
Nonabelian Chabauty study group

1 De Rham Unipotent Fundamental Group

Definition 1.1. Let Un∇(X) be the category of unipotent vector bundles with connection
over X.

π1,DR(X; b) = Iso⊗(eb), where eb : Un∇(X)→ VecQp is the evaluation functor at b.

Remark 1.2. Let V = Qp << A,B >> ⊗O†X be the universal pro-bundle with connection
on X. There is a natural structure of Hopf algebra on Qp << A,B >> defined by
∆(A) = 1 ⊗ A + A ⊗ 1, ∆(B) = 1 ⊗ B + B ⊗ 1 such that π1,DR(X)(Qp) corresponds to
the set of group-like elements of Qp << A,B >>. Recall that a group-like element is an
x such that ∆(x) = x⊗ x.

Moreover, π1,DR
∼= Spec(Qp << A,B >>∨).

Definition 1.3. The unipotent Albanese map of level n is

UAlbn = πn ◦ UAlb,

where πn : π1,Dr → [π1,DR]n is the natural projection and

UAlb : X(Qp) → π1,DR

z 7→ (Liw(z))w word of length ≤n

Here

Liw(z) =

∫
· · ·
∫ z

w,

where the iterated integral over a word w is obtained by replacing A → dz
z

, B → dz
1−z , and

then integrating in order, so that for example∫ z

AB =

∫ z

b

(∫ t2

b

dt1
t1

)
dt2

1− t2
.

Theorem 1.4 (Kim 2005). The functions Liw(z) are Qp-linearly independent.
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2 The fundamental diagram

Definition 2.1. Let S be a finite set of primes, p 6∈ S, T = S ∪ {p}, QT
be the maximal

extension of Q unramified outside T , Gp = Gal(Qp/Qp) and ΓT = Gal(QT
/Q).

Kim’s fundamental diagram is as follows:

X(Z[1/S]) //

��

X(Qp)
UAlbn //

��

[π1,DR]n(Qp)

H1
f (ΓT , [π1,ét]n)

locp
// H1

f (Gp, [π1,ét]n)

D

66

Unravelling the definitions one sees that this diagram is commutative.

3 The Unipotent Étale Fundamental group

Definition 3.1. We let Un(X) be the category of unipotent lisse1 Qp-sheaves. The unipo-
tent étale fundamental group π1,ét(X, b) = Iso⊗(eb), where eb is again the fiber functor
at b, eb : Un(X) → VecQp. We also define the fundamental groupoid, or path torsor,
as

π1,ét(X; b, p) = Iso⊗(eb, ep)

Remark 3.2. If one ignores the Galois action, there is an isomorphism

π1,ét
∼= Spec (Qp << A,B >>∨) ,

where the dual is in the sense of topological vector spaces. However, π1,ét has a natural
Galois action.

More precisely, our π1,ét is the Qp-unipotent completion of π̃1,ét, the usual étale funda-
mental group, which certainly comes equipped with a Galois action. One has for example
[π1,ét]1 ∼= Qp(1)A ⊕ Qp(1)B, where Qp(1) is the 1-dimensional Qp vector space on which
Galois acts via the cyclotomic character.

We also define
1→ [π1,DR]n → [π1,DR]→ [π1,DR]n → 1,

where [π1,DR]n = [[π1,DR]n−1, π1,DR]. The following sequence is exact by definition:

1→ [π1,ét]
n/[π1,ét]

n+1 → [π1,ét]n+1 → [π1,ét]n → 1,

and the Galois action on the first term can be computed since there is a natural surjection

(Qp(1)rn)⊗n ∼= [π1,ét]
⊗n
1 � [π1,ét]

n/[π1,ét]
n+1.

1i.e. locally constant in the étale topology
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This implies
[π1,ét]

n/[π1,ét]
n+1 ∼= Qp(n)rn

for some integer rn.
With this technology at hand, we may define the Kummer map

X(Z[1/S]) → H1(ΓT , [π1,ét])
P 7→ [π1,ét(X; b, P )]

3.1 Example

Let’s compute H1(ΓT ,Qp(1)) for T = {`} ∪ {p}, p odd. There is a natural exact sequence

1→ µpk → Z[1/T ]
× pk−→ Z[1/T ]

×
→ 1

which induces

1→ Z[1/T ]×/Z[1/T ]×p
k ∼−→ H1(ΓT , µpk)→ Cl(Z[1/T ])→ 1

Since Z[1/T ]×/Z[1/T ]×p
k ∼= (Z/pkZ)⊕2, by passing to the limit we find H1(ΓT ,Zp(1)) ∼= Z2

p

and H1(ΓT ,Qp(1)) ∼= Q2
p. From this, one sees that the map

X(Z[1/S])→ H1(ΓT , [π1,ét]n) ∼= Q4
p

sends (t, 1− t) to (log(t)/ log(`), log(t)/ log(p), log(1− t)/ log(`), log(1− t)/ log(p)).
The full diagram is as follows:

(t, 1− t) //

��

(t, 1− t) UAlbn //

��

[π1,DR]n(Qp)

(log(t)/ log `, log(1− t)/ log `)
locp
// (log(t)/ log `, log(1− t)/ log `)

D=id

44

where I’m writing the cohomology as Q2
p because of the subscript f , which is there to –

roughly – make sure that out of the T -units we only keep the S-units2.

4 The morphism D (which we do not understand)

The group H1
f (Gp, [π1,ét]n) parametrizes (certain) torsors under [π1,ét]n over a point. Let P

be a Qp-algebra whose spectrum is P , a torsor whose class P = [P ] lies in H1(Gp, [π1,ét]n).
The map D is defined as follows. First, to [P ] we associate

D([P ]) = Spec
(
P⊗Qp B

DR
)Gp

,

where BDR is the ring of De Rham periods. This is a torsor over [π1,DR]n; the “f” condition
ensures that:

2more on this in future talks at the study group! Maybe...
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• D(P ) is endowed with a canonical Frobenius action, and D(P )φ=1 is a single point;

• D(P ) also has a Hodge filtration, and F 0D(P ) also consists of a single point.

Thus it makes sense to define

D(P) = D(P )φ=1/F0D(P )

as the trasponder3 from F0D(P ) to D(P )φ=1.

5 Proof of Siegel’s theorem by Kim’s method

Claim. There exists n� 0 such that

dimQp H
1
f (ΓT , [π1,ét]n) < dimQp [π1,DR]n.

It is not hard to see that the H1(...) are algebraic varieties; Kim claims that the same is
true for H1

f (...), but Julian and I can only prove that they are constructible. Luckily, this
is not a big deal for the proof.

Proof. We compute the two sides separately. [π1,DR]n is a pro-unipotent group; we work
with the algebra

Qp << A,B >>= Env(Lie([π1,DR]))∼4

Standard general theory shows that

∞⊗
n=0

End
(
[π1,DR]n/[π1,DR]n+1

)
,

so one gets the generating function for the dimensions rn = dim[π1,DR]n/[π1,DR]n+1:∏
d≥1

1

(1− zd)rd
=

1

1− 2z
.

From here, we get
∑

k|n krk = 2n, which by Möbius inversion leads to rn ∼ 2n

n
. Finally,

dimQp [π1,DR]n =
∑
k≤n

rk.

On the other hand, we can also estimate the dimension of H1
f (ΓT , [π1,ét]n) by looking

at the long exact sequence in cohomology

H0(...) = 0→ H1(ΓT , [π1,ét]
n/[π1,ét]

n+1)→ H1(ΓT , [π1,ét]n)→ H1(ΓT , [π1,ét]n−1)

→ H2(ΓT , [π1,ét]
n/[π1,ét]

n+1) = H2(ΓT ,Qp(n)rn) = 0,

3the unique element in the group acting on the torsor that acts on one element and brings it to the
other

4where ∼ denotes the completion wrt the augmentation ideal, and Env is the universal enveloping
algebra
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where the last equality follows from a theorem of Soulé (which is not necessary here, but
will be necessary in a moment). One has a formula for the Euler-Poincaré characteristic
which goes as follows:

h0(ΓT ,Qp(n))− h1(ΓT ,Qp(n)) + h2(ΓT ,Qp(n)) = − dimQp(n)−,

where the − superscript denotes the −1-eigenspace for complex conjugation. Now h0

vanishes, and so does h2 by Soulé. The error term − dimQp(n)− is 0 for n even and −1
for n odd, so

h1(ΓT ,Qp(n)) =

{
0, n even

1, n odd, n ≥ 3

Finally, h1(ΓT ,Qp(1)) = 2 rankZ[1/T ]× = 2#T =: R. The inequality we need to prove is

dimQp H
1(ΓT , [π1,ét]n) < dimQp [π1,DR]n,

that is,
R + r3 + r5 + · · ·+ r2dn/2e−1 < r1 + · · ·+ rn,

which is true for large n because the ri go to infinity, and there are more terms on the
right than on the left.

The claim implies Siegel’s theorem, because we find a nonvanishing analytic function
which is zero on X(Z[1/S]).

6 Example

In the case S = {`}, T = {`, p}, n = 2 the fundamental diagram

X(Z[1/S]) //

��

X(Qp)
UAlbn //

��

[π1,DR]n(Qp)

H1
f (ΓT , [π1,ét]n)

locp
// H1

f (Gp, [π1,ét]n)

D

66

looks like

t //

��

t
UAlbn //

��

H

(
log t
log `

, log(1−t)
log `

)
locp
// H1

f (Gp, [π1,ét]n)

D

99

where H is the Heisenberg group5 and the composite map fromH1
f (ΓT , [π1,ét]2) = H1

f (ΓT , [π1,ét]1)6

to H sends (x, y) to (x log `, y log `, 1
2
(log `)2xy). It follows that the function Li2(t) −

2(log t)(log(1− t)) vanishes on X(Z[1/S]).

5group of upper-triangular 3× 3 matrices with 1’s on the diagonal
6this equality follows from Soulé’s theorem
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