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1. Introduction

Let C be a curve of genus g > 2, defined over a number field K, and let J be the
Jacobian of C. Coleman [C2], following Chabauty, has shown how to obtain good
bounds on the cardinality of C(K) if the rank r of the Mordell-Weil group J(K) is
less than g. The key to the method is to construct a logarithm on J(K,), for some
valuation v of K, whose kernel contains J(K), and whose restriction to C(K,) is
represented explicitly as the integral of a differential. This paper is an attempt to
make the case, through a detailed examination of the case of Fermat curves, that this
method can be fashioned into a quite precise tool for bounding rational points on
curves. We show how to transform an element of the Selmer group of the Jacobian of
a Fermat curve of degree p into a p-adic analytic function on the curve itself, whose
zero set contains all the rational points. As a consequence, we prove the second case
of Fermat’s Last Theorem for regular primes. The method depends on the existence
of a suitable element in the Selmer group; for the lack of a satisfactory theory of
descent for Jacobians of Fermat curves, we can only show that this element exists
in the case that p is regular. Of course, in that case, Kummer had already proved
the whole of Fermat’s Last Theorem. However, we believe the interest of this paper
is in the method, not the theorem, and as such is independent of Kummer, and also
of the recent work of Wiles. Our method is different, and offers a development of
the method of Coleman and Chabauty, many aspects of which are generalizable to
arbitrary curves, although we do not attempt to make that generalization here.

We now describe the contents of the paper in more detail. Let p be an odd prime,
and let F' be the p™ Fermat curve, with projective equation

1 XP+YP =127
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Fermat’s Last Theorem is the assertion that the only Q-rational points on F' are the
trivial ones (1,—1,0), (1,0,1), and (0, 1, 1). Traditionally, Fermat’s Last Theorem
was divided into two cases. Consider primitive solutions (z,y,z) to Eq. (1), i.e.,
solutions such that z, y, and z are integers with no common factor. The first case is
the assertion that there are no primitive solutions such that p } zyz; the second is
that the trivial solutions are the only primitive ones such that p|zyz.

In [M3], we showed how the method of Chabauty and Coleman could be used to
bound the number of rational points on Fermat curves under a certain hypothesis on
the ideal class group of K = Q(e?"%/?), namely that its p-rank is less than (»—5)/8
(which seems likely to be the case for all p). The proof consists of two parts: a
descent on the Jacobian A of F, and an application of Coleman’s effective version
of Chabauty’s method [C2].

It is the descent that requires the hypothesis on the ideal class group. In this paper
we demonstrate how more precise information from the descent, if it is available,
can be used in the application of Coleman’s method. We prove the second case of
Fermat’s Last Theorem given the existence of certain elements d,, € H'(K, A), and
we can verify the existence of these elements in the case that p is re§ular, i.e. the
case that p does not divide the order of the ideal class group of Q(e?"*/P).

Before stating our theorem, we must first recast the division into cases into more
geometric language. Let F* be the curve over F, = Z/pZ obtained by reducing Eq. (1)
modulo p. Then #(F' (Fp,)) = p+1, since the reduced curve underlying £ is isomorphic
to IP;. The second case of Fermat’s Last Theorem may be reformulated as the assertion
that (1, —1,0), (1,0,1), and (0, 1, 1) are the only rational points in F(Q) reducing to
their respective residue classes in F‘(]F,,). We shall call these residue classes the second
case residue classes, and the remaining ones the first case residue classes. We note
the following classical, and easily proved, criterion, which eliminates at least half the
first case residue classes. Let ¢ € Z[T'] be defined by

T+1)P TP 1
oy = L+ .

Then any first case solution to Eq. (1) satisfies

#(z/y) =0 (mod p).

Since any root of ¢ in F,, other than 0 and —1 must be a double root, as may be seen
easily by taking the derivative, this means that at most (p — 3)/2 first case residue
classes can contain Q-rational points (or even Q,-rational points).

Our main theorem depends on the existence of elements d, € H!(K, A)[p"]
satisfying two hypotheses (H1) and (H2). Roughly, hypothesis (H1) says that d,, is
locally trivial outside p, and hypothesis (H2) says that at p it pairs non-trivially with
A(Qjp) under Tate duality. For precise statements, see Sect. 3.

Theorem 1. Suppose that there exist elements d,, € H'(K, A), one for each n > 0,
satisfying the hypotheses (H1) and (H2) in Sect. 3. Then there are at most p points in
F(Q). There is at most one point in each second case residue class, and at most two
points in each first case residue class. Thus there are at most p — 3 first case solutions,
and no non-trivial second case solutions. In particular, the second case of Fermat's
Last Theorem is true.
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At the moment, we can only verify the existence of d in the case that p is regular.
We now briefly describe the proof.

First, we will in fact work mostly not with the Fermat curve itself, but with certain
quotient curves. Let a, b, and c be integers such that (abc,p) = 1 and a + b+c=0.
Let F, 5, be the complete nonsingular curve over Q with affine equation

@ yP = (—1)°z°(1 — z)°.
There is a map of degree p

F— Fa,b,c

(3) - b c
(X,Y’ Z) Lans (XPZ p’XaY (_Z) )7

which induces a bijective map

FQ) — a,b,c(Q)-

Hence bounding rational points on Fj ;. bounds rational points on F.
Let A be the Jacobian of F, .. The group p, of p-th roots of unity is contained
in the automorphism group of Fy p ; if { € pp then ¢ acts by

y = Cy.

It follows that A has potential complex multiplication by the ring of integers Z[(],
defined over Q(¢). Fix a primitive p-th root of unity ¢ and let 7 be the endomorphism
1 — ¢ of A. The first part of our proof is to show by means of a w-descent that the
closure of A(Q) in A(Q,) has dimension less than the dimension of A(Qy) (the genus
of Fyp,c)

The second part uses Coleman’s effective version of Chabauty’s method. It follows
from the first part that there is a non-zero holomorphic differential w on Fy3,c whose

Coleman integral
P
MP) = / w
o

vanishes at every point of A(Q). In particular, it vanishes at the Q-rational points
of the curve embedded in its Jacobian. In fact our descent will give some explicit
information about this differential, which will enable us to compute the reduction
mod p of A on Fy p (Q,) and apply Hensel’s lemma to obtain explicit bounds on the
number of rational points in certain key residue classes.

Here is a brief outline of the paper. In Sect. 2 we recall some necessary back-
ground; this section may be skipped on a first reading. Sects. 3 and 4 constitute an
overview of the proof, with certain rather complicated calculations omitted. In Sect.
3 we show how to bound the dimension of the closure of A(Q) in A(Qp), given the
existence of a certain elements d,, € H'(K, A). In Sect. 4 we show how to use the
method of Chabauty-Coleman to deduce the main theorem, deferring the key calcu-
lation of certain differentials to Sects. 6-8. Section 5 shows the existence of d in the
case that p is regular. In Sect. 6 we construct various models for Fermat curves; in
Sect. 7 we find power series expansions for various functions and differentials on the
Fermat curves; and in Sect. 8 we finish the calculation.
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2. Background

In this section we recall various definitions and constructions that will be used in the
paper. The reader who wishes to get quickly to the heart of the matter should skim
this section and proceed to Sect. 3.

2.1. Differentials

We set the following notation:

a complete discrete valuation ring

the fraction field of R

the maximal ideal of R

the residue field of R

a complete nonsingular curve over K, of genus g > 0

a K-rational point on X

the minimal regular model for X over R

the special fiber of X

the Jacobian of X

the Néron model of A

the special fiber of A

the open subscheme of .4 whose special fiber is the connected component of
A, and whose generic fiber is A

the sheaf of relative differential forms of degree 1 for a morphism of schemes
zZ— S

Wz/s the relative dualizing sheaf for a morphism Z — S (when it exists)

Bk Ox™I XD

[=]

<
N =
~
95}

The principal reference for the relative dualizing sheaf is [H]. For a condensed
guide to the relevant portions of this reference, see [M2], §3. The principal reference
for Néron models is [BLR]. Let T.(A) be the tangent space of A at the identity, and
let T/(A) = Homg (T.(A), K) be the cotangent space. Then there is an isomorphism

7: To(A) - HUX, 2 k)

which takes a cotangent vector v to the unique translation invariant differential whose
value at e is v. Let

j: X—-A

be the embedding that takes P € X to the point in A represented by the divisor
P — O. Then pullback by j induces an isomorphism

3% H%A, QY k) ~ HY(X, 2%/ k).
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The K-vector spaces T/(A), H%(A, 2} /x)» and H(X, .Q}(/ ) all contain natural
lattices coming from the models A and X, and we will need to know that these
lattices are preserved under the maps j* and 7. By a lattice we mean an R-submodule
which generates the space over K.

We have a lattice T7(A) in T,(A) consisting of those tangent vectors which extend
to sections of the conormal bundle to the identity section in .A. Note that the conormal
bundle is just the restriction to the identity section of the sheaf 9,14 /R

Also, since A is smooth over R, .(214 /R is a line bundle ([BLR], 4.2, Corollary 3),
and restriction to the generic fiber embeds H°(A, 2, /) as a lattice in H%A, 02} /K-

Proposition 1 ((BLR], 4.2, Proposition 2). We have
T(TU(A) = HY(A, 24 g)-
Next, we have the free R-module HO(X,w x /r) and a canonical isomorphism
H'X,wx/r) ®r K ~ HY(X, 2%k

which identifies H(X,wx,g) Wwith a lattice in HOX, 2% /x)- The isomorphism is
explained in [M2], Lemma 3.6, taking account of the fact that .Q}( /K is the relative
dualizing sheaf for X/K ([M2], Theorem 3.5).

Proposition 2. We have
3 HA, 2y p) = H'(X,wx/R).
Proof. From [Mi3], Proposition 2.2, we have the following commutative diagram
HYA, 2y ) —2—  HOX, 0% )
T_‘l yT
T'(A)  —I— Homg(H'(X,0x),K),

where g is the isomorphism derived from Serre duality, and f is the dual of the
canonical isomorphism ([Mi3], Proposition 2.1)

T.(A) ~ H'(X, Ox)
which comes from the fact A = Pick /K-

We have already seen that 7~ '(H°(A, £2 /) = T(A). Further, since A° =

Pic(}v /R ([BLR], 9.5, Theorem 4), the same argument as in [Mi3], Proposition 2.1
(with K replaced by R) yields a canonical isomorphism

T.(A) ~ H'(X,0%),
and hence
F(TU(A)) = Hom(H'(X,Ox), R).
Finally, duality yields
g(Hom(H'(X,Ox), R)) = H'(X,wx/R)-
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Proposition 3. Restriction to the special fiber induces isomorphisms
HO(A, 24p)/mHY(A, 24/ p) = H A, 20 1)
HYX,wx/p)/mHY X, wx/r) — HA(X,wg /).

Proof. For Wy R, this was shown in [M2], Lemma 3.6. For Ql‘ JR> USe the isomor-
phism from Proposition 1

T: Ty(A) ~ H%A, 24 p),
and the canonical isomorphisms
HY(A, 2 p) = To(A)

and

T!(A)/mTi(A) ~ T.(A).

_ We denote the reduction of a differential w by @. In the case we consider below,
X is reduced, and we therefore have a canonical isomorphism ([M2], Theorem 3.5)

Wk = Qg
where .Q;g/ x is the sheaf of regular differentials ([S1]).

2.2. Integrals

We briefly recall Coleman’s theory of p-adic integration. The standard reference for
the theory of affinoids and rigid analysis is [BGR]. We denote by C, the completion
of the algebraic closure of Q,. Let V be a complete variety over C, with good
reduction (i.e., which has a smooth proper model over the ring of integers in C;),
and let w € H(V, 2}, sc,)- If w.is closed, it is easy to find a locally analytic function

A on the analytic space V(C,) such that d\ = w; however, such a A is not very
rigid, since it can be modified by any locally constant function. Using rigid analysis
and Dwork’s principle of analytic continuation by Frobenius, Coleman showed [C1]
how to fix the choice of A. Coleman’s integrals are defined initially on affinoids, and
then on varieties by means of a patching procedure. Let X be a smooth, connected
affinoid over C,, with good reduction (we use the definition of reduction in [C1], Part
I). We denote by A(X) the algebra of rigid analytic functions on X, and by .Q,‘( /Cp
the A(X)-module of rigid analytic differentials on X (see [C1], Part I, §3). For each
w€E /Cp Coleman constructs integrals

Q
/ w, P,QeXCy),

P

with the following properties.
First, the integral satisfies all the usual properties: it is linear in the integrand, and
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Q P
Jre=tye

P Q

Q o Q
[o=[ ws[ e
P P o

Second, for fixed P, M(Q) = f }? w is a locally analytic function on X(C,) such
that d)\ = w.

Third, if f: X — Y is a morphism of smooth, connected affinoids with good
reduction, then

Q b{(#))
@ [ ru=] e
P f(P)

Fourth, if & is a continuous automorphism of C,, then

Q \° @
/ wl] = / we,
P o
where the second integral is taken on X°.
Finally, if w = df, f € A(X), then

Q
/ w=F@ — f(P).
P

Patching together these integrals yields integrals on V(Cp) satisfying the same
properties.

2.3. Logarithms

The general reference for this section is [B], Sect. 7.6. Let A be an abelian variety
over K of dimension d, and let A be its Néron model over R. If w € H 04, .Q}q / K)

then w is a closed, translation invariant 1-form, and
P
M(P) = / w, PeAC),
fo}

is a homomorphism to C,. The homomorphism
A(C,) — Te(Ac,) = Home, (H%(Ac, 24 c,)» Cp)
T — (W~ Au(@))

is the logarithm map for A(Cp) as a p-adic Lie group ([B], Sect. 7.6).
Let A;(R) be the kernel of the reduction map

A(R) — A(K).

Then, as a p-adic Lie group, A(R) is isomorphic to (m¢ =mx--- xm with a
formal group law on it. Define A,(R) to be the subgroup corresponding under this
isomorphism to m™ x --- x m" (it is independent of the choice of isomorphism). Let
v be the valuation of R such that v(p) = 1. By the valuation of an ideal in R we mean
the valuation of a generator for the ideal.
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Lemma 1. Suppose v(m™) > 1/(p — 1). Then A induces an isomorphism
A: A (R) —» m™T,(A).
Proof. This follows from [B], 7.6, Proposition 14.

3. Bounding the local dimension

We set the following notation

a prime number > 5

the Jacobian of Fj 4 .

a fixed primitive p™ root of unity

QO

1-¢

the prime of K above p

K, the completion of K with respect to the p-adic metric on K
O, the ring of integers in K,

Uk the image of 1+ 70, in K,/K,”

A[n™] the kernel of 7™ on A

A[7°] the union of all the A[#n"™]

A Gal(K/Q)

w the character A — Zj characterized by (7 = (¥

T A RO R

We will regard A(Q)) a compact Lie group; its dimension is the genus g = (p—1)/2
of Fypc. The closure A(Q) of A(Q) in A(Qp) is a Lie subgroup, and our goal in
this section is to show that its dimension is strictly less than the dimension of A(Q)),
subject to the existence of certain cocycles d, € H'(K, A).

If R is an integral domain, M an R-module, and N C M is a submodule, we
define the saturation of N in M to be

{m e M :rm € N for some r € R,r #0}.
We say that N is saturated in M if it is equal to its saturation.

Lemma 2. The saturation of N contains the torsion submodule of M. If N is saturated
in M and ifr € R, then

N/rN — M/rM is injective.
Proof. Clear from the definitions.

Let A(Q) *! be the saturation of A(Q) in A(Qp), with respect to their structure as
Z-modules. Then A(Q)sat is a Lie subgroup of A(Qp).

Lemma 3. As Lie groups, A(Q) and A(Q)m have the same dimension.
Proof. The quotient A(Q)m/A(Q) is torsion. A Lie group of dimension d has a

neighbourhood of the origin isomorphic to pZﬁ [B], 7.6; hence a torsion Lie group
has dimension zero.
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By Lemma 2, we have a natural injective map of F,-vector spaces

7 AQ™ /pAQ)™ — AQp)/pAQy).

Proposition 4. The dimension over F,, of the cokernel of f is equal to the codimension
of A(Q)m as a Lie subgroup of A(Qp).

Proof. Since f is injective, the dimension of the cokernel is

dimg, AQ,)/PAQ,) — dimg, AQ) ™" /pAQ@ "

For any compact Lie group G over Q, we have the formula

sat

dimg, G/pG — dimg, G[p] = dimG,

where G[p] is the kernel of multiplication by p. This may be seen by choosing a
neighbourhood U of the origin such that U ~ pZ4, where d = dim G, and taking the
kernel-cokernel exact sequence of

0 » U G - @ — 0
I
0 —— U — G > @ > 0.

(Note that & is finite since G is compact; hence #(®/pP) = #(P[p]).) By Lemma 2,
AQ ™[] = A@p)Ip]; hence
dimg, A(Q,)/pAQ,) — dimg, AQ ™ /pAQ@ ™ = dimg, AQp) — dimg, A0,

as required.

Corollary 1. The dimension of A(Q)m is equal to the dimension of A(Qp) if and only
if f is surjective.

Let x: AQp)/PAQyp) — A(K,)/mA(K,) be the natural map induced by the
inclusion of A(Qp) in A(Kp), and consider the sequence

) AQ)™ /pAQ™ L AQ,)/PAQy) 5 AK,)/TAKY).

To show that f is not surjective, we will show that x is non-zero, but that the
composite map x o f is zero. To show the first, we need to do a local m-descent.
Let

6: A(Ky) — H'(Ky, A7)
be the coboundary map for cohomology of the sequence
0— Alr] > A5 A—0.
Lemma 4. The Q-rational divisor (0,0) — co on F, b generates Al~l.

Proof. See [M2] or do as an exercise.
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To describe the image of §, we will follow [M2] and choose an isomorphism of
trivial Gal(K / K')-modules

v Alm] ~ pp.
This induces
te: H'(Ky, Alm]) ~ H' (K, pp) = K} | K3P.
Let &’ be the composite map
§' = tu 0 6: A(Ky) — K} /K.
Lemma 5. The map &' is A-equivariant.

Proof. By Lemma 4 A[r] is fixed by A, and hence too = w™!(0)o 0, for o € A.
Hence

©6) t(2%) = w™ (O)eu(@)’).  z € H' (K, Aln)).
On the other hand, we claim that
Q) 6(P%) = w(o)(6(P))’.
Indeed, if 7Q) = P, then 6(P) is represented by the cocycle
T— Q" -Q, 7€ Ga(K/K).

Since (7 /m) = w(o) modulo 7, we have Tw(0)Q? = P° modulo 7A(K,). Hence
6(P?) is represented by the cocycle

7 (WO)Q) — W@)Q%), 7€ Gal(K/K),

and the claim follows. The lemma now follows from Egs. (6) and (7).

Recall that Uy, is defined to be the image of 1+ 7¥0, in K, /K,”.
Theorem 2 (Faddeev [F]). We have

Upry/2 C 6'(A(Kp)) C Ugp-1y/2-

(This also follows from (5.3), (5.6), and Lemma 5.5 of [M2].)

Corollary 2. The map &' restricts to an isomorphism
(A(Ky)/mAK)2 ~ (1+p) C K} /K,P.

Proof. Since §' is a A-equivariant isomorphism between A(Kp)/mA(Kp) and imé’ C
K} /Kp®, it suffices to show that (im§') is generated by 1+ p. First, since &' is A-
equivariant, it follows that (imé')2 C (K, /KP4 ~ Q;/QP, where the latter
isomorphism follows from the fact that A has order prime to p. Now, Q;/Q;P is
generated by p and 1+p. Since p € U}, and 1+p € U,_,, and since p > 5, it follows
from Faddeev’s theorem that Qj/Q;P Nim ¢’ is generated by 1+ p.
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Proposition 5. The map

AQp)/pA@Qp) 2 AKy)/mA(Ky)
is non-zero.

Proof. Choose an element P € A(K)) whose class [P] in A(K,)/mA(K}) generates
(A(K,p)/mA(Ky))A. We can assume [P] # 0 by Corollary 2. Let

Q=ZP".

ceEA

Then Q € A(Qp), and
[Ql=(®—- DIP1=-[P]

Hence x(Q) #O0.

Next we want to show that the composite x o f in the sequence (5) is zero. This
will require a global argument.
For each valuation v of K, we have the Tate local pairing [Mi2]

() )v: A(K,) x H'(Ky, 4) — Q/Z,
which induces a perfect pairing of finite groups
(, Yo AK)/mAKy) x H' (Ko, Al7] = Q/Z.
(Note that the dual endomorphismto 7 =1—(is#=1-( —1, which is a unit times
7, so m-torsion and #-torsion are the same.)

The key to bounding the local rank is the existence of elements

d, € H\(K, A)[r™"]

such that

HD dny,=0 if v(p)=0,

and

(H2) 7ldn+1,p  pairs non-trivially with (A(K,)/ﬂ'A(K,,))A.

In Sect. 5 we will show how to construct dy, in the case that p is regular. For now,
we will assume the existence of d,, and show how to derive the Second Case.

Theorem 3. Suppose that for each n > O there exists dn, € HV(K, A) satisfying (HI)
and (H2). Then the saturation A@Q) " of A(Q) in A(Qy) is contained in TA(Ky).
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Proof. Let P be an element of A(Q) ! Then there exists Q € A(Q) and r € Z such
that
rP=Q.
Let n = ord,(r). For any S € A(K), we have
> (S, dn)y =0

because the sum of the invariants of an element of the global Brauer group is zero.
Hence it follows from (H1) that

(S,dn)p =0.
If we choose S sufficiently close to @, we may deduce that
(Q,dn)p =0.
Now write
r=n"u, ue€O0,".
Then

0= (den>P = (TP7 dn)P = ('U'P, fr:ldn%)’

where # is the dual endomorphism to m. Now, P is fixed by A and u is congruent to
a rational integer modulo ; hence the image of uP in A(Kyp)/mA(K,) is fixed by
A. Since # is a unit times 7, it follows from (H2) that P € wA(K) as required.

Corollary 3. With the hypothesis in Theorem 3, the dimension of A(Q) is less than
the dimension of A(Qp).

Proof. A reformulation of the theorem is that the composite map o f in the sequence
(5) is zero. On the other hand, from Lemma 5, we know that x is not zero. Hence f
is not surjective. The corollary now follows from Corollary 1.

4. Bounding the rational points

We defer certain calculations having to do with the specific nature of the curve Fy p.c.
We need, however, a piece of terminology relating to the fiber type of the minimal
regular model. We say that F, p . is tame if

(aabbcc)p _ aabbcc

=0 (mod p),

and is wild if

(a®bbc®)P — a%bPct

# 0 (mod p),

The relation between these conditions and the minimal regular model is explained in
M1].
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We assume throughout this section that Fg p.c iswild. Let X =Aor X = Fypc.
If w e HY(X, Q}( /01») is a closed holomorphic differential on X, we let

P
)\w(P)=/ w, PeX(Cp),
o

where the base point O is the identity e in the case X = A, and the point (0,0) in
the case X = Fy p,c, and the integral is the p-adic integral defined by Coleman and
recalled in Sect. 2.2.

We have a pairing

AQp) x HYA, 29,) = Qp
(@, w) = Au(@)-

®

Lemma 6. The pairing (8) is non-degenerate on the right and its kernel on the left is

A(Qp )1or-

Proof. As explained in Sect. 2.3, the corresponding map
A: AQp) — Hom(H°(4, 2}/q,), Qp) = TelA)

is the logarithm map for A(Q;). The lemma now follows from the fact that the kernel
of the logarithm is A(Qp)wr [B], Sect. 7.6, Proposition 12.

Now, A(Qp)/AQp)or is @ torsion-free Z,-module of rank g, and hence is free. It
follows from Corollary 3 that the image of A(Q) “in AQp)/AQp)or is a submodule

of rank less than g. Further, the image of A(Q)m in A@Qp)/PA(Qy) is contained in
the kernel of x. Choose once and for all a saturated submodule M C A(Qp), such
that

-AQ™ c M,
- M/A@Qp)u is a free rank g — 1 Z,-module, and
— the image of M in A(Qp)/PA(Qp) is the kernel of .

Then under the pairing (8), the annihilator of M is a one-dimensional saturated sub-
module N of H(A, 2} /x)- Recall that j: Fypc < A is the embedding that takes
(0,0) to e.

Proposition 6. Let w € H°(Fap,c, 2. ,./q,) be defined by w = j*n, where n €
HOA, Q“A/K) is a generator of N. Then w # 0 and \,(P) = 0 for all P € Fu Q).

Proof. Let 1 be as above. If z € A(C,) is represented by the divisor D of degree
zero on Fy p ¢, then, since A, is a homomorphism, we have

M@= Y ordp(Dq((PY
P€eF, b,c
It follows from Eq. (4) that
Y ordp(DNGPY= Y ordp(DAu(P).

P€EFq4 b, PEFa4 b,c
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Now, from the definition of n we have A\, (z) = 0 for all z € A(Q) sat, hence a fortiori
Ap(x) = 0 for all z € A(Q). Thus, if D is rational over Q,

>~ ordp(D)A,(P) =0.
PEF, b,c

Now A, ((0,0)) = 0, since j((0,0)) = e; hence, if P € Fy j ((Q), we have
Aw(P) = Au(P) — Au(0,0) = 0.

The proposition already implies that F 5 . has at most 2p — 3 Q-rational points,
as explained in [M3]. To do better than that we will pin down w more precisely by
using Theorem 3 rather than Corollary 3. The idea is to take advantage of the fact that
we know the image of M in A(Q,)/pA(Q,) in order to determine w mod p. In fact,
since all we know about M explicitly is its image A(Q,)/pA(Qp, that’s all we can
use. First we need a version of the pairing (8) that takes account of the Z,-structure
on the right hand side.

Proposition 7. The pairing (8) induces a pairing

9) AQy) x HY(A, 2/7) — Zyp.

Proof. From Lemma 1 we know (since p > 2) that A induces an isomorphism
(10) A: A(Zy) = pTe(A).

Now

A(Qp)/AI(Zp) =~ A(Fp) - Fg,

the last isomorphism following from Lemma 11. In particular, A(Q,)/A1(Z,) is killed
by p; hence

ACAQp)) C Te(A) = Hom(T,(A), Zy) = Hom(H(A, 2} 7 ), Zy)-
The proposition follows.
By Proposition 3, and the fact that A is connected, we have
HO(A, 2 7)/mHA, 2y 7,) = H(A, 2 JE,)-
Hence, the pairing (9) induces a pairing
an AQp)/pAQp) x HYA, 2y g ) — .

Let W c HYA, .Qk /F ) be the annihilator of kery under the pairing (11). If

F,p,c is wild, then, as we shall show in Proposition 8, the naive model for Fg .
obtained by taking the normalization of the projective completion of the affine curve
over Z defined by Eq. (2) is the minimal regular model .7-'::%, - This model has a cusp
at the point £ where

2=,
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and is otherwise non-singular. Denote the points (0,0), (1,0), and 0o on Fypc by A,
B, and C respectively. By Proposition 2, we have an isomorphism

3% HYA, 2" 4/2,) ~ Hl(f;fﬁ,cwfﬁ’c /z,)-
In view of Proposition 3, this induces an isomorphism

3t HYA Qe = HFgh o wrs, gv,)-

Let V = 7*W. The calculation of V is the key to bounding the rational points. We
will defer that calculation to Sect. 8; here we will report the results of that calculation
and show how to use them to prove the main theorem.

Theorem 4. Suppose F p c is wild. Then
vn Ho(ﬁ:ic,Wf:’xb'c/Fp(—A -B- C')) =0.

IfP e Fre (F)—{¢ A, B,C} then

a,b,c
VN H‘O(j:‘:ic’ Wf:,ab'c/F"(—2P)) =0.
We will prove this in Sect. 8. To apply it, we need the following lemma.

Lemma 7. Let f € Q,[[T]], and suppose that its derivative f'is in Zp[[T]]. Let ig

be the order of vanishing of the reduction F' of f' mod p. If io < p —2, then f has at
most ig + 1 zeroes in pZy.

Proof. This is a special case of Lemma 3 in [C1]; for the convenience of the reader,
we reproduce a proof here. Suppose f has a zero in pZ,; translating to the origin we
may assume that f(0) = 0. Let

[e o]
f(T)=Za—:T", ak € Zy.
k=1
Let
o Pkak k
T)=f@T) =Y —T*.
9(T) = f@D) ,; -

Then g(T) has integer coefficients. By hypothesis, |ai+1]| =1, s0

po*la; piot!
io+1 1o+ 1 )
On the other hand, since 3o < p—2
k k io+1
prak P /4 .
I = - k>ip+1.
k| |k o+ 1 ‘o

Thus the coefficient with the largest absolute value in g(T") occurs in degree less than
or equal to ig + 1; the lemma now follows from the Weierstrass preparation theorem.
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Lemma 8. The map (3) F — Fy ¢ induces bijections
F(Q) ~ Fyp Q)

and

F(Fp) =~ Fop o(Fp).
Proof. In terms of the affine equations

P +yP =1

and

tP = (=1)°s%(1 — )"
the map is given by the equations

t=(=1)z%"
s=1zP,

Since every element of either Q or F p has at most one p-th root, the map is clearly
injective on Q- or Fp-rational points. Now suppose (s,t) € Fyp,c(K), where K is Q
or .. Then it follows from the equations that (s,?) is in the image of the map if and
only if s and 1 — s are p-th powers in K. Every element of F,, is a p-th power. As
for Q, we note that since

tP = (—1)°s%(1 — s)°,

both s and 1 — s have order divisible by p at each prime g € Z, as may be easily seen
by taking valuations of both sides. Hence they are both p-th powers, as required.

Proof of Theorem 1. In the case p = 3 the theorem was proved by Euler [E], without
the hypothesis, so we may assume p > 3.

Let w be the differential guaranteed by Proposition 6. We will apply Lemma 7
with f = A,. We have df = w, and, acccording to Theorem 4, @ does not vanish at
one of the points A, B, and C. Hence, by Lemma 7, Ao has at most one zero in the
residue class of that point. Since )\, vanishes at all points of Fy 3, -(Q), it has exactly
one zero, namely the trivial point in that residue class. Hence, that trivial point is the
only one in its residue class. Now the three points A, B, and C are the images of the
trivial points (0, 1, 1), (1,0, 1), and ( 1,-1,0) in F(Q). Hence, by Lemma 8, one of
those points is the only Q-rational point in its residue class. But the automorphism
XY, 2)— (-Y,Z,X)of F permutes these three points, so in fact each of them is
the only Q-rational point in its residue class. This proves the second case. Similarly,
if P# A, B,C or ¢, then, by Theorem 4, ), cannot have more than two zeroes in the
residue class of P, and hence there are no more than two rational points in that residue
class. Hence there are no more than two rational points in the corresponding residue
class of F'. This takes care of all the residue classes on F, with the possible exception
of z = (—a/c). By the following lemma, we may vary the choice of (a, b, c), and
take care of that one as well.

Lemma 9. If p > 3 there exist at least two triples (a,b,c) = (s,1,—(s+ 1)), 1 < s <
P — 2, such that Fy . is wild.
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Proof. We must show that

(a®bbc)P — asbbee

# 0 (mod p)

for two such triples. We refer to the notation of [M1]. By the remark on page 63 of
op. cit., it suffices to show that there are at least two s € F,,, s # 0, —1, which are
not roots of
+1)P —2P -1

’ .
This follows immediately from the Lemma on page 59 of op. cit., which states that

any such root not equal to O or -1 must be a double root; hence there can be at most
(p — 3)/2 such roots, leaving (p — 3)/2 which cannot be roots.

P(x) =

5. The regular case

We conclude this part of the paper with the construction of the cohomology classes
d,, in the case that p is regular. We will construct them as the image in H'(K, A) of
certain classes ¢, in H'(K, A[7™]). Recall the isomorphism

v AlT] >~ pp
chosen in Sect. 3, and the corresponding isomorphism
te : HY(K, Alm]) ~ H'(K, pp) = K*/K*P.
Let
a =)
Let d; be the image of ¢; in H'(K, A)[x] induced by the inclusion map A[r] — A.

Lemma 10. The Tate pairing between the restriction of dy to H' (K, A) and (A(K,,)/m A(K,,
is non-trivial.

Proof. Consider the exact sequence
0 — AK,)/TAK,) > H' (K, Alr]) — H'(Kp, A)lr] — 0.
If P e A(K,)/mA(K)), then
(P,d1) =6(P)Uc,

where the cup product is with respect to the Weil pairing (see [Mi2}], 1.3.5 and III,
Appendix C). Further, under the isomorphism

tep: H'(Kyp, Aln]) ~ K | KJP

the cup product pairing becomes identified with the Hilbert pairing ((M2], Lemma
2.7), and

(L* (e )) = (C) .
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Let P be a generator of (A(K,)/mA(Kp))?. Then 1,(6(P)) = &§'(P). From Corollary
2, it follows that

(8'(P)) = (1 +p).
The lemma now follows from the well known fact that the Hilbert pairing of ¢ and
1 + p is non-trivial (see [CF], Exercises).

Let U = spec(Ok[1/p]), and let H'(U, A[n™]) be the étale cohomology group of
Aln] regarded as an étale sheaf over U. The condition (H1) is equivalent to saying
that d,, € H'(U, A) ([Mi2], 1.3.8). Note that c; € H'(U, A[r)), since ¢ is a unit.

Theorem 5. Suppose that p is regular. Then

m. : H'(U, A[r™]) — H'(U, A[z"""])
is surjective for all n.
Proof. From the cohomology of the exact sequence of étale sheaves over U

0 — A[r] — A[r™] 5 A[n""'] -0
we see that it suffices to show that

H*U, Aln)) = 0.
From the isomorphism
v AlT] >~ pp
and cohomology of the short exact sequence
O——»;L,,——»Gm—p»Gm—+0

we deduce that it suffices to show that both H'(U, Gy,)/pH'(U, Gy,) and H2(U, Gy)
are zero. Now, H2(U,Gy,) is the subgroup of the Brauer group of K consisting of
elements whose invariant at every prime except p and the infinite primes is zero, (see
[Mil], IIL.2.22(f)). Since all the infinite primes are complex, the invariants are zero
there also, and since the sum of the invariants must be zero, the invariant at p is zero.
Hence H%(U,G,,) = 0. Finally, since p is principal, Pic(U) ~ Pic(Of), and since p
is regular, Pic(Ok)/pPic(Ok) = 0.

The construction of d,, is now immediate; start with ¢; and lift repeatedly to a
cn € H'(U, A[7™]) such that (7" '),c, = c;, then let d,, be the image of ¢, in
H'(K, A) induced by the inclusion map A, — A.

Remark 1. In fact, one can avoid the need for d,,, n > 1, in the regular case, by
noticing that A(Q) is already saturated in A(Qy). If it weren’t, there would exist

(12) P e AQ)\ pAQ)
such that ‘
13) P € pA(Qy).

Let m be the largest integer such that P € 7™ A(K). Then by condition (12), m <
p — 1, and hence by condition (13), P € n™*!' A(K,). Hence K(7w~™*DP) is a non-
trivial unramified extension of K of degree p, which contradicts the fact that pis
regular. Hence A(Q) is saturated in A(Qyp). It follows that in the proof of Theorem 3
one may take n = 0, and hence only d; is needed.
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6. Models for Fermat curves

In this section we construct various models for Fermat curves. First we construct the
minimal regular model for F, ;. over Z,, and use it to prove a lemma about the
Néron model for A. Then we will construct a smooth model for F, . and use it to
prove a lemma about the rigid analytic geometry of Fj, p ..

We start with the naive models for F' and Fg p .. The naive model for F is the
projective scheme F over Z defined by the equation

XP+YP=2".

The naive model for Fy p ., which we denote by Fg 5 ¢, is the normalization of the
projective completion of the affine curve over Z defined by the equation

y? = (-1’21 - 2)".

The special fiber fa,b,c of Fap,c is a curve of geometric genus zero with one
singularity, a cusp, at the point £ with maximal ideal

(14) me = (T + %, y+ aabbcc,p).

(See [M1].)
Recall the classification of Fg p c into wild and tame: F, p . is tame if

(a®bct)P — asbbee

=0 (mod p),
and is wild if
(@%bPce)P — a®bbct 20 (mod p).
Note that the condition for tameness,
(a®bbct)P — asbbce =0, (mod p)

is equivalent to a®b’c® € Q7.

Proposition 8. If F, ;. is wild, then F, p . is the minimal regular model for Fo p c. If
Fy ¢ is tame, then the minimal regular model may be obtained by blowing up § once.
The exceptional divisor is a non-singular rational curve.

Proof. First, suppose F, p . is wild. Then we claim that § is a regular point of Fg p,c.
We will eliminate p from the generators of m, given in Eq. (14) by showing that

2
p € mg.
Make the change of coordinates
z="2(1+5)
c

y = a®bbcc(1 + ).
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Then

me = (S, tap)’
and
yP = (a®bPc®)P(1 + )P = (@b (1 + pt +- - - + tP),

(=121 — 2)® = a®BbcS(1 + 5)%(1 — %s)b = %1 + ‘2’—; s2(s)),

where 9(s) € Q[s] N Zy[s]. Equating right hand sides and rearranging yields
(15)  (a®bbc®)P — a%h’c® = —(a®bPc)P(pt + - - - + tP) + a“bbcc(%c)sz +ee0).

The right hand side is in m%; on the other hand, since F, . is wild, the left hand
side is p times a p-adic unit. This proves the claim.

Now, suppose that Fy ;. is tame. As noted above, this means a®bPc® € QP
Make the change of coordinates

:c=——a(1+s)
c

y= (a“bbcc)’/”(l +1).

Then
yP = a®b0c(1 + tyP
(=1)2%(1 — 2)° = a®BbcS(1 + 5)2(1 — %s)b = a1 + ;—zszw(s)),
hence
(16) A+t)P —1= ;—2321&(5).

As before, £ is the point with maximal ideal mg¢ = (z,t,p). The scheme defined by
this equation is not regular at £, but a simple blow-up produces a regular scheme;
indeed, if we make the substitution s = ps’, t = pt/, and divide by p?, the left hand
side acquires a term ¢/, and all other terms are in m2. The special fiber has two
components, the exceptional divisor and the proper transform. The proper transform
has equation

=225,

2b
which is a non-singular rational curve.
Let A be the Néron model of A over Zy, and let A be its special fiber.
Lemma 11. Suppose that F, . is wild. We have

A=Ge-172,
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Proof. If Fy . is wild, then, since f';e %,c is reduced and irreducible, A is separable
and connected. Hence [Ra] there is a canonical isomorphism

A~ Pico(ﬁ:‘,i o)-
We have from Eq. (15) the equation
o= a5
an =5 (3

for 7% .. Thus 7%  has a cusp of order (p — 1)/2 at €, and hence

a,b,c
(18) Pic’(F% ) ~ GP=D/2,
by a standard calculation which we now sketch. Let

. 7:"" eg,n 7-reg
n. a,b,c - a,b,c

be the normalization of f'ff ﬁ, » and consider the exact sequence
0— n*O}:i..’c — Of:?b,c — S —=0.
Here S is a skyscraper sheaf supported at £ with fiber
S¢ = 0; jOFDIP,

where O¢ is the completion of the local ring n. (’);—ngi)n ¢ and 02(” D/ g the subring

generated by s and ¢, which may be seen, by an explicit uniformization of Eq. (17), to
consist of all elements that are constant modulo the (p— 1)/2-th power of the maximal
ideal. (The passage to the completion is justified by [Ma], Theorem 54, p.168.) Since
(p — 1)/2 < p, it follows from [S2], Proposition 9, p. 103, that S =~ G,(F,)®~"/2,
Taking cohomology of the exact sequence yields

Pic’(F% )(Fp) = S ~ Gy(F,) /%

The same calculation works over any extension of F,, hence we have the isomorphism
(18), and hence the lemma. .

We can now prove the following lemma, which will be used in Sect. 8.

Lemma 12. If F, . is wild, then the torsion subgroup of A(Qp) is isomorphic to
Z/pZ, and generated by the divisor (0,0) — co.

Proof. The divisor of z is p(0,0) — poo, so the point P € A(Qj) represented by
(0,0) — oo generates a subgroup isomorphic to Z/pZ. In fact, this subgroup is killed
by 7, since ¢ fixes x. Since the degree of 7 is p, we have (P) = A[w](@p). We want
to show that (P) is all the torsion. So let @ be a torsion point, not in the subgroup
generated by P. By Lemma 1, with m = (p) and n = 1, the kernel of reduction A4;(Q,)
is torsion-free, and hence the torsion injects into ]F;,” ~D/2 Thus Q is a p-torsion point.
Hence, over the ring Z[(p], Q has order 7%, 1 < k < p— 1. In fact, we must have
k > 2, since Q ¢ (P) = A[ﬂ'](@p). Thus, 7*Q = uP for some k, 1 <i < p—2, and
some u € Z. Since
7% = w(o)r (mod 7?)

for o € A, and since A fixes @, this implies that A does not fix P; this contradiction
proves the Lemma.
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Remark. A similar calculation shows that in the tame case the torsion subgroup
of A(Q,) is isomorphic to Z/2pZ.

We will also need a smooth model for Fy, 5 .. Let w be the unique uniformizer in
K, such that

wP'=—p and =1 (mod p).

39

Let
L= Kp(w% , (a“bbcc)%).

Then over O we get a smooth model by making the change of coordinates

abc

=201 +wu),
(19) ¢

y = (a®bc%)7 (1 + wv).

The special fiber of is the Artin-Schreier curve

a b c
(20) P — = — 2.

In what follows, we will consider Fj ; . as an object in the rigid analytic category
over C,,. For general facts about rigid analysis, we refer the reader to [BGR]. If F, 5
is wild, let X be the affinoid in Fj . reducing to the nonsingular locus of F~ eb o
and if Fg p . is tame, let X be the affinoid reducing to the nonsingular locus of the
proper transform of .Fa b,c N .7-" o and, also in the tame case, let X’ be the affinoid
reducing to the nonsingular locus of the exceptional divisor. Since in each case X
and X’ are isomorphic to affine lines, each of X and X' is isomorphic over Cptoa
closed p-adic disc ([BGR], 6.4.2, Corollary 3, and 3.6, Proposition 12).

Since F, 5 has positive genus, X and X’ must be contained in residue classes R
and R’ of the smooth model of F, ; . (since otherwise the reduction of the inclusions
of these affinoids would induce a non-trivial map from P! to the special fiber of the
smooth model). It is not hard to see that R is the residue class of the point at infinity
on the curve (20), and that R’ is the residue class of the point (0,0). For a positive
real number 7, denote by B[r] the closed unit ball of radius r, and by B(r) the open
unit ball of radius r, as rigid analytic spaces over C,, (i.e., B[r] is the affinoid whose
Tate algebra is the subalgebra of C,[[T]] consisting of power series with radius of
convergence greater than or equal to 7, and B(r) is the union of all B[r'], for 7’ < r).

Lemma 13. There exists a rigid analytic isomorphism W : R — B(1) such that
W(X) = Bljw})
If a®bbct € Q}P, there exists an isomorphism W': R' — B(1) such that

W'(X') = B|="T"|).
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Proof. First, note that X is the complement of the residue class of F . defined by
the inequalities

|s|] < 1and |t|] <1.

Equation (17) tells us that |¢| < 1 if |s| < 1, so X is defined by the inequality

ls| > 1.
But
2
s=wlu,
50 X is defined by
|u| > |w:i£‘, or %l < ‘wlz: .

We claim that all the zeroes of u lie outside R. Indeed, u = 0 implies = = —a/c, and
hence y = (a®b®c®)!/P¢ for some ¢ € pp. Hence

¢—1

=[>——|=1
wi=| <=

Thus the zeroes lie in the residue classes of points on the finite portion of the Artin-
Schreier curve (20). However, R is the residue class of the point at infinity. This
proves the claim. Also, the poles of u coincide with the poles of x, which has a pole
of order p at infinity and no others. Thus, 1/u is a function on R with no poles, a zero
of order p, and no other zeroes; further, since, by Eq. (20), @ is a non-zero element
of the function field of the special fiber of the smooth model, 1/u has spectral norm
1 on R. Thus there exists a parameter W on R such that

1

—1;=W”(l+alW+---), |a,|§1
Hence X is cut out by the inequality

W] < |w%| .

The statement for X’ (which is not needed in this paper) follows from a similar
argument, using the fact that ¥ has degree two and a double zero in the residue class
of (0,0), that t = wwv, and that X’ is defined by |t| < |p|.
7. Power series expansions
In this section we assume Fyp . is wild. Our aim is to calculate power series ex-
pansions on the affinoid X of the function  and a general differential w. Recall the
notation for the three trivial points on on F, 3 .: A = (0,0), B =(1,0), and C = oo.

Recall also that ff:%, . has geometric genus 0 and exactly one singular point &; it is
the unique point such that Z(§) = —a/é.
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Lemma 14. Let
S normalization of F§ , ~ P!

be the isomorphism of algebraic curves which maps the triple (A, B, C) to (0, 1, o).
Then

a

S =--.

[

Proof. Since the divisor of Z is pC' — pA, we have an equality of divisors
() = p(S).
Further, £(B) = S(B) = 1, so & = SP. Hence S(€)? = &(£) = —a/é, and so S(¢) =
—a/¢ also.
Next we need to find a convenient parameter on the affinoid X, which, we recall,
is the subspace of Fy 5. which reduces to the open subset 7.5 = —¢.

Lemma 15. There exists a rigid analytic isomorphism

T: X ~ B[1],
defined over Qp, such that
TA) = 0,
T(B) = 1,
TC) = —l—).
c

Proof. Let
T : normalization of F§ . ~ Py

be the isomorphism of algebraic curves which maps the triple (4, B, ¢) to (0, 1, 00).
By Lemma 14, S(§) = —a/é. Thus
-b5

T =
&S +a

(recall a + b+ c=0),

and so T(C) = —b/c. ’

First, T lifts to a parameter T on X, defined over Qp; indeed, if T” is a parameter
on X defined over Qp, then T'|g and T”| are both isomorphisms to A!, so T' = 47"+,
%, € Fp, % # 0. Choose liftings u, v € Z, of @ and ¥; then T = uT"+v is a parameter
on X lifting T and defined over Q,. Now T'(4) = 0 modulo p and T(B) = 1 modulo
p- Hence, replacing T by (T' - T'(A)/(T'(B) — T(A)), we may suppose that T'((A) = 0,
T(B) = 1. (Note that this does not change T'.) Finally, since

T(C)=-b/c#0,1 (mod p),
we may multiply T" by the unit power series

1_( b4+ T(C)

TCYa©) - 1)) =n

to obtain a parameter with the same values as T" at A and B, and with the value —b/c
at C.
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Now we will compute the power series expansion of z in 7', modulo p*. Let
U+Vy-Uur-VP

o(U, V)=
p
Proposition 9. In terms of the parameter T' in Lemma 15, we have
TP *
@1 z= um(l +pf(T)), u € Q, f(T) € TZI[TII,

where

b
FT) = 260, =1) = 91, 1) + ¢(3, DT?) (mod p).

Proof. Equation (21) holds for some f(T) € TZy[[T1), simply because z has a zero
of order p at A, a pole of order p at C, and no other poles or zeroes. Since y has
order a at A, b at B, and c at C, we similarly have

(2) y=ovT(1—T)°(1+c/bT)°(1 +pg(T)), v € Qp,9(T) € TZp[[T]}.

Substituting Egs. (21) and (22) into Eq. (2), and clearing powers of T and (1+(c/b)T),
we get

WP(1 = TY(1+ pg(T)P = u(~ (1 + pFTNA((1 + TTF = uT (1 + pf(D)".
In particular, setting T' = 0 we get
of = (=1)u?,
so u € QP. Also, looking at the equation mod p, we get
aA-TPP =(1+ %T” — uT?)® (mod p),
1)

U= +1E:bE (mod p).

SO

Since u € Q;‘,”, we therefore have
U= (—) (mod p2).
b
Thus, modulo p?, we have
(1 =T = (1 +paf(M)N(1+ -ET)P —uTP(1 +pf(T)))°
= (1+paf(D)(1 +pg(L, )+ (P + PP + (PBTP ST
= (1 + paf (D)1 ~ TP +p(1, 1) = p(3, DI” + py TP HTI

= (1 +paf(D)(1 — T?)®
+b(1 = TP 'pleQ1, -ET) - ¢(%, T)T? + %T”f(T)])

= (1 — TP)='(1 — T + pbg(1, §T) - pb¢(%, T)T® + paT® f(T)
+paf(T) — TPpaf(T)) (mod p?)..
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On the other hand,
(1 =Ty =(1 - T? +pp(1, -T))°
= (1 — TP)® + pb(1 — TP)*~'¢(1, —=T") (mod p?).
Equating both sides and dividing by (1 — T)~!, we get
1 =T +bp(1, ~T) = 1 + paf (1) + pbi(l, ) -
Pbé(; )T + pal®f(T) — T*paf(T) —~ T* (mod p?),

yielding

b
f(M) = =(¢(1, -T) — ¢(1, ET) + ¢(2, DT?).
a b b

Next we observe some general properties of the expansion of a differential w in
T.

Proposition 10. Let w € HYF. .,z 7 ), and let A, be the Coleman integral

a a
of w. Let T be the parameter on X given by Lemma 15. The expansion of A|x as a
power series in T' has coefficients in Z,, and

X=u@) +aT? + BT, peF,T),a,f€F,,
where degpu < p — 2.
Proof. Write

XT) = i a;T".

=0

Since both T" and X are rational over Q,, we have a; € Q,. Thus it suffices to show
that

(23) la;| <1 forall 4, [a;] <1fori>p—2andi#p,2p.

In fact it suffices to prove these conditions for any choice of parameter 7" on X such
that T'(A) = 0, since if T” is any such parameter, and if the corresponding coefficients
in the expansion of A are denoted by a!, then we have

oo
T'=Y 6T, |b|=1, |b| <1fori>1
k=1

Hence '

ai =bia] (mod m(ah, .. al_,),
where m is the maximal ideal in the ring of integers of C,. Thus if the conditions
(23) hold for the a}, they hold for the a;.

Let W be the parameter on R in Lemma 13, and suppose further that W has been
chosen so that W(A) = 0. The restriction of W to X yields an isomorphism

W:X - B[|=w'/?], W()=0.
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Choose T' = w~/2W, and write
AT =Y aT" =) aiw ™ /*W*
=0 =0
and

oo oo
w=dr= Y T T =Py iaiw W AW

i=1 i=1

Since d)\ = w cannot have more than 2g —2 = p—3 zeroes in R (because it can’t have
more than that many on the entire curve), the theory of Newton polygons implies that
the maximum absolute value of the coefficients of d) expanded in W must occur in
degree less than or equal to p — 3. Also, since w is defined over Z,, ia; is an integer
for all i. Thus, for all 7 > p — 2, we have

. (i —(k—1 =3
‘m;w @ 1)/2‘ Smax{‘kafcw 2 ‘ 1<k<p-2}< lw T |.

Thus

1—(p=2)
w 2

i < |2

This estimate, combined with the fact that ia; is an integer, yields the conditions
(23) for the a!, and hence the lemma.

8. Proof of Theorem 4

We want to determine the subspace V C HY(F;} ., w o /k,) defined in Sect. 4. The

first step is to determine its dimension. Recall that V = j*W, W C H(A, 24 /p,) 8
P
the annihilator of ker x under the pairing (11)

A(Qp)/pA(Qp) X HO(A, 'Q:l/l",,) - ]Fp)

and
X: A(Qp)/pA(Qp) — A(Kp)/ﬂ'A(Kp)

is the natural map. We start by analysing the pairing more closely.

Lemma 16. AsanF, vector space, A(Qp) /pA(Qy) has dimension g+1 and HY(A, .Qh /F,,)

has dimension g. The kernel of the pairing (11) on the left is two-dimensional, and is
the image in A(Qp)/PA(Qp) of Ai(Zyp) + A(Qp)or- The kernel of the pairing on the
right is one-dimensional.
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Proof. By Lemma 12, the torsion subgroup of A(Qp) is isomorphic to Z/pZs; it
follows that

dimg, AQ,)/PA@y) =g +1.

The fact that HO(A, 2 JE,) = T.(A) has dimension g follows from the fact that A

is a smooth variety over I, of dimension g.

Now, suppose that P € A(Q)) is such that its image in A(Qp)/pA(Qy) is in the
left kernel of the pairing. Then A(P) € pTe(A). By Lemma 1, A(A(Zy)) = pT(A),
hence there exists Q € A;(Zy) such that A(P—Q) = 0. But then P—Q is in the torsion
subgroup of A(Q),). This proves that the left kernel is the image of A\(Zp)+AQp)tors
it remains to prove that that image is two-dimensional. Since A;(Zp) N A(Qp)or =0,
and A(Qp)wr is one-dimensional, it suffices to show that the image of A(Zp) in
A(Q,)/pA(Qy) is one-dimensional. This follows from the fact that the reduction map
is a surjective map from the g + 1-dimensional space A(Q,)/pA(Q,) onto the g-
dimensional space A(]F,,) =~ F7. The final assertion of the lemma now follows by
elementary linear algebra.

Since ker x has codimension one in A(Qp)/pA(Qp), it follows from the last state-
ment in Lemma 16 that W has dimension 1 or 2, depending on whether or not there is
an element of the left kernel which complements ker x. The following lemma settles
this point.

Lemma 17. The image of Ai(Zp)+ A(Qp)ror in A(Qp)/pA(Qp) is contained in ker x.

Proof. The kernel of x consists of those elements of A(Qp)/pA(Qp) which become
divisible by 7 in A(K)).

First, it follows from a theorem of Greenberg [G] that A(Q)).r becomes divisible
by 7 in A(Kp). Indeed, it follows from Lemmas 4 and 12 that AQ)or = A[], and
Greenberg showed that there is a rational point of order 73 on A(Kp).

Second, let A’ be the Néron model of A xq, K, over Op. By Lemma 1, the
logarithm induces isomorphisms

(24) - AZp) = pTe(A)
(25) 1AL (Op) =~ T To(A).

From the defining property of the Néron model we have a map A xz, Op — A,
which induces an inclusion

(26) Te(A) C Te(A).

It now follows from conditions (24), (25), and (26) that A;(Z,) C mA{(Op) C
wA(K,), as required.

Proposition 11. Let W be the annihilator under the pairing (11) of ker x. Then W,
and hence V, has dimension 2.

Proof. This follows immediately by elementary linear algebra from Lemmas 16 and
17.



On the method of Coleman and Chabauty 593

Hence to determine V, we need only find two linearly independent differentials
contained in it. The following proposition gives a property of differentials in V which
will enable us to pin them down. First, we need some terminology: if D is a divisor
on F, p c, defined over Cp, and if f is a Cp-valued function on a subset of Fg p,c(Cp)
containing the support of D, we define

froy= [ fspyrer®.

PeFa,b,c

and

fD= Y odp(D)f(P).

PGFa,b,c

Proposition 12. Let @ € Ho(ﬁ;e,i,c,u.)j-nxb Jv,) letw € HYF 4 oW /z,) bea

differential reducing to w, and let A, be the Coleman integral of w. Then & € V if
and only if

27
Ao(D) = 0 (mod p) for all Q,-rational divisors D of degree zero, prime to (),
such that £*(D) € QP

Proof. Recall that V = 3*W, where W is the annihilator of kerx under the pairing
(11

AQyp)/pAQp) x HY(A, 2 ) — Fy.

It follows from the definition of this pairing that if 7j € H°(A, 2% Jp, 0 s 2 differ-
ential reducing to 7, and if )\, is the Coleman integral of 7, then 7 € W if and only
if

Ap(P)=0 (mod p)

for all P € kery.

Now, ker x consists of all P € A(Qp)/pA(Qy) that become divisible by 7 in
A(K,). By [M2] this is equivalent to P being representable by a Qp-rational divisor
D of degree zero such that

z*(D) € K,".

Since Gal(K,/Qp) has order prime to p, and D is rational over Qy, this is equivalent
to

z*(D) € Q;” .

Finally, if D represents P and if w = j*n, then by functoriality of the Coleman
integral we have

Mo(D) = M(P), w=jn.

Now fix a differential @ € V, let w be a differential reducing to @, and let A be
the Coleman integral of w, normalized so that A(A) = 0. By Proposition 10, A has a
power series expansion A(T') on X with integer coefficients. Let A(T") be the reduction

of M(T"). The following proposition tells us how to determine A(T") from @.
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Proposition 13. Let w € Ho(f:‘{,,c,w;:,.b'c JE,) letw € Ho(fﬁ,c’wfﬁ,c /z,) bea

differential reducing to w, and let Aw be the Coleman integral of w. Then XT) is the
unique polynomial in T such that

(28) d\=a,

@9) AT = @) +aT? + BT, p € Fy[T), degu < p— 1,0, 8 € Fy,
and
(30) A(0) = X1) = M(—=b/c) = 0.

Proof. The first property is part of the definition, the second is from Proposition 10,
and the third follows from the fact that the divisors B — A and C' — A represent
torsion points on the Jacobian, and the Coleman integrals vanish on torsion. It is clear
that the three properties uniquely determine J; indeed, the first two allow for three
arbitrary constants, namely o, (3, and the constant of integration; these three constants
are determined by third property.

Thus to find V' it suffices to come up ‘with two linearly independent differentials
@ € HYAF§ swze p,) such that the A determined by conditions (28), (29), and

(30) satisfies (27). Recall ([M2], Theorem 3.5) that, since f'f %y . is reduced, the du-

.« . e . . . . reg
alizing sheaf w L canonically isomorphic to the sheaf Qﬁffh,c JF,

differentials ([S1]). This is the sheaf of Kahler differentials & with the property that
at every point P on F7§ _, the residue of fa is zero whenever f is regular at P.
The first candidate for an element of V is

of regular

31 @ =dT.

One readily checks this is a regular differential. It is clearly regular everywhere except
possibly at 7' = oo. But in terms of the parameter U = 1/T at infinity (the cusp on
% ) itis —dU /U This is regular (in the sense described above) at U =0, because

function f that is regular at the cusp has no linear term in U, and hence the residue
of f&, is zero. The corresponding A, satisfying conditions (28), (29), and (30), is

(32) X =T-1".

This vanishes on all of X(]F‘,,) = A‘p, so it certainly satisfies condition (27).
The other candidate is
@y =dXy,
where
- = b = C, a
(33) X = f(T) = —(o(1,=-T) — (1, ET) + ¢(3, DT?).

a

Lemma 18. With X, defined as in Eq. (33), the differential d)\y = @ is regular, and
X2 satisfies conditions (27), (28), (29), and (30)
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Proof. First, it follows from Proposition 9 that for a Q,-rational divisor D, MDD =0
mod p if z*(D) € Q;". Thus ), satisfies condition (27). Also, X, satisfies condition

(28) by definition; X, is visibly of the form in Eq. (29); and one can easily check that
it satisfies condition (30). It remains to check that &; is in fact a regular differential
on F, % .. One does this by noting from Eq. (21) that

Wy = df = ],
where

n= %dlogx — dlog T +dlog(1 + %T).

The right hand side is holomorphic on X, because z has a pole of order p at C' and
a zero or order p at A, and no other poles or zeroes; T' has a simple zero at A and
no poles; and 1 + (c/b)T has a simple zero at C and no poles. Hence 7 reduces to
a differential which is regular everywhere except perhaps at the singular point &, the
point where T' = oco. At that point poles of dlog T and dlog(1 + £T) cancel, so it

suffices to show that the reduction of = :-)dlog:z is regular at . This follows since

it is holomorphic on the residue class of &. (The fact that a differential holomorphic
on a residue class reduces to one regular at the point follows from [M2], 5.1.)

It is easy to see that
o =dl and @ = f'(D)dT
are linearly independent; hence we have shown that
V =Fpa + Fp.

We are now ready to conclude the proof of Theorem 4. For P € F, ,c(Qp), define
~ 0 . =
" P =\—"= P .
o(P)=( dT)( )
First, one easily checks that

FO=1,f1)=

Qo

ad f(C=

[SH e}

Hence, if @ € V, then
(GJ(A),LD(B),&J(C’)) = linear combination of (a,b,c) and (1,1, 1).

Thus & cannot vanish at all three points, since a, b, and c are not all equal modulo
p, unless p =3 (recall a+b+c=0). This proves the first statement in Theorem 4.
For the second, express f in terms of the parameter S :

d)(lv -5)

(34) fS = (1+25p°

Then
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! _ —¢,(17_§)
1'&)= (1+ £8P "

Now
$1,-8)=(1-8P " -5

Every element of F,, except 0 and 1 is a simple root of this; thus @, has a simple
zero in each first case residue class. Since @; = dT" does not vanish at all in any first
case residue class, this proves the second statement of Theorem 4.
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