Nonabelian Chabauty study group

1 De Rham Unipotent Fundamental Group

Definition 1.1. Let UnY (X) be the category of unipotent vector bundles with connection
over X.
m1.pr(X;b) = Iso®(ey), where e, : UnY (X)) — Vecg, is the evaluation functor at b.

Remark 1.2. Let V =Q, << A, B >> ®O; be the universal pro-bundle with connection
on X. There is a natural structure of Hopf algebra on Q, << A, B >> defined by
AA)=1®A+A®1, A(B) =1® B+ B® 1 such that m pr(X)(Q,) corresponds to
the set of group-like elements of Q, << A, B >>. Recall that a group-like element is an
x such that A(z) =z ® z.

Moreover, m; pr = Spec(Q, << A, B >>V).

Definition 1.3. The unipotent Albanese map of level n is
UAlb,, = m, o UAIb,
where T, : 71 pr — [T1,pR|n 1S the natural projection and

UAlb: X(Q,) — T1,DR
z — (Li%(2))

w word of length <n

Liw(@:/.../zw,

where the iterated integral over a word w is obtained by replacing A — dz—z, B —
then integrating in order, so that for example

/ZAB:/z (/h%) dts ‘
b py 1 1—1ts

Theorem 1.4 (Kim 2005). The functions Li¥(z) are Q,-linearly independent.
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2 The fundamental diagram

Definition 2.1. Let S be a finite set of primes, p ¢ S, T' = S U {p}, @T be the mazimal
extension of Q unramified outside T, G, = Gal(Q,/Q,) and I'y = Gal(@T/Q).

Kim’s fundamental diagram is as follows:

X(Z[1/8]) ——— X(Qp) — 2% [m1,pr]n(Qy)

l | =

H}(FTa [Wl,ét]n) - H}(ng [ﬂ-l,ét]n)

locy,

Unravelling the definitions one sees that this diagram is commutative.

3 The Unipotent Etale Fundamental group

Definition 3.1. We let Un(X) be the category of unipotent lz'ss Q,-sheaves. The unipo-
tent étale fundamental group m «(X,b) = Iso%(ey), where ey, is again the fiber functor
at b, ey : Un(X) — Vecg,. We also define the fundamental groupoid, or path torsor,
as

T1.6(X; b, p) = Is0% (e, €,)
Remark 3.2. If one ignores the Galois action, there is an isomorphism
Ta = Spec (Q, << A, B >>V),

where the dual is in the sense of topological vector spaces. However, 7 ¢ has a natural
Galois action.

More precisely, our 7 ¢ is the Q,-unipotent completion of 7; 4, the usual étale funda-
mental group, which certainly comes equipped with a Galois action. One has for example
[T e = Qp(1)A & Qp(1)B, where Q,(1) is the 1-dimensional @, vector space on which
Galois acts via the cyclotomic character.

We also define
1 — [m1,pr|" = [m1,0r] = [m1,0R]n — 1,

where [m1 pg]™ = [[m1.0r])" "', m1.pr). The following sequence is exact by definition:
1— [7T1,ét]n/[7ﬁ,ét]nle = [T etlner = [Treln — 1,
and the Galois action on the first term can be computed since there is a natural surjection

(@p(l)rn)®n = [Wl,ét]?n - [Wl,ét]n/[ﬂlyét]n—i_l.

li.e. locally constant in the étale topology




This implies
[mal"/Imal™ = Qpn)™

for some integer r,,.
With this technology at hand, we may define the Kummer map

X(2z1/S) — H'(I'r,[mq])
P = [ma (X5 b, P)]
3.1 Example
Let’s compute H'(T'r, Q,(1)) for T = {¢} U {p}, p odd. There is a natural exact sequence

1= e — ZILJT] 2 ZAJT] — 1
which induces
1— Z[l/T]X/Z[l/T]X”k = Hl(FT,upk) — Cl(Z[1)T]) — 1

Since Z[1/T)* Z[1/T)**" = (Z/p*Z)®?, by passing to the limit we find H'(T'r, Z,(1)) = Z2
and H'(I'y,Q,(1)) = Q2. From this, one sees that the map

X(z[1/S]) = H'(Tr, [m1al.) = Q,

sends (¢,1 —t) to (log(t)/ log(¢),log(t)/ log(p),log(1 — t)/log(¢), log(1 — t)/ log(p)).
The full diagram is as follows:

U Alby,

(t,1—1) (t,1—1) [71,0R)n(Qp)

| | =

(log(t)/log ¢,log(1 —t)/log ) oo (log(t)/log ¢,1log(1 —t)/log )

where I'm writing the cohomology as QIQ) because of the subscript ¢, which is there to —
roughly — make sure that out of the T-units we only keep the S-units?

4 The morphism D (which we do not understand)

The group H (G, [71.¢]n) parametrizes (certain) torsors under |7y 4], over a point. Let P
be a Q,-algebra whose spectrum is P, a torsor whose class P = [P] lies in H'(G,, [m1.¢t)n)-
The map D is defined as follows. First, to [P] we associate

D([P]) = Spec (B @g, BPH),

where BP# is the ring of De Rham periods. This is a torsor over [ pg|,; the “f” condition
ensures that:

Zmore on this in future talks at the study group! Maybe...
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e D(P) is endowed with a canonical Frobenius action, and D(P)?="! is a single point;
e D(P) also has a Hodge filtration, and F'D(P) also consists of a single point.
Thus it makes sense to define
D(P) = D(P)*~" /R, D(P)
as the trasponde from FyD(P) to D(P)?=".

5 Proof of Siegel’s theorem by Kim’s method

Claim. There exists n > 0 such that
dim@p H}(FT, [Wl,ét]n) < dime [Wl,DR]ru

It is not hard to see that the H'(...) are algebraic varieties; Kim claims that the same is
true for H}(), but Julian and I can only prove that they are constructible. Luckily, this
is not a big deal for the proof.

Proof. We compute the two sides separately. |71 prl, is a pro-unipotent group; we work
with the algebra
Q, << A, B >>= EnV(Lie([m,DRD)ﬂ

Standard general theory shows that

® End ([Wl,DR]n/[WLDR]nH) ;

so one gets the generating function for the dimensions r,, = dim[m pg|"/[71.pr]" "

I 1 1
(1—zd)yra 1 -2z

d>1

From here, we get ka kr; = 2™, which by Mobius inversion leads to r, ~ % Finally,
dim@p [ﬂ_l,DR]n = Z Tk.
k<n

On the other hand, we can also estimate the dimension of H}(I‘T, [T16t]n) by looking
at the long exact sequence in cohomology

H°(.)=0— HYTr,[mel"/[ma™™) — H'Ur, [maln) = H' (7, [T1et)n 1)
— H*Tr, [moa]"/[meal™) = H*(Tr,Qy(n)™) =0,

3the unique element in the group acting on the torsor that acts on one element and brings it to the
other

4where ~ denotes the completion wrt the augmentation ideal, and Env is the universal enveloping
algebra



where the last equality follows from a theorem of Soulé (which is not necessary here, but
will be necessary in a moment). One has a formula for the Euler-Poincaré characteristic
which goes as follows:

hO(FT7 @p(n)) - hl(FTa Qp(”)) + h2(FT= Qp(n)) = —dim @p(n)_,

where the — superscript denotes the —1-eigenspace for complex conjugation. Now Ah°
vanishes, and so does h* by Soulé. The error term — dim @Q,(n)~ is 0 for n even and —1
for n odd, so

0,n even

1 _
h(Tr, Qp(n)) = {Ln odd,n >3

Finally, h*(T'r,Q,(1)) = 2rank Z[1/T]* = 2#T =: R. The inequality we need to prove is
dimg, Hl(F% [T1,¢t]n) < dimg, (71, DR]n;
that is,
R4rs+rs+ -+ romp—1 <ri+--+1my,

which is true for large n because the r; go to infinity, and there are more terms on the
right than on the left.
O

The claim implies Siegel’s theorem, because we find a nonvanishing analytic function
which is zero on X(Z[1/5]).

6 Example

In the case S = {¢}, T = {¢,p}, n = 2 the fundamental diagram

X(Z[1/8]) ——— X(Qp) — 2% [m1,pr]n(Qy)

l | =

Hi (T, [mredn) —— Hp (G, [T16tln)

locy,

looks like
t t
o) log(1—
<}o_§Z’ gl(()iﬁt)) locy, H}(Gpﬂ [ﬂ-l,ét]n)

where H is the Heisenberg groupﬂ and the composite map from H }(FT, (T4 et]2) = H} (T'r, [Wl’ét]l)ﬂ
to H sends (z,y) to (zlogl,ylog?,i(logl)*zy). It follows that the function Lis(¢) —
2(logt)(log(1 — t)) vanishes on X(Z[1/95]).

Sgroup of upper-triangular 3 x 3 matrices with 1’s on the diagonal
6this equality follows from Soulé’s theorem
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