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 ANNAL OF MATHEMATICS

 Vol. 62, No. 1, July, 1955
 Printed in U.S.A.

 ABELIAN VARIETIES OVER P-ADIC GROUND FIELDSt

 By ARTHUR MATTUCK*

 (Received September 17, 1954)

 Modern algebraic geometry has opened up a new approach to the classical
 problem of Diophantine analysis, for the study of the existence and nature of

 rational solutions to algebraic equations may be interpreted as the study of the
 rational points on the algebraic varieties defined by these equations.! However,
 the general theory of varieties defined over number fields being undoubtedly
 very difficult, it is perhaps not out of place to study simpler but related questions
 to see what light they may shed on the more general problem. One method of
 simplification, the one adopted here, is to study varieties over fields with an
 arithmetical structure simpler than that of a number field, namely, the p-adic
 fields.

 The first person to undertake such a study was E. Lutz in 1937 [16], who
 proved the following theorem:

 The group of rational points on the curve y2 = x3 Ax - B defined over a p-
 adic field contains a subgroup of finite index isomorphic to the additive group of
 integers of the ground field.

 The goal of the present paper is to prove a theorem which may be regarded
 as a generalization of Lutz' result:

 Let A be an abelian variety of dimension d defined over a field k of characteristic

 0 complete under a non-archimedean absolute value. The group of points of A rational
 with respect to k contains a subgroup analytically isomorphic and homeomorphic

 to I E) I E) ... E) I (d summands) where I is the additive group of integers of the
 ground field. If k is locally compact, the subgroup is of finite index.

 If the ground field is the complex numbers, then it is known that the group
 in question is isomorphic to the complex d-dimensional torus; the group I thus
 appears as the natural p-adic analogue of the complex period parallelogram.

 The proof given here of this theorem requires a certain amount of spadework
 -some of it quite routine-and the first two parts are devoted to this. In particu-
 lar part I is given over to a study of power series in several variables over a
 complete ultrametric (non-archimedean valued) field; though a few things in
 here may also be found in Chabauty [6], there does not seem to be any inclusive
 treatment of these fundamentals available, so it is given here. In part II an
 invariant definition of a p-adic algebroid variety is given which exhibits it as a
 point set; the definition rests on the non-archimedean version of a theorem of
 Cartan, which depends in turn on a key lemma given at the appropriate place

 t This paper forms the substance of a dissertation presented to the faculty of Princeton
 University, June 1954; Presented to the American Mathematical Society April 24, 1954.

 * National Science Foundation Predoctoral Fellow 1953-4.
 1 For a discussion of this point of view and of the relevant literature, see Weil [171.

 92

This content downloaded from 130.75.46.21 on Mon, 30 Jan 2017 09:30:15 UTC
All use subject to http://about.jstor.org/terms



 ABELIAN VARIETIES 93

 in Part I. Actually the usual non-invariant definition of the algebroid variety

 as the set of common zeros of a finite number of power series could with some
 awkwardness be made to serve for the applications of this notion in part VI, and
 so part II is strictly speaking not essential for the present purpose. The results
 are however of some independent interest, and since it ought to be convenient
 for future applications as well as this one to have such an algebroid variety
 available, this material is included in the present paper. Parts III and IV are
 devoted to explicit preparations for the theorem, and in parts V and VI the
 main theorem is proved, first for the special case of jacobian varieties in part
 V, then for the general abelian variety in part VI by imbedding it in a suitable
 jacobian variety.

 It is a pleasure to express here my appreciation to Professor Emil Artin, who
 supervised this work, and to Dr. Serge Lang for many stimulating discussions
 on this and other matters. I would like also to take this opportunity to record
 here my indebtedness to the late Professor Arnold Dresden, an inspiring teacher
 as well as a wise and humane counselor who guided my first steps, as he has
 those of so many other mathematicians, with patience, sympathy, and imagina-
 tive insight.

 I. POWER SERIES OVER P-ADIC FIELDS

 1. Preliminaries. Throughout these first two parts, k will be a field complete
 under an ultrametric absolute value, that is, a non-archimedean valuation with
 the reals as value group. This absolute value may be then extended uniquely
 to k, the algebraic closure of k; if k is the completion of k, it is known that k is
 also algebraically closed.

 We consider power series in several variables over k, and write them

 f(x) =f(x, * ,Xn) - JarI...r xnxx2 ...xrn, ar...r e k.
 For such series, the Jordan definition of convergence is used: f(x) converges for
 the value a = (al, ** *, - an), ai e 1k, to a limit denoted by f(a) if and only if
 every sequential series made up of all the terms of

 converges, and all to the same limit, f(a). Since a sequential series of terms
 from an ultrametric field converges if and only if the absolute value of the
 general term goes to zero, the following statements are clear:

 1. If one sequential series converges, then they all do, and to the same limit.
 2. f(x) converges for x = a if and only if

 In - 0.

 3. If f(x) converges for x = a, then it converges under any method of finitely
 iterated summation and always to the same limit.

 To prove (3), one may proceed by proving with standard arguments that a
 double series may be summed by rows; the general case then follows by induc-
 tion on the number of iterations.
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 94 ARTHUR MATrUCK

 2. For the sequel we need the following fundamental theorems about addi-

 tion, multiplication, substitution, and inversion of power series in several
 variables. These are all familiar for power series in one variable (see, e.g., [12]),
 but proofs for the general case do not seem to be available.

 We shall use the abridged notation

 f(x) = Earl...," x** = X arx
 where R stands here for the general n-tuple of non-negative integers, so that

 for example R + S = T means the ordinary vector addition

 (r, + 81l , , r. + sn) = (t, I .. I tn);

 by I R I we mean maxi [ri]. Summation ranges will be omitted whenever possible,
 or abbreviated by A. The partial sums of f(x) will be denoted by

 fn(x) = FIRIR;SJ aRx .

 Clearly f(x) converging for x = a is equivalent to fn,(a) -v f(a).
 ADDITION THEOREM. Let f(x) + g(x) = h(x). If f(x) and g(x) converge for

 x = a, so does h(x), andf(a) + g(a) = h (a).
 PROOF. If f(x) = E aRxX g(x) = E bas, then h(x) - (aR + bit)x and

 h(x) converges for x = a, since I (aR + bR)aR a' 0. Now fn(a) + gn(a) = hn(a);
 the rest follows by taking limits.

 MULTIPLICATION THEOREM. Let f(x)g(X) = h(x). If f(x) and g(x) converge for
 x = a, so does h(x), and f(a)g(a) = h(a).

 PROOF. Letting f(x) and g(x) be as above, we have

 h(x) = T ER+sT aRbaxR+8.
 Now

 fn(a)gn(a) = hn(a) + ER aRbbSac

 where the sum is over the range R: I R + S I > n, I R | s n, I S l ? n. We
 need only show that the limit of the last term is 0 as n -A o. Let

 M = max8,8 [ I aRa' 1, I bsaS I ].

 Given E, there exists no(E) such that aRXa I < E, bIaS I < E for j R I, I S I >
 no(E). But if I R + S I > n, either I R I > n/2 or I S I > n/2; therefore by
 taking n > 2no(e),

 I Hi aRbssa | < maxR aRa * baas 1 < Me.

 SUBSTITUTION THEOREM. Given f(x1, * Xn) = , aRxa and gi(ul, * * , ur) =
 a bisus for i = 1, , n. Suppose that we are given two neighborhoods of the
 origin, U and V, such that

 1. f(x) converges in U = {($i, *n,) I | iI < i4,
 2. all the gi(u) converge in V and (gi(V), . *, gn(V)) C U, i.e., gI(a) I

 Si for a e V,
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 3. max8 I bisas I 5 6S for all a e V.
 Then if F(ul, - * *, u.) = f(gj(u), * * *, gn(u)), it follows that F(u) converges for
 all a e V and F(a) = f(gi(a), * * *, gn,(a)).

 PROOF. We have [g9(u)]rl[g2(u)]'1 ... [gn(u)]rn = I c(uS where (R) is the
 indexing symbol (r1, * * *, r.). By the multiplication theorem, E2 c(R) uS con-
 verges for a e V and E c(i)aS = IHi [gi(a)]rI. Therefore we have

 f(g1(a), , gn(a)) = z aR z cs"R)as = 2R ES amcsR)aW.

 But F(a) = ,s ( EAR aRc(R))aS, so that what has to be proved is that the sum-
 mation order can be interchanged; by ?1 it suffices for this to show that the

 multiple series ER,s ac8R)as a converges; this in turn will follow if we show that
 lac.R)as -+O for a e V as R I, I S I G-uo

 For this we need the explicit expression for C4R). Let [gi(u)]` = 'r)u9,
 where b) - E biTlbiT2 b*.e bT, the sum taken over all distinct partitions of
 the m-vector S into the sum of r m-vectors T1, * ,, 1.. Then we have c(R) =
 b~rl) ... * t) the sum taken over all distinct partitions of the m-vector S

 into the sum of n m-vectors T1 , *, T, . Since by hypothesis, I bisa' I ? Si for
 a e V, it follows that I b a)a | ? 6r, and from this in turn that | cs(R)aS '

 ... A"n. Therefore I aRa)a's | i aR#R , where 3 = ((3k, . , ) is any
 element of U such that li = 6,. Now f(x) converges for (, so that | aR3R -0;
 this implies that I ac(R)aS - 0, which was what had to be proved.

 REMARK. If the gi(u) have no constant term, then the condition I bisas |
 Si for all a e V and all S and i can always be met by picking V small enough.
 For if gi(u) converges for u = a, then I bisas I -+0 so that the terms far out will
 all be ?6i in absolute value, and by picking Vs small we can make the finite
 number of terms before these also 6Si in absolute value; now set V = nfi and
 the condition (3) will be satisfied.

 3. Recall that a power series f(x) = f(x, , x,n) is regular in xn if it has no
 constant term (i.e., is a non-unit) and if f(O, *, 0, xO ) is not identically zero;
 this last implies that the series contains pure x,, terms, ax',, with a e k. The
 degree s of f(x) is then the smallest value of i for which f(x) contains such a term.
 A power series of the form x4 + AxJ'-' + * + An where Ai -e k[[xi, X . - , l
 and A(0, * 0) = 0 is called distinguished of degree s in x,, .

 For convenience, neighborhoods of the origin in the affine n-space over the
 field k will be called simply "neighborhoods" and taken to be closed hypercubes

 U' (or simply U), unless otherwise specified: U' = {(xI, * *, x") j i rj,
 where r is a real number belonging to the value group of k. Then f(x) is holo-
 morphic in U if it converges on some neighborhood of U; f(x) is convergent if it

 is convergent in some neighborhood of (0, O.. , 0).
 THEOREM 1. 3F denotes the ring of convergent power series in n variables over k.
 A. WEIERSTRASS PREPARATION THEOREM. Let p(x) e 3F be regular in Xn,, of

 degree s. Then
 (i) for any b(x) e 5:, we can write b(x) = p(x)q(x) - h(x) where h(x) is a poly-

 nomial in x,, of degree s - 1 and where q(x), h(x) both lie in 5,
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 96 ARTHUR MATTUCK

 (ii) p(x) = f(x)g(x), where f(x) is a unit in 5F (f has a constant term) and where
 g(x) is distinguished in x", of degree s, and with convergent coefficients.

 B. If in part A, i, p(x) is actually distinguished in Xn (and not merely regular),
 then there exists a neighborhood U depending only on p(x) such that in the identity

 b(x) = p(x)q(x) - h(x), if b(x) is holomorphic in V c U, then q(x) and h(x) will
 be holomorphic in V also.

 PROOF. The validity of A, i and A, ii as formal identities is well known. The
 proofs of the convergence of q(x) and h(x), f(x) and g(x), given that of b(x),
 may be made by the method of majorant series [2b, 5]; the proofs for the classical
 case where the ground field is the complex numbers are valid here too since the
 archimedean triangle inequality is replaced throughout by the stronger
 ultrametric non-archimedean inequality. A direct proof of the preparation

 theorem for non-archimedean fields was first given by Chabauty [6].
 To prove part B, write b(x), p(x), and q(x) as power series in x*:

 b(x) = b A brn; q(x) = h;Aq

 p(x) = x'n + pE-xn +* + Po

 where p, = ? pa; here the bas, qp,, p,, are homogeneous polynomials of
 degree v in the remaining variables, xi, *., x,-1. Also, we have assumed the
 coefficient of x' in p(x) is 1, which is no restriction of generality. The recursion
 formula for determining q(x), once b(x) and p(x) are given, appears in Bochner
 and Martin [2b] as

 qmn bm+an 0:? E q~pm+t-Pn-r + Emil qnpm+ao

 where if n = 0, the middle term is to be taken as 0. Now since p(x) is distin-
 guished, we have pa, = 0 for v > 0, M > s, so that the formula becomes

 qmn bm+agn - Em++ as o qYPpm+t-Pn-v -

 Moreover, the pa have no constant terms, which means that inside some U,-'
 depending only on p(x), all the homogeneous terms of po, ... , pin- will have
 absolute value less than 1 (cf. remark, ?2): ] p, I < 1, for I xi I < r, ...
 Xn-I I < r. We maintain that U' = U is the desired neighborhood.
 Suppose therefore that b(x) converges inside Unt where r' < r. Picking T such

 that I = r' and setting Xn = iry, we see that

 b'(x, ***, Xn- , Y) = 7 ? (E bass )Y"

 converges for I xi I ? r', * *, xnI I < r', I y I < 1. Multiplying the recursion
 formula through by 7rm we get

 m -m+a n-I j
 qmn7rm bm+anTrm - gi^++ EV-0 (qjXIr)(pm+.-p,n-,7rm )

 and if we observe that the convergence of b' implies that ] b,(7r*, 7r) r/
 0, we conclude that

 I qmnrm | _ maxog, m+nso,<Y<n I b;sv7ri& I < M
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 ABELIAN VARIETIES 97

 for some fixed constant Mt and for all (xi, . , ) e U,-'. Since therefore the
 qmnrt are uniformly bounded inside U.,1 we know that q' = (I q,,r)y'
 converges for (xi, I , Xn-) E Ur, 1,|y < 1, or in other words, q(xi , xn)
 converges for I xi ? < r', *, x r', n < r'. The convergence of h(x)
 in the same region now follows, and with it the theorem, if we recall the defini-
 tion of "holomorphic in a neighborhood."

 IMPLICIT FUNCTION THEOREM. Let fi(wX, Wn X xil ... * X.r), i = 1, * n,
 converge in a neighborhood of the origin and vanish there, and suppose that

 JoUf ** fn ; WI .. * * W n) a= l | d(M X- We - SW- CI(Wi, ,Wn) w=~O

 Then there exist unique series w = gj(xX , xr) e k[Qxi, I * *, XrJ] such that
 (1) the gi are convergent, (,(0 ***, 0) 0, and they satisfy the fj(w, x) = 0

 identically, and

 (2) the gi give exactly the complete local solution of the system fj(w, x) = 0; that
 is, for (x0), (w0) in some neighborhood of the origin in X X WI space, we have

 fj(w0, x0) = 0 (all j) X wo = gq(x , * * I , xr) (all i).
 PROOF. We proceed by induction. Pick a non-zero minor of order n - 1 in

 Jo (1, ... f* ; WI I , w.); we can assume it is Jo(f1 , * ; u-'I X, Wn),
 By the induction assumption, we can then solve for w1, ..., Wn- as power

 series in the xi and wn i with wi(wn 1 Xi , * X.r) 0 0 at the origin. Also, for
 (x0, w0) in some neighborhood U of the origin, f * = fn-1 = 0 4=- w? =

 4I, ** , x). Substituting these into fn(w, x) gives us a new power series
 h(w, X1, * , ar) convergent in a neighborhood of the origin and vanishing.
 there. By a standard computation [1ti,

 (Oh/Own).J(fA X I * n-I; wI , , * wn) = J(fi , . f. * ; W Wn),

 whence ah/Own $ 0 at the origin. This means that h(w., x) is regular of degree
 1 in wn, so by Theorem 1, part A wve catI write h= [Wn - Ao(x, I * - Xr)]-q
 where q is a unit and Ao(O ** , 0) = 0. Then wn Ao(xL, Xr) and wi =
 wi(Ao i xi, * , Xr) i =1,*i, n -i, clearly satisfy conclusion (1) above.

 0

 If w? = wi(xi, * , xr), then fj(w0, x0) = 0 by the substitution theorem, ap-
 plicable here since the wi have no constant term (see remark, ?2). And if fi =

 = fn= 0 for (x0, wo) in a suitable V c U, we must have h(wn I x0) = 0,
 or w? = Ao(x, * * , x?), wo = wi(Ao(xo . , x, x?, * , x?) by the induction
 assumption, substitution theorem, and since q is not zero in a neighborhood of
 the origin.

 For n = 1, Iwe have but one series f(w, xi, * , Xr) together with the condition
 Of/Ow # 0 at the origin, so it may be handled directly, by the above procedure.

 COROLLARY. (INVERSION THEOREM). Let xi = fj(wI, ***, wI ) = E aqjw +
 (higher powers), i = 1, * , n, where the fi converge in a neighborhood of the origin,
 and det $aij 0. Then the system can be inverted; that is, we can write wi =
 gi(XI X ... X xn), such that

 (i) xi fi(g1, * **, ga) the gi are convergent, and g4(0) = 0,
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 98 ARTHUR MATTUCK

 (ii) x4 = f:kwl, * , w?) if and only if wi = gs(4, , x4 ),for (x0) and (w0)
 in a suitable neighborhood of the origin.

 II. P-ADIC ALGEBROID VARIETIES

 4. Naively, an algebroid variety over a complete ultrametric field k, which
 goes through a point (henceforth assumed to be the origin) of affine n-space
 An over k, is the set of common zeros of an ideal a in the ring of holomorphic
 functions at the origin (convergent power series in n variables). Since, however,
 the convergent power series have arbitrarily small radii of convergence, it is
 clear that only (0,. , 0) itself is a zero of every function in a. We may there-
 fore proceed noninvariantly by selecting a basis (fi, * * *, fg) for a-finite, since
 the convergent power series form a Noetherian ring-and taking the common

 zeros of only the fi ; the variety then will be attached to the basis (fi, * , f,)
 rather than to a itself. However, it is readily seen that the varieties attached
 to two different bases of a will coincide in some neighborhood of the origin.
 This suggests introducing an equivalence relation at (0) by calling two sets
 containing (0) equivalent if they coincide in some neighborhood of (0);
 then the "algebroid variety of a" will be that single equivalence class of sets to
 which the set of common zeros of any basis of a belongs. This is the procedure
 adopted by Cartan for algebroid varieties over the complex numbers [4a].

 One can however make the variety a more substantial object by actually
 attaching to the ideal a a genuine point set.2 The possibility of doing this rests
 upon the following non-archimedean version of a theorem proved by Cartan

 for the complex numbers [4b].
 As before, denote by i} (or ff) the ring of convergent power series in n vari-

 ables over a complete ultrametric field. Then 5q = 59 ... @5 (q summands)
 is the q-dimensional module over a consisting of all q-vectors with components
 from 5, or alternatively, of all holomorphic mappings of a neighborhood of
 (0) in A' into A'. By a q-dimensional module is meant a submodule W of M;
 a one-dimensional module is therefore simply an ideal in {F. Elements of modules
 will be denoted by capital letters F, G, - - *; elements of 5F by small letters f,

 9, ... . Finally, the q-vector F = (fk, *-- -fq) is said to be holomorphic in
 U c An if all the .f are holomorphic there.

 THEOREM 2. Suppose we have given a finite number of modules im"', n. A,
 over (f. Then given any set of bases (1, **, (B, for these modules, Bj =B'
 there exists a neighborhood Un of the origin depending only upon the bases such that

 if F e Mj is holomorphic on V C Un, then F = Ei gB'j,) where the gi are holo-
 morphic on V.

 PROOF. (a) The construction of a special basis. The core of the argument is the
 construction by an inductive procedure of a set of bases having neighborhoods
 with the property stated in the theorem; such bases will be called provisionally

 2The possibility of this definition was suggested to me by Professor Artin. Professor
 Chow has informed me that he has used a similar definition in his papers on Foundations of
 Algebroid Geometry (over the complex numbers), to appear soon.
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 ABELIAN VARIETIES 99

 "special" and U will be called the "associated neighborhood". We follow in
 outline Cartan's proof.

 The result being trivial for n = 0, suppose that such a special set of bases
 can be constructed for modules over sf. To obtain special bases for modules

 over 9n X we first consider the case in which all the qj = 1, so that the Mj are

 simply ideals aj in 5., assumed to be non-zero. By a preliminary rotation of
 axes, which does not disturb any cubical neighborhoods that will be used, we

 can assure ourselves that each aj contains a pj(x) regular in x, and therefore
 by Theorem 1, part A also a p,(x) distinguished in x, of degree sj. Applying
 part B of that theorem, we have a neighborhood Wj associated with pj(X) such
 that: b(x) holomorphic in V c IVj implies that b(x) -pj(x)q(x) - h(x) where
 q(x), h(x) are holomorphic in V and h(x) is a polynomial in x,, of degree sj - 1.

 Denote by RM the elements of aj which are polynomials in x, of degree <
 sj- 1; M' is seen to be a module over t of dimension sj, and in the above
 equation, b(x) e aj implies h(x) e M' . By the induction, A, has a special basis

 Cl= 6% , * , C'j, which can be thought of as polynomials c(j) (x), ** *,c1j) (4
 in x,, from 5in With ej goes an associated neighborhood U7'-. Now let Uj7 be
 the cubical neighborhood in n-space whose slice by the hyperplane xn = 0 is

 U,', and let U be the smallest of the U.1 and W}. Then we claim that

 Ip1j(x), C( )(X) , C( j) (X) I = (Bj

 is the required special basis of aj and U is the neighborhood associated with
 the-61 .

 Namely, b(x) e aj, b(x) holomorphic in V C U implies that b is holomorphic
 in V c Wj, which in turn means that we can write b = qpj - h with q, h holo-
 morphic in V. But if h(x) is holomorphic in V C U. and h(x) e fLZ,, then the

 coefficients of h(x) (written as a polynomial in x,) are holomorphic in Vn- c
 U7' where Vr' is the obvious slice of V by x, = 0. That is, h = El gic
 with gi(xi, , xn-1) holomorphic in V`1; summing up, we have

 b = qpj1 - * I -9rc, q(x) and all gi(x) holomorphic in V.
 This completes the proof for the case qj = 1.

 The general case of the construction follows quite simply from this. Con-

 sidering first the case of a single module M', form the ideals aj consisting of the
 jth components of those elements of iZ whose first j - 1 components are zero.

 For each j pick vectors F(j), I , F(ji) in a whose first j - 1 components are
 zero and whose jth components are a special basis for aj with associated neigh-
 borhood U'; if then U C U' is a neighborhood in which all the F'j) are holo-
 morphic, the set IFM I forms the desired basis, with neighborhood U. Finally,
 if we are given a set of modules mz", picking a special basis for each, with asso-

 ciated neighborhood U equal to the smallest of the associated neighborhoods
 Uk, completes the induction and therefore the construction.

 (b) The theorem for arbitrary bases. We must now show that all sets of bases
 are "special" in the sense of part (a). Call the special bases we have constructed
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 100 ARTHUR MATTUCK

 C, = { C'jv, and the associated neighborhood W. Suppose we are given an ar-
 bitrary set of bases, G1, *, S, where 3j = {B'j) 1. Then we may write

 = *^akBk where aW e 5.

 Let U Ca W be a neighborhood on which all the aWk) are holomorphic. If F is

 holomorphic on V c U and F e mj, then we may write

 F = g g'C) with the g9() holomorphic on V,

 and therefore

 F = Di,k g9)ak Bs ) = EJk hIB0j)

 where h4j) = Es gW')aW is holomorphic on V. Therefore (Bi is a special basis,
 with associated neighborhood U. This completes the proof.

 6. Given an ideal a e 5, we use Theorem 2 to attach a point set in A' to a
 which will be called the algebroid variety of a. Namely, with each basis of a there
 is associated a certain neighborhood satisfying the properties of Theorem 2;
 we now assume that the neighborhood selected for this purpose is the largest
 one with these properties-this determines it uniquely, since our neighborhoods
 are by agreement hypercubes. Let (b1, * * *, b,) be a basis of a whose associated
 neighborhood U in this new sense is the biggest of any- neighborhood associated
 with any basis. Then A, the algebroid variety of a, is defined to be that portion
 of the common zeros of the bi which lies inside U.

 The justification for this definition lies in the following two statements:
 1. Iff e a is holomorphic on V c U, then f vanishes on A n V. (In other words,

 A annihilates every power series in a, insofar as it could be reasonably expected
 to.) Namely, write f = E aibi . Then by the choice of U, the ai are holomorphic
 on V. Since all the bi vanish at every point of A n V, so does f.

 2. Given any other basis (cl, * **, c.) of a, with associated neighbohood V, let
 A' be that part of the set of common zeros of the ci which lies inside V. Then A' =
 A n V. For by the above, A n V C A' since the cj are holomorphic on V C U
 and therefore vanish on A n V. Similarly, the bi are holomorphic on U, therefore
 a fortiori on V; hence in bi = E aijcj, the aij are holomorphic on V; since
 cj = 0 on A', we have bi = 0 on A', whence A' c A n V.

 Statement 2 above shows that all bases with the maximal associated neighbor-
 hood U give the same variety A. It will be convenient on occasion to relax the
 definition slightly: by "an algebroid variety of a" we will mean the intersection
 of A with a neighborhood of (0).

 By the field of definition of A we mean simply k itself. If a is a prime ideal I,
 then A is irreducible and its dimension is defined to be the dimension of p in
 the ring fin i.e., the length of the longest chain of proper prime ideals properly
 containing t. If a is not prime, its dimension is the biggest, dimetsion of any of
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 the associated prime ideals; in this case A splits up into irreducible components
 through (0) and the dimension is simply the largest dimension of any of these
 components.

 A regular transformation of the space is one defined by convergent power

 series ui = aixj + (higher powers), where aj e k and det I aj # 0.
 Such a transformation defines an automorphism of the ring 5n and therefore it
 preserves the dimension of algebroid varieties.

 If we are given an idea a' in k[x1, - * *, x.], we can lift it up to an ideal a' in
 k[[xi , * , xz]---i.e., we pass to the completion of the local ring at (0)-and
 from there pass to the algebroid ideal a in 5. which is simply the subset of all
 convergent power series in a'. Geometrically, we start with the bunch of algebraic
 varieties A'; A is then the algebroid variety formed by the intersection with a
 certain neighborhood of (0) of those components of A' which pass through (0).
 The suppression of the other components arises in a well-known fashion from
 the killing in the passage to the local ring at (0) of all prime ideals not contained

 in the maximal ideal (xi, * **, x.). Finally, we know from the theory of local
 rings that the algebraic dimension of any component of A' through (0) is the
 same as the algebroid dimension of the corresponding components of A into

 which it splits [7, 15b].
 These remarks will suffice for the sequel.

 III. THE TOPOLOGY ON THE PLACES

 6. Varieties over topological ground fields. Throughout this section k is a
 Hausdorff topological field. Affine n-space over k is thus a topological space
 endowed with the product topology. We set up in the usual way the projective
 n-space S" over k and give it the local Cartesian product topology, so that the
 neighborhoods of a point are just the neighborhoods of the point in an affine
 space containing it. This description of the topology does not depend on the
 affine space selected, because any two are in birational, everywhere biregular
 correspondence, which guarantees that the associated topological transformation
 is bicontinuous and 1-1, hence a homeomorphism.

 It i8 easily seen that any variety in affine space is a closed set. Namely, a
 polynomial in n variables over k is a continuous function, so that its zeros form
 a closed set since they are the inverse image of the closed set 0 under the con-
 tinuous map defined by the polynomial. Every hypersurface thus being a closed
 set, so is every affine variety as a finite intersection of hypersurfaces. It follows
 immediately that every projective variety i8 also closed, for if P is a limit of
 points lying on the variety, P will also be the limit of points lying on any affine
 model of the variety whose ambient affine space contains P. Since the affine
 variety is closed, P lies on it and thus lies on the projective variety as well.

 If k is locally compact (and non-discrete), then it is known that the topology
 on k is induced by an absolute value, and that the totality of elements {a}

 such that I a I ? 1 forms a compact set [3]. Taking (xo, .**, x.) as projective
 coordinates, S" is seen to be the union of the n + 1 sets:
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 1(1, Xi/XO, *.*.* Xn/xo)l | x,/xo I | 1i, * I

 I (XOIXn X. *** X n-Iln 1) I I XilXn I 1 } -

 Each of these is evidently compact, and Sn is therefore also compact. Since a
 variety in Sn is a closed subset of a compact space, we conclude that a pro-

 jective variety over a locally compact non-discrete field is compact.
 We note finally that if S is a universal domain for k which also carries a Haus-

 dorff topology preserving the topology of k, then the preceding remarks are to
 be interpreted as applying to the set of points rational with respect to k on any

 variety over Q which has k for a field of definition.

 7. The topology on the places. We deal throughout this and the next few
 sections with a separably generated function field in one variable K/k over a
 complete absolute-valued (and therefore Hausdorff) ground field k of arbitrary
 characteristic. For the proof of the main theorem the characteristic will be 0,
 but it is not necessary to assume this here. Familiar examples of such ground
 fields are the real and complex numbers, the p-adic fields, power series fields in
 one variable over arbitrary trivially-valued constant fields, and more generally,
 the completion under a rank 1 valuation of any function field in several variables.

 The set 9? of rational places of K/k has a natural topology induced by the
 topology on k. This may be defined invariantly, as Lang has introduced it

 [14], but for our purpose the following non-invariant definition is more con-
 venient. The points rational with respect to k on any non-singular curve whose
 rational function field is K/k form by the preceding section a topological space.
 The rational points are however also in a 1-1 canonical correspondence with
 the elements of 9?, so that we may topologize 9Z by requiring this correspondence
 to be a homeomorphism. The topology thus defined is independent of the choice
 of the non-singular curve, because if we are given two such curves, the map
 sending a point of one into that point of the other which corresponds to the same
 place of K/k defines a birational everywhere biregular correspondence between
 the two curves, which is therefore a homeomorphism.

 In connection with this topology we have the following two fundamental
 theorems about the local topological and analytic structure of 9?. Both are
 standard when the ground field is the complex numbers (see, e.g. Chevalley
 [8b]); the first of these was also proved by Lang for arbitrary locally compact

 ground fields [14]. (In the statements, by to we mean as usual the value of t
 under the place mapping p, so that tp e k if p is a rational place.)

 THEOREM 3. Given K/k as described, let q be a rational place of K and t a sepa-
 rating local uniformizing parameter at q.

 Then the map p -- tp defines a homeomorphism of a neighborhood of q with a
 neighborhood of 0 in k.

 THEOREM 4. With the hypotheses and notations of Theorem 3, let x e K be given
 and let its t-adic expansion in K(q), the completion of K at q, be A at", a, e k.
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 Then there exists a neighborhood U of q in ? such that if p e U, the series E a,(tp)
 converges (except possibly for p = q), and to the limit xp.

 PROOFS. Proving Theorem 3 first, we begin by finding a y e K such that K =
 k(t, y), tq = yq = 0, and such that if f(t, y) = 0 is the irreducible polynomial
 equation over k satisfied by y and t, then f,,(0, 0) 0 0. Thus q is represented by
 the non-singular point (0, 0) on the curve whose generic point is (t, y), so that
 the topology on N in the neighborhood of q is just the topology on the curve in
 the neighborhood of (0, 0). The existence of such y for given t is proved for ex-

 ample in [14]. Now the map 4: p -- tp is single-valued and continuous for all p,
 by definition of the topology on SZ. From the implicit function theorem, we
 know that for some neighborhood U of (0, 0) on the curve, the complete solu-

 tion of f(t, y) = 0 is given by a convergent power series y = Ebti = g(t). In
 other words, the map A: to -- (to, g(to)) defines a single-valued continuous map-
 ping of a neighborhood of 0 on the 1-axis onto U. Since lp is just the local inverse
 of A, the mappings are locally homeomorphisms, which proves Theorem 3.

 We prove Theorem 4 now, first for the special case x = y. Let h(t) = E aut"
 be the t-adic representation of y as an element of K(q); what has to be shown
 then is that h(t) and g(t) are identical power series. Since h(t) satisfies f(t, h(t)) =
 0 identically, and since it is convergent (the convergent power series being alge-
 braically closed in the formal power series [lb]), it follows by the Substitution
 Theorem that f(to, h(to)) = 0 for to lying within a suitable neighborhood To of 0
 on the t-axis. Furthermore, h(0) = yq = 0, so that the map to -) (to, h(to))
 sends To onto a neighborhood of (0, 0) which we may suppose is U, according
 to the way U was chosen above. Thus h(t) and g(t) agree on an interval contain-
 ing 0, which means they are identical, since a non-zero power series can have
 only isolated zeros.

 To complete the proof of Theorem 4, if x is an arbitrary element of K, we
 can write x = G(t, y)/H(t, y). For p in a neighborhood of q, (except possibly for
 p = q), we have h(tp, yp) d 0, so in this neighborhood:

 = G(to, yop) _ G(to, h(tp)) =

 The successive equalities use in turn that h(tp, yp) 0 0, the proof of Theorem
 4 for the case x = y, and the imbedding of K in K(q) together with the Substitu-
 tion Theorem.

 IV. THE TOPOLOGY ON THE DIVISOR CLASSES

 In this part, as in the previous one, we will consider a separably generated
 function field in one variable K/k over a complete absolute-valued ground
 field k. In addition, we make two further assumptions: K/k must have a rational
 place, and it must be genus-preserving under extension of the constant field
 from k to X, the (algebraically closed) completion of the algebraic closure of k.
 K/k is always genus-preserving if the characteristic is 0, as it will be in the
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 principal application. It will be noticed that k is not necessarily a universal
 domain for k, since the two fields may very well be the same; by i therefore we
 will mean a field which is a universal domain for k as well as for k. We shall as-
 sume that the generic points of our varieties are generic with respect to AE The
 varieties themselves, which will be defined over k, will be viewed as carrying

 only points with coordinates in k, not in Q, so that for example the generic
 points do not lie on the variety.

 Our main object in this part is to define for use in the sequel two topologies
 on the group of divisor classes of degree 0 of K and then to prove them equiv-
 alent.

 8. The Jacobi topology on the divisor class group of degree 0. With the above
 assumptions and conventions, let E denote any complete field between k and k,
 KE/E the corresponding constant field extension of K/k; let r/k be a non-
 singular curve with rational function field K, and let r/E be the curve viewed
 over the ground field E and with rational function field KE. By taking the ra-
 tional divisors of degree n of r/E and putting two of them into the same class
 if their difference is the divisor of zeros and poles of a function from KE, we
 obtain the set Z)n(E) of divisor classes of degree n of KE/E or of rIE; all the
 Z.(E) are then united as usual to form Z(E), the group of rational divisor
 classes of r/E. Proceeding in a different way, from the group Z(k), we may select
 the subgroup V'(E) consisting of those divisor classes of r/k which contain a
 divisor expressible as the difference of two positive divisors which are both
 rational with respect to E. We have then a canonical homomorphism of Z(E)
 onto V'(E), which is an isomorphism if and only if the genera of KEIE and
 Kk1/k are equal [1c]. Since we have assumed K/k to be in fact genus preserving,
 it is legitimate to identify the two groups.

 Now according to a construction due to Chow [101, there exists a non-singular
 projective variety J/k, the Jacobi variety3 of r, whose points correspond in a
 1-1 algebraic fashion to the elements of the group Zo(k). If ZE(E) is not empty,
 then Chow has also proved that this correspondence associates to the points
 rational with respect to E exactly the elements of Zo(E). In the present case,
 our assumption that K/k has a rational place guarantees that Z? (E) is never
 empty; coupling this with the genus-preserving assumption we see that the
 points of J rational with respect to E represent perfectly the group ZTo(E).

 The group structure on To(k) induces a group composition law on J, which
 may be described as a subvariety W of J X J X J defined over k and every-
 where regular over J X J. Under the standard topology of ?6, J is a topological
 group. For if a generic point of the composition law W is given by (x, y, x*y)

 a By analogy with the use of the terms "Picard variety" and "abelian variety," we adopt
 the following usage: a variety is the "Jacobi variety" of a definite given curve or function
 field, while it is a "jacobian variety" by virtue of its possessing whatever intrinsic proper-
 ties there are which single out jacobian varieties from general abelian varieties, i.e., it is
 a "jacobian variety" when the related curve or function field is unspecified and irrelevant.
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 where (x) and (y) are independent generic points of J, then since W is regular
 over J X J we have k(x, y) = k(x, y, x*y); therefore the coordinates of x*y
 are rational functions, everywhere defined, and hence continuous functions of

 (x) and (y). Similarly, the graph of (x, x-') is a subvariety prl2[W (J X J X e)]
 of J X J regular over J, whence the coordinates of (x-') are rational, continu-
 ous functions of (x).

 The structure of a topological group is thus induced in turn on Zo(E), and
 this structure is independent of the choice of J. Namely, any two Jacobi varieties
 for K/k are in birational, everywhere biregular correspondence under the map-
 ping which sends a point of one into that point of the other which corresponds
 to the same element of Z0(k). This map is therefore a homeomorphism as well
 as an isomorphism.

 Let us remark finally that all the foregoing requires only that the ground
 field be topological.

 9. The local topology on ZTo(E). Continuing now in the same situation, denote
 by g the genus of K/k and let 9J be a fixed positive divisor of degree g, rational
 with respect to k. Then the set ?)2(E), (which we shall denote simply by Z,
 since E will be fixed throughout), may be obtained by translating Zo = Zo(E) by
 9S. We are going to define the second topology on Zo by defining it on Z, first
 and carrying it back by the opposite translation. However to give the topology
 on Z,, 9R cannot be selected at random-it must be well-behaved, or as we shall
 say, "ordinary", in the following sense:

 DEFINITION. A divisor 91Z of degree g will be called ordinary if
 (i) it can be written 9) = ml + * + me, where the mi are distinct places

 rational with respect to k, and
 (ii) it is non-special,4 i.e., dim (-9) = 1.
 LEMMA. For function fields of the type under consideration, there always exist

 ordinary divisors 9N = mi + - - - + m,, with the further property that no mi belongs
 to a preassigned finite set of places at, ... , a,..

 PROOF. By assumption, K/k has a rational place q; let t be a separating local
 uniformizing parameter at q. By Theorem 3, t maps a neighborhood of q homeo-
 morphically onto a neighborhood of 0 in k. Any function 0 e K has a t-adic ex-
 pansion +(t) = E at, and by Theorem 4, 4(tp) = 4p for p in a neighborhood of
 q, so that it makes sense to view 4 as a single-valued function of t in a neighbor-
 hood of 0 on the t-axis.

 Let 41 dz, - * *, 0, dz be g linearly independent differentials of the first kind of
 K/k, so that the Xi and z e K. We claim first of all that det i I is not iden-
 tically 0 for all sets of rational places { p} of K. For suppose det | ;ipi I 0.
 Then det I oi(tj) 3 0 for t1, * , to taking values in some neighborhood of the
 origin (ti is just a relabelling of t). Pick the smallest minor which is -0; let its

 ' By dim (-9)) we mean the dimension of the vector space of elements of K which are
 > -91; the geometric dimension of the complete linear series determined by 932 would of
 course be dim (-9)) - 1.
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 rank be r. If r = 1, then 4i(t) -0. If r > 1, expand the minor by the rth col-
 umn, getting (after suitable renumbering)

 u1 (tr)hi(ti X * tr4-) + + kr(tr)hr(tl , * tr.l) 0.

 Since h1(ti , *---, t4i) is a minor of rank r - 1, it is not _O; substituting in
 values for t1, -, tl which make it non-zero, we have

 Ci101(tr) + + Cr4r(tr) 0,

 with ci e k, c1 $ 0. Therefore the t-adic expansion of E c4i is 0, which means
 that E ciq = 0, contradicting the linear independence of the Us . In other
 words, if (al, * -*, a,) are any set of values near 0 for the ti for which

 det I oi(aj) I y0,

 then det I Oipj | 0, where tpj = aj.
 We consider now the non-singular curve r/k whose function field is K/k,

 and we form the g-fold product raw) = r X r X ... x r (g factors). Then

 det I qips I is in a natural way a function on ra() which we have just shown to
 be non-zero. Its locus of zeros and poles is therefore a g - 1 dimensional subvariety
 S of ra()n Furthermore, denoting for simplicity the points on r by the German
 letters representing the corresponding places, we see that the points (pi, * * , Pa)
 on r'g for which two of the pi are the same or for which one of the pi coincides
 with one of the assigned places a,, - * *, ar lie on a bunch T of g - 1 dimensional
 subvarieties of ra). Since the rational point (q, *--, q) has by Theorem 3 a
 whole g-dimensional neighborhood of rational points, it follows that S and T
 do not exhaust the rational points on r(g); let (ml, m, gy) be therefore a
 rational point not on S or T.

 Then 9N = ml + - * - + mg is the required ordinary divisor. Indeed, we have
 only to verify that it is non-special. We have, since (min, - - *, mg) 4 S, that
 det It ims I 0 0, so that the g linear equations Ji ci(Oimj) = 0 have no non-
 trivial solution for the ci . Since however 4l, * * *, Og are a basis for the g-dimen-
 sional module of functions > - (dz), (the divisor of dz being written (dz)), we

 conclude that there is no function > - (dz) with zeros at ml, - - *, mg . Thus
 dim (9N - (dz)) = 0, so that by the Riemann-Roch theorem, dim (-90) = 1
 and 9N is consequently non-special. This completes the proof.

 Continuing now the line of thought of the lemma, since the subvariety S is a
 closed set, the point (ml, ... *, mg) will have a neighborhood U1 not meeting S.
 Moreover, since mi # inj, each mi is the center of a small neighborhood not
 containing any other mji; the product of these forms a neighborhood U2 of
 (ml, * * *, mg) since the natural Cartesian product topology on rat is the same
 as the topology it inherits from the ambient space. If to each point (pi, * ,P)
 rational with respect to E in U= U1 n U2 we associate the divisor

 m PI he . .. + Pg
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 we see that no divisor X corresponds to two points of U and that the divisors
 are all non-special (applying the argument of the last paragraph of the lemma).

 Now by the Riemann-Roch theorem, every divisor class in Z, contains a
 positive divisor of degree g, and if this positive divisor is non-special, then it is

 the only one in its class. Let us agree to denote by ($I1 the class of a given
 positive divisor $3 = pi + - * * + Pa, and by U* the set of all {IP e Zg such
 that (pi, *., p) e U. Then what we have described is a 1-1 correspondence
 between the elements of a certain subset U* of Zg and the points on rF"' lying
 in a certain neighborhood U of (ml, , 0mg). We now can define a topology on
 U* by stipulating that this correspondence be a homeomorphism between the
 two sets; the so-defined topology in the neighborhood of A9ft is independent of

 the choice of r, and it is also clearly the same as that induced on Zg by the cor-
 responding local topology on g(k) in the neighborhood of M.

 If we now translate Z? back by -9), by requiring the translation to be locally
 a homeomorphism, we get a topology defined on the classes of Zo which belong
 to the translate of U* by - 9W. We call this the local Zo topology in the neighbor-
 hood of 0. It will follow from the next section that this topology is compatible
 with the group structure on Zo and is independent of the choice of the ordinary
 divisor 9Y used to define it.

 10. The local equivalence of the two topologies. We show now that the Jacobi
 topology and the local topology on Zo coincide on a neighborhood of 0 for which
 the latter topology is defined. To do this, we must look a little more closely
 at the nature of the correspondence between the points on J rational with
 respect to E and the elements of Zo.

 Let r be as before, with generic point (xi, *.*, xs), and let

 {A, = (x(), .., x($)

 i= 1, * *, g, be g generic points of r which are independent over k. Then the
 function field of J is the so-called abelian function field, or symmetric composi-
 tumr, k(A1, *, A0)s: this is the subfield of k(A1, ... , Ag) left fixed by the
 g! automorphisms defined by the permutations (Al, ... I Ag) -+ (Ail, ... A,
 An element z e k(AI, ... , Ag)s is therefore a rational symmetric function of g
 points on r, and is consequently well-defined on positive divisors of degree g.
 Let zi, - * , z,. be the affine coordinates of J (we assume the identity point is at
 finite distance); then k(z) = k(M)s, and (zi, ***, Zr) defines over k a rational
 mapping 4D of r(O) into J [19c].

 Let 91 = ml + * + ma be the ordinary divisor used in the construction of
 the local topology on Zo . It is convenient to assume that for each i the zth coor-
 dinates of the g points inl, * ., ima are all distinct: ximi $ Ximk for j 5 k. This
 can always be arranged by multiplying the xi by suitable constants-a trivial
 biregular transformation of r which will not disturb the local topology on Zo.

 Also, we remark that we can turn Z, in a non-canonical way into a group by
 defining {2 I + TV} = {2t + e3 - 91. This makes {9 1) the identity element
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 of Zg and the translation map u: ZIo --* Zg defined by o ?I) -So 1o + 9)1I is now
 an isomorphic mapping of Zo onto Zg .

 We have now schematically the mappings

 where I is the map of ?9: I(pi, * *, pg) = pi ) Pi. '` is in the large
 many-valued, but 4)I-' is single-valued, for that is partly what we mean by
 saying that J is the Jacobi variety of r.

 THEOREM 5. 4)* 1 is an isomorphism and local homeomorphism between Z,,
 (topologized by the local topology in the neighborhood of {I}9)) and the points of J
 rational with respect to E.

 PROOF. 4)'-' is the explicit 1-1 correspondence between the points of J ra-
 tional with respect to E and Zg ; by definition of the group law on J, it is an
 isomorphism.

 The map ' is 1-1 in a certain neighborhood U of (mln, - - *, min), and by defi-
 nition bicontinuous there, according to the previous section, so it is a homeo-

 morphism. The map 4) is given by rational functions on ral, and

 P( , - -*. , mi) = 'me M(A),

 the identity point of J, which is at finite distance; therefore the denominators
 of the rational functions are not 0 in a neighborhood of (ml, *---, ma) and 4)
 is consequently continuous. If 4-'(U) = V, then 4)' must be single-valued on V
 since '4)-' and v are both locally 1-1. To prove the continuity of 4-), we observe
 that it is given by the set of functions (x4), , x(). We know x4i) is al-
 gebraic over k(zl, ... , z,); suppose the equation it satisfies is

 fj(x zi, - Z X Xzr) = O0.

 Then the other roots are exactly x k, k = 1, , g, so that if the coordinates

 of the identity point on J are (el, , er), the roots of fj(xa4), el, , e,) =
 0 are x)I)ml, * , ximn. Since these are assumed distinct, elf,/lx5i) # 0
 at (xit)mi, el, **, er), so according to the implicit function theorem, x4j)
 is locally a power series in zi, *-*, z, and therefore a continuous function.
 4-' is therefore continuous, and so 4), I, and 4)- are locally homeomorphisms.

 COROLLARY. The local topology and the Jacobi topology on Zo are locally equiv-
 alent. Under the local topology, therefore, Zo and ,, are locally topological groups,
 and the local topology is independent of the choice of the ordinary divisor 9) which
 is used to define it.

 V. THE MAIN THEOREM FOR JACOBIAN VARIETIES

 11. We can now prove the main theorem for the case of jacobian varieties;
 it is more convenient however to formulate it first as a statement about the

 group Zo . From now on, the ground field is of characteristic zero. We remark
 that the assumption made below in the statement of the theorem that K has a
 rational place will be later removed (Corollary to Theorem 7).
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 THEOREM 6. Let K/k be a function field in one variable of genus g over a com-

 plete ultrametric field k of characteristic 0. Suppose K has a rational place o.

 Then the group Zo = To(k) of rational divisor classes of degree 0 of K contains a
 subgroup, of finite index if k is locally compact, analytically isomorphic and homeo-

 morphic to I (D I (D ... 3 I (g summands), where I is the additive group of in-

 tegers of k: I = { a t a ek, t a 1 < 1 }.
 PROOF. We begin by selecting a non-singular model r of K, together with g

 linearly independent differentials of the first kind; these will be of the form
 4,. dz, for some fixed z e K, and with Di e K. We then choose by the Lemma of
 ?9 an ordinary divisor e = ol + * * * + o, , where the oi avoid the finite number
 of places ramified or infinite with respect to k(z). According to the proof of that

 Lemma, det I Oioo, I# 0, a fact which we shall make use of shortly. Finally,
 by the approximation theorem [8a], we can find 9 elements t1, ***, ta from K
 such that ti uniformizes oi and has ordinal zero at oj (j 6 i).

 With these choices of oi , Pi, and t4 we are in a position to imitate the classical
 Abel-Jacobi mapping. In order not to have to change neighborhoods continu-
 ally, we remark that a finite number of times assertions will be made that some
 property holds in some neighborhood of 0 or a particular divisor; the conclusion
 of the argument will then be valid for the finite intersection of these neighbor-
 hoods; indeed, to avoid clumsiness we shall sometimes not even state explicitly

 that a result is valid only in a neighborhood, if it is obviously so. Finally, for
 convenience we shall let our spaces and varieties contain only points with coor-
 dinates in k; we can therefore drop the word "rational" in describing these
 points.

 (1) The map a. We define a map a' of a neighborhood of Z = oi, con-
 sidered as a point on rol', onto a neighborhood of (0) in T, an affine g-dimensional
 space over k:  a': (P1, *** PO - (tips, Y..., taps)
 where we have for simplicity denoted a point of r(") by German letters repre-
 senting the corresponding places. By Theorem 4, and since the topology on raV
 is the same as the Cartesian product topology, a' is locally a homeomorphism.
 From ??8, 9 we have the map

 a : {10,+ + Po)}- (PI Y ..- POP

 of a subset of Z, into rFy; this defines a local homeomorphism between the divi-
 sor classes of degree g in the neighborhood of {D} and a neighborhood of

 (O1, ? *, X g)

 on rPg since Z) is an ordinary divisor. The composite map a = oan therefore is
 a homeomorphism between a neighborhood of {Z} in Z, and a neighborhood
 of (0) in T:

 a : S UE),,T (locally) by pi) -4} (tip, * tape).
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 (2) The map r. Since 4i dz/dtj is an element of K, it is also an element of
 K(oj), the completion of K at oj. As such it is therefore a power series in ti,
 ,. a~ t! where a e k; the series has no negative powers since Oi dz is a

 differential of the first kind, and it converges in a neighborhood of zero by
 Theorem 5.

 We interrupt at this point to remark that although r, z, xi, 4t, and oi are
 all defined over k, actually they are defined over a smaller field ko which is finitely
 generated over the rational numbers Q (or rather, the canonical image of Q in
 k). Namely, let a generic point of r over k be (x) = (xl, --, x"). To Q we
 adjoin the coefficients of the finite set of polynomial equations which xl, - - -, x,
 satisfy and which define r, the coefficients occurring in the expression of z,
 Xi, and ti as rational functions of the xi, and the quantities xioi . This gives in
 all only a finite number of adjunctions; the resulting field we call ko, and we
 set Ko = ko(x). K arises from Ko by constant field extension. We can consider
 the oi to be rational places of Ko, the ti as elements of Ko, and the Os dz as
 differentials of the first kind of Ko. Ko is imbedded in Ko(oi) which is in turn
 imbedded in K(oi); therefore in the above power series expansion of Xi dz/dtj,
 the a("i) belong not only to k, but to ko as well.

 Resuming, we now set

 fi(t4) = f idz = E o  V +

 where the integral sign is meant in a purely formal sense. The integrated series
 clearly converges, though perhaps in a smaller neighborhood than the original
 one.5 Let U be a second affine g-space over k; we define a map r of a neighbor-
 hood of the origin in T space into a similar neighborhood in U space by the equa-
 tions:

 ui = F(ti, - tg) = fi(t1) + + f,(tg).

 We claim that r defines a local homeomorphism between the T and U spaces.
 Since mappings given by power series are continuous, it suffices to show that r

 is invertible, i.e., that the system ui = Fi(ti, ***, tg) can be solved for the
 ti as power series in the ui, ti = Gi(ul, ***, us). By the Inversion Theorem
 (?3), this will be the case provided det Iat) a # 0. Let4i dz/dtj = gig . We have,
 by choice of oi,

 /dt) ~ dt1\ Oi dt degI
 Oddet I j oj =detg o* o =Kdi) j * * *( e)

 I If the valuation on K induces the trivial valuation on the rationals, the new series will
 have the same radius of convergence as the old. Suppose, however, it induces a p-adie
 valuation, the only other possibility. If the original series converges for t = to,
 i.e., if I awt' I -. 0, then since, as may be verified, |pi+/(v + 1) 1 - 0, we have I a(top)
 (v + 1) I - 0, so that the integrated series converges for t - top.
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 which means that det I a(i = det I gijo, 1 0, for since no oi is ramified over
 k(z), (dt,/dz)os jD ooA

 (3) Statement of the isomorphism problem. We have established that ro is a
 local homeomorphism, therefore in particular 1-1. We have now to show that

 in a suitable neighborhood it is an isomorphism between Z, and a neighborhood
 of (0) in the additive g-dimensional k-module U.

 We choose Z as reference divisor; I Z} is thus the identity element in the
 topological group ZO . The classes in a neighborhood of I 0I1 are represented by
 the unique positive divisor of degree g they contain, so the addition of classes
 can be expressed by the addition of the divisors. Letting [ = a, Q =

 s bs, GE: = A ci, we adopt the notation

 C= t4ai X u = Fi(ta ta) = Fj(ta),

 so that a(A) = (ta) = (tv, * , to) and r(ta) - (ua), for example. Our task is

 to prove that +e = X I(ul + u, * * I = (u, e
 in a suitable neighborhood of Z. Since ra is 1-l it suffices to prove the implica-
 tion in either direction.

 (4) The group law in T. The first task is to study how 2f + Q3 = C looks after
 a has been applied to it: what is the form of the group composition law when it is
 expressed in terms of the parameters t4, .**, to?

 Let 2f, S3 be near 0, rational with respect to k as usual, but at the same time
 independently generic with respect to ko. In other words, if

 (X) = X = (Xi, * X.)

 is a generic point of r/k, and if we write

 (xa') for (xa', ... *, 4) = (xala, , ),

 then the requirement is that ko(xal .., xe2, Xbj , z") shall be contained
 in k and have transcendence degree 2g over ko. Setting k' = ko(x"YI Xa, ,
 it is then known [19b] that the divisor 9 = 51 + e is generic over k' and that
 k'(xb1, I * *, X"b)s = k'(xc', * **, X)s where the subscript S means the symmetric
 compositum (?9).

 Now ti = tici is a rational function of (x'i) and hence satisfies an irreducible
 equation over k'(xbO, *.., xb")s ; the other roots of this equation are exactly
 tic,, (j = 1, ***, g), the images of t6 under the automorphisms of k'(xc) over
 k'(xc)s. If we expand xI, *, X4 as power series in ta, and X1 , , Xn' as
 power series in tb, and substitute these series into the equation for ti, we con-
 clude that tC satisfies an equation with coefficients in ko[[tl, * , * tb , * * *, t4]],
 say Hi(C, tb; X) = 0. Clearly, if 21', V', A' are another set of generic divisors,
 then tC' will satisfy the equation obtained by substituting tl', .*- tb' for
 1. 9 * * tg in the coefficients of H(X) = 0.
 Let now 21 and e3 be any rational divisors of degree g near 0, not necessarily

 generic, and let 1S = 2 + Z. We know that (S varies continuously with 91 and
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 Z, so that t = f(ta, 1), a continuous function of ta and tb. Further, since 0 + 0 =
 Z, the g roots of Hi(ta, t; X) = O at (ta) = (t) = O are just tioi (j = 1, - * *, g).
 By the choice of t4, we have tioi = 0, tioi # 0 (i # j), which means that the
 root X = 0 of the equation Hi(O, 0; X) = 0 is simple. Consequently .3Hi1/X # 0
 at (0,0 ; 0) and we are thus free to apply the implicit function theorem, according
 to which the complete solution of Hi(ta, tb; X) = 0 in a neighborhood of (0, 0; 0)
 is given by a power series X = g(ta, tb). We claim now that f(ta, tb) and g(t, I)
 are precisely the same function. Namely, if 2I and e are generic divisors, we have
 established that t is a root of Hi(ta, tb; X) = 0, which means (since g(t, 1) gives
 locally the complete solution) that for generic values of (r) and (1), f(ta I) =
 g(ta, 1). But since every element of ko is a limit of elements of k which are trans-
 cendental over ko 6 the continuity of the two functions implies their equality
 for all values of (ta) and (1).

 Summarizing our results:

 t is that unique root of Hi(ta, t; X) = 0 which is 0 when (ta) = (tb) = (0). A
 triplet (ta, t, tc) in a sufficently small neighborhood of (0, 0, 0) satisfies all the
 Hi = 0if and only if 2X+ Z= (S.

 (5) The isomorphism proof continued. The crux of the isomorphism proof is
 now the assertion that (with an obvious abridged notation), Gi(u` + ub), G(ue),
 and G(ub) satisfy Hi(ta, tb; ti) = 0 identically; here the Gi are the functions of
 part 2 of this proof which define r-1. This result we take over directly from
 the classical case as follows.

 Letting ko be as before-say ko = Q(ai, ... * I ar , , X )where ai, ... a.
 is a transcendence base for ko over Q-we construct in the complex numbers an
 isomorphic replica of ko by choosing r independent transcendental complex
 numbers a1,***, a* and extending Q(ai,.**, ar) Q(aj,..., a*) to an
 isomorphism j of koI: ko -- Q(a', * , a* ; ,1, ***, 2'), where images under j
 are denoted by asterisks. We can extend j to Ko = ko(x1, * Be, Xn); with the
 image field K* = k*(x,* , x*n) will be associated the images o*, t*, and
 44 dz*, and they will have all the algebraic properties of oi, t , and Xi dz:
 rationality, non-speciality, ordinal at a prime are such properties, for example.
 Extending now the constant field to the complex number field, we can con-
 struct a*, the isomorphic replica of o, with all the attendant properties. Also
 T* is constructed by setting f (t?) = E a"-)*(t?)P+l/(, + 1); this can be done
 since the coefficients a(i i) were in koI, not merely in k. We get in this way the
 mappings

 IPT + ***+ P*9 }I r (Al , , [F* (t*p),***<t ]

 together with r* : t: = Gi (u', *-, u), since the coefficients of the series
 which solve an inversion problem are rational functions of the coefficients of

 S Let P be any element of k which is transcendental over ko, and such that I B 1 < 1.
 Then if a e ko, the elements a + B, a + jP2, * , a + #I,, * are all transcendental over ko
 and form a sequence converging to a.
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 the series which define the problem [2a]; here both the coefficients of F5 and GU
 thus belong to ko so that they have images F~i and G: under j in a natural way.
 Again, since Ko = K*, the algebraic addition theorems for the positive divisors

 of degree g are the same for both fields; in particular, therefore, t~c is that unique

 root of H*i(tV*, to*; X) = 0 which is 0 for (t**) - (to*) = (0).
 The classical Abel-Jacobi theorem to the effect that the composite mapping

 Tl*&, establishes an isomorphism between the divisor classes of degree g and the
 space U* reduced modulo periods, now appears in our setting as the local (and
 therefore weaker) statement that in a neighborhood of the origin,

 G`'(u*" + u ), G*(uW),

 and G*(u * ) satisfy H* 0 for all values of the variables, and hence identi-
 cally. Applying j-, we get precisely the same statement for Gi(ua + ub), G(uG),
 G(ub), and Hi = 0.

 (6) Completion of the proof. The proof is now quickly finished. Clearly
 G,(u4 + ub) is a continuous function of (@) and (t); it satisfies the equation
 Hi(tat"; X) = 0; and since ua = = Owhen ta = t = 0, it vanishes for ta =

 = 0. It follows from part 4 that Gi(ua + ub) = t6, and so 0r-Tr-' maps ua + ub
 onto S = W + A3.

 For any real number r > 0 belonging to the value group of k, the set V7:
 (u1, , * * , u) I I us I r } forms a subgroup of the additive group U, isomorphic

 to I @ I 0 ... ** I (g summands). Pick r small enough so that V, is contained
 in all of the "sufficiently small" neighborhoods of (0) in U, so that Tr-(Vr) is
 contained in all of the corresponding neighborhoods of T, and .-IrT'(V,) =
 in the corresponding neighborhoods of {IC)} in Z,. Then aT will be defined in
 the neighborhood tr and it maps Sr isomorphically onto V, . to = A-cZ is
 then the required subgroup of Zo .

 If k is locally compact, then by ??6, 7 Zo is a compact topological group. to
 is an open subgroup of Zo, hence it is of finite index.

 12. From the equivalence of the two topologies on Zo proved in ?9 and the
 statements given in part III about the Jacobi variety we deduce immediately
 the following corollary.

 COROLLARY. Let r be a curve of genus g defined over a complete ultrametric field
 of characteristic 0. Suppose r has a non-singular rational point. Then the group
 of rational points on the Jacobi variety J of r contains a subgroup with the previous
 structure, of finite index if k is locally compact.

 For use in the next part, we add a few remarks. Let the varieties once more
 carry points from X, though they are still defined over k. The isomorphism of the
 corollary may be envisaged as given by the local mapping Tp of J into U, where
 p is the map u(44C)1. If J, T, and U carry points from X, the results are ex-
 actly the same, except that now ZA(k) must be substituted for Z, ; viewed from
 this level, p and r are still locally 1-1 and they carry points rational over E
 into points rational over E, where k c E c k and E is complete. Further, de-
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 noting as before by (z) the generic point of J and by (t) the set of local uniformiz-

 ing parameters defining the map u, we see that p is in the large an algebraic cor-
 respondence, given by the subvariety W of J X T whose generic point is (z, I);
 W is thus defined over k, and so therefore is p.

 VI. THE MAIN THEOREM FOR ABELIAN VARIETIES

 13. By an abelian variety is meant a group variety in projective space, that is,
 one whose points (with coordinates taken from some universal domain over the
 field of definition) form a group under an algebraic composition law which is
 defined everywhere.7 It then follows that the group must be abelian and the
 variety nonsingular [19a]. If k is any field of definition for an abelian variety
 and its composition law, then the points on the variety which are rational with
 respect to k form a subgroup of the full group of points.

 THEOREM 7. Let A be an abelian variety of dimension d, defined together with its
 composition law over k, a complete ultrametric field of characteristic 0. Then the
 group of points on A rational with respect to k contains a subgroup, of finite index

 if k is locally compact, analytically isomorphic and homeomorphic to I @ I @ * 9
 I (d summands), where I is as before (Theorem 6) the additive group of integers of k.

 PROOF. We begin by imbedding A in a suitable jacobian variety, and to do this
 we make use of Chow and Matsusaka's abstract theory of Picard varieties.'
 The Picard variety of a given variety V/k is obtained by taking a generic 1-
 section C(u) on V, defined over some purely transcendental extension k(u) of k,
 and constructing the Jacobi variety J(u) of the 1-section; J(u) is thus also
 defined over k(u). The Picard variety of V is then the maximal abelian sub-
 variety of J(u) which is defined over k. Applying this to our situation, we ob-
 serve that A is defined over some field ko finitely generated over the rational

 7 Since Weil has proved that his abstract abelian varieties can be imbedded in projective
 space [18] and Matsusaka has shown that this can be done without extending the ground
 field, the notion of abelian variety as defined in [19] essentially coincides with the one
 used here.

 8 In view of the difficulty of the abstract theory and since not all of it has been published
 yet, we indicate two alternative routes which may be followed to make this imbedding.

 (i) Since we are in characteristic 0, we may use instead the transcendental (complex)
 theory of Picard varieties which is both considerably simpler and published [9, 13]. One
 only needs to construct the appropriate isomorphism to take over the required results

 from that theory, all of which appear in [9].
 (ii) On the other hand, the theory of Picard varieties may be avoided entirely. By two

 elementary theorems of Weil, [19, prop. 130, p. 125; th. 21, p. 771, every abelian variety
 Ad is a homeomorphic image of a product of the Jacobi varieties J1 X * * * X Jd of d curves
 C1, . * * , Cd on A. In essentially the same way as above, it is easily seen that one can choose
 the Ci so that each is defined over k and has a rational point. Now it follows from Poincar6's
 theorem [19, cor. 2, p. 951 that A is isogenous to an abelian subvariety B of J1 X ... X Jd ,
 also defined over k. Since our theorem is a local one, and since A and B, being isogenous,
 are locally isomorphic, it suffices to prove the theorem for B.

 One has therefore to prove the theorem for an abelian subvariety of a product of Jacobi
 varieties of curves with rational points; this can then be done just as in the text, mutatis
 mutandis.
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 numbers; so therefore is A', its Picard variety. By the duality theory, A is in
 turn the Picard variety of A'. The identity of A' is a non-singular point, rational
 with respect to ko, which means that we can find a point P nearby which is
 rational with respect to k, but generic with respect to ko [14]. We pass the generic
 1-section C(u) through P, choosing (u) e k but generic with respect to ko, and
 we construct J(u), which is therefore defined over k. Now A is contained in
 J(u), since it is the Picard variety of A', and we have thus achieved the follow-
 ing situation:

 (1) Ad is a subvariety of the Jacobi variety JP of some curve C with a non-singular
 rational point P; all are defined over k.

 We can now apply the corollary to Theorem 6. Let Jo be the subgroup of the
 rational points of J which is isomorphic to I ? * * * ? I (g summands). Under
 the algebraic correspondence p defined in ?12, A goes into a bunch of algebraic
 varieties p(A), and Jo n A goes into a subset AT of p(A). The map r now carries

 AT into a subset Au of U-space; the diagram is therefore:

 J -k T-4 U

 I P I T
 A - p(A) - rp(A)

 I I I
 JO I A - AT - Au

 We assert now that

 (2) AT and Au are algebroid varieties of dimension d, defined over k.
 This is almost self-evident in view of the concluding remarks of ??5 and 13.

 We know that J, A, and p are defined over k; therefore p(A) is a bunch of alge-
 braic varieties, defined over k. Since p is 1-1 in a neighborhood of the identity
 on J, it has no fundamental points there, and so the dimension of any compo-
 nent of the bunch passing through (0) is d, the dimension of A. Thus AT is seen
 to be an algebroid variety of dimension d, defined over k. The statement for
 Au follows from the observation that r is a regular transformation, defined
 over k (?5).

 We now work definitely over 1, so that the spaces and algebroid varieties in
 them carry points from E. As previously remarked, the system of mappings and
 isomorphisms are not disturbed by the addition of these new points.

 Given a prime algebroid ideal p of dimension d defined over k, using a con-
 struction described by Lefschetz [15a], one can make a non-singular linear
 transformation over k of the coordinates (u1, **, u0) such that, if we denote
 the new coordinates and the new ideal still by (u) and p, then p contains a set
 of convergent power series of the form:

 gi(Ul, ..., Ud, Ud+1, ,ud+i) i = 1, ... *, - d

 where each gi is a polynomial in the last variable ud+j,, whose leading coefficient
 ci(ul , **, ud) is a convergent power series in the first d variables only. The
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 gi have this further important property: setting c(ul, ***, Ud) = Ii ci(u),
 then an arbitrarily given convergent series g e p if and only if one can write

 cag = Ygigi for some a and some set of convergent power series -yi 9
 Let B denote the set of common zeros of the gi inside some neighborhood U1

 in which c and the gi are holomorphic. Let (f1, * * *, f8) be a basis for p and let
 U2 be the associated neighborhood in the sense of ?5, so that an algebroid variety

 A of p is given by the common zeros of the ft lying inside U2 . First of all, within
 any neighborhood V C U1 n U2 we have, since A is an algebroid variety,

 A n V C B n V.

 In the second place, according to the above we can write the caifj = E y9J)g
 for each series fj, so that if V C U1 n U2 is now chosen to be a neighborhood
 in which all the -yj' are holomorphic, we see that within V a common zero of
 the gi either annihilates all the fi or else makes c vanish. Denoting the set of
 zeros of c by C, we have therefore inside V,

 B-BnCcA cB.

 If (al, * , ad) is any point in U1 X ... X Ud near (0) and not on C, it follows

 that ci(al, ... , ad) '4 0, i = 1, ... , g - d; from this, from the above inclusion
 relations, and from the form of the g, we conclude that A intersects the linear
 variety {u, = a,, * * *, ud = ad in at least one, but only finitely many points.

 We will now apply these remarks to Au to prove
 (3) Au is the intersection of a neighborhood of the origin in U with a linear variety

 L through (0), of dimension d and defined over k.
 Each of the irreducible components of Au is of dimension d and defined over

 k; call the corresponding ideals pi, O**, , with series cl, ***, c respectively
 associated by Lefschetz' theorem with them. It is easily seen that a linear

 transformation can be made such that all the pi will simultaneously contain
 special sets of power series with the above properties. Suppose this done. Since

 Jo and A are groups, so is Jo n A, and since Tp is an isomorphism, Au is a sub-
 group of U. By the above, the projection of Au on U1 X ... X Ud is a neighbor-
 hood of (0) with perhaps some of the common zeros of the ct deleted; it is also
 however a subgroup since the projection map is a homomorphism. It must be
 then that the projection is actually the whole neighborhood of (0), and the
 projection map is thus locally an epimorphism. Since by the above, for "general"

 choice of (al, * , ad), there are only finitely many points of the form

 (al, *..., ad , ad+ ,. * ., ag)

 on Au, the fact that the projection is a homomorphism implies that for all
 choices of (al, * **, ad) this is true, in particular therefore for (al, * **, ad) =

 9 Lefschetz proves this only for formal power series; it is easily seen, however, that if
 one starts with the ring of convergent power series, then his arguments still go through,
 yielding in the end convergent power series with the same formal properties.
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 (O. , 0). Now the kernel consists exactly of the set of points in Au of the
 form (0,. , 0, ad+1, ... , as). If one of the ai were non-zero, then the infinite
 set of points (0, * * *, 0, nad+1, ... , nag) for n = 1, 2, * * - would all be different,
 all in the neighborhood because X is ultrametric, and all in Au, which we have
 seen to be impossible. Therefore all the ai = 0, and the kernel consists of
 (0, , 0) only.

 This means that the projection map is locally an isomorphism, so that over

 each point (a1, **, ad, 0, . **, 0) there lies exactly one point of Au. Conse-
 quently, as one can see directly from the set of equations, Au must consist of
 one component only, a linear branch, i.e., the gi must be linear in the last variable.
 Thus the set can be written:

 Ud+i = hi(u1, *,U d), i = 1, ... * * - d, hi e k((ul, 9*Xud)).

 Since Au is a group this means that the hi satisfy

 hi(ui + v, * * e Ud + Vd) = hi(ui, e e *, ud) + h1(vi, .,V d)

 for all values of (u) and (v) in the neighborhood. But this implies that the rela-
 tion is a formal identity between the power series in (u) and (v), therefore, by
 constructing the appropriate isomorphism and taking over the corresponding
 result from the complex numbers, the hi must be linear polynomials in ul, .**
 Ud. This shows that Au is contained in a linear variety of dimension d defined
 over k; since Au is of dimension d, (3) follows immediately.

 The proof is now clear. We pass down to k again, so that we are considering
 now only the points rational with respect to k. We know that rp is an analytic
 isomorphism and homeomorphism of some suitable subgroup JO of J with the
 corresponding subgroup Uo of U; it therefore carries Ao = A n Jo, a subgroup
 of the point group of A, isomorphically onto Au C U, a subgroup of the group
 of points on the linear variety L, formed of the points lying in a certain neighbor-
 hood of (0) on L. Since L is of dimension d and defined over k, its group of points
 is isomorphic and homeomorphic to k ? k ? ... *? k (d summands); therefore
 Au is isomorphic and homeomorphic to I ? I @ ... @ I (d summands).

 If k is locally compact, the finite index of Ao in A follows either directly as
 before, or from the finite index of Jo in J.

 By applying Theorem 7 to the case A = J, the Jacobi variety of a curve over
 k, we deduce immediately the

 COROLLARY. Theorem 6 is valid without the assumption that K contains a rational
 place; the corollary is valid without the assumption that r contains a non-singular
 rational point.

 14. We conclude with three observations which supplement Theorem 7.
 1. Theorem 7 remains true if k is itself not complete, but is nevertheless an infinite

 algebraic extension of a complete field F. For any point on A rational with respect
 to k is actually rational with respect to some finite algebraic extension F(a) of
 F, over which A and all the mappings are defined. F(a) is automatically itself
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 complete, and Theorem 7 applies to A over F(a); this tells us what element of
 d-dimensional k-space our point gets mapped into. The rest follows from the
 compatibility of the isomorphic mapping with constant field extension.

 2. The isomorphism is unique up to a homogeneous linear transformation of the
 space U. If 4l and 42 are two such isomorphisms of a subgroup of Ad onto a
 neighborhood of (0) in Ud, then 4A'i2 defines an analytic isomorphism of the
 neighborhood onto itself. Such an isomorphism can only be a homogeneous
 linear transformation by the same reasoning with power series identities used
 in the proof of statement 3 of Theorem 7.

 3. Let A n D Bm be abelian varieties, and let Cn-m be an abelian subvariety of A
 such that if x is any point of A, x = y + z, where y, z are points of B, C respec-
 tively [19d]. Then the local isomorphism carrying A' onto a neighborhood Vo of (0)
 in Vn takes Bt and C(jm onto neighborhoods Wo and Xo of (0) in two complementary
 linear subspaces Wm and Xn-- of Vn; i.e. to the algebraic splitting of A corre-
 sponds an analytic splitting. Imbed A in a jacobian variety J0. What Theorem 7
 proves is that the isomorphism of J onto Uo C U' carries any abelian subvariety
 of J onto a neighborhood of (0) in a linear subspace of U'; applying this in turn
 to A, B, and C the result follows, W and X being complementary because they
 span U' and have complementary dimensions.
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