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WEIGHTS IN RIGID COHOMOLOGY
APPLICATIONS TO UNIPOTENT F-ISOCRYSTALS

BY BRUNO CHIARELLOTTO (*)

ABSTRACT. - Let X be a smooth scheme defined over a finite field k. We show that the rigid cohomology
groups H9, (X) are endowed with a weight filtration with respect to the Frobenius action. This is the crystalline
analogue of the etale or classical theory. We apply the previous result to study the weight filtration on the crystalline
realization of the mixed motive "(unipotent) fundamental group". We then study unipotent F-isocrystals endowed
with weight filtration. © Elsevier, Paris

RfisuM6. - Soit X un schema lisse defini sur un corp fini k. On montre que les groupes de cohomologie rigide,
H9^ (X), admettent une filtration des poids par rapport a 1'action du Frobenius. On va utiliser Ie resultat precedent
pour etudier la filtration des poids dans la realisation cristalline du motif mixte « groupe fondamental (unipotent) ».
On s'interesse ensuite aux F-isocristaux unipotents qui out une filtration des poids. © Elsevier, Paris
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684 B. CHIARELLOTTO

Introduction

Let X be a smooth scheme defined over a finite field k of characteristic p > 0 and
assume that k = Fpa. We use K to denote a complete discrete valuation field with valuation
ring V and residue field k. The a-th iterate, F" of the absolute Frobenius morphism on
X is fc-linear.

Let I be a rational prime distinct from p. The properties and importance of F" acting
on the Z-adic etale cohomology groups of X have long been known. It is therefore natural
to ask what happens in the case of a suitable j?-adic cohomology. Does F0 retain similar
properties? All the expected properties have been formulated by Deligne in [DE2,II] and
called the "petit camarade cristallin" to the etale theory.

One candidate for an appropriate p-adic cohomology is the rigid cohomology of X.
The recent proofs of its finiteness ([BER1], [CH-M]), its equivalence with crystalline
cohomology when X is proper and smooth, and with the Monsky-Washnitzer formal
cohomology for smooth affine X all strengthen the belief that rigid cohomology is in fact
the appropriate crystalline companion. Indeed the rigid cohomology groups are J^-vector
spaces on which ^a induces a ^C-linear endomorphism. Moreover one has the following
theorem:

THEOREM. - (Ch.I, 2.2). Let X be a smooth scheme of finite type over k. Then under
the action of F"^ the cohomology groups H ^ g ( X / K ) are mixed F-isocrystals of integral
weights in [%,2%].

One also has an analogous result for rigid cohomology with support in a closed subscheme
(cf. the purity statement for rigid cohomology in [BER1, 5.7]):

THEOREM. - (Ch.I, 2.3). Let Z be a closed k-subscheme of a smooth k-scheme Y and
let cod(Z^ Y) be its codimension. Then, under the action of F", the cohomology groups
H^^g{Y/K) are mixed F-isocrystals of integral weights in [i,2{i - cod(Z,Y))}.

The proofs of these results closely follows Berthelot's proof of the finiteness and purity
of rigid cohomology. In section 2.4 of chapter I we show that a particular case of the Gysin
isomorphism respects the Frobenius structure and in section 3.1 we establish, again in a
particular case, the existence of an adapted Frobenius in the Monsky-Washnitzer setting.

Chapter II. Let X be a smooth, geometrically connected scheme of finite type over k
and assume X to be open in the special fiber of a flat and proper V-formal scheme P
of finite type which is smooth around X (In view of [LS-C1] this technical hypothesis
can be removed). We assume that X has a rational point x G X(k). We introduce the
unipotent rigid fundamental group

Tr^X^

which is constructed as the fundamental group of the tannakian category of the unipotent
overconvergent isocrystals on X [LS-C]. If we place ourselves in the situation studied by
Deligne [DE3, §11] (in which X is the special fiber of a smooth V-scheme Xy which is
the complement of a normal crossings divisor with respect to V in a smooth and proper
scheme), then our ^^{X.x), coincides with Deligne's definition for the crystalline
realization [LS-C]. To the fundamental group 71-̂ '̂  (X, a;), we associate the AT-algebra
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WEIGHTS IN RIGID COHOMOLOGY 685

obtained as the completion (by the augmentation ideal) of the enveloping algebra of the
Lie algebra of Tr^'^X,^). We denote the algebra so constructed by

UI.LieTr^^^X.x)),

and show that it admits a AT-linear isomorphism F^ arising from the a-th iterate of
the absolute Frobenius. In section 3.3.1 of Chapter II we show that under the action
of F = F^1 the algebra U^Lie'K^^^X^x}') admits an increasing weight filtration Wj
consisting of ideals stable under the map F and such that

Grw(U{Lie7^[^g-un{X,x)))

are pure of weight j (in fact, they are different from zero only for j < 0).

Remark. - The results of Chapter II are the transposition to the p-adic setting of
constructions made by Joerg Wildeshaus [W] for the unipotent fundamental group for the
de Rham and <-adic realizations. This is an improvement with respect to [DE3].

Chapter III. We study unipotent F-J^-isocrystals on X [LS-C], namely pairs ( E , ( / ) )
where E is a unipotent overconvergent J^-isocrystal on X and (j) is an ^-isomorphism of
E with its Frobenius transform F^E. We introduce a notion of integral weight filtration
for a unipotent overconvergent F-A"-isocrystal ([FA], [CH-M], [CR]). For any / e N we
denote by kf the finite extension of k such that [kf : k} = /, and by Kf an unramified
extension of K with residue field kf.

DEFINITION. - (Ch.III, 1.3,1.4). For n G Z, a unipotent overconvergent F-K-isocrystal on
X, (M, (f>), is said to be pure of weight n ( briefly n-pure), if for each f € N and for each
y G X{kf), the F-Kf-isocrystal (My, <^) is pure of weight n relative to kf. It is said to be
mixed with integral weights, if it admits a finite (increasing) filtration by sub-F-K-isocrystals
YVj (j C Z) on X, such that (Gr^M, Gr^cf)) is a j-pure F-K-isocrystal on X.

We could have given a more general definition by requiring only that the graded parts
be pure without any hypotheses on the index. It will be shown in §4 (4.1.10) that every
unipotent F-AT-isocrystal which is mixed with integral weights ( even without hypotheses
on the filtration) admits a structure as in the definition given above. For the etale case, see
[DE2, II, 3.4.1 (%%)]. The category of unipotent overconvergent F-AT-isocrystals which are
mixed with integral weights should play the role filled by the category of good graded-
polarized unipotent variations of Q-mixed Hodge structure in the complex case [H-Z].
The admissibility condition for a variation defined over a complex variety Xc suggests
the possibility of extending the Hodge filtration to a compactification Xc of Xc and
the possibility of good behaviour of the weight filtration with respect to the monodromy
operator around each point of Xc \ Xc- In characteristic zero, we may think of Xc \ Xc
as the complement of a normal crossing divisor. In the p-adic case the recent work of
Christol-Mebkhout [CH-M] shows that it is possible (at least in the case of a curve
(7, whose compactification will be denote by C) to extend an overconvergent isocrystal
satisfying the Robba condition at each point of C \ C (with some additional hypotheses
about "non-Liouvilleness" on the exponents) to (7, and to do it in such a way that there
is at most one regular singularity in the residual class of each point of C \ C. Unipotent
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686 B. CHIARELLOTTO

overconvergent isocrystals satisfy the Robba condition and, obviously, the condition for the
exponents. Using an extension of this type we hope to introduce a monodromy operator.

Finally we give a p-adic analogue of the theorem of Hain and Zucker [H-Z1]. Assuming
the existence ofx € X(fc), we show that the category of unipotent mixed overconvergent
F-AT-isocrystals on X is equivalent to the category of triples (V^p), where V is a
K -vector space which is a mixed isocrystal with respect to the ^f-linear Frobenius ^
and p is a homomorphism of mixed F-J^-pro-isocrystals which is also a morphism of
algebras [Ch.III, 3.1.1]:

p : (U^Ue^^^X.x))^) —— {End{V),Ad{(f))),

(The Frobenius structure on End(V) is given by Ad((f)) = (f) o — o (f)~1).
As in the classical case the key point is a rigidity result which actually gives the good
definition of mixed unipotent overconvergent F-A'-isocrystals on X:

THEOREM. - (Ch.III, 5.3.2.). A unipotent overconvergent F-K-isocrystal on X, (J5, (/)), is
mixed with integral weights if and only if it exists a closed point y of X such that its fiber
at y, {Ey^ ̂ egy), is mixed with integral weights relative to q^v.

In §4 and §5 of Chapter III we also study the structure of a generic unipotent F-K-
isocrystal having real weights, but without any hypothesis on the filtration, and in (4.1.3)
we introduce the notion of i-mixed unipotent F-X-isocrystal. The results we obtain are
analogous to those in [DE3JI] and [FA]. In particular we will show in (4.1.10) that under
this general definition every mixed with integral weights unipotent F-K-isocrystal admits
a mixed structure as in definition given before (ch.III, 1.3 and 1.4).

Moreover, since U^LieTr^^^^X^x)) acts on itself via left multiplication, we can
associate a pro-unipotent mixed F-isocrystal on X, Qen^ to the map of F-pro-isocrystals

(U^LieTr^^^X.x))^) —> {End(U{Lie7^[ig-un{X,x))),Ad(F)).

As in [W] we call Qeuy, the generic unipotent sheaf on X. This sheaf Qen^ will allow
us to conclude in §6 of Chapter III that each unipotent isocrystal on X is a quotient of a
unipotent F-isocrystal and hence by duality also a subobject of such an isocrystal.

The author wishes to express his special thanks to Joerg Wildeshaus for his help in
chapters II and III. Thanks are also due to P. Berthelot, Y. Andre, B. Le Stum, P. Colmez,
F. Sullivan and, for the Institutions, to the University Paris VI, the University Paris Nord,
and to the University of Strasbourg.

Notation

We use k to denote a finite field with q = p" elements and we consider k to be the
residue field of a complete discrete valuation ring V with maximal ideal M. and field of
fraction K. On k the a-th iteration of the Frobenius isomorphism is the identity and we
lift it as the identity on K.

Given a scheme X defined over fc, we can consider the a-th iterate of the absolute
Frobenius acting on X. It is a fc-linear endomorphism of X, which we denote F.
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WEIGHTS IN RIGID COHOMOLOGY 687

An ordered pair {H, -0) is said an F-A^-isocrystal if H is a AT-vector space and ^ is
a ^-linear isomorphism. For each n e N and for each F-AT-isocrystal {H, ̂ ) we use
(JT(-n),^(-n)) to denote the F-AT-isocrystal which has H as underlying vector space
and Frobenius map given by ^ multiplied by qn.

Chapter I

Mixed Weight Filtration on rigid cohomology

§1. Preliminaries

Let X be a smooth scheme of finite type over a finite field k of characteristic p. To X
one can associate rigid cohomology AT-vector spaces

H^{X/K).

Recently Berthelot [BER1] and Christol-Mebkhout [CH-M] have independently shown that
these Ar-vector spaces are finite dimensional.

1.1. We summarize the properties of rigid cohomology. For the proofs the reader may
consult [BER1]. We note first that rigid cohomology commutes with finite extensions of the
field K. If K ' is a finite extension of K with ring of integers V and residual field k\ and
if we denote by X' the fc'-scheme obtained by scalar extension from k to k ' , then we have

H^X^/K'} ̂  H^{X/K) 0 K ' .

Moreover if, in addition to satisfying the above hypotheses, X is proper then rigid and
crystalline cohomologies are isomorphic. More precisely, one has

H ^ ( X / K ) ^ H ^ { X / W ) ^ K ^

where W is the Witt ring of k.

1.2. There is also a rigid cohomology analogue for the following result about cohomology
with support on a closed set [BER1]. If Z C X is a closed subscheme and U = X \ Z its
complementary open, we have the usual long exact sequence of cohomology

(1.2.1) ... - H^(X/K) -. H^{X/K) -. H^{U/K) - ...

Again, formation of Hz ̂ g ( X / K ) commutes with finite extensions of K.

PROPOSITION 1.2.2. - Let X be a scheme of finite type, Z C X a closed subscheme.
(%) If X/ is an open set of X containing Z, then

H^{X/K) ̂  H^X'/K).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



688 B. CHIARELLOTTO

(ii) If Z = Z\ U 2?2 ^d Zi D Zs == 0» ̂  canonical homomorphism

H^{X/K) 9 H^{X/K) -. H^(X/K)

is an isomorphism.

PROPOSITION 1.2.3. - Let Y be a scheme of finite type, and let T C Z C Y be two
closed subschemes. Let Yf == X \ T and Z ' = Z \ T. Then there exists a natural excision
long exact sequence:

. . . - H^{Y/K) -> H^{Y/K) -. H ^ ^ Y ' / K ) - • . .

Remark 1.2.4. - H^^g(X/K) depends only on Zred, the reduced closed subscheme
associated to Z.

§2. Main Theorem

2.0. The absolute Frobenius on X induces a AT-linear map on H^g{X/K):

F : H ^ { X / K ) — . H ^ { X / K ) .

We wish to show that H ^ g ( X / K ) has a mixed weight filtration with integral weights
with respect to F.

A F-AT-isocrystal (ff,<^), is pure of integral weight n relative to k (n G N) if all the
eigenvalues of (j) are Well numbers of weight n relative to q. Recall that an algebraic
number a is said to be a Weil number of weight n relative to q if a and all its conjugates
have archimedean absolute value equal to q^. We say that {H^) is mixed with integral
weights relative to k if it admits a finite increasing J^-filtration respected by (j) whose
associated graded module lias graded parts which are pure of integral weights. We have
that {H, (f>) is pure (resp. mixed ) relative to q if and only if {H, cf^) is pure (resp. mixed)
relative to ({n for some m G N. Note that to say that (ff, <^) (resp. (If, (^rn)) is mixed is
equivalent to the assertion that all the roots of the characteristic polynomial of (f) (resp.
(^m) are Well numbers. Indeed if (i?, ^>) is an F-isocrystal which is mixed with integral
weights then H can be decomposed in a unique way into a direct sum of pure integral
weight F-isocrystals. It follows that on H one can construct an increasing finite filtration
Tp j G Z, such that each associated grjH is pure of weight j. In the following we refer
to such a filtration for Jf-isocrystal {H, (f)) which is mixed with integral weight.

2.1 One can also make a scalar extension kf of k, f = [fc' : fc], consider a complete
valuation field K ' whose residual field is fc', and suppose it to be a finite extension
of K. If one takes the extension of scalars X^/, and acts via the a/-th iterate of the
absolute Frobenius on X k ' , which is ^/-linear, one obtains an action F ' on the AT'-rigid
cohomology groups:

F ' : H^X^IK^-.H^X^IK'Y

But the a/-th iterate of the Frobenius on X^i can be viewed as the scalar extension to
Xk> of the a/-th iterate of the Frobenius on X. For this reason we conclude from 1.1 that
F1 (g) K ' = F ' . As a consequence one has that F ' is mixed if and only if F is mixed.

4e S6RIE - TOME 31 - 1998 - N° 5



WEIGHTS IN RIGID COHOMOLOGY 689

It follows that proving

F : H ^ ( X / K ) - ^ H ^ ( X / K ) ^

to be mixed relative to k is equivalent to checking that, after a finite scalar extension k'
of k (hence K ' of K\ the extended Frobenius

F ' : H^X^IK^—.H^X^IK')^

is mixed relative to k ' .
We wish to prove the following result.

THEOREM 2.2. - IfX is a smooth k-scheme of finite type, then H ^ g ( X / K ) is a mixed
isocrystal with integral weights in the interval [i,2{\.

In fact we will prove an analogous result for rigid cohomology with support in a closed
subscheme:

THEOREM 2.3. - Let Z be a closed subscheme of a smooth scheme of finite type Y. Let
cod(Z, Y) be its codimension. Then H ^ ^ g ( Y / K ) is a mixed isocrystal with weights in the
interval [%,2(% - cod{Z,Y))].

We prove the previous theorems in (2.5). In order to do so, we shall need another result
whose proof will be given in (3.3). It is a result of Gysin's type in a particular case, which
will allow us to compare two Frobenius structures.

THEOREM 2.4. - Suppose we have a closed immersion

ZV-.YV

of two smooth ajfine schemes over V, and let the closed subscheme Zy be given by global
sections /i , . . . , fr of Vy which are local coordinates of Vy over V. Then, for the special
fiber Z —> Y, the Gysin isomorphism

HZ^V/K} ̂  H^^Z/K^-r)^

respects the two Frobenius structures, for all i in N.
2.5. Proof of 2.2 and 2.3. - We will use techniques similar to those introduced by

Berthelot in his proof of finiteness for rigid cohomology [BER1]. In fact for a large part
of the proof the words "finite dimensional" have to be replaced by "mixed", with some
care for the values of the weights.

We will make double induction on the following results (n G N)
{a)n If dimX = n, then for each %, H^g{X/K) is a mixed isocrystal of integral

weights in [%,2%].
(b)n For a closed immersion Z —> V, where dimZ == n and Y is smooth, for each %,

^z^ig^l^ is a mixed isocrystal of integral weights in [%,2(% - cod(Z,Y))].
The starting point is (a)o: since we are allowed to make finite scalar extensions (2.1), we

may suppose that H^X/K) is a finite dimensional AT-vector space (of dimension equal
to the number of geometrically connected components of X [BER2]) where the Frobenius
is the identity map. There are no other non-zero cohomological spaces [BER1].

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



690 B. CHIARELLOTTO

Consider now (6)0. Using a finite extension of the base field k and by (1.2.4), we can
suppose that Z is just the union of a finite number of points which are rational over k.
Using the excision lemmas of 1.2, we can limit ourselves to the case of a reduced point.
In that situation, by localisation on Y and applying the Gysin type result 2.4 we only
obtain the information

H^WK) ̂  H^g(Z/K){-dimY).

Then using (a)o for H ^ g { Z / K ) , we have that the action of the Frobenius on
Hj^^^Y/K^^-dimY) is exactly the multiplication by gdimy, so of weight 2dimY.

Continuing the induction, we now show that (6)n-i implies {a)n- Let X be a smooth
scheme of finite type of dimension n. We may take a finite extension of scalars (which we
indicate again by k) and suppose that X is connected, hence, irreducible. By another finite
extension (which we indicate again by fc), we can arrange to have a de Jong alteration,
i.e. a connected, projective and smooth fc-scheme X', an open subcheme U C X' and a
proper, surjective, generically etale morphism

^ : u —>X.

Then H ^ X ' / K ) ̂  H^y,{X'}^K and by a result of Katz-Messing [KA-ME], we know
it is pure of weight i (See 2.1).

But (/) is generically etale, so dimX' = n; for every open set (7i (/ 0) of X ' , one can
apply induction on the closed set X' \ U^ and by the long exact sequence of cohomology
with support 1.2.1

... - H ^ X ' / K ) -. H^{U,/K) -. H^^X'IK) - ...

one obtains the result for L\. On the other hand, the images of the points of U where (f>
is not etale over X is a closed subset of X which does not contain the generic point of
X. We then have an open affine Xi C X such that (7i = ^(Xi) —> Xi is etale, and,
by propemess, it is finite. Again by 1.2.1, we conclude that H ^ g ( X / K ) is mixed with
integral weights in [%, 2i] if and only if the same result holds for H^g(X^/K).

But the injection [BER1]

H^(X,/K) —— H^(U,IK)

respects the Frobenius and we know that E/i is mixed of integral weights in [%, 2z], so we
can conclude that the same holds for H^g{X-t/K), too.

We now wish to show that (&)n-i and (a)n imply {b)n- We will make an implicit
use of the purity theorem [BER1, 5.7] for rigid cohomology. Hence, consider Z —> Y
a fc-closed immersion, where dimZ = n and Y is smooth. We may first consider the
scheme we obtain by extension of scalars to the algebraic closure of fc, Z. There exists a
finite extension of k over which the reduced sub-scheme Zred is defined and, moreover,
there is an open smooth subscheme of Zred which contains all the generic points of all
the irreducible components of Zred- Because H^ ^ ( Y / K ) depends only on Zred, we can
make this finite scalar extension and use Zred instead of Z. It follows that in Z there
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WEIGHTS IN RIGID COHOMOLOGY 691

exists a closed T C Z, dimT < n, such that Z \ T is smooth. We may write V = V \ T,
Z' = Z \ T ( cod(Z', V) > cod{Z, V)) and by 1.2.3 we have a long exact sequence

... -. H^{Y/K) -. H^{Y/K) -. H ^ ^ Y ' l K ) -. H^{Y/K) - .. . .

We conclude, using (6)n-i, that it suffices to establish the result for Z ' and Y 1 ' . So, we
are reduced to proving the result for

Z—>Y

where dimZ = n and Z, Y are smooth.
If U is open in V, such that Z n U -^ 0, we again have a long exact sequence for

Z \ ( Z n U ) c Z c Y (1.2.3)

• • • - Hz\(znu^{Y/K) -. H,^{Y/K) -. H[^u^Y \ {Z \ (Z H [7))/JQ -. ...

and by induction we will be able to conclude if we know the result for H\z^j\ y, • (Y \
{Z \ (Z n U ) ) / K ) . Finally, we may suppose that V, Z are affine and smooth and Z is
defined by a sequence of global sections of V, /i,... ,/^, which are local coordinates.
We can write Y == SpecA, S = SpecV. By Elkik's theorem [EL], we know that there
exists an affine 5'-scheme Y / = SpecA' which lifts Y. Let /{,. . . , / ; ' be liftings in A' of
/i,.. . , fr and Z ' the subcheme defined by f[,..., f'^ in Y ' . Because Z ' is smooth over 5'
at Z, we can find an open affine set U ' C Y ' such that Z ' H V is not empty and Z ' D (7'
is smooth over S [SGA1]. By excision we are reduced to the Gysin type Theorem 2.4.
This concludes the proof. Q.E.D.

§3. A Gysin type isomorphism. Proof of theorem 2.4

In order to prove theorem 2.4, we need some preliminary results.
3.1. The first result is about Monsky-Washnitzer algebras. We recall the situation:

Z V — — Y V

is a closed immersion of smooth affine V-schemes, where Zy is defined by sections
/i, . . . , fr which are local coordinates of Vy.

There exists a commutative diagram [SGA1, II, 4.10]

Zv —. Vv
i I

SPec^^} -^ SpecV[t^..^tn]
where each vertical map is etale and the local coordinates A? • • • ? / r ? . • • ,/n are
the images of ^ i , . . . , tr , . . . ,tn. We suppose Yy = SpecA. We have an etale map
g : V[^ i , . . . , tn} —> A, and one can take the weak completion of g to obtain

'̂ : V[^...^]+-^A+

which is again etale. In V[^ i , . . . , tn}1 we have a natural V-linear Frobenius given by

(3.1.1) h ̂  i\

which we will denote by (j). We want to show the following lemma.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



692 B. CHIARELLOTTO

LEMMA 3.1.1. - In the previous notation, there exists a V-linear Frobenius F (i.e. lifting
the natural Frobenius in A/A4A) in AT such that the following diagram is commutative

A+ -^ A+
/h. -4sI.+ ^+ •

V[t,,...,t^ ^ V[t,,...,t^

Proof. - We show first the existence of such a map formally, i.e. for the A^-adic
completion of A. It is clear that we have a commutative diagram modAi:

AIM -^ A/M

T3 - T3 '
V[t^...,tn}/M ^ V[h,...,t^}/M

induced by the Frobenius in characteristic p. Using the fact that the map V[t i , . . . , tn] —> A
is etale, one gets a commutative diagram

A -t A
(3.1.3) ]i . ]s

vpi,...,U -^ v[*i,...,^]
where """ indicates the .M-adic completion. At the level of Monsky-Washintzer algebras
we have the diagram

At A+
(3.1.4) ^+ ^+

V[^_ ̂ ]+ A^ V[^,...^,]+

whose A^-adic completion can be completed to a commutative diagram by (3.1.3). We then
apply [VdP, 2.4.3] to conclude that (3.1.4) can be completed to a commutative diagram
of Monsky-Washintzer algebras as well. Q.E.D.

Remark 3.1.5. - After the previous lemma, it is clear that there exists a Frobenius
map F : A+ —> A+ respecting the ideal which defines the subscheme Zy, (/i , . . . , fr).
Actually fi is sent by F to /?. We then have a commutative diagram

A+ ^ A+
(3.1.5.1) ^+ ^+

A+/(/i,...J.) -^ A+/(A,...J.)

where A+/( / i , . . . , fr) is the Monsky-Washintzer algebra of Zy and the induced Fz is a
Frobenius map on it. The Frobenius F on Yy can be seen as a Frobenius adapted to Zy.

3.2. We need a few further observation about sheaves on algebraic and rigid analytic
varieties. Consider a finitely generated K -algebra B. To the affine scheme SpecB = X
one can associate the rigid analytic space X^ (for the strong topology [BGR]). There
is a map of ringed spaces

e : X^ —> X.
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We now consider a B-module M. To M one can associate the sheaf M of modules on X.
It is clear that we can take M^: the Ojcan-module on X^ given by inverse image under e.

LEMMA 3.2.1. - The sheaf M071 is the shea/associated to the presheaf

U •—> M^BOx^(U)

for each admissible open U of X^.

Proof. - We use the weak Grothendieck topology on X^ [BGR] and follow the
construction of Fresnel [FRE]. For that topology, the admissible open sets are U C X
such that there exists an open affine Y C X and ^ i , . . . ,g^ sections of Ox(Y), such that
Ox(Y) = K[g^..^g,\ and

U = { x e Y \ \gi{x)\ <1, Ki<r}.

An admissible covering of an admissible open U is a covering [Ui}i^i such that, for each
admissible V C U, there exists a finite subset Iy C I such that

V C IJ U,.
i^Iv

Using this definition X becomes a rigid analytic space for the weak topology. We denote
it by X^. A property of this topology is that for an admissible U associated to the
affine open V, then a cofinal directed subset in the directed set of Zariski open sets of
X which contain Y is given by the principal open sets of Y. On the other hand there is
no continuous map between X^ endowed with such a weak Grothendieck topology and
X, while there does exist a continuous map

(3.2.2) 6 : X^ —>X

for the strong topology. But starting with a sheaf M. on X, we can associate a presheaf on
X^, ('w1^)' suc^ ^at its associated sheaf for the strong topology is the inverse image
sheaf of M using e in (3.2.2). The definition is as follows.

For each admissible open U of X^, we set

e^{M){U) = lim M{V)
ucv

where the limit is taken over all Zariski open sets which contain U. It is clear that such a
presheaf is the restriction to the weak topology of the analogous inverse image presheaf
using the strong topology and e (3.2.2). Then if one considers the sheaf associated for the
weak topology to e~^{M} and takes the associated strong topology sheaf, we obtain the
inverse image sheaf for the strong topology, e'^^M.} [BGR, 9.2.2].

If A4 is associated to a B-module M, i.e. M. = M, we have the exact sequence:

B17 —> B1 —>M —> 0

If we take V C X affine, we have again an exact sequence for the associated module M

O^V) -. O^V) -^ M(V) -. 0
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which corresponds to

BJ 0 Ox{V) —— B1 0 Ox(VQ —— M 0 Ox{V) —— 0.

If one takes the limit over all the affine V containing an admissible U, exactness still
holds. Thus we obtain an exact sequence of presheaves on X^:

^W) —— ̂ W) —— ̂ \M) —— 0.
If Ox^- denotes the structural sheaf on X^, there is an exact sequence of presheaves

B3 (g) Ox^ —> B1 (g) Ox^ —> M 0 Ox^ —> 0.

Furthemore, if we consider M, we have for each admissible U C X^

€^\M){U) = Inn M 0 Ox(U) = M 0 lim Ox{U) —> M 0 Ox^(U}
ucv ucv

The same holds for the pre-sheaves e^C^) = e^B17) and e^C^) = e^S1), so we
finally obtain a map between two exact sequences of presheaves for the weak topology:

e.W) —— ^(Oj,) —— e^(M) ^0
(3.2.3) I I I .

B3 0 Ox^ —> B1 0 Ox^ —^ M 0 Ox^- —^ 0

All the vertical maps are ̂ (Px) -linear. Diagram (3.2.3) holds once again if we now take
first the associated sheaves for the weak topology and then the strong associated sheaves.
In fact we will have a commutative diagram with exact rows

^-W) -^ ^-W) — ^W —o
(3.2.4) [ [ [

0^ --^ 0^ —— {M^Ox^V — — 0

(where by (M 0 Ox^)^ we indicate the sheaf associated to the presheaf (M 0 Ox^)
for the strong topology), and the vertical arrows are e'^O^-linear. Tensoring the first
line in (3.2.4) by Ox^ as sheaves for the strong topology we get a map between two
exact sequences of sheaves for the strong topology in X^

e-1^)^-!^)^- —^ ^(^^-KOx)0^71 -^ e-\M)®^^^Ox^ ^0
I I I

O^an ——^ O^arz ———> (M^OX^)^ ———.0

The first two vertical maps each being the identity, we conclude that we have an
isomorphism for the strong topology of the following sheaves

e-\M} (g)e-i(Ox) Ox- ^ (M 0 Ox^.

But the presheaf (M 0 Ox^) is the restriction for the weak topology of the presheaf for
the strong topology given by M <S> Ox—' Hence the sheaf associated to M 0 Ox— for
the strong topology is isomorphic to the sheaf which is obtained from (M (g) Ox—) by
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taking first the associated sheaf for the weak topology and then the associated sheaf for
the strong topology [BGR, 9.2.3]. Q.E.D.

COROLLARY 3.2.5. - Let X = SpecB, and let M a B-module. Then for M = M^ on
X^ and for each affinoid V, we have

H\V,M\v}^^ ifi>0.

Proof. - We have that M.\v is an associated module. By Tate's acyclicity theorem, V
being affinoid, we conclude. Q.E.D.

3.3. We are now ready to prove our Gysin type result.

Proof. - (Theorem 2.4) We first start with the algebraic setting. We take the generic fiber
of the immersion of Zy in Vy = SpecB:

ZK —^ YK.

This is a closed immersion of smooth affine schemes of codimy^(Z^) == r, and ZK
is defined by sections of YK = SpecBK which are local coordinates: / i , . . . , / r - We
may define

U^(YK}^ ^^
E /T-) r 1 i

ioYK[h...h...f}

It is the sheaf associated to the module

(3.3.1) BK[J^^BK[-
^ ^Lfl...f^...frl

We have a natural quasi-isomorphism on YK given by

^-^^W^^yM

defined by

~ ̂  A A dfruj i—> ^~r A ... A —
Jl J r

where a; is a section lifting LJ to f^. By [BER1, 5.4.1] this induces an isomorphism on
the associated rigid analytic sheaves in Yj^".

^^n^YKr^^M.

Note that, by (3.2.1), U^^K)^ is an associated module in Y^, associated to (3.3.1).
Since each O^ar. is also an associated module, we conclude by (3.2.5), that for each
affinoid V in Yj^ and for each j

H^{V^(YK)an®^)=0

if i > 0. The same holds for 0%n.
^K
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For a suitable n we will have the embedding (Z and Y are the special fibers of Zy
and Vy)

z — y-^A^.
One finds that Y^ is a strict neighborhood of JV^A^ and we can define an isomorphism
[BER1, 5.4] v

j1"^ ̂ ^^{W^^V})
——Qfi ——

as sheaves on Y ̂  , where Yy is a compactification of Vy in P^. The cohomology of
the left hand side is the rigid cohomology of Z, while on the right we have the groups
H^g{YlK) [BER1]. If K are the closed polydisks of radius e > 1 in the affine space
Ay which is thought of as lying in P^, then

H ^ { Z / K ) = H^F^I^) = limH^y. H Z^^y^^

and each sheaf is an associated sheaf whence acyclic, Vg H Z^ being an affinoid [BER1,
1.10]. In a similar way

H^{YIK} = H^F^^-t^^y^)- 0 n^[r]))
= limH^y. H Vr^UW ̂  ̂ n|y.nyrM)

and again by (3.2.5) each element in the complex is acyclic on the affinoid set Ve H Y^.
Finally the hyper-cohomology of the two complexes and the map between them is

calculated by the cohomology of the two complexes and by the map in the following
diagram

TT^-n ̂  ̂  - BK[f^ 0 ̂  M
(Jl, • • .. J r ) Y-B^———1———1

^ K[fl...fi...frl

It is then obvious, if we use our adapted Frobenius of (3.3.1), that there is the expected
relationship among the Frobenius maps. Q.E.D.

Chapter II

Application to the rigid unipotent fundamental group: weight filtration

§1. Preliminaries

1.1. In a earlier paper [LS-C], we studied the following situation. Let X be a smooth,
geometrically connected ^-scheme of finite type, which is an open subscheme of the special
fiber of a proper, flat and smooth around X, V-formal scheme of finite type P:

X——P.

(After [LS-C1], this technical hypothesis can be removed). In this setting we proved that
H^g{X/K) parametrizes the extensions of the trivial isocrystal by itself.
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We introduced the tannakian category Un(X) of unipotent isocrystals on X. Such
isocrystals are necessarily overconvergent . The fiber functor over a point x € X(fc),
makes Un(X) a neutral tannakian category over K [CR, lemma 1.8]. When the situation
can be lifted to caracteristic 0, we have shown [LS-C] that this category is equivalent
to the algebraic category introduced by Deligne [DE, §11]. We consider on X the a-th
iterate F of the absolute Frobenius (where as in Chapter I, q = p°'). If E € ob{Un(X)),
then its inverse image by Frobenius

F*E

is again an object of Un{X}. The Frobenius F is AT-linear and the following theorem
summarizes these facts.

THEOREM 1.2. - ([LS-C, 2.4.2]) Un{X} is a neutral Tannakian K-category on which the
Frobenius induces a K-linear autoequivalence.

We assume that there exists a rational point x G X{k). We can then introduce the
Tannakian fundamental group of Lfn{X) endowed with the fiber functor associated to
x e X{k) which we denote by

rig.un/ \r \
7r! { x ; x ) '

Then ^[^^{X^x) is a proalgebraic group. Moreover since every object ofUn{X) is an
iterated extension of the trivial object, ^[^^(X.x) is prounipotent [SA, ch.II, §4.3]. By
functoriality the Frobenius F induces an isomorphism

F, : ̂ ^{X^x) ——Tr^^X^).

Remark 1.2.1. - F^ coincides with the Frobenius appearing in [DE3,11.11.3].
In this paragraph we introduce a weight filtration in the completion of the universal

enveloping algebra of the Lie algebra of Tr^'^X, x). The idea underlying the construction
are influenced by [W].

1.3. Let 'R.ep^{7^[^g'un{X^x}) the category of finite dimensional representations of
^[^^{X^x) over K. There is an equivalence of categories

Rep^^^X^x^^UnW^

given by the fiber functor in x, and, in particular, if E E ob(Un{X)) is associated to

7^9Jun{X^)^GL{E^^

then F*E is associated to

rig,un/~\," \ F^ rig^un/^ \ P /^ T ( 771 \71-1 y' (X,x)—^i [X,x)—>GL{E^).

1.4. We recall that under our hypotheses [LS-C]

PROPOSITION 1.4.1. — The classes of extensions of the trivial overconvergent isocrystal by
itself are naturally isomorphic to H^g{X/K) and hence form a finite dimensional vector
space.
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Thus, if we denote by Ext{0^, ot) the extension of the trivial isocrystal by itself in
the category of isocrystals on X, we have a natural isomorphism

Ext{O^O^^H^(X/K)

respecting the Frobenius action [LS-C, §2]. We remark that in [LS-C1] it is proved that this
parametrization of the extensions of the trivial isocrystal by itself via H^ ( X / K ) actually
holds without the seemingly technical hypotheses on the space X that are imposed here.

§2. Structure of ^^^{X.x} and its associated pro-Lie-algebra.

In this paragraph, for notation and proofs, we follow [W]. To the fundamental group
^[^^(X^x) one associates the unipotent completion of the universal enveloping algebra
associated to its Lie-algebra. We denote it by

U^Lie^^^X.x}).

Its construction is as follows: we introduce the Lie algebra of ^[^^(X^x),
LieTr^^^X^x), which can be written as the projective limit of its finite dimensional
quotient Lie-algebras m^. Thus

and

Lie^^^X.x^Yimm^
a

l^Lie^^^X.x)) = lim^mj

where U(ma} is the completion of the universal enveloping algebra of m^ with respect
to its augmentation ideal a^. Since the characteristic of K is 0, we have an equivalence
of categories [D-G, IV §2, cor.4.5.b]:

Rep,(.——(X,.)).Mod^^,^^^

where on the right hand side we denote the category of finite dimensional ^f-vector
spaces which are modules over L^(Lie^T[^g'un(X,x)), such that the module action is
continuous with respect to the discrete topology on the module and the inverse limit
topology on tKLie^^^X.x)}, The algebra U^Lie^^^X.x}) acts on itself by left
multiplication: it is a pro-object of Mod^ r i a u r z ,

~ " U{Lze'K^ y ' { X , x ) )

PROPOSITION 2.1. - ^[^^{X^x) can be constructed as a countable inverse limit of
algebraic (unipotent) groups (with surjective transition maps).

Proof. - The proof can be found in [W, ch.I, 1.5], using 1.4.1. Q.E.D.
2.2. In view of the previous proposition we can write

^^{X, x) = limTrr^71^ x^
^'€N

and
^^(£^e7^^'nn(^^)) = lim^m,)

J'€N
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where U(mj) is the completion of the universal enveloping algebra of the Lie-algebra mj
of ^[^^{X^x)^ with respect to the augmentation ideal ay. We define the augmentation
ideal of U^Lie^^^X.x)) by

a = limOj
jeN

(dj is the ideal generated by aj in U{mj)).
2.3. Since ^(Tr^'^X,^))"6 = a/a2 it follows from the proof of proposition 2.1

that to give a linear map

a/a2 —> K

is equivalent to giving an extension in Ext^ .ng,^^ ^(K,K). Moreover, this
correspondence is natural. (For an explicit proof of this result and others see [LS-C1].)
Furthemore, if we then use the natural identification between Ext^ (^^^(x x^^i ̂ 0
and H^g(X/K} (1.4.1), we obtain a natural linear isomorphism

(o/fflT ^ H^(X/K).

LEMMA 2.4. - U^Lie'K^^^X. x)) endowed with the projective limit topology is complete
for the a-adic topology.

Proof. - We shall show that the inverse limit topology coincides with the a-adic topology.
The topology oiU^Lie'K^^^X^ x))is given by a basis of open sets which are the inverse
image in

U^Lie^^^X.x)} —>U{rrij)

of powers a^ of the augmentation ideal. It follows that each open set ofri^LzeTr^'^X, x))
contains a power of a. Hence the map

U{L^e^V\^g'un{X,x)}a-adictop. ——^ U^Lic^9'un (X, x))proj. limit top

is continuous. To prove the equivalence it suffices to show that any power a^ is not merely
contained in, but is actually equal to the full pre-image of oh for a suitable j. But our
hypothesis tells us that U(mj)/a^ is increasing and that the transition maps are surjective,i^ is ir
hence stationary, since the dimension is bounded by

&m^^U{L^e^^9-un{X,x))|ak).

The latter is finite because it is bounded by
k k

^dimia/a2)1 = ̂ {dimH^X/K))1.
1=0 i=o

Indeed we have a natural surjection

0(a/a2) —> a ' / a

and we apply 2.3. Q.E.D.

i /^+l
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§3. Weight filtration on the fundamental group

We wish to give a pro-mixed integral weight structure to the AT-vector space

U^Lie^^^X.x)).

First we must introduce the Frobenius isomorphism. We know that in the pro-unipotent
algebraic group ^^{X.x) there is a ^-linear isomorphism F^, induced by the
Frobenius. We wish to show that it will also induce an isomorphism in U^Lie^^^X, x)),
too.
Our proof works in a general setting: given a pro-unipotent group W, one can always carry
out the same construction as that of ^^{X.x}, and so associate to W a AT-algebra,
U(LieW).

PROPOSITION 3.1. - IfW is a pro-unipotent algebraic group, then

W —> U{LieW)

is a functor from the category of pro-unipotent algebraic groups over K to the category
of augmented K-algebras.

Proof. - We must prove that if W-^V is a J^-morphism between two pro-unipotent
AT-algebraic groups, then we can construct a natural ^-linear morphism

U{^p) : U{LieW) —>U{LieV).

If W and V are both algebraic, then this is certainly the case. Now suppose that W is a
pro-unipotent algebraic group and that V is again algebraic. Then one can factor ^ as

w-^w'^v
where W is an algebraic quotient of W. But W can be written as the inverse limit of all
its algebraic quotients: so the natural projection map W —> W composed with the natural
map between two algebraic groups will induce a map U{LieW) —^ U(LieV). Finally in
the general case, one can write V as the inverse limit of all its algebraic quotient groups
and apply the previous constructions to each term. It is also clear that U(^p) respects the
augmentation ideals: such ideals are associated with the trivial representation. Q.E.D.

Remark 3.2. - If we apply the previous results to the Frobenius isomorphism, F^ (1.2.1),
in Tr^^^X^x), we obtain a ^-isomorphism of augmented algebras

F* : U^Lie^^^X.x)) ——U^Lie^^^X.x)).

3.3. Now that we have defined the Frobenius ^-linear isomorphism on
U^LieTT^^^X.x)), we can introduce a weight filtration which will make it a pro-mixed
isocrystal.

We first recall that Mod^^i^nr^^ .. is equivalent to our category Un(X) ofunipotent
isocrystals (1.3). To each E G obUn(X), we associate its monodromy representation

p : 7^[^gJun(X^)-^GL{E^
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and, of course, the derived map

p : U^LieTr^^X^x)) —— End{E,).

The Frobenius transform, F * E is then associated to

rio.ttn/v \ F^ riq,un/-\r \ P /^ r / T~I \TTi^ (J^a:)—^ri^' pf,rr)—>GL{E^),

hence to

^(Lze7^^'nn(X,.r))^^(L^e7^^'nn(X^))^End(^

In particular, we get a Frobenius action on Rep^Ti-^'^X, a;)) and the induced Frobenius
action in Ext^ng,^^^{K,K). As above, the Frobenius, F^, respects the augmentation
ideal a of U^LieTr^^^X.x)). Thus we have a natural action of the Frobenius on a/a2.
We then have a natural isomorphism

(a/a2^ -^ Ext^.^K^K) ̂  Ext{0^0^).

If we wish our isomorphism to respect the Frobenius structures we must use the map on
a/a2 induced by the inverse ~F = F^~1 of F^. However by Proposition 1.4.1, Ext(0^, ot)
is naturally isomorphic to H^g{X/K) and this natural isomorphism respects the Frobenius
structure [LS-C]:

H^{X/K)-.Ext{0^0^.

Finally there exists a natural J^-isomorphism respecting the Frobenius

(H^X/K^Fy^ia/a^F)

(Here we use F to denote the usual Frobenius on H^ ( X / K ) , cf Ch.I. Note too that
on the left hand side we are using not the dual Frobenius, but rather the contragradient
Frobenius i.e. the inverse of the dual).

Remark. - This coincides with the expected crystalline realization in [DE3, 13.13].
After these introductory remarks we are able to establish

PROPOSITION 3.3.1. — The infinite dimensional vector space

U^Lie^^^X.x})

under the action ofF = F^1, is a pro-F-isocrystal, i.e. aprojective limit of F-isocrystals.
It has a natural pro-mixed (integral) weight structure given by an increasing sequence of
sub-vector spaces

. . . C W-2 C: W-i C Wo = U^Lie^^^X.x})

each of which is stable under the action of Frobenius and such that the quotient W-j/W-j-^
is a pure (finite dimensional) isocrystal of -weight —j.
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Proof. - For the first assertion it is enough to note that for each positive integer k the
ideal a^ is stabilized by Frobenius and that there is a naturally surjective map of finite
dimensional AT-vector spaces

f c / f c + i

and we conclude that

(g)(a/a2) -^ a^/a

U^Lie^^^X.x)}

is an .F-isocrystal.
For the weight filtration Wj in ^{Lie^^^X.x}^ we define

Wo=U(Lie7^[ig-un{X,x))
W-i = a.

Observe now that, as we noted just before 3.3.1, there exists a natural Ar-isomorphism
respecting the Frobenius

H^{XIKY ^ a/a2.

By the result of chapter I, H^g{X/Ky is mixed of weight -1 and -2. Let

p : a —> a/a2,

be the natural projection, and set

W^=p-\W^{a/a2)).

We then construct the filtration generated by TV-2 and TV-i. We define W-n to be spanned
by the products of the form ai • • •Q^/?i • • ' / 3 i where a, G W-i and /^ G TV-2 and
m + 2Z > n. Then one has

a" C W,n

for all n € N. Moreover, with this definition the canonical surjection

H^{X/K)^-^ —— a^a^
respects the weight filtration for all n and of course the graded part is pure. Q.E.D.

The filtration we have introduced is a filtration by ideals, hence each module of this
filtration is stable under left multiplication by U^LieTr^^^X^x)). Hence we have:

COROLLARY 3.3.2. - Consider ^(£^e7^^(7'^m(X,a;)) acting on itself by multiplication. It
is a pro-object of Mod^ie^rig-un(x x}Y Each w~n °f the weight filtration introduced in
3.3.1 is stable under the action ^/^/(I/zeTr^'^X,^)) and by the Frobenius. The action
ofU^Lie^^^X.x)) on each graded part

Gr^Wie^^X^x)))

is trivial.

Proof. - By 3.3.1, it is enough to note that a == W-i. And that an action is trivial if
the augmentation ideal acts trivially. Q.E.D.
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Chapter III

Mixed weight filtration on unipotents F-isocrystals.

§1. Definitions. Preliminaries

We use the same hypotheses as in Chapter II.
1.1.
Assume that X, a smooth, geometrically connected scheme, has a point x defined over

X{k). We denote the closed points of X by | X |. The Frobenius on X will be the a-th
iterate of the absolute Frobenius.

An overconvergent F-AT-isocrystal on X is a couple (M,(/)) where M is an
overconvergent AT-isocrystal on X and (f) is an horizontal isomorphism

(/) : F*M—^M,

with F*M the Frobenius transform of M. On each x G X(k), such an isomorphism
induces a AT-linear map on the fiber My, = F*Ma.:

^ : M,—^M,,

hence {M^^x) is a J^-F-isocrystal.
We are interested in unipotent isocrystals, and begin by studying such objects endowed

with a Frobenius structure.

DEFINITION 1.2. - We say that (F, (f>) is a unipotent F-K-isocrystal on X, ifE C ob Un{X)
and (F, (/)) is an overconvergent F-K-isocrystal on X.

1.3. For each extension kf of k of degree / we denote by Kf the unramified extension
of K (of degree /), which has kf as residue field. For each closed point y e X(kf), one
obtains a fiber functor on overconvergent F-A^-isocrystals (M,<^). The fiber at y will be
indicated by My: it is a Kf-vector space endowed with a Frobenius map (f)y which is not
Kf -linear. Of course, if we consider ^, it will induce a A^--linear isomorphism in My.
For [My^^y) we will use the definition of chapter I.

DEFINITION 1.4. - An overconvergent F-K-isocrystal (F, (f)) on X is said to be pure of
weight n (n C Z), if for each y € X(kf), the F-Kf-isocrystal {Ex,(f)y) is pure of weight
n relative to kf.

DEFINITION 1.5. - A unipotent F-K-isocrystal (F,(^) on X is said to be mixed with
integral weights, if it admits an increasing finite filtration by sub-F-K-isocrystals on X,
Wj (j C Z), such that (Gr^E, Gr^cf)} is a j-pure F-K-isocrystal on X.

Remark. - In the previous definition we could have required only that E admit a finite
filtration whose graded parts are pure: we will see in (4.1.10) that, even under this weaker
condition, a unipotent F-A^-isocrystal on X endowed with a finite filtration having pure
integral weight graded parts always admits a structure as in Definition 1.5. The analogous
statement in the etale case is [DE2,II,3.4.1, (ii)}.
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Moreover, if E is associated to the morphism

p : U^Lie^^^X.x)) —> End(E,)

then F * E is associated to the morphism

poF.., : U^LieTr^^^X.x)) —> End(E^).

Such an E is a unipotent .F-J^-isocrystal on X if and only if there exists an isomorphism
(f)x : Ex —^ Ex, such that the following diagramm commutes

U^Lie^^^X.x}} ^ End{Ex)
\F \Ad^}

U^Lie^^^X, x)) ^4 End(E^)

where Ad(cf)x) = (f) o — o ̂ -1, and p o F^ o F (F = F^1, cf 3.3) is the map p which
represents E. This condition is equivalent to requiring that p be a morphism respecting
the Frobenius structures

(^(LzeTrr^^X^)),^-1 =F) -^ (End(Ex),AdW).

We give some results on unipotent F-J^-isocrystals on X.

PROPOSITION 1.6. - Let E G obUn(X) be endowed -with a Frobenius structure 0i. Suppose
E admits another Frobenius structure (j)^ such that there exists x G X{k) on which
^x = ^x' Then ^1 = ^2.

Proof. - The fiber functor at x G X(k) of the Tannakian category Un{X) is faithful
and 0i o (t^)"1 = y? is a an element of Homun{x)(E^E) which is the identity on the
fiber at x. Q.E.D.

COROLLARY 1.7. - Let E be a constant K-isocrystal on X, endowed with the Frobenius
structure given by (j). Then (f) is constant.

Proof. - We can write E = Ex 0 01 (where 0T is the trivial isocrystal), and then
{Ex 0 ot, (f)x 0 id + ) is another Frobenius structure on E which coincides with (f) on x.
Now it suffices to apply 1.6. Q.E.D.

We have (cf Ch.I, 2.0)

COROLLARY 1.8. - If (E^(p) is a constant F-isocrystal on X, such that for some point
x € X(k), (px has only Weil numbers as eigenvalues on Ex, then (J5,0) is mixed with
integral weights.

Remark. - The category of overconvergent isocrystals on X, Overc(X), is a neutral
Tannakian ^-category once we have chosen a point x G X{k) ([CR], [BER2, 2.3.9]).
It turns out that if an object M of Overc(X), has two Frobenius structures, </>i and ̂
which coincide at x, then 6\ =. ^2. We are not able to prove that the Frobenius induces
an auto-equivalence in Overc{X), although in the case dimX = 1 there are some results
on the Frobenius antecedent [CH-M].
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§2. Mixed weight filtration in the generic pro-unipotent isocrystal

2.1. Let X be as in the previous sections. We consider a point x G X(k). In Chapter
II we have associated to the Tannakian category Un(X) the completion of the enveloping
algebra of its Lie algebra U^Lie^^^X.x)}, endowed with a ^-linear isomorphism,
F. In particular U{Lie'K\^g'un{X,x}) is an infinite dimensional vector space which is a
module over itself by left multiplication.
By filtering U^Lie'K^^^X.x}) by the powers of the augmentation ideal a, which are
stabilized by the multiplication by U(L^e7^[^g'un{X,x)), one finds that the graded parts
are finite dimensional vector spaces on which U^LieTr^^^X.x)) acts trivially. We can
associate a pro-unipotent isocrystal Qen^ to U^Lie^^^X.x)). The isocrystal Qen^ is
called the generic pro-unipotent isocrystal.
On the other hand, U^Lie^^^X, x)) admits a Ar-linear isomorphism F^, the Frobenius.
So, if we let m denote multiplication on U^LieTr^^^X.x)), and if in the diagram of
§1 we replace E^ by U^Lie^^^X.x)), and ̂  by the isomorphism ~F (The inverse of
F^ as in 3.3), we obtain a commutative diagram

U^Lie^^^X, x)) m^ End^Lie^^^X, x)))

[F [Ad(F)

U^Lie^^^X, x)) m^ End^Lze^^^X, x)))

By means of the increasing filtration Wj in U^Lie'K^^^X.x)) and invoking Corollary
3.3.2 of Chapter II, one finds that Qen^ is a pro-unipotent I^-J^-isocrystal on X which
admits an increasing filtration by sub-pro-unipotent F-J^-isocrystals, Wy, such that each
associated graded part

Gr^Qen^

is a constant F-isocrystal on X (i.e. a direct sum of trivial isocrystals endowed with a
Frobenius which, a priori, is non constant). We denote by ~F the Frobenius on Qen^.

2.2. The next proposition gives the structure of each

Gr^Qen^

PROPOSITION 2.2.1. - The pro-unipotent F-isocrystal on X, Gen^, is a pro-mixed
F-isocrystal on X whose "weights lie in the set {0, —1, —2, —3, . . .} .

Proof. - By 2.1, we know that the weight filtration on U^LieTr^^^X.x)) induces a
filtration on Qeny,, Wp whose graded pieces are constant F-AMsocrystals on X of weights
j. We then use corollary 1.8. Q.E.D.

Remark 2.2.2. - The weight filtration, Wj in Qen^ is such that YVj = Qen^, for j > 0.
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§3. Results of the type Hain-Zucker [HZ]

We consider an example coming from the complex case. Let Xc be a smooth algebraic
connected variety over C (or, more generally, a Zariski-open set of a compact Kahler
manifold). Let x € Xc. For each r E N, it is possible to define a graded polarized
Q-mixed Hodge structure on

QMXc^)]/^

where J is the augmentation ideal of the group algebra Q[7Ti(Xc,^)]. These structures
are all compatible and so we may conclude that

lim QMXc^)]/^ = QMXc,^
r(EN

admits a pro-graded polarized Q-mixed Hodge structure. On the other hand one can
introduce the Tannakian category of unipotent representations of 71-1 (Xc,^), Un{Xc)
(which are the unipotent local systems), and apply the same techniques as in Chapter II
to obtain an algebra that we denote by

U^Lie^^^x)}.

Wildeshaus has proved ([V/], lemma 2.1) that

^(L^^Xc^)) = Q^XC,^.

On the other hand one can introduce in Xc, the category of admissible graded-polarized
variations of Q-mixed Hodge structure on Xc' For the definition see [H-Z1.2], [BR-Z].
Admissibility is sometimes referred to as a "good graded-....". This admissibility condition
expresses the possibility of extending the Hodge filtration to some compactification Xc of
Xc and also ensures good behavior of the weight filtration with respect to the monodromy
filtration at the points of Xc \ Xc. Thus, if we restrict to a unipotent admissible graded-
polarized variation of Q-mixed Hodge structure on Xc, V, we can construct a map
obtained by linearity from the representation associated to V at x:

P. : Qhr^Xc^ -^End^-V.).

Both the source and the target have a mixed Hodge structure [C]. Then

THEOREM 3.1.1. - ([H-Z1], [H-Z2]) The functor

v^o^v,)

is an equivalence of category between the categories of admissible graded-polarized
unipotent variations of Q-mixed Hodge structures on Xc and the category of graded
polarized Q-mixed Hodge structures, V, endowed with a morphism of Q-mixed Hodge
structures

Q^Xc^x)^—^ EndQW^

which also respects the algebra structure.
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3.2. We are going to prove a similar result in our setting. The category of graded-polarized
unipotent variations of Q-mixed Hodge structure on Xc is replaced by the category of
unipotent mixed .F-AMsocrystals on X. Recent works of Christol and Mebkhout [CH-M]
have shown that for overconvergent isocrystals satisfying the Robba condition defined on a
curve (and, more generically, for an isocrystal which is "soluble") it is possible to obtain
an extension to the residue class (at least for curves), similar to that requested by the
"admissibility" condition. Unipotent isocrystals fall into this setting. We should expect a
monodromy operator (given by the residue at infinity of the associated differential module)
which respects the weight filtration.

3.3. One of the most important tools in the proof of Hain and Zucker (see also [SC],
[B-Z], [H-Z1.2]) is a rigidity theorem.

PROPOSITION 3.3.1. - Consider a unipotent F-K-isocrystal on X, E, and x € X(k). IfE
admits a mixed weight filtration, then H^g{X^ E) is mixed and the map

^%(X,£)00+——E

is a morphism of unipotent F-K-isocrystals on X endowed with a mixed weight filtration.

Proof. - By [LS-C], we know that H^g{X, E) is stabilized by the Frobenius. Moreover,
there is an obvious inclusion of unipotent F-AT-isocrystals

(3.3.2) J^ (X ,F)00+——E.

Taking the fiber at x we have the obvious functorial inclusion

H^{X^E)-^E^

of F-AT-isocrystals. We conclude that H^g(X,E) is mixed. Then H^g{X,E) 0 0+ is
mixed (1.8), and the map (3.3.2) is an inclusion of unipotent mixed .F-AMsocrystals on
X. Q.E.D.

We now give a theorem concerning the compatibility of filtrations on a mixed with
integral weights unipotent F-K -isocrystal on X.

THEOREM 3.3.3. - Consider a unipotent F-K-isocrystal E on X, with Frobenius
isomorphism (/). If it admits an integral weights filtration, then it is unique.

Proof. - Suppose it admits two integral filtrations Tj- and T^ each of which makes a
E into a mixed unipotent F-isocrystal on X. Then at each x e X(k) one sees that T,1^
and T,2^ coincide. Moreover, the element ida € H^g{X,T-iom(E,E)) is fixed by the
Frobenius action. The unipotent F-AT-isocrystal on X, 'Hom(E,E), can be viewed as a
mixed isocrystal using the filtration T,1 on the first and T^ on the second. Then

idE € W,{H^g{X^Hom{E^E)) ® 0^}.

Applying 3.3.1 to the inclusion

H^g{X, Hom{E, E)) 0 0+ —— Hom{E, E)
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of mixed unipotent F-isocrystals, we find that ida is an element of Wo(1-iom{E, E)) and
so T,1 C T,2. We again apply the same technique to T-Com{E, E\ endowed with the weight
filtration using T,2 in the first and T,1 in the second. Q.E.D.

3.4. We are ready to state our theorem on equivalence of categories in the Hain-Zucker
sense [H-Z1], [H-Z2]. We recall that in a mixed with integral weights J^-isocrystal (H, <^)
we use the filtration such that grjH are pure of weight j e Z (cfr. Chl, 2.0).

THEOREM 3.4.1. - Let X be a smooth scheme over k, and x G X(k). Then the fiber
functor at x

E-^E^

induces an equivalence between the category of unipotent mixed with integral weights F-
K-isocrystals {E, (f)} on X and the category of mixed F-K-isocrystals {Ex,(f>x} endowed
with a K-algebra morphism respecting Frobenius.

(^(Lze^^^F) -^ (End(E^Ad^).

Proof. - Given a unipotent F-J^-isocrystal on X, (E, (/)), the morphism

U^Lie^^^X.x)) —— End(E^).

respects the Frobenius structures, hence the image is in Wo(End(Ex)) (Note that here
the mixed structure on End(E^ is given by Ad(^)). In fact Wo = U^Lie^^^X.x))
and the action ofU^LieTr^^^X.x)) respects the weight filtration in E^. By the rigidity
results of 3.3, it is enough to prove that to each mixed integral F-J^-isocrystal (ff, ̂ )
which admits a morphism

(3.4.2) U^Ue^^^X, x)) —— End(H).

respecting the Frobenius (for the mixed structure see Ch.I, 2.0) one can associate a unipotent
mixed F-AT-isocrystal on X, (E, (f)), with filtration W. and satisfying

1.) the fibers at x satisfy (E^, ̂ ) = (H, '0), and
2.) the filtration induced by W, on Ey, coincides with the weight filtration of H.

By the results of Chapter II, we know that from the morphism (3.4.2), we obtain
a unipotent F-AT-isocrystal {E,(f)\ whose fiber at x coincides with {H,^). We must
show that it admits a mixed weight filtration whose fiber at x is the weight filtration
of H. But, the homomorphism (3.4.2) respects the mixed structures, and it induces
(Wo = U^Lie^^^X.xY))

(3.4.3) U^Lie^^^X, x)) —— Wo(End(H)).

Thus the weight filtration on H is compatible with the action of U^L'ie^^^X.x)).
Furthermore, again for the same reason, the action on the graded parts (which are pure)
is trivial: the weights of U^Lie^^^X.x}} are all < 0 and W^ is the augmentation
ideal a. In this way (E, (/)) receives an increasing filtration by unipotent F-J^-isocrystals
on X which we denote by H.. The graded pieces Gr^{E) associated to this filtration
are constant F-AT-isocrystals on X. The Frobenius is constant (§1) and they are pure of
weight j, since they are pure in a fiber. Q.E.D.
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COROLLARY 3.4.4. - Let X be a smooth scheme over k, and x G X{k). Let (E^ (/)) be a
unipotent overconvergent F-K-isocrystal on X, and let (£3;, (f>x) be the fiber of (£1, of)) at
x. Then (£', (f)) is mixed if and only if the eigenvalues of (f)x are Well numbers.

Proof. - Starting from (Ex^x), one can decompose Ex into stable subspaces relative
to the irreducible factors of the characteristic polynomial (Ch.I, 2.0). These subspaces are
stable under the action (f>x and the eigenvalues of <^ on each of these factors are Well
numbers of the same weight (1.8). If we take the subspace relative to the smallest weight,
then it is stabilized by the action ofLl^LieTr^^^X^x)), and in fact the action is trivial.
We then go up on the weights. Q.E.D.

Remark 3.4.5. - Although the category of overconvergent F-AT-isocrystals on X is
a Tannakian category, we need further information on its Tannakian fundamental group
(weight filtration ...) to obtain the same result in that category. One can give a unicity
statement for such a category, but not a construction.

§4. i-Weight filtration for a imipotent F-^-isocrystal on X

Our definition of integral mixed unipotent F-AT-isocrystal on X, (J5,<^), seems to be
somewhat restrictive. Indeed we require an increasing filtration Wp j G Z, such that the
graded parts Gr^E are pure of weight exactly j. In this paragraph we show that our
definition is actually completely general: we will work without hypotheses on the filtration
(4.1.4) and, at the same time, we will deal with real weights.

First we choose an imbedding i

^-Q^C,

and we give a general definition

DEFINITION. - A K-vector space of finite dimension H endowed with a K-linear map, ^,
the Frobenius, is an b-pure K-isocrystal of weight \ ( X e R), if for each eigenvalue C, G Qp
of <i>, its image i{(,) has absolute value qx^2. We say that H is an i-mixed isocrystal if it
admits an increasing filtration whose graded parts are b-pure.

4.1. We begin with some generic results concerning pro-unipotent F-isocrystals on
X. Consider first a unipotent F-J^-isocrystal on X, {E , ( / ) ) . One can associate to it the
morphism

(4.1.1) U^Lie^^^X, x))^End(E^

which commutes with the Frobenius action (using F on the left hand side) (II.3.3.1). On
the other hand we can interpretate (4.1.1) as the map

(4.1.2) E^ x U^Lie^^^X, x)) —— E,

which sends (e,^) to ^(e). This map is surjective. We let U^L'ie^^^X.x}} act on the
source of the map (4.1.2) by the trivial action on the first factor and the usual multiplication
on the second, while U{L^e'K\^cl'un{X,x}) acts on the target Ex via (4.1.1). It follows that
(4.1.2) commutes with these actions, and so we obtain a surjective map of pro-unipotent
isocrystals on X

E^ 0 Qen^ —> E.
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Furthemore, we may introduce a Frobenius action on E^ x U^Lie^^^X.x)} given
by ^ 0 F. This action is compatible with the Frobenius on U^Lie^^^X.x)). This
structure is compatible with the morphism (4.1.2), once we have defined <^ in the target.
Finally one obtains a surjective map of pro-unipotent F-^f-isocrystals

{E^ 0 Qen^, ̂  0 F) —> {E, (/)).

It is then clear that at each point y e X(k) the eigenvalues of (/)y in Ey are related to
the eigenvalues of Ex and to those of Qen^.

Using the previous notation, we give (cf.1.5) some new definitions.

DEFINITION 4.1.3. - An overconvergent F-K-isocrystal (M,(f>) on X is said i-pure of
weight X ( X G R), if for each f G N and for each y G X{kf), the F-isocrystal (My, <^)
is pure of i-weight \ relative to kf.

DEFINITION 4.1.4. - An overconvergent F-K-isocrystal (M, (f)) on X is said i-mixed, if it
admits an increasing filtration by sub-F-K -isocrystals on X, W», such that the associated
graded parts are b-pure F-K-isocrystal on X.

PROPOSITION 4.1.5. - Let {E, (p) be a unipotent F-K-isocrystal on X. If (E, (f)) is i-pure
at a point x € X(k}, then it is constant.

Proof. - Let A be the weight of {E, <^). Since E is unipotent, we have as before a
surjective map (4.1.2):

E, x U^Lie^^^X.x}) —— E^.

If n is the index of unipotency of E, we can actually find a surjective map

E^ x U^Lie^^^X.x)}!^ —> E^

and the latter is a map of F-AT-isocrystals. In particular, in the first F-J^-isocrystals, the
^/-weights are the sums of the weights of the F-jFf-isocrystals in the tensor product. Hence
they are of the type A + i (i G N). We can also study the following action

E^ x a / a " —> E^

which is again a map of F-J^-isocrystals. But in this case there are no common eigenvalues
for the Frobenius (on the left we have weights of the type A + i with % / 0). Hence the
map must be 0 and so the action is trivial. Q.E.D.

PROPOSITION 4.1.6. - Let { E ^ ( / ) ) be a constant F-isocrystal -which is i-pure of weight A.
Then the i-weights of the Frobenius acting on

H^X/K^E)

are of the type A + 1, A + 2.

Proof. - Since E is constant.we can write V = Ey, and E = V 0 ot The Frobenius
here is merely the extension of the Frobenius

^ : V—>V
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of the K- vector space V. Then

H^(X/K^ E) = H^{X/K) 0 V

and here the Frobenius action here is just the tensor of the Frobenius on H^g{X/K)
with (p. Q.E.D.

COROLLARY 4.1.7. - Let (£'1, ^i),(£'2, ^2) be two constant F-isocrystals which are (resp.)
Ai and As u-pure. If the difference Ai — \^ is not integral or > 0 , then all the unipotent
F-isocrystals which are extensions of (J?i, <^i) Zry (i^?^) ^r^ trivial.

Proof. - By the results [LS-C] the extensions in question are characterized by the
Frobenius invariant in

(4.1.8) H^(X/K^m^(E^E,)).

But T-iom +(^2^1) = HomK{V^,V^) (g) ot, If £1 = Vi 0 ot and ^2 = V^ 0 ot.
On the other hand, by 1.1.7, the two Frobenius maps are constant and are given
by (^i and y?2 on Vi and V^ respectively. On HomKiY^^V^) we have a Frobenius
structure, (/?, ^-pure of weight Ai — A2. Using the proof of 4.1.6, we have that
Hlig{X/K, U)m ^ (£2, ̂ i)) = H ^ ( X / K ) 0 Hom^Y^ ^i) and the Frobenius is given
by the tensor product of the Frobeniuses on H ^ g ( X / K ) and on HomK^V^^ Yi). The
Frobenius will have no invariant if the difference Ai — A2 is >_ 0 or not integral. Q.E.D.

Remark 4.1.9. - Under the previous hypotheses, if the difference of the weights is non
integral or is strictly greater than 0, then there will a unique splitting which respects the
Frobenius. In fact the number is characterized by the F-invariant in

H°^X/K^m^(E^E,)) = H°^X/K) 0 HomK^V,).

We can now give the structure of an ^-mixed unipotent overconvergent F-I^-isocrystal
on X, (M^).

PROPOSITION 4.1.10. - Let (M, (f)) be a unipotent overconvergent i-mixed F-K-isocrystal
on X. Then (M, (f)) admits a decomposition by sub-i-mixed F-K-isocrystals on X

M = Q) Mb
bGR/Z

where each M^ has i-weights in the same class of b G R/Z. Moreover, if MQ is not
zero, then when endowed with the induced Frobenius <f), it has a natural structure of
i-mixed unipotent F-K-isocrystal of b-integral "weights, and admits an increasing filtration
Tj ( j G Z) such that the associated graded parts Grl-(M^) are pure of i-w eight j .

Proof. - The proof, using the results established above, is as in [DE2, II, 3.4.7] (see
also [FA]). Q.E.D.
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§5. Relation with other points, y G \X\

5.1. In this paragraph we will study the behaviour of the unipotent fundamental group in
relation with scalar extensions. Our previous notation and terminology remains in force. We
choose a compatible lifting a of the ^-power isomorphism to each Kf. In the Tannakian
([DE3, §4], [S]) setting we can introduce the category

Un(X)(S)Kf.

Its objects are unipotent J^-isocrystals on X endowed with a ^-module structure. On
the other hand we may also take the scalar extension X^f and consider the category
Un(Xkf)) of unipotent ATj-isocrystals on X^. There is an obvious functor associated with
the extension of scalars a : Xje^ —^ X

(5.1.1) a* : Un{X) —>Un{X^)

which is exact [BER2, 2.3,3]. On the other hand one can prove that a* is essentially
surjective and faithfull. In fact, for each E C oh ^/n(X),and for each i e N we have

(5.1.2) H^(Xk^a^E)) ̂  H^(XE) 0^.

This can be proven by induction on the order of unipotency and by using the base change
theorem in Ch.I, 1.1. Hence our functor is essentially surjective (i = 1). We obtain the
faithfulness by noticing that the two categories have internal horn and using 5.1.2 (for
i = 0).

The map a : Xk^ —^ X induces a direct image functor

a, : Un(Xk,)) —— Un(X) 0 Kf

PROPOSITION 5.1.3. - The functor a^ is an equivalence of categories.

Proof. - We have another natural functor

U : Un(X) 0 Kf —> Un(X^).

Every object ofUn(X)^Kf, E, is realized by a rigid integrable unipotent connection (with
a structure of A^-module) defined in some strict neighborhood of X in PK- Considering
it as a Kf-vector space (we recall that Kj is a finite extension of K, so, we don't need to
complete), we obtain a rigid integrable unipotent connection in some strict neighborhood
of Xkf in PK^ (i.e. an object of Z^n(X^)) which we denote by U(E). This functor is
the quasi-inverse of a,,: in fact one can construct on Pj^ a fundamental system of strict
neighborhoods of X which is an extension (by Kf) of a fundamental system of strict
neighborhoods of }X[p (hence, defined on K) [BER2, 1.2.4(%)]. Q.E.D.

Remark 5.1.4. - This is compatible with [DE3, §4 and §10].
5.2. Let a; be a closed point in X(k). We have introduced the K-fiber functor ujy^ fo1'

the Tannakian J^-category Un(X\ and we have associated to it the unipotent fundamental
group Tr^'^X,:);), which is a AT-proalgebraic group. Of course we can extend of the
previous fiber functor to a Kf -fiber functor ujy, (g) Kf

^ 0 Kf : Un(X) (g) Kf —> Vect(Kf),
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Its Tannakian fundamental group is just the scalar extension to Kf of ^[^^(X^x) ([S]
and [DM]). By the results of 5.1 we deduce

PROPOSITION 5.2.1. - Under the previous hypotheses, the scalar extension Tr^'^X, x) 0
Kf is the Tannakian fundamental group of the Kf-tensor category of the unipotent
Kf-isocrystals Z^n(X^) on X^ by the fiber functor ujy, 0 Kf, i.e.

riq.un/ -î  \ ^ j^ riq.un/-\r \
71-1" ( X , X ) ̂ Kf = TI-i y' ( X k ^ X ) .

5.3. Consider Un(X) and its fundamental group ̂ ^(X.x) at x e X(fc). There is a
linear action ofFrobenius, which now is denoted by Fx, on ^[^^(X^x). As in [DE2,II],
[CR, §5] and [B-0] we can define the Well-group of Un(X) at x, W(Un(X),x) as the
semi-direct product of Tr^^X, x) and Z, where the action of n G Z on TT^'^X, rr) is
given by F^n. Consider, now, a point y G X(fcj). It induces a fiber functor

ujy : Un(X) —> Vect(Kf),

We can extend to

ujy : Un(X) (g) Kf ^ Un(Xk,) —> Vect(Kf),

though of course on Un{X) (g) Kf ^ Un(Xkf) the action of the a-th iterate of Frobenius
(q = ^a, N(k) = q) is no longer ATj-linear and so we must take the a/-th iterate
of Frobenius. We indicate the associated fundamental group ^[^^(Xk^y) and the
Frobenius Fy~1. Of course we can do the same with the Kf -scalar extension of uj^- We
again introduce the Well fundamental group W(Un(Xkf))^x), which fits into the exact
sequence (Here we denote with the same symbol, F ^ f , an element of the Well group and
its action on the fundamental group)

0 ̂  ̂ ^(Xk^x) -. W(Un(X^))^x) ̂ <F,f>^ 0.

On the other hand we have an inclusion [CR, 5.4]:

W(Un(Xk,,x){Kf) -^ W(Un(X)^x)(Kf)

(arising via push-out from the inclusion < F^f >—»< F^~1 >). Starting from an
isomorphism between ^[^^(Xk^x) and Tr^'^X^,^), finally we have that F y 1

induces a Frobenius conjugacy class in W(Un(X)^ x)(Kf), given by Froby [CR, 5.4].Thus
we find that [CR, §5] Froby = F:;j Q where g e Tr^^X^)^).

Consider now an object of Un(X) which has a Frobenius structure (E^). Again we can
consider the fiber Ex at x e X(k) and the group of automorphisms Aut(Ex). We can
consider also the semidirect product W(Ex) of Aut(E^) and <(f)x > where the action of
(f)x on Aut(Ex) is given by conjugation. We then obtain a morphism

(5.3.1) p : W(Un(X),x) -^ W(E,)

associated to the representation p : ^[^^^(X, x) —> Aut(Ex) and such that ~p(F^~1) = ̂ x-
Of course we may then consider y G X(kf), and (Ey.^y), Ey is a ^-vector space.
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We can also extend the morphism (5.3.1) to Kf, and finally we find that there is an
isomorphism between (Ey,^) and (E^ (g) Kf.p^F^^)). But ~p is a morphism and we
have p ( F , f g ) == p{F^f)p{g), where ̂ -Q is ̂  (g) ̂ j [CR, 5.5]. We may state

THEOREM 5.3.2. - The unipotent F-K-isocrystal {E, (f)) is mixed if and only if there exists
a f G N and a point y G X{kf) such that (Ey, <^) is a mixed Kf-isocrystal relative to kf.

Proof. - We have seen that (Ey,<p^) is isomorphic to (E^ (g) Kf^F^^)). But E is
unipotent, and so we can find a filtration of E stable by Frobenius whose graded pieces are
trivial J^-isocrystals (it is the natural filtration of [LS-C]: we start with H ^ ( X , E), we take
the associated constant F-isocrystal H^g(X,E) 0 ot = E ' , we consider E/E\ and we
take H°^(X, E / E ' ) . . . ). Then p(g) acts trivially on the graded pieces of that filtration and
(f)^^Kf respects the associated filtration. The eigenvalues oi~p{F^f g) are the eigenvalues
of ^(F^) = ̂  0 Kf. So they are Well numbers if and only if the eigenvalues of ̂  be
Well numbers (Ch.I, §2). It now suffices to apply Corollary 3.4.4. Q.E.D.

Remark 5.3.3. - We have an analogous statement for ^-mixed. Note that in Theorem 5.3.2
it would have been enough to require that the eigenvalues of (f)y be Well numbers (3.4.4).

5.4. In this subsection we will introduce an ^/-weight filtration for a generic unipotent
F-K-isocrystSii on X at the cost of extending the coefficients.

PROPOSITION 5.4.1. - Let (JS, (f)) be an object in Un(X). Then there exists a finite extension
K ' ofK with residue field k' of degree f over k such that the extension of (E^) to an
object ofUn(Xk')), { E k ' ^ ^ ) , is i-mixed.

Proof. - We again use die natural filtration of E introduced in the proof of theorem
5.3.2. We then apply corollary 1.7. Each graded part (gr.E.gr.cf)) is constant. We take
the fiber (E^^4>x) at re G X(k). If it is not mixed, we can take a finite field extension K '
(of residue field A/) in which (f)^ can be decomposed according to its eigenvalues. We then
take (£^ ^ K ' , ^ (g) K'\. it is ^-mixed. Q.E.D.

§6. Remark on unipotent isocrystals

In this paragraph we prove a result which we conjectured in [LS-C]. Independently,
Deligne and Crew have also given a positive answer.

PROPOSITION 6.1. - Every unipotent isocrystal E on X is a quotient of a unipotent
F-isocrystal on X.

Proof. - Given E, we know that there exists a morphism

l^LieTr^^^X.x)) —— End(E^)

As in §4, we can extend such a map to a surjective map of unipotent isocrystals on X

E^ x {Qen^/c^) —> E

for a suitable n connected with the index of unipotency of E. On Qen^/a71 we have a
natural induced Frobenius structure which we will again indicate by ~F. Finally, zd^ (g) ~F
gives a Frobenius structure on Ey, x (Gen^/a71). Q.E.D.
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