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Matrix computations with huge-size multilevel matrices,
e.g. of order of 2 to power 100, are not easy to make
feasible even with structure and supercomputers. How-
ever, the former seems much more essential for problems
on that scale. Most important structure on that scale
is related with separation of variables and eventually
with tensors. Thus, successful matrix computations are
becoming tensor computations. The purpose of this
minisymposium is to present the state of the art in
representation and approximation of tensors in higher
dimensions. The accent is made on recent findings, in
particular on the use of matrix methods for generalized
unfolding matrices associated with tensors.
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Recently [1,2,3], a new formula was provided that allows one
to reconstruct a rank-(Ri, Ra2,...,Rn) Tucker tensor Y €
RIXI2-XIN from a subset of its entries which are deter-
mined by a selected subset of R, indices in each mode
(n=1,2,..,N). As a generalization of the column-row ma-
trix decomposition (also known as CUR or “skeleton” decom-
position), which approximates a matrix from a subset of its
rows and columns, our result provides a new method for the
approximation of a high dimensional (N > 3) tensor by us-
ing only the information contained in a subset of its n-mode
fibers (n = 1,2,..,N). The proposed algorithm can be ap-
plied to the case of arbitrary number of dimensions (N > 3)
and the indices are sequentially selected in an optimal way
based on the previously selected ones. In this talk, we an-
alyze and discuss the properties of this method in terms of
the subspaces spanned by the unfolding matrices of the sub-
tensor determined by the selected indices. We also discuss
about its applications for signal processing where low dimen-
sional signals are mapped to higher dimensional tensors and
processed with tensor tools. Experimental results are shown
to illustrate the properties and the potential of this method.
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Tensor decompositions permit to estimate in a determinis-
tic way the parameters in a multi-linear model. Applications
have been already pointed out in antenna array processing
and digital communications [1], among others, and are ex-
tremely attractive provided some diversity at the receiver is
available. In addition, they often involve structured factors.
These deterministic techniques may be opposed to those based
on cumulants, which require the decomposition of symmetric
tensors [2]. More generally, the goal is to represent a func-
tion of three variables (or more) as a sum of functions whose
variable separate.

As opposed to the widely used Alternating Least Squares
algorithm, it is shown that non-iterative algorithms with poly-
nomial complexity exist, when one or several factor matrices
enjoy some structure, such as Toeplitz, Hankel, triangular,
band, etc. Necessary conditions are first given, concerning di-
mensions, bandwidth, and rank [3]. Then sufficient conditions
are provided, along with constructive algorithms, in the case
of third order tensors. These algorithms require solving linear
systems, and computing best rank-1 matrix approximations.
Hence the overall complexity is polynomial if one admits that
the latter rank-1 approximations also have a polynomial com-
plexity.
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In this talk we discuss a calculus of variations in arbitrary ten-
sor representations with a special focus on contracted tensor
networks and apply it to functionals of practical interest. The
survey provides all necessary ingredients for applying mini-
mization methods in a general setting. The important cases
of target functionals which are linear and quadratic with re-
spect to the tensor product are discussed, and combinations of
these functionals are presented in detail. As an example, we
consider the representation rank compression in tensor net-
works. For the numerical treatment, we introduce efficient
methods. Furthermore, we demonstrate the rate of conver-
gence in numerical tests.
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The idea that one might extend numerical linear algebra, the
collection of matrix computational methods that form the
workhorse of scientific and engineering computing, to numer-
ical multilinear algebra, an analogous collection of tools in-
volving hypermatrices/tensors, appears very promising and
has attracted a lot of attention recently. We examine here
the computational tractability of some core problems in nu-
merical multilinear algebra. We show that tensor analogues
of several standard problems that are readily computable in
the matrix (i.e. 2-tensor) case are NP hard. Our list here
includes: determining the feasibility of a system of bilinear
equations, determining an eigenvalue, a singular value, or the
spectral norm of a 3-tensor, determining a best rank-1 ap-
proximation to a 3-tensor, determining the rank of a 3-tensor
over the real or complex numbers. Hence making tensor com-
putations feasible is likely to be a challenge.
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We consider the numerical solution of the Hartree-Fock equa-
tion (nonlinear eigenvalue problem) by the novel tensor-
structured methods based on tensor approximation of arising
functions and operators represented on 3D n x n x n Carte-
sian grid [1]. Tensor-structured techniques enable “agglomer-
ated” computation of the three- and six- dimensional volume
integrals [2], with complexity that scales linearly in the one-
dimension grid size n. High accuracy is achieved due to the
multigrid accelerated rank reduction algorithm for 3-rd order
tensors which provides computation of the Hartree potential
on large spacial grids, with n < 10%, necessary to resolve mul-
tiple strong cusps in electron density [3]. The discrete non-
linear eigenvalue problem in 3D is solved iteratively by the
multilevel tensor-truncated DIIS scheme on a sequence of re-
fined grids with robust and fast convergence in a moderate
number of iterations, uniformly in n, so that the overall com-
putational cost also scales linearly in n. We present numerical
illustrations for the all electron case of H2O, and pseudopo-
tential case of CHy and CH3OH.
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We discuss the prospects of super-compressed tensor-
structured quantics-TT data formats [1,3,5] in high dimen-
sional numerical modeling. The respective multilinear alge-
bra is based on the multi-folding or quantics representation
of multidimensional data arrays [1,3]. Low rank tensor ap-
proximation via the TT-type dimension splitting scheme [2,4]
leads to logarithmic complexity scaling in the volume size of
a target N-d tensor. Numerical illustrations indicate that the
quantics-TT tensor method has proved its value in application
to various function related tensors arising in quantum chem-
istry and in the traditional FEM/BEM—the tool apparently
works. In particular, this method can be applied in the frame-
work of truncated iteration for solution the high dimensional
elliptic/parabolic problems including stochastic PDEs.
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In this talk we develop the basic idea of tensor-train decompo-
sition, which can be considered as natural extention of singu-
lar value decomposition to high dimensions. It does not suffer
from the curse of dimensionality, and can be computed with
the reliability and SVD. Basic subroutines are simple to im-
plement and are available online. QTT decomposition opens
a new application area for tensor decompositions — approxi-
mation of tensors of ” physically small” dimension. It includes
compact representation of functions on sufficiently fine ten-
sor grids with 27 points in each direction, leading to d log
n complexity. When the tensor is in structured format, it is
interesting to perform some operations with it. Some oper-
ations are very intuitive in the tensor-train format, however
some are not. An important operation is finding maximal
and minimal elements. An algorithm usin maximal-volume
submatrices will be presented for finding maximal in modulus
element in the TT format.
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In this talk we will present a few generalizations of matrix
Krylov methods to tensors. The general objective is to ob-
tain a rank-(p, q,r) approximation of a given I X m X n ten-
sor A. The problem can be viewed as finding low dimen-
sional signal subspaces associated to the different modes of A.



Krylov methods, similar to the matrix case, are particularly
well suited for problems involving large and sparse tensors or
for tensors that allow efficient multilinear tensor-times-vector
multiplications. We will consider several different types of
tensor in evaluating the proposed methods: (1) tensors with
specified low ranks; (2) low rank tensors with added noise;
and (3) large and sparse tensors. For a few special cases
we will prove that our methods captures the true signal sub-
spaces associated to the tensor within certain number of steps
in the algorithm. For more general cases we propose an ap-
proach, based on the Krylov-Schur method for computing ma-
trix eigenvalues, to improve the subspaces obtained from the
tensor-Krylov procedures. Test results confirm the usefulness
of the proposed methods for the given objective. The techni-
cal report [1] covers part of the topics discussed in this talk.
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New algorithms for Tucker approximation with appli-
cations to multiplication of tensor-structured matri-
ces and vectors
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New algorithms are proposed for Tucker approximation of ten-
sors (multidimensional arrays) that are not given explicitly,
but are defined by a tensor-by-vectors multiplication opera-
tion. As well as in matrix case, this framework applies to
structured tensors, like sparse tensors, tensors with multilevel
Toeplitz or Hankel structure and so on. We discuss the mer-
its and drawbacks of minimal Krylov recursion [1] and suggest
some possible optimisation for it. We also propose new ap-
proximation methods based on Wedderburn rank-reduction.

As an important application we consider approximate mul-
tiplication of d-dimensional matrices given as Tucker or canon-
ical decomposition with the result being approximated in
Tucker format with optimal values of ranks possible in the
desired accuracy bound. Since mode sizes can be very large,
the result should never appear as full array. Here we compare
Krylov and Wedderburn approaches with previously studied
independent factor filtering [3] and modified variable-rank
Tucker-ALS procedure without a priori knowledge of ranks
[2]. We also propose cheap initialization of Tucker-ALS us-
ing an intrinsic tensor structure of result. Numerical exam-
ples include structured evaluation of typical operators from
Hartree-Fock/Kohn-Sham model, by means of Canonical-to-
Tucker and Tucker-to-Tucker multiplication.

This work was supported by RFBR grants 08-01-00115, 09-
01-12058, 10-01-00811 and RFBR/DFG grant 09-01-91332.

[1] B. Savas, L. Eldén, Krylov subspace method for tensor
computation. Preprint LITH-MAT-R-2009-02-SE, Dep.
Math. Link6pings Univ., February 2009.

[2] I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,
Linear algebra for tensor problems. Computing. 2009. V.
85(3):169-188.

[3] D. V. Savostyanov, E. E. Tyrtyshnikov,Approximate
multiplication of tensor matrices based on the individual
filtering of factors. J. Comp. Math. Math. Phys. 2009. V.
49(10):1662-1677.

[4] I. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov,

Tucker dimensionality reduction of three-dimensional arrays
in linear time. SIAM J. Matrix Anal. Appl. 2008. V.
30(3):936-956.

[5] I. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov,
Cross approximation in tensor electron density computations.
J. Numer. Lin. Alg. Appl. 2009, doi: 10.1002/nla.682.

Joint work with S. A. Goreinov, I. V. Oseledets (Institute of
Numerical Mathematics RAS, Moscow)

Generalized Cross Approximation for 3d-tensors

JAN SCHNEIDER, Max Planck Institute for Mathematics in
the Sciences, Leipzig, Germany

jschneid@mis.mpg.de

Fri 17:35, Room B

In this talk we present a generalized version of the Cross Ap-
proximation for 3d-tensors. The given tensor a € R™"*"*"
is represented as a matrix of vectors and 2d adaptive Cross
Approximation is applied in a nested way to get the tensor
decomposition. The explicit formulas are derived for the vec-
tors in the decomposition. The computational complexity of
the proposed algorithm is shown to be linear in n.
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Even ”simple” cases in higher dimensions may require data
elements as many as atoms in the universe. Structure in
data in such cases is the key issue. However, existing tensor
reprensentations of tensors (multilinear forms, multidimen-
sional arrays) suffer from various drawbacks. We propose new
tensor decompositions called TENSOR-TRAIN DECOMPO-
SITIONS and the corresponding numerical algorithms with
then complexity linear in the number of axes. Applications
include interpolation of multi-variate functions, computation
of multi-dimensional integrals, solving PDEs, fast inversion of
tensor structured matrices etc. The new algorithms appeared
as recently as just in the beginning of 2009 and will certainly
be leading to a new generation of numerical algorithms. For
more details see http://pub.inm.ras.ru.
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