serre) which reads as follows:

Theorem 3.5 (Serre). Let E be an elliptic curve over a number field K. Let p ≥ 5 be
a prime number and let Gp be the image of the representation ρp attached to E. Suppose
that Gp contains:

(1) an element g such that tr(g) 6= 0 and tr(g)2 − 4 det(g) is a nonzero square in F×p
(2) an element g′ such that tr(g′) 6= 0 and tr(g′)2 − 4 det(g′) is not a square in F×p
(3) an element g′′ such that u := tr(g′′)2/ det(g′′) satisfies u 6= 0, 1, 2, 4 and u2 − 3u+

1 6= 0

Then Gp contains SL2(Fp). In particular, if p is unramified in K, then Gp = GL2(Fp).

Can you find a similar criterion for abelian surfaces (the classification of proper sub-
groups of GSp4(F`) given in [Lom16] might be useful)?

Exercise 3.6 (Prime values of some quadratic polynomials). Consider the elliptic
curve E : y2 = x3 + x over the field Q. Let p ≡ 1 (mod 4) be a prime number; it is
well-known that p can be written as p = a2 + b2 in an essentially unique2 way.

(1) Compute the trace of the Frobenius at p in terms of a and b.
(2) Notice that whenever the trace of the Frobenius at p is ±2 the prime number p is

of the form x2 + 1 (and recall that it is not known whether there exist infinitely
many primes of this form).

(3) Google the Lang-Trotter conjecture (a good reference for the purposes of this
project is [BJ09]). Combined with the previous remarks, what does the Lang-
Trotter conjecture imply on the distribution of primes p of the form x2 + 1?

(4) Can you derive the same prediction from analytic number theory, without resorting
to the theory of elliptic curves?

(5) Apply the same argument to other CM elliptic curves over Q. What are the cor-
responding predictions about the prime values taken by certain quadratic polyno-
mials?

(6) Can you support these predictions by analytic arguments and/or with numerical
experiments?

(7) (?) Can you find a higher-dimensional analogue of these heuristics? (That is, can
you make similar predictions by looking at CM abelian varieties of dimension 2 or
more?)

2that is, up to exchanging a and b and to a choice of signs
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