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Matrix Means
Jimmie Lawson, Louisiana State University

Yongdo Lim, Kyungpook National University, Taegu, Korea

The theory of matrix and operator means is currently
an active area of research. Investigations include the
theoretical study of such means, various axiomatic and
variational descriptions and characterizations, compu-
tational algorithms for their approximation, geometric
interpretations and connections, and applications in a
variety of settings. Recent advances include various
approaches to define, study, and compute a variety of
multivariable means. Applications include derivations
of matrix and operator inequalities, finding closed
formulas and approximating algorithms for the solution
of symmetric and other matrix equations. Another
active direction of research is the employing of means
for the purpose of averaging, with applications including
the averaging of data given in matrix form.

Higher order geometric mean equations based on
monotone and jointly homogeneous maps
Eunkyung Ahn, Kyungpook National University, Korea
ekahn@knu.ac.kr
Fri 12:15, Auditorium

We consider the nonlinear equations based on monotone and
jointly homogeneous maps on the convex cone of positive def-
inite matrices. We’ll derive the uniqueness and existence of
positive definite solution by using Thompson’s part metric
and that the corresponding solution map is again monotone
and jointly homogeneous. Let Ω = Ω(k) be the convex cone
of k × k positive definite matrices. We first show that for
monotone and jointly homogeneous mappings g : Ωn → Ω
and hi : Ω2 → Ω, the equation

x = g(h1(a1, x), h2(a2, x), . . . , hn(an, x))

has a unique solution in Ω if
Pn
i=1 wiαi ∈ [0, 1). Here, a map

g : Ωn → Ω is w = (w1, w2, . . . , wn)-jointly homogeneous if
g(t1a1, t2a2, . . . , tnan) = tw1

1 tw2
2 · · · twnn g(a1, a2, . . . , an) for all

ti > 0 and ai ∈ Ω. Also h : Ω2 → Ω is α-homogeneous if
it is (1 − α, α)-jointly homogeneous. We further show that
if
Pn
i=1 wi = 1 and αi = α for all i, then the solution map

varying over (a1, a2, . . . , an) ∈ Ωn is again order preserving
and w-jointly homogeneous. We apply our results to high
order geometric mean equations of positive definite matrices.

Matrix Means in a Euclidean setting
Koenraad M.R. Audenaert, Royal Holloway, University of
London, UK
koenraad.audenaert@rhul.ac.uk
Wed 12:15, Auditorium

Matrix means are defined for positive semidefinite matrices,
and as such are usually studied from the viewpoint of Rie-
mannian geometry, with the set of positive definite matrices
being a differentiable Riemannian manifold. In this paper,
a completely different approach is taken, inspired by certain
practical problems in quantum state reconstruction. To wit,
we regard the set of positive definite matrices as a subset of the

set of Hermitian matrices, equipped with the Hilbert-Schmidt
(HS) inner product, i.e. as a real Euclidean space.

We investigate which matrix norms obey the requirement
that ‘their value should lie inbetween the values of their ar-
guments’. To make sense of the term ‘inbetween’, we con-
sider a) the HS distance, and b) the angle between matrices
cos θ(A,B) = Tr(A∗B)/

p
Tr(A∗A)Tr(B∗B). We define a

matrix mean C = µ(A,B) to lie within A and B w.r.t. HS
distance if and only if neither the distance between A and C,
nor the distance between B and C exceed the distance be-
tween A and B. Similarly, we define a matrix mean to lie
within A and B w.r.t. angles if and only if neither the angle
between A and C, nor the angle between B and C exceed the
angle between A and B.

It turns out that many matrix means do not satisfy ‘inbe-
tweenness’ in neither sense. Here we show that the inbetween-
ness condition is satisfied by the power means and the Heinz
means, for distances as well as for angles.

Interpolation, geometric mean and matrix Chebyshev
inequalities
Jean-Christophe Bourin, Université de Franche-Comté,
France
jcbourin@univ-fcomte.fr
Wed 11:25, Auditorium

The geometric mean of positive definite matrices may be de-
fined via complex interpolation. This approach leads to to
simple proofs of Ando-Hiai and Furuta inequalities. We then
show how these inequalities are used to obtain new inequali-
ties for positive linear maps, regarded as asymmetric versions
of Kadison and Choi inequalities. This talk is based on a joint
paper with Éric Ricard.

Operator inequalities related to weighted geometric
means
Masatoshi Fujii, Osaka Kyoiku University, Japan
mfujii@cc.osaka-kyoiku.ac.jp
Tue 16:45, Auditorium

The geometric mean A ] B for positive operators A and B is
given by the unique positive solution of the operator equation
XA−1X = B. That is,

A ] B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 .

By virtue of the Kubo-Ando theory, it is generalized to
weighted geometric means as follows: For α ∈ [0, 1]

A ]α B = A
1
2 (A−

1
2BA−

1
2 )αA

1
2 .

It corresponds to the Löwner-Heinz inequality:

A ≥ B ≥ 0 =⇒ Aα ≥ Bα.

There are many useful operator inequalities related to this. A
typical example is the Ando-Hiai inequality (AH):

A ]α B ≤ 1 =⇒ Ar ]α B
r ≤ 1 for r ≥ 1.

In this talk, we discuss generalizations of (AH) and rela-
tions among obtained inequalities. Our basic inequality is as
follows:

If logA ≥ logB for A,B > 0, then

A−r ] r
p+r

Bp ≤ 1

holds for p, r ≥ 0.
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Operator equations via an order preserving operator
inequality
Takayuki Furuta, Tokyo University of Science, Japan
furuta@rs.kagu.tus.ac.jp
Tue 15:50, Auditorium

A capital letter means a bounded linear operator on a Hilbert
space. We obtained the following order preserving operator
inequality closely associated with matrix means:

Theorem A. If A ≥ B ≥ 0, then the following (i) and (ii)
hold for p ≥ 1 and r ≥ 0;

(i) (B
r
2ApB

r
2 )

1+r
p+r ≥ B1+r and (ii) A1+r ≥ (A

r
2BpA

r
2 )

1+r
p+r .

Let A be a positive definite operator and B be a self-adjoint
operator. We discuss the existence of positive semidefinite
solutions of the Lyapunov type operator equation

nX
j=1

An−jXAj−1 = B

via Theorem A and by using the solutions we give concrete
and recordable examples of positive semidefinite matrices as
positive semidefinite solutions of some matrix equations.

The tracial geometric mean in several variables and
related trace inequalities
F. Hansen, University of Copenhagen, Denmark
frank.hansen@econ.ku.dk
Tue 15:00, Auditorium

We introduce the tracial geometric mean of several operator
variables as a generalization of the geometric mean for tuples
of positive numbers. It possesses a number of attractive prop-
erties, including monotonicity and concavity in the operator
variables. The non-commutative Hardy inequality is used to
obtain a generalization of Carleman’s inequality. Other re-
lated trace inequalities are given.

Operator log-convex functions and operator means
F. Hiai, Tohoku University, Japan
hiai@math.is.tohoku.ac.jp
Tue 15:25, Auditorium

We were motivated by the question to determine α ∈ R for
which the functional logω(Aα) is convex in positive opera-
tors A for any positive linear functional ω. In the course of
settling the question, we arrived at the idea to characterize
continuous nonnegative functions f on (0,∞) for which the
operator inequality f

`
A+B

2

´
≤ f(A) # f(B) holds for positive

operators A and B, where A#B is the geometric mean. This
inequality was formerly considered by Aujla, Rawla and Va-
sudeva as a matrix/operator version of log-convex functions.
In fact, it is natural to say that a function f satisfying the
above inequality is operator log-convex, since the numerical
inequality f

`
a+b
2

) ≤
p
f(a)f(b) for a, b > 0 means the con-

vexity of log f and the geometric mean # is the most stan-
dard operator version of geometric mean. We show that a
continuous nonnegative function f on (0,∞) is operator log-
convex if and only if it is operator monotone decreasing, and
furthermore present several equivalent conditions related to
operator means for the operator log-convexity. The operator
log-concavity counterpart is also considered.

Joint work with T. Ando (Hokkaido University)

Recent researches on generalized Furuta-type opera-
tor functions
M. Ito, Maebashi Institute of Technology, Japan
m-ito@maebashi-it.ac.jp
Wed 11:50, Auditorium

In what follows, A and B are positive (semidefinite) oper-
ators on a Hilbert space, and A ≥ 0 (resp. A > 0) denotes
that A is a positive (resp. strictly positive) operator.

Furuta inequality “A ≥ B ≥ 0 ensures A1+r ≥
(A

r
2BpA

r
2 )

1+r
p+r for p ≥ 1 and r ≥ 0” is established in 1987,

and also Furuta showed its generalization (called grand Fu-
ruta inequality) in 1995 as follows: If A ≥ B ≥ 0 with A > 0,
then for each t ∈ [0, 1] and p ≥ 1,

F (r, s) = A
−r
2 {A

r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+rA

−r
2 (1)

is decreasing for r ≥ t and s ≥ 1, and also for each t ∈ [0, 1]
and p ≥ 1,

A1−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r

holds for r ≥ t and s ≥ 1. We remark that grand Furuta
inequality is interpolating Furuta inequality and Ando-Hiai
inequality which is equivalent to the main result of log ma-
jorization. Very recently, Furuta obtained a further extension
of grand Furuta inequality (we call this FGF inequality here).
α-Power mean ]α for α ∈ [0, 1] is defined by A ]α B =

A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 for A > 0 and B ≥ 0. It is known that

α-power mean is very usful for investigating Furuta inequality
and its generalizations. We can express (1) by (1’) with α-
power mean as follows:

F (r, s) = A−r ] 1−t+r
(p−t)s+r

(A
−t
2 BpA

−t
2 )s

= A
−t
2 {A−γ ] 1+γ

β+γ
(At \ β−t

p−t
Bp)}A

−t
2

= A
−t
2 F̂ (β, γ)A

−t
2 ,

(1’)

where β = (p − t)s + t, γ = r − t and A \s B =

A
1
2 (A

−1
2 BA

−1
2 )sA

1
2 for a real number s. (If s ∈ [0, 1], then

\s = ]s.)
In this talk, firstly we shall discuss complementary inequal-

ities and related results to generalized Ando-Hiai inequality
and a generalized Furuta-type operator function. Secondly
we shall obtain a more precise and clear expression of FGF
inequality by considering a mean theoretic proof of grand Fu-
ruta inequality.

Joint work with E. Kamei (Maebashi Institute of Technology)

The Weighted Multivariable AGH-Mean
Se-Jong Kim, Louisiana State University, Baton Rouge, USA
ksejong@math.lsu.edu
Fri 11:00, Auditorium

In this presentation we consider a weighted mean arising as
the geometric mean of the weighted arithmetic and harmonic
n-means of positive definite matrices, what we call the AGH-
mean. This mean is readily computable and exhibits a variety
of other desirable properties, which we describe. We show
that it also has nice variational characterizations. We also
show that it generalizes in a straightforward fashion to a one-
parameter family of weighted means and that many of its
properties carry over to this generalization.
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Joint work with J. Lawson (Louisiana State U.), Y. Lim
(Kyungpook National U.)

Weighted Ando-Li-Mathias Geometric Means
Hosoo Lee, Kyungpook National University, Korea
hosoo@knu.ac.kr
Fri 11:50, Auditorium

In [1], Ando-Li-Mathias proposed a successful definition for
geometric means of several positive definite matrices. We
propose a higher order weighted geometric mean based on
the Ando-Li-Mathias symmetrization procedure.

For positive real numbers s and t, G(s, t;A,B) is defined
by G(s, t;A,B) = A# t

s+t
B. A weighted geometric mean

G(t1, t2, . . . , tn;A1, A2, . . . , An) of positive definite matrices
A1, A2, . . . , An and positive real numbers t1, t2, . . . , tn is de-
fined by induction as follows: Assume that the weighted ge-
ometric mean of any (n − 1)− tuple of matrices is defined.
Let

G((tj)j 6=i; (Aj)j 6=i) =G(t1, . . . , ti−1, ti+1, . . . , tn;

A1, . . . , Ai−1, Ai+1, . . . , An)

and let A
(1)
i = Ai and A

(r+1)
i = G((tj)j 6=i; (A

(r)
j )j 6=i). Then

the sequences A
(r)
i converge to a common limit, denoted by

G(t1, . . . , tn;A1, . . . , An) = limr→∞A
(r)
i .

We show that the weighted mean satisfies the properties
given by Ando-Li-Mathias in a weighted version: consis-
tency with scalars, joint homogeneity, permutation invariance,
monotonicity, continuity, invariance under the congruence and
inversion, joint concavity, self-duality, determinant identity
and arithmetic-geometric-harmonic means inequality.

[1] T. Ando, C.K. Li and R. Mathias, Geometric means,
Linear Algebra Appl., 385 (2004), 305-334.

Joint work with Yongdo Lim (Kyungpook National Univer-
sity) and T. Yamazaki (Kanagawa University)

Weighted Bini-Meini-Poloni Geometric Means
Yongdo Lim, Kyungpook National University, Korea
ylim@knu.ac.kr
Tue 17:35, Auditorium

Taking a weighted version of Bini-Meini-Poloni symmetriza-
tion procedure for a multivariable geometric mean [1], we pro-
pose a definition for a weighted geometric mean of n pos-
itive definite matrices, where the weights vary over all n-
dimensional positive probability vectors. We show that the
weighted mean satisfies multidimensional versions of all prop-
erties that one would expect for a two-variable weighted geo-
metric mean;

(P1) Bn(ω;A1, . . . , An) = Aw1
1 · · ·Awnn for commuting Ai’s;

(P2) (Joint homogeneity);

Bn(ω; a1A1, . . . , anAn) = aw1
1 · · · a

wn
n Bn(ω;A1, . . . , An);

(P3) (Permutation invariance)

Bn(ωσ;Aσ(1), . . . , Aσ(n)) = Bn(ω;A1, . . . , An)

for any permutation σ, where ωσ = (wσ(1), . . . , wσ(n));

(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then
Bn(ω;B1, . . . , Bn) ≤ Bn(ω;A1, . . . , An);

(P5) (Continuity) The map Bn(ω; ·) is continuous;

(P6) (Congruence invariance)

Bn(ω;M∗A1M, . . . ,M∗AnM)

= M∗Bn(ω;A1, . . . , An)M ;

(P7) (Joint concavity) For 0 ≤ t ≤ 1,

Bn(ω;A1 + (1− t)B1, . . . , An + (1− t)Bn)

≥ tBn(ω;A1, . . . , An) + (1− t)Bn(ω;B1, . . . , Bn)

(P8) (Self-duality);
Bn(ω;A−1

1 , . . . , A−1
n )−1 = Bn(ω;A1, . . . , An);

(P9) (Determinantal identity)

DetBn(ω;A1, . . . , An) =

nY
i=1

(DetAi)
wi ;

and

(P10) (AGH mean inequalities)

(

nX
i=1

wiA
−1
i )−1 ≤ Bn(ω;A1, . . . , An) ≤

nX
i=1

wiAi.

[1] D. Bini, B. Meini and F. Poloni, An effective matrix
geometric mean satisfying the Ando-Li-Mathias properties,
Math. Comp. 79 (2010), 437-452.

Joint work with Jimmie Lawson (Louisiana State University)
and Hosoo Lee (Kyungpook National University)

Hermitian metrics and matrix means
M. Pálfia, Budapest University of Technology and Eco-
nomics, Hungary
palfia.miklos@aut.bme.hu
Fri 11:25, Auditorium

Recently there has been great interest in extending matrix
means to several variables. Many authors considered more
or less similar iterative methods to construct a multi-variable
form for matrix means as the limit point of these iterative
procedures. One of the most widely studied matrix mean is
the geometric mean

G(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2.

This mean has several special properties. One of them is that
the geometric mean is the midpoint map of the manifold of
positive definite matrices endowed with the metric induced by
the inner product

〈U, V 〉p = Tr{p−1Up−1V }

defined for the tangent space at p. This space is also a Her-
mitian symmetric space.

Here we show that every matrix mean is the midpoint map
of a hermitian symmetric space defined over the space of posi-
tive definite matrices [3]. In particularly we show that this is a
special case of a more general phenomenon. Given a holomor-
phic function that has a unique fixed point and fullfills some
other properties, automatically induces a hermitian metric on
the space of positive definite matrices. These manifolds also
turn out to be Riemannian symmetric spaces so therefore also
Lie Groups.

We will show that the geometric mean, the harmonic mean
and the arithmetic mean obey this construction, so we get the
correct corresponding metrics.
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After this we consider an iterative multi-variable extension
method for means given as midpoint maps in k−convex metric
spaces [2]. We use k−convexity to show that the procedure
converges and we also give bounds on the rate of convergence.
Later we consider the center of mass on these spaces and we
give upper bounds on the distance of the center of mass of the
starting points and the limit point of the iterative procedure.
We will also give sufficient conditions for the two points to be
identical.

Considering once again the k−convexity condition we leave
this general setting and move back to the case of hermi-
tian metrics on the space of positive definite matrices. As
a conclusion we use this machinery given for k−convex met-
ric spaces on these symmetric spaces to extend two-variable
matrix means to several variables similarly as in [1].

[1] M. Pálfia, Iterative multi-variable extensions to the
two-variable mean of positive-definite matrices, SIAM J.
Matrix Anal. Appl., to appear.
[2] M. Pálfia, Midpoint maps in metric spaces and the center
of mass, preprint.
[3] M. Pálfia, Hermitian symmetric spaces and means of
positive definite matrices, in preparation.

Pólya-Szegö inequality for the chaotically geometric
mean
Y. Seo, Faculty of Engineering, Shibaura Institute of Tech-
nology, Saitama 337-8570, Japan
yukis@sic.shibaura-it.ac.jp
Wed 11:00, Auditorium

Greub-Rheinboldt showed the generalized Pólya-Szegö in-
equality, which is equivalent to the Kantorovich inequality:
Let A and B be commuting positive operators on a Hilbert
space H such that mI ≤ A,B ≤ MI for some scalars

0 < m < M . Then
p

(Ax, x)(Bx, x) ≤ M+m

2
√
Mm

(A
1
2B

1
2 x, x) for

every unit vector x ∈ H. Fujii, Izumino, Nakamoto and Seo
showed the non-commutative version: Let A and B be positive
operators on H such that mI ≤ A,B ≤ MI for some scalars
0 < m < M . Then

p
(Ax, x)(Bx, x) ≤ M+m

2
√
Mm

(A]Bx, x)
for every unit vector x ∈ H, where the geometric mean
A]B of A and B in the sense of Kubo-Ando is defined by

A]B = A1/2
“
A−1/2BA−1/2

”1/2

A1/2. Ando-Li-Mathias de-

fined the geometric mean of n-operators and by using it Ya-
mazaki showed an n-variable version of Pólya-Szegö inequal-
ity. Moreover, Lawson-Lim defined the weighted geometric
mean of n-operators, which extends to the Ando-Li-Mathias
geometric mean.

Let α = (α1, α2, · · · , αn) be a weight vector if
Pn
i=1 αi = 1

and αi ≥ 0 for all i = 1, · · · , n. For positive invertible opera-
tors A1, A2, · · ·An on a Hilbert space H, the chaotically geo-
metric mean of A1, A2, · · ·An for a weight vector α is defined
by ♦α(A1, · · · , An) = exp

`Pn
i=1 αi logAi

´
. If A1, A2, · · ·An

mutually commute, then ♦α(A1, · · · , An) = Aα1
1 · · ·Aαnn . The

geometric mean ] have a monotone property and the chaoti-
cally geometric mean does not have a monotone property.

In this talk, we show the chaotically geometric mean ver-
sion of Pólya-Szegö inequality: Let A1, A2, · · ·An be pos-
itive invertible operators on a Hilbert space H such that
mI ≤ Ai ≤MI for some scalars 0 < m < M and i = 1, · · · , n.
Put h = M

m
. Then for each weight vector α

1

S(h)
(♦α(A1, · · · , An)x, x) ≤ (A1x, x)α1 · · · (Anx, x)αn

≤ S(h)(♦α(A1, · · · , An)x, x)

for every unit vector x ∈ H, where the Specht ratio S(h) is

defined by S(h) = (h−1)h
1

h−1

e log h
(h 6= 1, h > 0) and S(1) =

1.

Operator Monotone Functions, Positive Definite Ker-
nels and Majorization
Mitsuru Uchiyama, Shimane University , Japan
uchiyama@riko.shimane-u.ac.jp
Wed 12:40, Auditorium

Let f(t) be a real continuous function on an interval, and
consider the operator function f(X) defined for Hermitian
operatorsX. We will show that if f(X) is increasing w.r.t. the
operator order, then for F (t) =

R
f(t)dt the operator function

F (X) is convex. Let h(t) and g(t) be C1 functions defined
on an interval I. Suppose h(t) is non-decreasing and g(t) is
increasing. Then we will define the continuous kernel function
Kh, g by Kh, g(t, s) = (h(t) − h(s))/(g(t) − g(s)), which is a
generalization of the Löwner kernel function. We will see that
it is positive definite if and only if h(A) ≤ h(B) whenever
g(A) ≤ g(B) for Hermitian operators A,B, and give a method
to construct a lot of infinitely divisible kernel functions.

[1] M. Uchiyama, Operator Monotone Functions, Positive Def-
inite Kernels and Majorization, to appear PAMS
[2] M. Uchiyama, A new majorization between functions,
polynomials, and operator inequalities II, J. Math. Soc.
Japan 60(2008) no. 1, 291–310

On properties of geometric mean of n-operators via
Riemannian metric
Takeaki Yamazaki, Kanagawa University, Japan
yamazt26@kanagawa-u.ac.jp
Tue 17:10, Auditorium

For positive matrices A1, · · · , An, arithmetic mean
A(A1, · · · , An) = A1+···+An

n
of A1, · · · , An can be de-

fined by

A(A1, · · · , An) = arcmin

nX
i=1

‖Ai −X‖2,

where arcminf(X) means the point X0 at which the func-
tion f(X) attains its minimum value and ‖ · ‖ means operator
norm. If we use Riemannian metric in the above definition in-
stead of operator norm, geometric mean Gδ(A1, · · · , An) can
be considered as

Gδ(A1, · · · , An) = arcmin

nX
i=1

δ22(Ai, X).

In this talk, we shall introduce properties of geometric mean
of n-operators from the view point of operator inequality.


