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Plenary Lectures

Loewner Matrices
Rajendra Bhatia, Indian Statistical Institute
rbh@isid.ac.in
Mon 9:00, Auditorium

Let f be a smooth function on R. The divided difference
matrices whose (i, j) entries are»

f(λi)− f(λj)

λi − λj

–
λ1, . . . , λn ∈ R are called Loewner matrices. In a seminal pa-
per published in 1934 Loewner used properties of these ma-
trices to characterise operator monotone functions. In the
same paper he established connections between this matrix
problem, complex analytic functions, and harmonic analy-
sis. These elegant connections sent Loewner matrices into
the background. Some recent work has brought them back
into focus. In particular, characterisation of operator convex
functions in terms of Loewner matrices has been obtained. In
this talk we describe some of this work. The talk will also
serve as an introduction to some more recent and more ad-
vanced topics being presented by some other speakers in this
conference.

Matrices and Indeterminates
Richard A. Brualdi , University of Wisconsin - Madison,
USA
brualdi@math.wisc.edu
Thu 9:00, Auditorium

An expository talk will be given on matrices some of whose
entries are indeterminates over a field. The talk will include
some recent joint work on such matrices with Zejun Huang
and Xingzhi Zhan, and some recent joint work on combi-
natorial batch codes with K.P. Kiernan, S.A. Meyer, and
M.W. Schroeder, some of which can be placed in the context
of such matrices.

Potential Stability and Related Spectral Properties of
Sign Patterns
Pauline van den Driessche, University of Victoria, B.C.
Canada
pvdd@math.uvic.ca
Mon 14:00, Auditorium

An n×n sign pattern S = [sij ] has sij ∈ {+,−, 0} and gives
rise to an associated sign pattern class of matrices

Q(S) = {A = [aij ] : aij ∈ R, sign aij = sij ∀i, j}.

Sign pattern S has inertia (n+, n−, n0) with n+ +n−+n0 = n
if there exists a matrix A ∈ Q(S) with this inertia. In par-
ticular S is potentially stable if it allows inertia (0, n, 0), i.e.,
there exists a matrix A ∈ Q(S) with each eigenvalue having
a negative real part. Since its introduction in the context
of qualitative economics over 40 years ago, the problem of
characterizing potential stability of sign patterns remains un-
solved except for special classes of sign patterns, e.g., when
the digraph associated with the pattern can be represented
by a tree. Elaborating on [1], known necessary or sufficient
conditions for potential stability are reviewed, techniques for

constructing potentially stable patterns described and open
problems stated. Some results are also given for sign patterns
that allow more general inertias, and those that allow any
spectrum of a real matrix.

[1] M. Catral, D.D. Olesky and P. van den Driessche, Allow
problems concerning spectral properties of sign patterns, Lin-
ear Algebra and its Applications, 430, pp. 3080-3094, 2009.

Computing the Action of the Matrix Exponential,
with an Application to Exponential Integrators
Nicholas J. Higham , University of Manchester, UK
higham@ma.man.ac.uk
Tue 14:00, Auditorium

A new algorithm is developed for computing etAB, where A is
an n×n matrix and B is n×n0 with n0 � n. The algorithm
works for any A, its computational cost is dominated by the
formation of products of A with n×n0 matrices, and the only
input parameter is a backward error tolerance. The algorithm
can return a single matrix etAB or a sequence etkAB on an
equally spaced grid of points tk. It uses the scaling part of
the scaling and squaring method together with a truncated
Taylor series approximation to the exponential. It determines
the amount of scaling and the Taylor degree using the recent
analysis of Al-Mohy and Higham [SIAM J. Matrix Anal. Appl.
31 (2009), pp. 970-989], which provides sharp truncation er-
ror bounds expressed in terms of the quantities ‖Ak‖1/k for a
few values of k, where the norms are estimated using a matrix
norm estimator. Shifting and balancing are used as prepro-
cessing steps to reduce the cost of the algorithm. Numerical
experiments show that the algorithm performs in a numeri-
cally stable fashion across a wide range of problems, and anal-
ysis of rounding errors and of the conditioning of the problem
provides theoretical support. Experimental comparisons with
two Krylov-based MATLAB codes show the new algorithm to
be sometimes much superior in terms of computational cost
and accuracy. An important application of the algorithm is
to exponential integrators for ordinary differential equations.
It is shown that the sums of the form

Pp
k=0 ϕk(A)uk that

arise in exponential integrators, where the ϕk are related to
the exponential function, can be expressed in terms of a single
exponential of a matrix of dimension n+ p built by augment-
ing A with additional rows and columns, and the algorithm
of this paper can therefore be employed.

Joint work with Awad H. Al-Mohy (University of Manchester)

Nonsymmetric Algebraic Riccati Equations Associ-
ated with M-matrices: Theoretical Results and Al-
gorithms
B. Meini, University of Pisa, Italy
meini@dm.unipi.it
Fri 14:00, Auditorium

Nonsymmetric algebraic Riccati equations (NARE) are non-
linear matrix equations of the kind

C +XA+DX −XBX = 0,

where the unknown X is an m × n matrix and A,B,C,D
are matrices of appropriate size. We focus the attention on
NAREs whose block coefficients are such that the matrix

M =

»
A −B
C D

–
is either a nonsingular M-matrix, or a singular irreducible M-
matrix. This class of equations arises in a large number of
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applications, ranging from fluid queues models to transport
theory. The solution of interest is the minimal nonnegative
one, i.e., the nonnegative solution Xmin such that Xmin ≤ X
for any other nonnegative solution X, where the ordering is
component-wise.

In this talk we present theoretical properties of the NARE
and numerical methods for the computation of the minimal
nonnegative solution Xmin. Particular emphasis is given to
the properties of the invariant subspaces, and to the tech-
niques used to trasform the eigenvalues of a pencil, keeping un-
changed the invariant subspaces. Concerning numerical meth-
ods, special attention is addressed to structure-preserving it-
erative algorithms; connections between the cyclic reduction
algorithm and the structure-preserving doubling algorithm
(SDA) are pointed out.

Potpourri of Quasiseparable Matrices
Vadim Olshevsky (LAMA Speaker), University of Con-
necticut, USA
olshevsky@uconn.edu
Fri 9:00, Auditorium

In this talk we provide a survey of recent results on quasisep-
arable matrices in three different areas. We start with CMV
matrices that garner a lot of attention in the orthogonal poly-
nomials community. Our quasiseparable approach allows one
to generalize some already clasical results to a wider class
of matrices. The second topic is application of quasisepa-
rable matrices to new digital filter structures. Again, qua-
siseparable approach allows one to generalize the celebrated
Markel-Grey filter structure and Kimura structure. Finally,
we desribe the results of error analysis of several published
quasiseparable system solvers that indicate that only one of
them is a provably backward stable algorithm while the others
are not.

Joint work with Tom Bella, Forilan Dopico, Gil Strang and
Pavel Zhlobich

Moments, model reduction and nonlinearity
in solving linear algebraic problems
Z. Strakoš, Charles University, Prague, Czech Republic
z.strakos@gmail.com
Thu 14:00, Auditorium

Krylov subspace methods play an important role in many ar-
eas of scientific computing, including numerical solution of
linear algebraic systems arising from discretisation of partial
differential or integral equations. By their nature they repre-
sent model reductions based on matching moments. Such view
naturally complements, in our opinion, the standard descrip-
tion using the projection processes framework, and it shows
their highly nonlinear character.

We present three examples that link algebraic views of
problems with views from related areas of mathematics:

• Matching moments reduced order modeling in approxi-
mation of large-scale linear dynamical systems is linked
with the classical work on moments and continued frac-
tions by Chebyshev and Stieltjes, and with development
of the conjugate gradient method by Hestenes and Stiefel.

• We show that Gauss-Christoffel quadrature for a small
number of quadrature nodes can be highly sensitive to
small changes in the distribution function, and we re-
late the sensitivity of Gauss-Christoffel quadrature to the
convergence properties of the CG and Lanczos methods
in exact and in finite precision arithmetic.

• Based on the method of moments, we show how the in-
formation from the Golub-Kahan iterative bidiagonaliza-
tion can be used for estimating the noise level in discrete
ill-posed problems.

Joint work with I. Hnětynková (Charles University, Prague),
D. P. O’Leary (University of Maryland), M. Plešinger (Tech-
nical University, Liberec), P. Tichý (Academy of Sciences,
Prague)

Modifications to block Jacobi with overlap to acceler-
ate convergence of iterative methods for banded ma-
trices.
Daniel B. Szyld , Temple University, Philadelphia, USA
szyld@temple.edu
Tue 9:00, Auditorium

Classical Schwarz methods and preconditioners subdivide the
domain of a partial differential equation into subdomains and
use Dirichlet or Neumann transmission conditions at the arti-
ficial interfaces. Optimizable Schwarz methods use Robin (or
higher order) transmission conditions instead, and the Robin
parameter can be optimized so that the resulting iterative
method has an optimal convergence rate. The usual tech-
nique used to find the optimal parameter is Fourier analysis;
but this is only applicable to certain domains, for example, a
rectangle.

In this talk, we present a completely algebraic view of Opti-
mizable Schwarz methods, including an algebraic approach to
find the optimal operator or a sparse approximation thereof.
This approach allows us to apply this method to any banded
or block banded linear system of equations, and in particular
to discretizations of partial differential equations in two and
three dimensions on irregular domains. This algebraic Opti-
mizable Schwarz method is in fact a version of block Jacobi
with overlap, where certain entries in the matrix are modified.

With the computable optimal modifications, we prove that
the Optimizable Schwarz method converges in two iterations
for the case of two subdomains. Similarly, we prove that when
we use an Optimizable Schwarz preconditioner with this op-
timal modification, the underlying Krylov subspace method
(e.g., GMRES) converges in two iterations. Very fast conver-
gence is attained even when the optimal operator is approxi-
mated by a sparse transmission matrix. Numerical examples
illustrating these results are presented.

Joint work with Martin Gander and Sébastien Loisel (Univer-
sity of Geneva)

Linear algebraic foundations of the operational calculi
Luis Verde-Star , Universidad Autónoma Metropolitana,
Mexico City, Mexico
verde@star.izt.uam.mx
Wed 9:00, Auditorium

One of the most common problems in Applied Mathematics
consists in finding solutions f of a linear functional equation
of the form w(L)f = g, where w is a polynomial, L is an op-
erator, and g is a known function. Differential and difference
equations with constant or variable coefficients are included
among such equations.

We will construct a vector space F of formal Laurent series
generated by a set {pk : k ∈ Z}, with the natural multiplica-
tion induced by pkpn = pk+n, and an operator L defined by
Lp0 = 0 and Lpk = pk−1 for k 6= 0. Then we will show how
to solve the general equation w(L)f = g in the space F using
only elementary linear algebraic ideas.
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It turns out that F is a sort of universal model for the so-
lution of many types of linear functional equations. Giving a
suitable particular meaning to the generators pk we obtain a
concrete space where L becomes a given differential-like op-
erator, and the multiplication in F becomes a “convolution”
in the concrete space. For example, if pk = tk/k! then L be-
comes differentiation with respect to t. We can also obtain
operators of the form u(t)D+ v(t)I, and difference operators.

Our development clarifies how the basic concepts of the
operational calculi appear in a natural way. For example,
we explain the connection between convolutions and divided
differences, the role played by quasi-polynomials, and how the
transform methods become unnecessary in most cases. Our
results generalize some of the ideas presented in [1].

[1] L. Verde-Star, An algebraic approach to convolutions and
transform methods, Adv. in Appl. Math. 19, 117–143, 1997.

Special Lectures

Krylov Subspace Approximations of the Action of
Matrix Functions for Large-Scale Problems
Oliver Ernst, TU Bergakademie Freiberg, Germany
ernst@math.tu-freiberg.de
Tue 9:45, Auditorium

We present an overview of recent progress in the development
of Krylov subspace methods for the approximation of expres-
sions of the form f(A)b, where A is a large, sparse or struc-
tured matrix, f is a function such that f(A) is defined and b a
given vector. Such an action of a matrix function on a vector
is a fundamental computational task in many applications, of
which the most prominent is the matrix exponential occur-
ring in initial value problems for systems of ordinary differen-
tial equations or semidiscretized partial differential equations.
Special emphasis will be given to restarting techniques [1],
rational Krylov subspace approximations [2], error estimates
and convergence theory. The performance of these techniques
will be illustrated for a large-scale problem arising in geophys-
ical exploration [3].

[1] M. Eiermann and O. G. Ernst, A restarted Krylov
subspace method for the evaluation of matrix functions.
SIAM J. Numer. Anal. 44:2481–2504 (2006)
[2] S. Güttel. Rational Krylov Methods for Operator Func-
tions, doctoral thesis, TU Bergakademie Freiberg (2010).
[3] R. Börner, O. G. Ernst and K. Spitzer. Fast 3D simulation
of transient elec- tromagnetic fields by model reduction in
the frequency domain using Krylov subspace projection.
Geophys. J. Int., 173:766–780 (2008).

Joint work with M. Afanasjew, S. Güttel, M. Eiermann (TU
Bergakademie Freiberg)

Zeros of entire functions: from René Descartes to
Mark Krein and beyond
Olga Holtz, University of California, Berkeley, USA
oholtz@EECS.Berkeley.EDU
Fri 9:45, Auditorium

The central question of many classical investigations, going
back to Descartes, Newton, Euler, and others, is finding ze-
ros of entire and meromorphic functions, given some standard
representation of such a function, e.g., its coefficients in some

standard basis. Special questions of this type include zero
localization with respect to a given curve (e.g., stability and
hyperbolicity), behavior of zeros under special maps (e.g., dif-
ferentiation, Hadamard product), and relations among roots
of function families (e.g., orthogonal polynomials). The point
of this talk is to give an overview of matrix and operator
methods in this area, emphasizing beautiful old and new con-
nections between algebra and analysis. The novel results in
this talk are joint with Mikhail Tyaglov.

Multilinear Algebra and its Applications
Lek-Heng Lim, University of California, Berkeley, USA, and
University of Chicago
lekheng@math.berkeley.edu
Mon 9:45, Auditorium

In mathematics, the study of multilinear algebra is largely
limited to properties of a whole space of tensors — tensor
products of k vector spaces, modules, vector bundles, Hilbert
spaces, operator algebras, etc. There is also a tendency to
take an abstract coordinate-free approach. In most applica-
tions, instead of a whole space of tensors, we are often given
just a single tensor from that space; and it usually takes the
form of a hypermatrix, i.e. a k-dimensional array of numerical
values that represents the tensor with respect to some coordi-
nates/bases determined by the units and nature of measure-
ments. How could one analyze this one single tensor then?

If the order of the tensor k = 2, then the hypermatrix
is just a matrix and we have access to a rich collection of
tools: rank, determinant, norms, singular values, eigenvalues,
condition number, pseudospectrum, RIP constants, etc. This
talk is about the case when k > 2.

We will see that one may often define higher-order ana-
logues of common matrix notions rather naturally: tensor
ranks, hyperdeterminants, tensor norms (Hilbert-Schmidt,
spectral, Schatten, Ky Fan, etc), tensor eigenvalues and sin-
gular values, etc. We will discuss the utility as well as dif-
ficulties of various tensorial analogues of matrix problems.
In particular we shall look at how tensors arise in a vari-
ety of applications including: computational complexity, con-
trol engineering, holographic algorithms, mathematical biol-
ogy, neuroimaging, numerical analysis, quantum computing,
signal processing, spectroscopy, and statistics. Time permit-
ting, we will also describe a few exciting recent breakthoughs,
most notably Landsberg’s settlement of the border rank of
2× 2 matrix multiplications and Friedland’s resolution of the
Salmon conjecture.

Evolution of MATLAB
Cleve Moler, The MathWorks
Cleve.Moler@mathworks.com
Thu 9:45, Auditorium

We show how MATLAB has evolved over the last 25 years
from a simple matrix calculator to a powerful technical com-
puting environment. We demonstrate several examples of
MATLAB applications. We conclude with a few comments
about future developments, including Parallel MATLAB.

Cleve Moler is the original author of MATLAB and one
of the founders of the MathWorks. He is currently chairman
and chief scientist of the company, as well as a member of the
National Academy of Engineering and former president of the
Society for Industrial and Applied Mathematics.
See http://www.mathworks.com/company/aboutus/

founders/clevemoler.html.
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Linear ALgebra Meets Lie Algebra
Beresford N. Parlett, University of California, Berkeley,
USA
parlett@math.berkeley.edu
Wed 9:45, Auditorium

We examine the matrix congruence class A → GAinv(G) in
which are preserved not only the eigenvalues of A but the
eigenvalues of all the leading principal submatrices of A. We
show connections both to the Kostant-Wallach theory in Lie
Algebra and to the recent work of Olshevsky, Zhlobich, and
Strang on Green’s matrices. This is joint work with Noam
Shomron.

Invited Minisymposia

Structured Matrices
Yuli Eidelman, Tel Aviv University, Israel

Lothar Reichel, Kent State University, USA
Marc Van Barel, Katholieke Universiteit Leuven

Fifteen years of structured matrices
F. Di Benedetto, Dipartimento di Matematica, Università
di Genova
dibenede@dima.unige.it
Tue 11:00, Room Pacinotti

The expression structured matrices appeared for the first time
in a conference title in 1995, specifically in the session “Algo-
rithms for Structured Matrices”, organized within the SPIE
conference, held in San Diego (USA) [1, Session 6] and in the
“Minisymposium on Structured Matrices” within the ILAS
conference, held in Atlanta (USA) [2]. These first experi-
ences led to the organization, in 1996, of the first two confer-
ences specifically devoted to structured matrices: “Interna-
tional Workshop on Numerical Methods for Structured Ma-
trices in Filtering and Control”, held in Santa Barbara (USA)
[3] and “Toeplitz Matrices: Structures, Algorithms and Ap-
plications” held in Cortona (Italy) [4].

The organization of specific conferences on structured ma-
trices has given the opportunity to meet together researchers
working on theoretical and computational properties of struc-
tured matrices, and researchers working on applications. This
exchange of experts from different fields has led to strong ben-
efits to researches interested in structured matrices.

This anniversary gives the opportunity to reflect on the
state-of-art in the research involving matrix structures in the
last 15 years. The aim of this talk is to survey some key results
achieved along different directions, paying special attention
to the significant contribution of the italian research group
on structured numerical linear algebra, having its main site in
Pisa. In particular, the four editions of the Cortona Workshop
offer a privileged point of view in this context. Some pointers
to future research perspectives will be also given.

[1] Advanced Signal Processing Algorithms, SPIE Vol. 2563,
pp. 266–313, 1995.
[2] Proceeding of the Fifth Conference of the International
Linear Algebra Society, Atlanta, Georgia (1995). Linear
Algebra Appl. Vol. 254, pp. 1–5, 1997.
[3] http://www-control.eng.cam.ac.uk/extras/conferences/WNMSMFC96

[4] Calcolo Vol. 33, pp. 1–10, 1996.

Joint work with S. Serra Capizzano (Università dell’Insubria)

An enhanced plane search scheme for complex-valued
tensor decompositions
I. Domanov, K.U.Leuven: Campus Kortrijk and E.E. Dept.
(ESAT), Belgium
Ignat.Domanov@kuleuven-kortrijk.be,
Ignat.Domanov@esat.kuleuven.be
Tue 11:50, Room Pacinotti

A third-order tensor T1 ∈ Cl×m×n is rank one if it can
be written as the outer product of three nonzero vectors, i.e.,
T1 = a1◦b1◦c1. The CANDECOMP/PARAFAC (CP) decom-
position writes a given tensor T as a sum of R rank-one tensors
Ti = ai ◦ bi ◦ ci. Factor matrices A, B and C are obtained by
stacking the component vectors, e.g., A = (a1a2 . . . aR).

The most popular methods for computing CP are of the al-
ternating least squares type (ALS). These methods have many
drawbacks: they can take many iterations to converge, they
are not guaranteed to converge to a global minimum or even a
stationary point, and the final solution can heavily depend on
the starting value. Moreover, these algorithms ignore struc-
ture of the given tensor, such as symmetry.

Recently, an enhanced line search (ELS) procedure has been
proposed for improving ALS. In ELS a system of polynomial
equations in two variables needs to be solved in each iteration.
This subproblem can be much more expensive than the initial
ALS iteration.

We propose an enhanced plane search (EPS) as an alter-
native to ELS. The corresponding polynomial subproblem is
much easier to solve. We combine EPS with the single-step
least squares algorithm (SSLS) that has recently been pro-
posed for the computation of a CP with factors A,B,C such
that A = B and A proportional to C. The original SSLS al-
gorithm is very cheap, but its convergence is not guaranteed.
Our algorithm always converges and has better performance.

Joint work with L. De Lathauwer (K.U.Leuven: Campus Ko-
rtrijk and E.E. Dept. (ESAT), Belgium)

Structured perturbation theory of LDU factorization
and accurate computations for diagonally dominant
matrices
Froilán M. Dopico, Universidad Carlos III de Madrid,
Leganés, Spain
dopico@math.uc3m.es
Tue 17:35, Room Pacinotti

If an LDU factorization with well-conditioned L and U fac-
tors of a given matrix A can be accurately computed, then the
SVD of A can also be accurately computed [1] and the system
of equations Ax = b can be accurately solved for almost all
right hand sides [2], independently of the magnitude of the tra-
ditional condition number of A. These facts have motivated
in the last years the development of structured algorithms for
computing accurate LDU factorizations of structured matri-
ces with well-conditioned L and U factors. One of the most
important classes of matrices arising in applications is the
class of diagonally dominant matrices, and recently an struc-
tured algorithm for computing their LDU factorizations has
been introduced in [3]. Unfortunately, the best error bound
proven in [3] for this algorithm is 6n 8(n−1) ε, where n is the
size of the matrix and ε is the unit roundoff. This bound is
completely useless for sizes as small as n = 20 in double pre-
cision. We present in this talk a new structured perturbation
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theory for the LDU factorization of diagonally dominant ma-
trices parameterized in a certain way, that allows us to prove
an error bound 14n3 ε for the LDU factorization computed
with the algorithm in [3]. These results guarantee accurate
computations of SVD and system solutions for any diagonally
dominant matrix.

[1] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić,
and Z. Drmač, Computing the singular value decomposition
with high relative accuracy, Linear Algebra Appl. 299(1–3),
21–80 (1999)
[2] F. M. Dopico and J. M. Molera, Accurate solutions of
structured linear systems, in preparation.
[3] Q. Ye, Computing singular values of diagonally dominant
matrices to high relative accuracy, Math. Comp. 77(264),
2195–2230 (2008)

Joint work with Plamen Koev (San Jose State University, CA,
USA)

Using quasiseparable structure for polynomial roots
computations
Y. Eidelman, Tel Aviv University, Israel
eideyu@post.tau.ac.il
Wed 12:40, Room Pacinotti

The effective tool to compute all the roots of a polynomial
is to determine the eigenvalues of the corresponding compan-
ion matrix using the QR iteration method. It turns out that
the companion matrix belongs to a class of structured matri-
ces which is invariant under QR iterations. Every matrix in
this class has quasiseparable structure. This structure may
be used to develop fast algorithms to compute eigenvalues of
companion matrices. We discuss implicit fast QR eigenvalue
algorithms solving this problem. The obtained algorithm is
of complexity O(N2) in contrast to O(N2) for non-structured
methods. The presentation is mainly based on the results of
papers [1] and [2].

[1] S. Chandrasekaran, M. Gu, J. Xia, J. Zhu, A fast QR Algo-
rithm for Companion Matrices, Operator Theory: Advances
and Applications. 179, pp 111-143, 2007.
[2] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, I. Go-
hberg, A Fast Implicit QR Algorithm for Companion Matri-
ces, LAA. 432, 8, pp. 2006-2031, 2010.

Rank-structured matrix technology for solving non-
linear equations
L. Gemignani, University of Pisa, Italy
gemignan@dm.unipi.it
Wed 11:25, Room Pacinotti

In this talk we discuss the use of rank-structured matrix
methods for solving certain nonlinear equations arising in ap-
plications.

Inverses of pentadiagonal recursion matrices
Carl Jagels, Hanover College, Hanover, IN 47243, USA
jagels@hanover.edu
Tue 16:45, Room Pacinotti

Schemes for approximating matrix functions of the form
f(A)v, where A is a a large, possibly sparse, sym-
metric matrix, based on projections onto the extended
Krylov subspace are currently being explored. Short re-
cursion relations for generating orthonormal bases of ex-
tended Krylov subspaces of the type Km,mi+1(A) =
span{A−m+1v, . . . , A−1v, v, Av, . . . , Amiv}, m = 1, 2, 3, . . . ,

with i a positive integer have been developed. The recursion
matrix associated with these recursion relations is pentadi-
agonal. The inverse of the recursion matrix associated with
i = 2 is also pentadiagonal. This structure does not necessar-
ily hold for i > 2 but a bandwidth structure for the inverse is
maintained where the bandwidth increases with an increase
in i. We discuss the structure of these inverses and present an
application to the computation of rational Gauss quadrature
rules.

Joint work with Lothar Reichel (Kent State University, Kent,
OH 44242, USA)

A fast algorithm for updating and downsizing the
dominant kernel principal components
N. Mastronardi, Istituto per le Applicazioni del Calcolo,
CNR, Bari, Italy
n.mastronardi@ba.iac.cnr.it
Tue 11:25, Room Pacinotti

Many important kernel methods in the machine learning area,
such as kernel principal component analysis, feature approx-
imation, denoising, compression and prediction require the
computation of the dominant set of eigenvectors of the sym-
metric kernel Gram matrix. Recently, an efficient incremental
approach was presented for the fast calculation of the domi-
nant kernel eigenbasis [1], [2]. In this talk we propose faster al-
gorithms for incrementally updating and downsizing the dom-
inant kernel eigenbasis. These methods are well-suited for
large scale problems since they are both efficient in terms of
complexity and data management.

[1] G. Gins, I. Y. Smets, and J. F. Van Impe, Efficient
tracking of the dominant eigenspace of a normalized kernel
matrix, Neural. Comput., 20, (2008), pp. 523–554.
[2] L. Hoegaerts, L. De Lathauwer, I. Goethals, J. A. K.
Suykens, J. Vandewalle, and B. De Moor, Efficiently updating
and tracking the dominant kernel principal components,
Neural Network., 20, (2007), pp. 220–229.

Joint work with Eugene E. Tyrtyshnikov (Russian Academy
of Sciences, Moscow, Russia), P. Van Dooren (Catholic Uni-
versity of Louvain, Louvain-la-Neuve, Belgium)

Generalized circulant preconditioners for Toeplitz
systems
S. Noschese, SAPIENZA Università di Roma, Italy
noschese@mat.uniroma1.it
Tue 15:25, Room Pacinotti

A Toeplitz matrix with the first entry of each column obtained
by multiplying the last entry of the preceding column by eiφ

is said to be an {eiφ}-circulant matrix. In this talk a formula
for the distance in the Frobenius norm of a Toeplitz matrix
to the set of the {eiφ}-circulant matrices is presented. Since
the underlying minimization problem generalizes a minimiza-
tion problem solved by the optimal circulant preconditioner
introduced by T. Chan, the natural application of generalized
circulants as preconditioners in the PCG method for solving
linear systems with a Toeplitz matrix Tn is discussed. Sim-
ilarly to the circulant case, matrix-vector products Cny and
C−1
n y, where Cn is an {eiφ}-circulant and y any vector in Cn,

can be evaluated in O(n logn) arithmetic floating-point oper-
ations with the aid of the Fast Fourier Transform. Moreover,
the construction of these generalized preconditioners does not
require the explicit knowledge of the generating function of
Tn, and needs only O(n) operations. I present theoretical and
numerical results that shed light on the performance of these
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preconditioners. Extensions to generalized circulant precon-
ditioners for two-level Toeplitz systems are also discussed.

Joint work with L. Reichel (Kent State University)

On the power of randomized preconditioning
V. Y. Pan, Lehman College, CUNY, USA
victor.pan@lehman.cuny.edu
Wed 12:15, Room Pacinotti

Our randomization techniques turn out to be an important
missing ingredient of the known methods of preconditioning
and thus dramatically expand their power. For a typical ill
conditioned input we perform with a high precision only a
small fraction of all flops involved, thus yielding dramatic ac-
celeration of the known algorithms for general and structured
input matrices, both in terms of the bit-operation count and
the CPU time observed. For Hankel and Toeplitz linear sys-
tems of n equations we save the factor a(n) where a(512) > 15,
a(1024) > 90, and a(2048) > 350. Our work extends the do-
main of application for iterative refinement of the solution
of a linear system of equations and for Newtons iteration for
the inversion of general and structured matrices and enables
effective treatment of nearly rank deficient (e.g., nearly sin-
gular) general and structured matrices with no pivoting and
no orthogonalization. Such matrices regularly appear, e.g., in
the Inverse Iteration for eigen-solving, and our approach en-
ables us to incorporate iterative refinement without slowing
down the convergence. Further extensions include polynomial
root-finding, computation of the numerical rank of a matrix,
approximation of a nearly rank deficient matrix with a matrix
of a smaller rank, and approximation of a matrix by a nearby
Toeplitzlike or Hankel-like matrix. Our 30-minute talk shall
outline this 5-year work by presenting the main techniques
and some central formal and experimental results, with the
pointers to more complete and detailed coverage in our pa-
pers in LAA 20092010, in press, and in progress.

Designing a library for structured linear algebra com-
putation.
G. Rodriguez, University of Cagliari, Italy
rodriguez@unica.it
Tue 15:00, Room Pacinotti

Two libraries recently developed for computation with struc-
tured matrices will be presented. The plans for extending the
functionality of these libraries and for integrating them with
other available software will be described.

[1] A. Aricò and G. Rodriguez. A fast solver for linear
systems with displacement structure. Manuscript.
[2] M. Redivo-Zaglia and G. Rodriguez. smt: a Matlab
structured matrices toolbox. arXiv:0903.5094 [math.NA],
2009. Submitted.

Joint work with A. Aricò and F. Arrai (University of Cagliari),
M. Redivo-Zaglia (University of Padova).

Error Analysis of a Fast Algorithm for Quasiseparable
Systems
Michael Stewart, Georgia State University
mastewart@gsu.edu
Wed 11:00, Room Pacinotti

This work describes a parameterization of an n× n quasisep-
arable matrix A in terms of a nested product of small House-
holder transformations and very sparse bidiagonals. Once
computed the parameterization can be exploited for fast,

O(n), solution of systems of equations with quasiseparable
structure. The represenation is insensitive in the sense that
small errors on the parameters correspond to small errors on
the matrix. Results of an error analysis show that the algo-
rithm is normwise backward stable.

Joint work with Tom Bella (University of Rhode Island) and
Vadim Olshevsky (University of Connecticut)

On structure-preserving Arnoldi-like methods
A. Salam, University Lille Nord de France, France.
salam@lmpa.univ-littoral.fr
Tue 15:50, Room Pacinotti

In this talk, two structure-preserving Arnoldi-like methods are
presented and studied. The obtained methods preserve the
structures of a class of structured matrices, including Hamil-
tonian, skew-Hamiltonian or symplectic matrices. Such meth-
ods are useful for computing few eigenvalues and vectors of
large and sparse structured matrices. Numerical experiments
are given.

[1] A. Bunse-Gerstner and V. Mehrmann, A symplectic
QR-like algorithm for the solution of the real algebraic
Riccati equation, IEEE Trans. Automat. Control AC-31
(1986), 1104–1113.
[2] A. Salam and E. Al-Aidarous and A. Elfarouk,Optimal
symplectic Householder transformations for SR-
decomposition, Linear Algebra Appl. 429 (2008), no.
5-6, 1334-1353.
[3] M. Sadkane and A. Salam, A note on symplectic block
reflectors, ETNA, Vol. 33 (2009), pp 45-52.

Unmixing of rational functions by tensor computa-
tions
M. Van Barel, Katholieke Universiteit Leuven, Belgium
marc.vanbarel@cs.kuleuven.be
Tue 12:15, Room Pacinotti

Very recently, Lieven De Lathauwer has introduced various
types of Block Term Decompositions (BTD) for higher-order
tensors. These decompositions generalize both the Tucker de-
composition (or multilinear Singular Value Decomposition)
and the Canonical / Parallel Factor decomposition. The lat-
ter are related with low multilinear rank approximation and
low rank approximation of higher-order tensors, respectively.
It turns out that BTDs can be used for source separation and
factor analysis. In this talk, we investigate the possibility of
unmixing rational functions using a particular type of BTD.
We show the effectiveness of using the BTD by some numeri-
cal examples.

Joint work with L. De Lathauwer (Katholieke Universiteit
Leuven, Belgium)

A multishift QR-algorithm for hermitian plus low rank
matrices
R. Vandebril, K.U.Leuven, Belgium
raf.vandebril@cs.kuleuven.be
Wed 11:50, Room Pacinotti

Hermitian plus possibly non-Hermitian low rank matrices can
be efficiently reduced into Hessenberg form. The resulting
Hessenberg matrix can still be written as the sum of a Her-
mitian plus low rank matrix.

In this talk we will discuss a new implicit multishift QR-
algorithm for Hessenberg matrices, which are the sum of a
Hermitian plus a possibly non-Hermitian low rank correction.
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The proposed algorithm exploits both the symmetry and
low rank structure to obtain a QR-step involving only O(n)
floating point operations instead of the standard O(n2) op-
erations needed for performing a QR-step on a Hessenberg
matrix. The algorithm is based on a suitable O(n) represen-
tation of the Hessenberg matrix. The low rank parts present
in both the Hermitian and low rank part of the sum are com-
pactly stored by a sequence of Givens transformations and
few vectors.

Due to the new representation, we cannot apply classical
deflation techniques for Hessenberg matrices. A new, efficient
technique is developed to overcome this problem.

Some numerical experiments based on matrices arising in
applications are performed. The experiments illustrate ef-
fectiveness and accuracy of both the QR-algorithm and the
newly developed deflation technique.

Joint work with G. M. Del Corso (University of Pisa)

Twisted Green’s (CMV-like) matrices and their fac-
torizations, Laurent polynomials and Digital Filter
Structures.
P. Zhlobich, University of Connecticut, USA
zhlobich@math.uconn.edu
Tue 17:10, Room Pacinotti

Several new classes of structured matrices have appeared re-
cently in the scientific literature. Among them there are so-
called CMV and Fiedler matrices which are found to be re-
lated to polynomials orthogonal on the unit circle and Horner
polynomials, respectively. Both matrices are five diagonal and
have a similar structure, although they have appeared under
completely different circumstances.

In a recent paper by Bella, Olshevsky and Zhlobich, it was
proposed a unified approach to the above mentioned matrices.
Namely, it was shown that all of them belong to a wider class
of twisted Green’s matrices. We will use this idea to show that
the factorizability of CMV and Fiedler matrices into a product
of planar rotations in the n-dimensional space is also inherited
by twisted Green’s matrices. Shortly, for a given Hessenberg
Green’s matrix of size n, the interchange of factors in the
factorization leads to 2n different twisted Green’s matrices.

CMV matrix appeared in the scientific literature in connec-
tion with Laurent polynomials orthogonal on the unit circle.
Fiedler matrix was developed purely from its factorization.
We will show that an infinite-dimensional twisted Green’s ma-
trix serve as the operator of multiplication by “z” in the lin-
ear space of complex Laurent polynomials. Our development
doesn’t use orthogonallity in any sense and is based on the
factorization and recurrence relations only. In the case of fi-
nite dimensional matrices we are able to give an explicit form
of an eigenvector and all the generalized eigenvectors for a
given eigenvalue.

The final part of our talk will be devoted to Kimura’s ap-
proach to CMV matrices, i.e. Signal Flow Graphs (SFG) ap-
proach. We will exploit the tool of SFG to visualize all the
theoretical results for twisted Green’s matrices as well as to
show how they can be used in construction of new types of
Digital Filters.

Joint work with F. Marcellán (Univ. Carlos III de Madrid),
V. Olshevsky (Univ. of Connecticut) and G. Strang (MIT)

Markov Chains
Steve Kirkland, National University of Ireland, Maynooth

Michael Neumann, University of Connecticut, USA

On the mean first passage matrix of a simple random
walk on a tree
R.B. Bapat, Indian Statistical Institute New Delhi, India
rbb@isid.ac.in
Mon 17:35, Room B

We consider a simple random walk on a tree. Exact expres-
sions are obtained for the expectation and the variance of the
first passage time, thereby recovering the known result that
these are integers. A relationship of the mean first passage
matrix with the distance matrix is established and used to
derive a formula for the inverse of the mean first passage ma-
trix.

Probabilistic Approach to Perron Root, the Group
Inverse, and Applications
Iddo Ben Ari, University of Connecticut, Storrs, USA

Mon 17:10, Room B

A probabilistic approach to the study of the Perron root of
irreducible nonnegative matrices is presented. This is then
applied to reestablish and improve some known results in the
field. The analysis focuses on perturbative theory for the Per-
ron root the group inverse of a generator of a continuous time
Markov chain, and their relations.

Restricted additive Schwarz methods for computing
the stationary vector of large Markov chains
Michele Benzi, Emory University, Atlanta, GA, USA
benzi@mathcs.emory.edu
Wed 12:15, Room B

The Restricted Additive Schwarz (RAS) algorithm is a do-
main decomposition method that has proved very effective in
solving large sparse systems of linear equations arising from
the discretization of partial differential equations on parallel
computers. In this talk we extend the RAS algorithm to the
problem of computing the steady-state (stationary) vector of
Markov chains with large state spaces. We prove convergence
of the stationary iterative method, and we address computa-
tional issues such as partitioning, the amount of overlap, in-
exact subdomain solves, the construction of two-level schemes
bases on “coarse grid” corrections, and Krylov subspace ac-
celeration. The results of numerical experiments on matrices
arising from real applications in Markov modelling will be
presented.

Joint work with Verena Kuhlemann (Emory University)

Coupling and Mixing in Markov Chains
Jeffrey J Hunter, Auckland University of Technology &
Masey University, New Zealand

Wed 11:25, Room B

Following a discussion of the concepts of mixing and cou-
pling in Markov chains, expressions for the expected times
to mixing and coupling are developed. The two-state cases
and three-state cases are examined in detail and some results
for the bounds on the expected values are given. The key re-
sults are given in Hunter, J.J.: ”Coupling and mixing times
in a Markov chain”, Linear Algebra and its Applications, 430,
2607-2621, (2009), and Hunter, J.J.: ”Bounds on Expected
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Coupling Times in a Markov Chain”, (pp271-294), ”Statis-
tical Inference, Econometric Analysis and Matrix Algebra.
Festschrift in Honour of Gtz Trenkler”, Bernhard Schipp and
Walter Kraemer (Editors), Physica-Verlag Heidelberg (2009)

To be Announced
Ali Jadbabaie, University of Sydney, Australia

Wed 11:50, Room B

Non-negative matrix products and John Hajnal
(1924-2008)
Eugene Seneta, School of Mathematics and Statistics, FO7,
University of Sydney, Australia

Mon 16:45, Room B

Hajnal (Proc. Cambridge Philos. Soc., 54 (1958), 233-246)
gave the first proof of a necessary and sufficient condition
for weak ergodicity of a sequence of nxn stochastic matrices
(non-negative matrices with row sums one). Intrinsically, he
used the Markov-Dobrushin coefficient of ergodicity, whose
sub-unit value indicates contractivity for a stochastic matrix.

He also introduced the key idea of a scrambling matrix.
Later (Math. Proc. Cambridge Phil. Soc., 79(1976)521-
530), motivated by work in demography on inhomogeneous
products of certain kinds of non-stochastic non-negative ma-
trices, he developed a weak ergodicity theory for general non-
negative matrix products, using Birkhoff’s contraction ratio.
Both papers were enormously influential on subsequent devel-
opments.

This tribute to Hajnal outlines his biography, motivation
and methodology, and briefly synthesizes the history of inho-
mogeneous products pre- and post- 1957, including the work
of Doeblin and Sarymsakov.

The Inverse Mean First Passage Matrix Problem And
The Inverse M-Matrix Problem
Raymond Nung-Sing Sze, Department of Applied Mathe-
matics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong
raymond.sze@inet.polyu.edu.hk
Wed 11:00, Room B

The inverse mean first passage time problem is given an n×n
positive matrix M , then when does there exist an n state
discrete time homogeneous ergodic Markov chain, whose mean
first passage matrix is M . The inverse M -matrix problem is
given a nonnegative matrix A, then when is A an inverse of an
M -matrix. In this talk, results concerning these two problems
are discussed.

Joint work with M. Neumann, Univesrity of Connecticut

Nonnegative Matrices
Judi McDonald

Michael Tsatsomeros

Nonnegative matrix theory is an important area
of linear algebra that has been built up from the
Perron-Frobenius Theorem and has largely been driven
by applications. This minisymposium brings together
individuals with experience and interests in classical
nonnegative matrix theory, as well as in a variety of

generalizations and applications.

Spectrally arbitrary patterns over finite fields.
E. J. Bodine, Washington State University
ebodine@math.wsu.edu
Fri 17:35, Room Pacinotti

In this talk, we will explore zero-nonzero patterns over finite
fields. In particular, we will examine patterns that demon-
strate fundamental differences in the algebraic structure of
different fields.

Joint work with J. J. McDonald (Washington State Univer-
sity)

Sign patterns that require or allow power-positivity
Minerva Catral, Iowa State University, USA
mrcatral@iastate.edu
Fri 16:45, Room Pacinotti

A matrix A is power-positive if some positive integer power
of A is entrywise positive. A matrix A is eventually positive
if Ak is entrywise positive for all sufficiently large integers
k. A characterization of sign patterns that require power-
positivity is presented. It is also shown that a sign pattern A
allows power-positivity if and only if A or −A allows eventual
positivity.

Joint work with Leslie Hogben, Iowa State University, USA
(lhogben@iastate.edu) & American Institute of Mathematics
(hogben@aimath.org), D. D. Olesky, University of Victoria,
Canada (dolesky@cs.uvic.ca), P. van den Driessche, Univer-
sity of Victoria, Canada (pvdd@math.uvic.ca)

Matrix Functions Preserving Sets of Generalized
Nonnegative Matrices
A. Elhashash, Drexel University, USA
aae36@drexel.edu
Thu 12:15, Room Pacinotti

We characterize matrix functions preserving several sets of
generalized nonnegative matrices. These sets include PFn,
the set of n×n real eventually positive matrices; and WPFn,
the set of matrices A ∈ Rn×n such that A and its transpose
has the Perron-Frobenius property. We also present necessary
and sufficient conditions for a matrix function to preserve the
set of n×n real eventually nonnegative matrices and the set of
n×n real exponentially nonnegative. Moreover, we show that
the only complex polynomials that preserve the set of n × n
real exponentially nonnegative matrices are p(z) = az + b
where a, b ∈ R and a ≥ 0.

Joint work with D. B. Szyld (Temple University)

Nonnegative Jordan bases and characterization of
eventually nonnegative matrices
D. Noutsos, University of Ioannina, Greece
dnoutsos@uoi.gr
Thu 11:00, Room Pacinotti

For an n× n eventually nonnegative matrix A, the existence
of a nonnegative Jordan basis of the eigenspace corresponding
to the dominant eigenvalue is proven. This result is used to
characterize when the matrix hI + A is eventually nonneg-
ative for all h > 0. Sufficient and necessary conditions are
proven for this situation. Numerical examples are presented
to illustrate and validate the theoretical results.



9

Joint work with M. J. Tsatsomeros (Washington State Uni-
versity)

Sign Patterns that Allow Eventual Positivity
Dale Olesky, University of Victoria, Victoria, BC Canada
dolesky@cs.uvic.ca
Fri 15:50, Room Pacinotti

A real square matrix A is eventually positive if there exists
a positive integer k0 such that for all k ≥ k0, Ak is entrywise
positive. Some necessary or sufficient conditions for a sign pat-
tern to allow eventual positivity are given. It is shown that
certain families of sign patterns do not allow eventual posi-
tivity, and that for n ≥ 2, the minimum number of positive
entries in an n× n sign pattern that allows eventual positiv-
ity is n + 1. All 2 × 2 and 3 × 3 sign patterns are classified
as to whether or not the pattern allows eventual positivity.
A 3× 3 matrix is presented to demonstrate that the positive
part of an eventually positive matrix need not be primitive,
answering negatively a question of Johnson and Tarazaga.

Computations with totally nonnegative and sign-
regular matrices
J.M. Peña, University of Zaragoza, Spain
jmpena@unizar.es
Thu 11:25, Room Pacinotti

Totally nonnegative matrices are matrices with all their mi-
nors nonnegatives. They belong to the class of sign-regular
matrices. We present recent advances of numerical methods
for these classes of matrices. Methods for solving linear sys-
tems and methods concerning with their factorizations and
related accurate computations are considered, as well as tests
to recognize if a matrix belongs to these classes of matrices.
Recent advances on localization results for their eigenvalues
are also analyzed.

Some constructive methods in the symmetric nonneg-
ative inverse eigenvalue problem
H. Šmigoc, University College Dublin, Dublin
helena.smigoc@ucd.ie
Fri 15:00, Room Pacinotti

The question, which lists of complex numbers are the spec-
trum of some nonnegative matrix, is known as the nonnega-
tive inverse eigenvalue problem (NIEP), and the same ques-
tion posed for symmetric nonnegative matrices is called the
symmetric nonnegative inverse eigenvalue problem (SNIEP).
In the talk we will present some constructive methods applied
to the SNIEP and discuss the effect of adding zeros to the
spectrum in the SNIEP.

Joint work with T. J. Laffey(University College Dublin)

Graphs, Patterns and Powers – From Nonnegative
Matrices to Nonpowerful Ray Patterns
Jeffrey Stuart, Pacific Lutheran University, Tacoma,
Washington, USA
jeffrey.stuart@plu.edu
Fri 15:25, Room Pacinotti

For positive powers of square matrices, which properties arise
from the signed digraph and which depend on the relative
magnitudes of the entries? There is a substantial body of re-
search on this question, starting with the work on primitivity
and imprimitivity for nonnegative matrices. Later, this study
was extended to examining the zero-nonzero patterns of pow-
ers of real matrices and their connection to the signed digraph

for the matrix. Viewed in terms of sign pattern classes, this led
to the study of powerful sign patterns as well as the base and
period of a powerful sign pattern. Subsequently, the results
for powerful sign pattern classes were extended to results for
powerful ray pattern classes, although there are some inter-
esting differences between the behavior of sign patterns and
ray patterns. Recently, interest has shifted to the behavior
of powers of square, complex ray patterns that are not pow-
erful, which is to say, for which the ray-signed digraph does
not determine the ray patterns of powers of matrices in the
qualitative class. For nonpowerful ray patterns, the concepts
of base, power and primitivity break down in ways that have
sometimes been overlooked in recent papers. We will discuss
these ideas and some of the current directions of research.

On the periodic stabilization of discrete-time positive
switched systems
Maria Elena Valcher, University of Padova, Italy
meme@dei.unipd.it
Thu 11:50, Room Pacinotti

Positive switched systems typically arise to cope with two
distinct modeling needs. On the one hand, switching among
different models mathematically formalizes the fact that the
system laws change under different operating conditions. On
the other hand, the variables to be modeled may be quanti-
ties that have no meaning unless positive (temperatures, pres-
sures, population levels, ...). Research interests in positive
switched systems mainly focused on their stability proper-
ties [1], while stabilizability has been only marginally touched
upon. In this talk we present some results about the stabiliza-
tion of positive switched systems. In detail, we consider the
class of discrete-time positive switched systems, described, at
each time t ∈ Z+, by the first-order difference equation:

x(t+ 1) = Aσ(t)x(t), (1)

where x(t) denotes the n-dimensional state variable at time
t, while σ is a switching sequence, defined on Z+ and taking
values in the finite set P = {1, 2}. For each i ∈ P, Ai is an
n× n positive matrix.

Assuming that both A1 and A2 are not Schur matrices,
we provide conditions on the matrix pair (A1, A2) that en-
sure that for every positive initial state x(0) ∈ Rn+, there
is a switching law σ : Z+ → P that leads the state trajec-
tory x(t) = Aσ(t−1)Aσ(t−2) . . . Aσ(1)Aσ(0)x(0) to zero as t goes
to +∞. In particular, we show that every stabilizable posi-
tive switched system can be stabilized by means of a periodic
switching law. Finally, we prove that, if a Schur convex com-
bination of the matrices A1 and A2 can be found, it provides
some information on the period and the “duty cycle” of these
stabilizing periodic switching sequences.

[1] O. Mason and R.N. Shorten. Quadratic and copostive
Lyapunov functions and the stability of positive switched
linear systems. In Proceedings of the American Control
Conference (ACC 2007), pp. 657–662, New York, 2007.

Joint work with Ettore Fornasini (University of Padova)

Spectrally arbitrary zero-nonzero patterns
A. A. Yielding, Eastern Oregon University, La Grande, OR

ayielding@eou.edu
Fri 17:10, Room Pacinotti
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In this talk we establish the lower bound of 2n − 2 for the
number of zero entries an n× n irreducible zero-nonzero pat-
tern that is not spectrally arbitrary and contains at least two
nonzero entries along the diagonal.

Joint work with J. J. McDonald (Washington State Univer-
sity)

Matrix Functions and Matrix Equations
Chun Hua Guo, University of Regina, Canada
Valeria Simoncini, University of Bologna, Italy

A Newton-Galerkin-ADI Method for Large-Scale Al-
gebraic Riccati Equations
Peter Benner, TU Chemnitz, Germany
benner@mathematik.tu-chemnitz.de
Thu 16:45, Room Pacinotti

Solving large-scale algebraic Riccati equations (AREs) is one
of the central tasks in solving optimal control problems for
linear and, using receding-horizon techniques, also nonlinear
instationary partial differential equations. Large-scale AREs
also occur in several model reduction methods for dynamical
systems. Due to sparsity and large dimensions of the resulting
coefficient matrices, standard eigensolver-based methods for
AREs are not applicable in this context. In the recent two
decades, several approaches for such large-scale AREs have
been suggested. They mainly fall into two categories:

1. Galerkin-projection: the ARE is projected onto a low-
dimensional subspace, e.g., a suitable Krylov subspace,
then the small scale ARE is solved using a standard
solver and the solution is prolongated to full-scale;

2. Newton’s method: exploit sparsity in the resulting lin-
ear system of equations (= a Lyapunov equation) to be
solved in each step.

Here, we will present the hybrid method suggested in [1]. It is
based on exploiting the advantages of both ideas. Numerical
experiments confirm the high efficiency of this new method
and demonstrate its applicability to the aforementioned ap-
plication areas.

[1] P. Benner and J. Saak, A Galerkin-Newton-ADI Method
for Solving Large-Scale Algebraic Riccati Equations. Preprint
SPP1253-090, DFG Priority Programme 1253 “Optimization
with Partial Differential Equations”, January 2010.

Joint work with Jens Saak (TU Chemnitz)

Computation of matrix functions arising in the anal-
ysis of complex networks
Michele Benzi, Emory University, Atlanta, GA, USA
benzi@mathcs.emory.edu
Thu 15:00, Room Pacinotti

Quantitative methods of network analysis naturally lead to
large-scale computations for functions of matrices associated
with sparse graphs. This talk will describe some of the main
quantities of interest in network analysis as introduced by
Estrada, Hatano, D. Higham and others. We combine de-
cay bounds [2,3] and Gaussian quadrature rules [4] to derive
a priori bounds and efficient numerical methods for estimat-
ing the quantities of interest. Numerical experiments using
small-world, range-free, and Erdös-Renyi graphs will be used
to illustrate the algorithms. This talk is based in part on the
report [1].

[1] M. Benzi and P. Boito, Quadrature Rule-Based Bounds
for Functions of Adjacency Matrices, Technical Report
TR-2009-031, Department of Mathematics and Computer
Science, Emory University, January 2010.
[2] M. Benzi and G. H. Golub, Bounds for the entries of
matrix functions with applications to preconditioning, BIT,
29 (1999), pp. 417–438.
[3] M. Benzi and N. Razouk, Decay bounds and O(n)
algorithms for approximating functions of sparse matrices,
ETNA, 28 (2007), pp. 16–39.
[4] G. Meurant and G. H. Golub, Matrices, Moments and
Quadrature with Applications. Princeton University Press,
Princeton, NJ, 2010.

Joint work with Paola Boito (Emory University and CER-
FACS)

On the numerical solution of the matrix equationPk
i=1 log(XA−1

i ) = 0
D.A. Bini, University of Pisa, Italy
bini@dm.unipi.it
Mon 15:00, Room Pacinotti

Let Ai, i = 1, . . . , k be real symmetric positive definite n ×
n matrices. It is known that the minimum of the functionPk
i=1 d(X,Ai)

2 for d(X,Y ) = ||X−1/2Y X−1/2||F is attained

at a matrixX which solves the equation
Pk
i=1 log(XA−1

i ) = 0.
This solution X is called the Karcher mean of the matrices
A1, . . . , Ak.

We introduce the iteration

Xν+1 = Xν exp(θ

kX
i=1

log(XAi))

and its first order approximation

Xν+1 = Xν + θXν

kX
i=1

log(XAi)

for approximating the Karcher mean.

We provide a convergence analysis with a dynamical de-
termination of the optimal parameter θ and show that un-
der certain conditions, convergence is locally quadratic with
the optimal choice of θ. We provide a way for the choice of
an initial approximation which greatly speeds up the conver-
gence. Numerical experiments which validate our analysis are
reported.

Joint work with B. Iannazzo (University of Perugia)

On different classes of Lyapunov equations
Tobias Damm, University of Kaiserslautern, Germany
damm@mathematik.uni-kl.de
Mon 15:25, Room Pacinotti

Lyapunov equations are fundamental e.g. in stability analysis
or model order reduction reduction. As is well-known, differ-
ent forms of Lyapunov operators occur for different classes of
systems such as linear stochastic systems, linear delay equa-
tions or bilinear systems. We give a short review of these
matrix equations and report on some new results and numer-
ical methods.

Inertia and Rank Characterizations of the Expres-
sions A−BXB∗ − CY C∗ and A−BXC∗ ± CX∗B∗
Delin Chu, National University of Singapore, Singapore
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matchudl@nus.edu.sg
Mon 15:50, Room Pacinotti

In this paper we consider the admissible inertias and ranks of
the expressions A−BXB∗−CY C∗ and A−BXC∗±CX∗B∗
with unknowns X and Y in the four cases when these expres-
sions are : (i) complex self-adjoint,(ii) complex skew-adjoint,
(iii) real symmetric, (iv) real skew symmetric. We also pro-
vide a construction for X and Y to achieve the desired in-
ertia/rank, that uses only unitary/orthogonal transformation
thus leading to a numerically reliable construction. Conse-
quently, necessary and sufficient solvability conditions for the
matrix equations

A−BXB∗ − CY C∗ = 0,

and
A−BXC∗ ± CX∗B∗ = 0

are provided.
Joint work with (Y.S.Hung (Department of Electrical and

Electronic Engineering. The University of Hong Kong, Hong
Kong) and Hugo J. Woerdeman (Department of Mathematics,
Drexel University, Philadelphia, USA.))

Hierarchical and Multigrid Methods for Matrix and
Tensor Equations
L. Grasedyck, RWTH Aachen, Germany
lgr@mis.mpg.de
Mon 11:00, Room Pacinotti

Hierarchical and Multigrid methods are among the most ef-
ficient methods for the solution of large-scale systems that
stem, e.g. from the discretization of partial differential equa-
tions (PDE). In this talk we will review the generalization of
these methods to the solution of matrix equations [1], [2], and
equations that possess a tensor structure [3]. The standard
hierarchical and multigrid methods can perfectly be combined
with low rank (matrix) and low tensor rank representations.
The benefit is that the solution is computable in almost op-
timal complexity with respect to the amount of data needed
for the representation of the solution. As an example we con-
sider a PDE posed in a product domain Ω × Ω,Ω ⊂ Rd and
discretized with Nd basis functions for the domain Ω. Under
separability assumptions on the right-hand side the system
is solved in low rank form in O(Nd) complexity (instead of
O(N2d) required for the full solution). For a PDE on the prod-
uct domain Ω× · · · × Ω| {z }

D times

one can even solve the system in low

tensor rank form in O(Nd) complexity (instead of O(NDd)
required for the full solution). The state of the art will be
shortly summarized.

[1] L. Grasedyck, W. Hackbusch, A Multigrid Method to Solve
Large Scale Sylvester Equations, SIMAX 29, pp. 870-894,
2007.
[2] L. Grasedyck, Nonlinear multigrid for the solution of large
scale Riccati equations in low-rank and H-matrix format,
Num.lin.alg.appl. 15, pp. 779-807, 2008.
[3] L. Grasedyck, Hierarchical Singular Value Decomposition
of Tensors, Technical Report 27/2009, Max Planck Institute
for Mathematics in the Sciences, Leipzig, www.mis.mpg.de.

Krylov-enhanced parallel integrators for linear prob-
lems
S. Güttel, University of Geneva, Switzerland
Stefan.Guettel@unige.ch
Thu 15:50, Room Pacinotti

The parareal algorithm is a numerical method to integrate
evolution problems on parallel computers. The main compo-
nents of this algorithm are a coarse integrator, which quickly
propagates information on a coarse partition of the time in-
terval, and a fine integrator, which solves the evolution prob-
lems more accurately on each subinterval. The performance
of this algorithm is well understood for diffusive problems,
but it can also have spectacular performance when applied
to certain non-linear problems. In [2] the authors proposed a
Krylov-enhanced version of the parareal algorithm, which for
linear problems is equivalent to the modified PITA algorithm
described in [1]. Both of these algorithms can be successful
for 2nd order ODE’s. Refining the analysis in [2], we study
the convergence of the Krylov-enhanced parareal algorithm
and consider the particularly interesting special case when
the coarse integrator is a polynomial or rational Krylov-based
exponential or trigonometric integrator.

[1] C. Farhat, J. Cortial, C. Dastillung & H. Bavestrello, Time-
parallel implicit integrators for the near-real-time prediction
of linear structural dynamic responses. Internat. J. Numer.
Methods Engrg. 67 (2006), pp. 697–724.
[2] M. Gander & M. Petcu, Analysis of a Krylov subspace
enhanced parareal algorithm for linear problems. ESAIM:
Proc. 25 (2008), pp. 114–129.

Rational Approximation to Trigonometric Operators
M. Hochbruck, Karlsruhe Institute of Technology, Germany

marlis.hochbruck@kit.edu
Thu 15:25, Room Pacinotti

We will discuss the approximation of trigonometric operator
functions that arise in the numerical solution of wave equa-
tions by trigonometric integrators. It is well known that
Krylov subspace methods for matrix functions without ex-
ponential decay show superlinear convergence behavior if the
number of steps is larger than the norm of the operator. Thus,
Krylov approximations may fail to converge for unbounded
operators. In this talk, a rational Krylov subspace method is
proposed which converges not only for finite element or finite
difference approximations to differential operators but even
for abstract, unbounded operators. In contrast to standard
Krylov methods, the convergence will be independent of the
norm of the operator and thus of its spatial discretization.
We will discuss efficient implementations for finite element
discretizations and illustrate our analysis with numerical ex-
periments.

[1] V. Grimm und M. Hochbruck Rational approximation
to trigonometric operators BIT, vol. 48, no. 2, pp. 215229
(2008)

Joint work with V. Grimm (Karlsruhe Institute of Technol-
ogy)

A binary powering Schur algorithm for computing
primary matrix roots
B. Iannazzo , Università di Perugia, Italy
bruno.iannazzo@dmi.unipg.it
Thu 17:35, Room Pacinotti

Let p be a positive integer. A primary pth root of a square
matrix A is a solution of the matrix equation Xp − A = 0
which can be written as a polynomial of A.

If A has no nonpositive real eigenvalues then there exists
only one primary pth root whose eigenvalues lie in the sector
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Sp = {z ∈ C \ {0} : |arg(z)| < π/p}, which is called principal
pth root and denoted by A1/p.

The main numerical problem is to compute (A1/p)r, for
0 < r < p integer. This problem is encountered in certain
applications, among which financial models, and in the nu-
merical computation of other matrix functions [2].

We present an algorithm for computing primary roots of a
nonsingular matrix A. The algorithm is based on the Schur
decomposition of A. In particular, if A has no nonpositive real
eigenvalues, it computes A1/p using only real arithmetics.

The algorithm has an order of complexity lower than the
customary Schur based algorithm, namely the Smith algo-
rithm [3], and it is a valid alternative to the algorithms based
on rational matrix iterations.

[1] F. Greco and B. Iannazzo, A binary powering Schur
algorithm for computing primary matrix roots, Numer.
Algorithms, 2010.
[2] N. J. Higham, Functions of Matrices: Theory and Com-
putation, SIAM, Philadelphia, USA, 2008.
[3] M. I. Smith, A Schur algorithm for computing matrix pth
roots, SIAM J. Matrix Anal. Appl., 2003.

Joint work with F. Greco (Università di Perugia)

Error estimates for two rational Krylov subspace
methods to solve the Lyapunov equation with a rank
one right-hand side
L. Knizhnerman, Mathematical Modelling Department of
Central Geophysical Expedition, Moscow, Russia
mmd@cge.ru
Mon 12:15, Room Pacinotti

The Extended Krylov Subspace Method has recently arisen
as a competitive method for solving large-scale Lyapunov
equations. Using the theoretical framework of orthogonal ra-
tional functions (Faber–Dzhrbashyan series, Blaschke prod-
ucts), in this talk we report on a general a priori error esti-
mate when the known term has rank one, i.e., the equation
has the form

AX +XA∗ + bb∗ = 0, A,X ∈ RN×N , b ∈ RN ,

with a positively definite known matrix A.
We also apply the same technique to analyze the behavior of

the Rational Krylov Subspace Method, applied to the same
problem, with a priori chosen shifts (EKSM corresponds to
cyclically repeated shifts 0 and ∞).

Special cases, such as symmetric coefficient matrix, are also
treated.

Numerical experiments confirm the proved theoretical as-
sertions.

Joint work with V. Druskin (Schlumberger–Doll Research,
Cambridge, USA), V. Simoncini (University of Bologna,
Italy), M. Zaslavsky (Schlumberger–Doll Research, Cam-
bridge, USA)

Filters connecting quadratic systems
Peter Lancaster, University of Calgary, Canada.
lancaste@ucalgary.ca
Mon 16:45, Room Pacinotti

The diagonalization of quadratic systems L(λ) = Mλ2 +Dλ+
K is a fundamental problem in many applications. These sys-
tems may have real or complex matrix coefficients, with or
without symmetries. Diagonalization by the application of
strict equivalence or congruence transformations directly to

L(λ) is well-understood but is possible for only a very restric-
tive class of systems. Diagonalization by applying structure
preserving transformations to a linearization of L(λ) has also
been developed recently, and is possible for a wider class of
systems.

Here, we describe the possibility of finding linear systems
of the form F (λ) := F1λ+ F0 for which

F̃ (λ)L(λ) = L̃(λ)F (λ)

and L̃(λ) is diagonal. We call thesefunctions linear filters.

We show how filters can be constructed using familiar struc-
tures of “standard pairs” and “structure preserving transfor-
mations”.

Joint work with S.D.Garvey, (University of Nottingham, UK),
A.Popov, (University of Nottingham, UK), U.Prells, (Univer-
sity of Nottingham, UK), I.Zaballa, (Euskal Herriko Uniber-
sitatea, Spain).

Stabilizing complex symmetric solution of the equa-
tion X +A>X−1A = Q arising in nano research
Wen-Wei Lin, National Chiao Tung University, Taiwan
wwlin@math.nctu.edu.tw
Mon 17:10, Room Pacinotti

We study the existence and characteristic of the stabiliz-
ing complex symmetric solution Xs for the matrix equation
X + A>X−1A = Q arising in nano research. In stead of us-
ing the deep theory of linear operators we give a new proof
on the existence of Xs by using only basic knowledge of lin-
ear algebra. Furthermore, we show that the imaginary part
of Xs is positive semi-definite with rank=m/2, where m is
the number of simple unimodular eigenvalues of the rational
matrix-valued function ψ(λ) ≡ Q + λA + λ−1A>. We also
present a doubling algorithm for computing the desired solu-
tion Xs efficiently and reliably.

Joint work with Chun-Hua Guo (University of Regina,
Canada) and Yueh-Cheng Kuo (National University of Kaoh-
siung, Taiwan).

Algorithms for nonnegative quadratic vector equa-
tions
F. Poloni, Scuola Normale Superiore, Pisa, Italy
f.poloni@sns.it
Mon 17:35, Room Pacinotti

We investigate a vector equation having the form

Mx = a+ b(x, x), (1)

where a, x ∈ Rn≥0, M is an n×nM-matrix and b : Rn≥0×Rn≥0 →
Rn≥0 is a bilinear map. The equation (1) appears in the study
of Markovian binary trees [Bean, Kontoleon Taylor, Ann.
Oper. Res. ’08; Hautphenne, Latouche, Remiche, LAA ’08].

We propose a new functional iteration (and a corresponding
Newton method) for its solution, based on the computation
of the Perron vector of a special matrix. The most interesting
property of these methods is that their convergence behaviour
does not degrade when the equation is close to null recurrent,
in contrast to the traditional algorithms. This means that
they are particularly effective on the most “difficult” prob-
lems.

Moreover, we may weaken the hypotheses of the original
probabilistic equation in order to obtain a general framework
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for systems of quadratic equations with nonnegativity con-
straints, encompassing nonsymmetric algebraic Riccati equa-
tions [Guo, Laub, SIMAX ’00], Lu’s simple equation [Lu L.-
Z., SIMAX ’05], and several quadratic equations in queuing
theory and probability [Bini, Latouche, Meini, LAA ’02 and
’03]. This allows us to give a unified treatment of the numeri-
cal methods for their solution. In some cases, this unification
leads to new algorithms or more general proofs.

It is still an open problem whether it is possible to extend
the new Perron vector-based iterations to this larger family of
quadratic equations.

Joint work with D. A. Bini (University of Pisa), B. Meini
(University of Pisa)

Lur’e Equations and Even Matrix Pencils
T. Reis, TU Berlin / TU Hamburg-Harburg (Germany)
reis@math.tu-berlin.de
Mon 11:25, Room Pacinotti

Lur’e equations are a generalization of algebraic Riccati equa-
tions and they arise in linear-quadratic optimal control prob-
lem which are singular in the input. It is well-known that
there is a one-to-one correspondence between the solutions
of Riccati equations and Lagrangian eigenspaces of a certain
Hamiltonian matrix. The aim of this talk is to generalize this
concept to Lur’e equations. We are led to the consideration
of deflating subspaces of even matrix pencils.

Dimension reduction for damping optimization of lin-
ear vibrating systems
Ninoslav Truhar, University of Osijek, Croatia
ntruhar@mathos.hr
Mon 11:50, Room Pacinotti

Consider a damped linear vibrational system described by the
differential equation

Mẍ+Dẋ+Kx = 0 , x(0) = x0, ẋ(0) = ẋ0 ,

where M,D,K are mass, damping and stiffness matrix, re-
spectively.

A very important question arises in considerations of such
systems: for given mass and stiffness determine the damping
matrix so as to insure an optimal evanescence.

It can be shown that this optimization problem is equivalent
to the following minimization problem:

trace(X) = min ,

where X is solution of the following Lyapunov equation:

AX +XAT = −GGT ,

here A is 2n× 2n matrix obtained from M,D and K, and G
is matrix with full column rank, and rank(G)� n.

Finding the optimal D such that the trace of X is minimal
is a very demanding problem, caused by the large number of
trace calculations, which are required for bigger matrix dimen-
sions. We propose a dimension reduction to accelerate the op-
timization process and we present corresponding error bound
for the approximation of the solution of Lyapunov equation
obtained by this reduction. We will show a new estimates for
the eigenvalue decay of the solution X which include the in-
fluence of the right-hand side G on the eigenvalue decay rate
of the solution. Also, we will present an efficient algorithm
for the minimization of trace(X) using a low rank Cholesky
ADI method based on a new set of ADI parameters.

Joint work with Peter Benner, Chemnitz University of Tech-
nology, Germany and Zoran Tomljanović, University of Osi-
jek, Croatia

Algorithms for matrix functions
K. Ziȩtak, Wroc law University of Technology, Poland
krystyna.zietak@pwr.wroc.pl
Thu 17:10, Room Pacinotti

The matrix sector function, introduced by Shieh, Tsay and
Wang, is a generalization of the matrix sign function. For a
positive integer p and a matrix A ∈ Cn×n, having no eigen-
values with argument (2k + 1)π/p for k = 0, 1, . . . , p− 1, the
matrix sector function is defined by sectp (A) = A( p

√
Ap)−1,

where p
√
X denotes the principal pth root of X. For p = 2 the

matrix sector function is the matrix sign function.
We derive and investigate a family of iterations for the sec-

tor function, based on the Padé approximants of a certain
hypergeometric function. This generalizes a result of Kenney
and Laub [3] for the sign function and yields a whole family
of iterative methods for computing the matrix pth root.

We prove that the principal Padé iterations for the matrix
sector function are structure preserving. It generalizes the
result of Higham, Mackey, Mackey, Tisseur [1] for the principal
Padé iterations for the matrix sign function (see also Iannazzo
[2]).

We also focus on the coupled Padé iterations for computing
the matrix pth root. The talk is based on [4] and some current
investigations.

[1] N.J. Higham, D.S. Mackey, N. Mackey, F. Tisseur, Com-
puting the polar decomposition and the matrix sign decom-
position in matrix groups, SIAM J. Matrix Anal. Appl. 25
(2004), 1178–1192.
[2] B. Iannazzo, A family of rational iterations and its appli-
cation to the computation of the matrix pth root, SIAM J.
Matrix Anal. Appl., 30 (2008), 1445–1462.
[3] Ch.S. Kenney, A.J. Laub, Rational iterative methods for
the matrix sign function, SIAM J. Matrix Anal. Appl. 12
(1991), 273–291.
[4] B. Laszkiewicz, K. Ziȩtak, A Padé family of iterations for
the matrix sector function and the matrix pth root, Numer.
Lin. Alg. Appl. 16 (2009), 951–970.

Combinatorial Linear Algebra
Shaun Fallat, University of Regina, Canada
Bryan Shader,University of Wyoming, USA

This minisymposium will highlight recent advances
in the use of linear algebra to reveal the intrinsic
combinatorial structure of matrices described by graphs
and digraphs; and the use of graph theory in develop-
ing deeper algebraic and analytic theory for matrices
that incorporates the underlying structure of the matrix.

The spectral radius and the diameter of connected
graphs
Sebastian M. Cioabă, University of Delaware
cioaba@math.udel.edu
Mon 11:00, Room C

In this talk, I will discuss the problem of determining the
minimum spectral radius of order n and diameter D. I will
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focus on the cases when D is constant and when D grows
linearly with n.

[1] S.M. Cioabă, E. van Dam, J. Koolen and J.H. Lee,
Asymptotic results on the spectral radius and the diameter
of graphs, Linear Algebra and its Applications, 432 722-737,
(2010).
[2] S.M. Cioabă, E. van Dam, J. Koolen and J.H. Lee, A
lower bound for the spectral radius of graphs with fixed
diameter, European Journal of Combinatorics, to appear.

Joint work with Edwin van Dam (Tilburg University),
Jack Koolen (POSTECH) and Jae-Hoo Lee (University of
Wisconsin-Madison)

Majorization permutahedra and (0, 1)-matrices
G. Dahl, University of Oslo, Norway
geird@math.uio.no
Tue 11:50, Room C

Let x[j] denote the jth largest component of a real vector x.
For vectors x, v ∈ <n one says that x is majorized by v ([1],
[2]), denoted by x � v, provided that

Pk
j=1 x[j] ≤

Pk
j=1 v[j]

for k = 1, . . . , n where there is equality for k = n. A majoriza-
tion permutahedron M(v) is a polytope associated with a ma-
jorization x � v in <n, defined by M(v) = {x ∈ <n : x � v}.
By Rado’s theorem ([2]) M(v) is the convex hull of all permu-
tations of v. Several properties of these polytopes are inves-
tigated and a connection to discrete convexity is established.
These results are used to obtain a generalization of the Gale-
Ryser theorem for (0, 1)-matrices with given line sums.

[1] R.A. Brualdi, Combinatorial Matrix Classes, Encyclopedia
of Mathematics, Cambridge University Press. 2006.
[2] A.W. Marshall and I. Olkin, Inequalities: Theory of Ma-
jorization and Its Applications, Academic Press, New York,
1979.

Why are minimum rank of graph problems interest-
ing? (In my opinion)
Shaun Fallat, University of Regina
sfallat@math.uregina.ca
Mon 15:00, Room C

Given a graph G = (V,E) on n vertices, we may associate a
number of collections of matrices whose zero-nonzero pattern
is constrained in some fashion by the edges of G. For example,
let S(G) be the set of all real symmetric matrices A = [aij ],
such that if i 6= j, then aij 6= 0 iff {i, j} ∈ E. The parameter
mr(G) defined as the min{rank(A) : A ∈ S(G)} is known as
the minimum rank of G (with respect to S(G)). Other no-
tions of “minimum rank” may be defined in a similar manner.
It is striking that for many different classes of graphs, notions
of minimum rank are intimately connected with purely com-
binatorial graph parameters for that class. I intend to survey
a number of results (new and old) along these lines to offer
my perspective on why I think minimum rank parameters are
interesting and worthwhile.

On the connection between weighted graphs and in-
dependence number
Miriam Farber, Technion - Israel Institute of Technology,
Israel
miriamfarber@yahoo.com
Tue 12:15, Room C

In this paper we generalize the concept of the Merris index of
a graph by considering weighted Laplacians and obtain a bet-
ter upper bound for the independence number, namely, the

minimum, on all possible weights, of the Merris index. We
refer to this bound as weighted Merris index and show that in
many cases, for example, regular bipartite graphs, it is equal
to the independence number. Complete graphs are an exam-
ple of a strict inequality. In order to construct graphs for
which equality holds we study what happens to such graphs
when an edge or a vertex are added, and find sufficient con-
ditions for equality for the new graphs.. We also give some
insights, using the independence number, on the vertices that
are contained in the maximal independence set.

[1] Bojan Mohar, ”Graph Theory, Combinatorics, and
Applications”, Vol. 2, Ed. Y. Alavi, G. Chartrand, O. R.
Oellermann, A. J. Schwenk, Wiley, 1991, pp. 871-898.
[2] Felix Goldberg and Gregory Shapiro, ”The Merris index
of a graph”, Electronic Journal of Linear Algebra, vol. 10
(2003), pp. 212-222.
[3] Kinkar Ch. Das, R.B. Bapat, ” A sharp upper bound on
the largest Laplacian eigenvalue of weighted graphs”, Linear
Algebra and its Applications 409 (2005) 153-165
[4] Roger A.Horn and Charles R.Johnson, Matrix Analy-
sis,1985 pp.181
[5] Russell Merris. Laplacian matrices of graphs: a survey.
Linear Algebra Appl., 197/8:143-176, 1994.
[6] W.N. Anderson, T.D. Morley, ”Eigenvalues of the Lapla-
cian of a graph”, Lin. Multilin. Algebra 18 (1985) 141-145.

Joint work with Abraham Berman (Technion - Israel Institute
of Technology)

Graphs cospectral with Kneser graphs.
Willem Haemers, Tilburg University
haemers@uvt.nl
Mon 11:25, Room C

An important problem in spectral graph theory is to decide
which graphs are determined by the spectrum. In this talk we
consider the famous Kneser graphs K(n, k). The main result
is the construction of graphs cospectral but nonisomorphic to
K(n, k) when n = 3k− 1, k > 2 and for infinitely many other
pairs (n, k). We also consider related graphs in the Johnson
association scheme.

Joint work with Farzaneh Ramezani(IPM)

Average minimum rank of graphs of fixed order
Leslie Hogben, Iowa State University and American Insti-
tute of Mathematics
LHogben@iastate.edu, hogben@aimath.org
Tue 11:25, Room C

The minimum rank of a simple graph G is defined to be the
smallest possible rank over all real symmetric matrices whose
ijth entry (for i 6= j) is nonzero whenever {i, j} is an edge
in G and is zero otherwise. The average minimum rank over
all labeled graphs of order n is investigated by determining
bounds for the expected value of minimum rank of G(n, 1

2
),

the usual Erdős-Rényi random graph on n vertices with edge
probability 1

2
.

Joint work with Tracy Hall (Brigham Young University),
Ryan Martin (Iowa State University), Bryan Shader (Univer-
sity of Wyoming)

Eigenvalues, Multiplicities and Graphs: An Update
Charles R. Johnson, College of William and Mary
crjohnso@math.wm.edu
Mon 15:25, Room C
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We survey recent results about the possible lists of multiplic-
ities occurring among the eigenvalues of a Hermitian matrix
with a given graph. Some interesting problems will be men-
tioned.

The minimum rank of a graph containing a k-clique
Raphael Loewy, Technion-Israel Institute of Technology,
Haifa, Israel
loewy@techunix.technion.ac.il
Tue 11:00, Room C

LetG be an undirected graph on n vertices and let F be a field.
We denote by S(F,G) the set of all n×n symmetric matrices
with entries in F and whose graph is G, and by mr(F,G)
the minimum rank of all matrices in S(F,G). In this talk we
consider mr(F,G) when G contains a k-clique. It is known
that if F is an infinite field then mr(F,G) ≤ n − k + 1. The
validity of this upper bound for mr(F,G) when F is a finite
field is discussed.

Cut-norms and spectra of matrices
Vladimir Nikiforov, University of Memphis, Memphis,
Tennessee, USA
vnikifrv@memphis.edu
Mon 12:15, Room C

In 1997, Frieze and Kannan introduced and studied the cut-
norm ‖A‖� of an m× n matrix A = [aij ] , defined by

‖A‖� = max
X⊂[m], Y⊂[n]

1

mn

˛̨̨̨
˛ X
i∈X,j∈Y

aij

˛̨̨̨
˛ .

Ever since then this parameter kept getting new attention.
This talk presents inequalities between two versions of the
cut-norm and the two largest singular values of arbitrary com-
plex matrices. These results extend, in particular, the well-
known graph-theoretical Expander Mixing Lemma and give a
hitherto unknown converse of it. Furthermore, they imply a
solution of a problem of Lovász, and give a spectral sampling
theorem, which informally states that almost all principal sub-
matrices of a real symmetric matrix are spectrally similar to
it.

Eigenvalues and ordered multiplicities for matrices as-
sociated with a graph
Carlos M. Saiago, Universidade Nova de Lisboa, Portugal
cls@fct.unl.pt
Mon 15:50, Room C

For a given tree T let S(T ) denote the set of all symmetric
matrices whose graph is T . A question for a given tree T is
the following Inverse Eigenvalue Problem: If T has n vertices,
exactly which sets of n real numbers (including multiplicities)
occur as the spectrum of A for some A ∈ S(T ). Another
problem for T is the characterization of the lists of multiplici-
ties, ordered by numerical order of the underlying eigenvalues
(ordered multiplicities), that occur among matrices in S(T ).
Though the solution for these two problems is known for cer-
tain classes of trees (see [1], [2], [3]), the problem is, in general,
open. When T is either a generalized star or a double gen-
eralized star, such two problems are equivalent, i.e., the only
constraint on existence of a matrix in S(T ) with prescribed
spectrum is the existence of the corresponding list of ordered
multiplicities.

The following simple observation is the purpose of this pre-
sentation: Given the spectrum of an n-by-n symmetric matrix

B whose graph is a tree, there is a double generalized star T
and a matrix A ∈ S(T ) with the same spectrum as B.

[1] C. R. Johnson and A. Leal-Duarte. On the possible mul-
tiplicities of the eigenvalues of an Hermitian matrix whose
graph is a given tree. Linear Algebra and Its Applications
348:7–21 (2002).
[2] C. R. Johnson, A. Leal-Duarte and C. M. Saiago. Inverse
eigenvalue problems and lists of multiplicities of eigenvalues
for matrices whose graph is a tree: the case of generalized
stars and double generalized stars. Linear Algebra and Its
Applications 373:311–330 (2003).
[3] Francesco Barioli and Shaun Fallat. On the eigenvalues of
generalized and double generalized stars. Linear Multilinear
Algebra 53(4):269–291 (2005).

Integral, square-integral graphs and perfect state
transfer
D. Stevanović, University of Primorska, Slovenia, Univer-
sity of Nǐs, Serbia and University of Novi Sad, Serbia
dragance106@yahoo.com
Mon 11:50, Room C

It has been shown earlier that the necessary condition for the
existence of a perfect state transfer in a quantum spin net-
work is that the whole adjacency spectrum of the underlying
graph has the form a1

√
b, a2

√
b, . . . , an

√
b, for some integers

a1, . . . , an and b. We will call such graphs the square-integral
graphs. Note that for b = 1 we get the usual integral graphs.

In the talk we will survey the known results on graphs with
perfect state transfer, and then determine which of the known
4-regular integral graphs and the semiregular bipartite square-
integral graphs with small vertex degree have perfect state
transfer. We will also determine the conditions which ensure
that the perfect state transfer property is preserved under
NEPS of graphs.

Linear Algebra Education
Avi Berman, Technion - Israel Institute of Technology,

Haifa, Israel
Steve J. Leon, University of Massachusetts, USA

Principles and tools in teaching linear algebra
Avi Berman, Tachnion, Haifa, Israel

Fri 12:15, Room A

What Have I Learned?
Jane Day, Mathematics Department San Jose State Univer-
sity
day@math.sjsu.edu
Fri 11:00, Room A

Linear algebra is my favorite subject to teach. I’ve always
been interested in how people learn and in teaching styles
that might help students better understand and appreciate the
power of linear algebra. I’ve been impressed by insights from
the Linear Algebra Curriculum Study Group, the MAA, Jean
Piaget, Maria Montessori, and from Guershon Harel and other
colleagues. I’ve learned from observing other people’s classes.
I’ve seen that students learn differently, that some but not
all really benefit from geometric visualization, applications,
computer use and/or group work, and that my (supposedly
crystal clear) phrasing can be ambiguous to them. I’ve found
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that student attitudes can be very different at another college.
I will discuss such experiences and some methods I’ve tried
that seemed to help or not.

To be announced
Guershon Harel, University of California, San Diego, USA

Tue 16:45, Room A

The use of Classroom Response Systems (clickers)
in teaching linear algebra: Still more questions than
answers
Boris Koichu, Technion Israel Institute of Technology

Tue 17:10, Room A

Classroom Response Systems (clickers) are available and
rapidly disseminating technology of enhancing interactions in
large-size classes. This technology enables students to indi-
vidually respond to various multiple-choice questions asked
by the lecturer during the lesson. The talk will focus on the
following questions: What are some of the strategies of us-
ing clickers in large-size linear algebra classes? What are the
affordances and limitations? What are the effects of using
clickers on the students’ learning, teaching practices and ped-
agogical knowledge of the lecturers? These questions will be
discussed based on the review of the growing literature on the
subject and on the preliminary results of an on-going teach-
ing experiment conducted in the context of two basic linear
algebra courses at the Technion.

Joint work with Eman Atrash, Israel Institute of Technology

Contents of Linear Algebra with Sage and Mobile
Sage environment
San-Gu Lee, Sungkyunkwan University, Korea
sglee@skku.edu
Fri 11:50, Room A

From the experience gained by students in our Linear Algebra
class, we wish that our students can attain a better under-
standing of mathematical concepts and further they can be
equipped with a tool to deal with some real world problems.
Sage is an open-source mathematics software system. It com-
bines the power of many existing open-source packages into a
common Python-based interface. We have tried to adopt Sage
for our Linear Algebra class. It worked beautifully without
much cost. We will try to share our contents and experience
that came from teaching of Linear Algebra in Sage and Mobile
Sage environment.

Joint work with Duk-Sun Kim

The second undergraduate level course in linear
algebra
Steve Leon, University of Massachusetts Dartmouth, USA

Fri 15:00, Room A

In this talk we will review briefly the recommendations made
twenty years ago by the NSF sponsored Linear Algebra Cor-
riculum Study Group. We will discuss what topics should be
covered in undergraduate linear algebra courses and give rea-
sons why we believe a second course in linear algebra should
be required for all mathematics majors. The speaker will out-
line a number of alternatives for possible second courses. He
will describe one such course where students work together

in teams on projects and apply linear algebra to problems in
areas such as digital imaging, computer animation, and coor-
dinate metrology. Some of these projects may involve original
undergraduate level research.

Using an economics model for teaching linear algebra
Edgard Possani, Instituto Tecnológico Autónomo de
México, México
epossani@itam.mx
Tue 17:35, Room A

In this talk we will present an approach to teaching linear
algebra using models. In particular, we are interested in de-
signing problems that meet the models and modeling [1] ap-
proach, and in analyzing students learning process under an
APOS [2] perspective. We will present a short illustration of
the analysis of an economics problem related to production.
This problem elicits the use of several linear algebra concepts
related to vector space. Previous work has highlighted the im-
portance of using realistic problems in the teaching of linear
algebra. Here we will address the use of learning trajectories,
which together with a genetic decomposition has allowed us
to design specific teaching sequences to help students develop
the constructions needed to learn the desired concepts. The
abovementioned economics problem has already been used in
the classroom by several researchers who also teach linear al-
gebra. We will present an analysis of the learning trajectory,
and describe the actual learning process, its outcomes together
with students’ difficulties and modeling strategies. In the pro-
cess of solving the problem students need to analyze specific
sets of data, and this analysis helps them discriminate which
data sets are better suited for finding unique solutions for the
problem, and which conditions are necessary for the selec-
tion of the appropriate data. We have found that this prob-
lem helps the students give meaning to more complex algebra
concepts such as base, linear independence, generating set,
among others related to vector space. The realistic setting
of the problem motivates them to carry out a deeper kind of
mathematical analysis. We believe this approach promotes
students’ significant development of mathematical reasoning
in a meaningful and realistic setting.

[1] R. Lesh & H. Doerr. Beyond Constructivist: A Model &
Modelling Perspective on Mathematics Teaching, Learning
and Problems Solving, Laurence Erlabaum Associates NH,
2003.
[2] E. Dubinksy. Reective Abstraction in Advanced Mathe-
matical Thinking, in Advanced Mathematical Thinking (D.
Tall, ed.), Kluwer (1991), 95-126.

Joint work with M. Trigueros (ITAM), G. Preciado (ITAM),
D. Lozano (ITAM)

Questions about Teaching, Teaching Mathematics
and Teaching Linear Algebra
Frank Uhlig,

Fri 11:25, Room A

Questions are the engine of our understanding and food for
the development of our consciousness. What is there? What
should be there? What am I doing or trying to do? Why so?
What are we doing? How can I achieve my goal(s)? How will
we achieve our goals? What are the intended consequences,
the unintended ones? Can my goal(s) be achieved? What are
the costs and success? Can our goals be achieved, at what
cost and success? Questions of What, Why, How? and their
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negations What not, Why not, How not? all play a helpful
role in assessing our individual and group efforts and the suc-
cess of teaching the next and after next generation.
Question 1: Why are we still teaching math today? (Why not
just calculator/computer literacy?)
Question 2: Why are we teaching linear algebra and ma-
trix theory? (Why not just introduce MATLAB in freshman
year?)
Question 3: Why are we teaching known unstable algorithms
in college algebra and linear algebra courses? Why are our
textbooks full of these? (Why not give our students correct
and useful information?)
Question 4: Why is linear (in)dependence the students’ and
our stumbling block in linear algebra courses and books?
(Why not progress to eigen structures of normal matrices,
the Schur normal form, matrix factorizations and the SVD?)
Question 5: Why are US high school graduates lagging be-
hind? (Why not teach concepts and exploration from Kinder-
garden on?)
Question 6: Who am I? For and by myself, and for my stu-
dents?

Contributed Minisymposia

Application of Linear and Multilinear
Algebra in Life Sciences and Engineering
Shmuel Friedland, University of Illinois, Chicago, USA,
Amir Niknejad, The College of Mount Saint Vincent,

Riverdale, NY USA

This Mini Symposium will bring together Scientists
who use Linear algebra and Multilinear Algebra in their
respected fields. The focus is on problems arising in
molecular biology, biomedicine and engineering. Most
application is related to the processing of biological
and chemical data, Drug Discovery, including biological
sequences, gene expression data or gene networks,
functional genomics, gene network reconstruction re-
construction and Neural Networks. The tools include
but not limited to dimension reduction techniques
such as Singular Value Decomposition (SVD), Gener-
alized Singular Value Decomposition (GSVD),Principal
component analysis (PCA), spectral clustering, Latent
Semantic Indexing, Nonlinear Dimension reduction, Sup-
port Vector Machine(SVM). The mini symposium will
address both deterministic and stochastic frameworks.

Spectral Theorems of Karlin for Evolutionary Dy-
namics
Lee Altenberg, University of Hawai‘i at Manoa
altenber@hawaii.edu
Tue 11:00, Room Galilei

The dynamics of Darwinian evolution result from the fer-
tile interaction of ‘dispersing’ operators (mutation, recombi-
nation, and other transformations of heritable states) and a
‘concentrating’ operator (natural selection). Analysis of the
dynamics typically arrives at matrices that are products of

stochastic and non-negative diagonal matrices, and the spec-
tral radii of such products are shown by Karlin (1982) to de-
crease under two different forms of ‘more’ dispersion. Orig-
inally developed to analyze genetic diversity in subdivided
populations, Karlin’s theorems and their extensions have ap-
plications to anti-viral therapy, quasispecies, the evolution
of genetic systems, recombination and mutation rates (Al-
tenberg and Feldman, 1987; Altenberg, 2009), coupled maps,
and other areas, which are here described.

[1] Karlin, S., 1982. Classification of selection-migration struc-
tures and conditions for a protected polymorphism. Pages
61–204 in M. K. Hecht, B. Wallace, and G. T. Prance, eds.
Evolutionary Biology, volume 14. Plenum.
[2] Altenberg, L. and Feldman, M. W. 1987. Selection, gen-
eralized transmission, and the evolution of modifier genes. I.
The reduction principle. Genetics 117:559–572.
[3] Altenberg, L. 2009. The evolutionary reduction principle
for linear variation in genetic transmission. Bulletin of Math-
ematical Biology 71:1264–1284.

Linear algebra issues in a fast algorithm for a large
scale nonlinear nonlocal model of the inner ear
D. Bertaccini, Università di Roma ”Tor Vergata”, Roma.
Italy
bertaccini@mat.uniroma2.it
Fri, 11:25, Room C

Recently, we proposed in [1] a fast second order package for
a nonlinear, nonlocal model for the inner ear improving al-
gorithms [2,3,4] for inner ear simulation of the evolution of
the transverse displacement of the basilar membrane at each
cochlear place. This information allows one to follow the for-
ward and backward propagation of the traveling wave along
the basilar membrane, and to evaluate the otoacoustic re-
sponse from the time evolution of the stapes displacement.

In this talk, we illustrate the main results and performances
of the numerical linear algebra core of the algorithms in [1]
and [4] and, in particular, will focus on invertibility and con-
ditioning of matrices, convergence of inner iterations, precon-
ditioning and computational complexity issues.

[1] D. Bertaccini, R. Sisto, Fast numerical solution of a
nonlinear nonlocal feed-forward cochlear model, submitted,
2010.
[2] D. Bertaccini, S. Fanelli, Computational and condition-
ing issues of a discrete model for cochlear sensorineural
hypoacusia”, Applied Numerical Mathematics, vol. 59, pp.
1989-2001, 2009.
[3] Elliott S.J., Ku E.M., Lineton B., ”A state space model
for cochlear mechanics”, Journal of the Acoustical Society of
America, vol. 122, No.5, pp. 2759-2771, 2007.
[4] A. Moleti, N. Paternoster, D. Bertaccini, R. Sisto, F.
Sanjust, Otoacoustic emissions in time-domain solutions of
nonlinear nonlocal cochlear models, Journal of Acoustical
Society of America (JASA) vol. 126, pp. 2425-2436, 2009.

Joint work with A. Moleti (Università di Roma ”Tor Vergata”,
Roma) and R. Sisto (ISPESL research center, Roma)

Enhanced line search for blind channel identification
based on the Parafac decomposition of cumulant ten-
sors
I. Domanov, K.U.Leuven: Campus Kortrijk and E.E. Dept.
(ESAT), Belgium
Ignat.Domanov@kuleuven-kortrijk.be,
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Ignat.Domanov@esat.kuleuven.be
Thu, 11:50, Room C

Consider a baseband communication system with discrete-
time model

y(n) = x(n) + v(n), x(n) = (h ∗ s)(n) :=

LX
l=0

h(l)s(n− l),

where s(n) is the sequence of transmitted symbols, h(n) is the
channel impulse response, v(n) is additive noise, and y(n) is
the observed channel output.

The goal of blind identification is to estimate h(n) from
the observed system output y(n), after which the input signal
s(n) can be recovered.

One class of blind identification algorithms is based on fit-
ting higher-order cumulants. This yields the following multi-
linear algebra problem: decompose a given third-order tensor
T that has certain symmetry properties into a sum of rank-1
terms (this is known as the PARAFAC decomposition).

Because of the symmetry properties of T (the factors in the
PARAFAC decomposition have a Hankel structure) the com-
mon alternating least squares (ALS) algorithm is not appli-
cable. Recently, a single-step least-squares (SSLS) algorithm
has been proposed as an alternative. This algorithm preserves
the symmetry properties but it does not necessarily converge
monotonically. Moreover, the conditions that guarantee the
convergence are not known.

It is known that ALS-based PARAFAC algorithms can be
significantly improved by applying an enhanced line search
(ELS) procedure. Namely, new ELS algorithms are less sen-
sitive to local optima and have higher convergence speed.

We compute the PARAFAC decomposition of T combining
the SSLS algorithm with ELS. Our method converges mono-
tonically. It preserves the symmetry and the Hankel struc-
ture. We derive an explicit solution for the optimal real and
complex step in the line search.

Joint work with L. De Lathauwer (K.U.Leuven: Campus Ko-
rtrijk and E.E. Dept. (ESAT), Belgium)

Phylogenic invariants and tensors of border rank 4 at
most in C4×4×4

Shmuel Friedland, Department of Mathematics, Statis-
tics and Computer Science University of Illinois at Chicago,
Chicago, Illinois 60607-7045, USA
friedlan@uic.edu
Tue, 12:15, Room Galilei

We first discuss briefly the notion of algebraic statistics, phy-
logenic trees and their invariants. Then we consider the model
in which one parent gives rise to new 3 species. This model is
characterized as the varietyR(4,C4×4×4) of tensors in C4×4×4

of border rank 4 at most. In this talk we characterize this va-
riety, and show that it is cut out by certain homogeneous
polynomials of degrees 5, 9, 16.

[1] E.S. Allman and J.A. Rhodes, Phylogenic ideals and vari-
eties for general Markov model, Advances in Appl. Math., 40
(2008) 127-148.
[2] S. Friedland, On tensors of border rank l in Cm×n×l,
arXiv:1003.1968.

Uses and behaviour of large sample covariances ma-
trices in computational molecular biology with small
sample sizes
David C. Hoyle, University of Manchester, UK

david.hoyle@manchester.ac.uk
Thu, 12:15, Room C

Sample covariance matrices play an important role in many
algorithms used within bioinformatics and computational
molecular biology - from dimensionality reduction algorithms
such as Principal Components Analysis (PCA) used to visual-
ize experimental data, to construction of gene regulatory asso-
ciation networks used to uncover the functional links between
genes. However, the number of genes measured in modern
post-genomic assays is typically very much greater than the
sample size. This high-dimensional small sample-size scenario
can severely limit the accuracy of sample covariance eigenval-
ues and eigenvectors used as estimators of their population
counterparts, and gives rise to interesting phase transition
phenomena in the behaviour of the eigenvalues and eigenvec-
tors. In this talk we will give a brief introduction to some of
the uses of sample covariance matrices within modern com-
putational molecular biology and describe recent results from
both the statistical physics and statistics research communi-
ties on large sample covariance matrices.

Multiarray signal processing: tensor decomposition
meets compressed sensing
Lek-Heng Lim, University of California, Berkeley
lekheng@math.berkeley.edu
Thu, 11:25, Room C

We discuss how recently discovered techniques and tools from
compressed sensing can be used in tensor decompositions,
with a view towards modeling signals from multiple arrays
of multiple sensors. We show that with appropriate bounds
on coherence, one could always guarantee the existence and
uniqueness of a best rank-r approximation of a tensor. In
particular, we obtain a computationally feasible variant of
Kruskal’s uniqueness condition with coherence as a proxy for
k-rank. We treat sparsest recovery and lowest-rank recovery
problems in a uniform fashion by considering Schatten and
nuclear norms of tensors of arbitrary order and dictionaries
that comprise a continuum of uncountably many atoms.

Joint work with Pierre Comon (University of Nice)

TBA
A. Niknejad, College of Mount Saint Vincent, Riverdale,
New York, USA
amir.niknejad@mountsaintvincent.edu
Fri, 11:50, Room C

On the spectra of Fibonacci-like operators and mod-
eling invasions by fungal pathogens
Ivan Slapnicar, Technical University Berlin, Germany, on
leave from University of Split, Croatia
slapnica@math.tu-berlin.de
Tue, 11:50, Room Galilei

The first part of talk deals with the spectra of the infinite di-
mensional generalized Fibonacci and Fibonacci-like operators
in l1. The operators are related to Fibonacci sequence. In the
second part of the talk the Leslie matrix model for the inva-
sion of potato late blight (oomycete Phytophthora infestans)
is discussed. The spectral analysis from the first part of the
talk yields a prediction of the maximum speed of the spread
of invasion.

Best matrix approximation: the case of filtering with
variable memory
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A. Torokhti, University of South Australia, Australia
anatoli.torokhti@unisa.edu.au
Thu, 11:00, Room C

This paper concerns the best linear causal operator approx-
imation of the identity mapping subject to a specified vari-
able finite memory constraint. The problem is motivated by
Wiener-like filtering subject to causality and memory con-
straints [1]. The filter is interpreted as a linear operator. The
causality and memory restrictions require that the approx-
imating operator takes the form of a lower stepped matrix
A. To find the best such matrix, we propose a new tech-
nique based on a block-partition into an equivalent collection
of smaller blocks, {L0,K1, L1, . . . ,K`, L`} where each Lr is
a lower triangular block and each Kr is a rectangular block
and where ` is known [2]. The sizes of the individual blocks
are defined by the memory constraints. We show that the
best approximation problem for the lower stepped matrix
A can be replaced by an equivalent collection of ` indepen-
dent best approximation problems in terms of the matrices
[L0], [K1, L1], . . . , [K`, L`]. The solution to each individual
problem is found and a representation of the overall solution
and associated error is given.

[1] A. Torokhti, P. Howlett, Computational Methods for
Modelling of Nonlinear Systems, Elsevier, 397 p., 2007.
[2] A. Torokhti and P. Howlett, Best approximation of
identity mapping: the case of variable memory, J. Approx.
Theory, 143, 1, pp. 111-123, 2006.

Joint work with P. Howlett (University of South Australia)

Homotopies to solve Multilinear Systems
Jan Verschelde, University of Chicago at Illinois, U.S.A.
jan@math.uic.edu
Tue, 11:25, Room Galilei

Many applications in mechanism design lead to structured
polynomial systems. For systems where only isolated solutions
matter, homotopies that exploit multihomogeneous structures
are well developed since [3], see also [4]. For mechanisms that
move, computing the corresponding algebraic curves with a
optimal number of solution paths requires an adaption of the
numerical representation for these curves. In the line of our
work [1,2], we report on our new algorithms to solve multilin-
ear systems more efficiently.

[1] Y. Guan and J. Verschelde. Parallel implementation of
a subsystem-by-subsystem solver. In The proceedings of the
22th High Performance Computing Symposium, Quebec City,
9-11 June 2008, pages 117–123. IEEE Computer Society,
2008.
[2] Y. Guan and J. Verschelde. Sampling algebraic sets in
local intrinsic coordinates. arXiv:0912.2751, submitted for
publication.
[3] A.P. Morgan and A.J. Sommese. A homotopy for solving
general polynomial systems that respects m-homogeneous
structures. Appl. Math. Comput., 24(2):101–113, 1987.
[4] A.J. Sommese and C.W. Wampler. The Numerical
solution of systems of polynomials arising in engineering and
science. World Scientific, 2005.

Joint work with Yun Guan (University of Illinois at Chicago)

PCCA+ and Spectral Clustering in Computational
Drug Design
M. Weber, Zuse Institute Berlin (ZIB), Germany

weber@zib.de
Fri, 11:00, Room C

Long-term molecular simulation of the interaction of drug-
sized molecules with their target proteins produces large data
sets of conformational states. In order to analyze this data
set in terms of metastable subsets of the dynamical process
(and their time-scales), spectral clustering methods gain a lot
of importance in the last years. Especially, Robust Perron
Cluster Analysis (PCCA+) turned out to be the only suitable
algorithm for extrapolating the time-scale of the simulation
to the time-scale of biological processes.

Nonlinear Eigenvalue Problems
Daniel Kressner, Institut fuer Mathematik, ETH, Zurich
Volker Mehrmann, Institut fuer Mathematik, TU Berlin

A variety of applications in science and engineering
lead to eigenvalue problems that are nonlinear in the
eigenvalue parameter. This includes polynomial, ratio-
nal, as well as genuinely nonlinear eigenvalue problems.
In recent years, tremendous progress has been made
in addressing such eigenvalue problems, both on the
theoretical and the computational side. The purpose of
this minisymposium is to survey these developments and
point out new directions in this area. A range of topics
will be covered, including linearization, perturbation
theory, structure preservation, numerical methods and
emerging applications such as photonic band structure
calculation.

Classification of Hermitian Matrix Polynomials with
Real Eigenvalues of Definite Type
M. Al-Ammari, The University of Manchester, UK
Maha.Al-Ammari@postgrad.manchester.ac.uk
Fri 11:00, Room Fermi

The spectral properties of Hermitian matrix polynomials with
real eigenvalues have been extensively studied, through classes
such as the definite or definitizable pencils, definite, hy-
perbolic, or quasihyperbolic matrix polynomials, and over-
damped or gyroscopically stabilized quadratics. We give a
unified treatment of these and related classes that uses the
eigenvalue type (or sign characteristic) as a common thread.
Equivalent conditions are given for each class in a consistent
format. We show that these classes form a hierarchy, all of
which are contained in the new class of quasidefinite matrix
polynomials. As well as collecting and unifying existing re-
sults, we propose a new characterization of hyperbolicity in
terms of the distribution of the eigenvalue types on the real
line. By analyzing their effect on eigenvalue type, we show
that homogeneous rotations allow results for matrix polyno-
mials with nonsingular or definite leading coefficient to be
translated into results with no such requirement on the lead-
ing coefficient, which is important for treating definite and
quasidefinite polynomials.

[1] M. Al-Ammari and F. Tisseur. Hermitian matrix
polynomials with real eigenvalues of definite type- part I:
Classification, MIMS Eprint 2010.9, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK,
Jan. 2010. 24 pp.
[2] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann.
Vector spaces of linearizations for matrix polynomials. SIAM
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J. Matrix Anal. Appl., 28(4):971–1004, 2006.

Joint work with F. Tisseur (The University of Manchester)

Eigenvalue enclosures for the Dirac operator
L. Boulton, Heriot-Watt University, United Kingdom
L.Boulton@hw.ac.uk
Fri 15:50, Room Fermi

The variational formulation of spectral problems associated to
relativistic and non-relativistic atomic structures leads to rig-
orous upper bounds for the energy eigenvalues. This approach
has proven to be highly valuable in the numerical estimation
of these eigenvalues by finite-basis projection methods. Less
effort has been devoted to the investigation of rigourous lower
bounds for the spectrum of hamiltonians. This is due, in part,
to the fact that most available techniques require a priori in-
formation, not usually at hand, about the problem being con-
sidered. Moreover, these procedures are often several orders
of magnitude less accurate than their “upper-bound” coun-
terparts. In this talk we will report on rigourous methods for
computation of eigenvalue enclosures of Dirac operators. We
will demonstrate the applicability of these techniques and will
show how matrix polynomials and functions arise naturally in
them. We will also report on outcomes of various numerical
experiments performed on benchmark potentials.

Joint work with J. Dolbeault (Université Paris Dauphine)

Linearizations of rectangular matrix polynomials
Fernando De Terán, Universidad Carlos III de Madrid,
Spain
fteran@math.uc3m.es
Thu 17:10, Room Fermi

Linearizations of regular matrix polynomials have been
widely studied and they have shown to be a useful tool in
several areas including the Polynomial Eigenvalue Problem.
Also, linearizations of square singular matrix polynomials
have been recently studied by the authors in a series of papers.
By contrast, very little is known about linearizations of rect-
angular matrix polynomials. In this talk, we will present some
results regarding general linearizations of rectangular matrix
polynomials and we will also introduce a new family of strong
linearizations of rectangular polynomials extending the family
of Fiedler pencils. This family, which includes the first and
second companion forms, was introduced in [1] for regular ma-
trix polynomials and later extended in [2] to square singular
polynomials. We will show that this family of linearizations
enjoys several interesting properties that may be useful for
future applications.

[1] E. N. Antoniou and S. Vologiannidis, A new family of
companion forms of polynomial matrices, Electron. J. Linear
Algebra, 11 (2004), pp. 78–87.
[2] F. De Terán, F. M. Dopico, and D. S. Mackey, Fiedler
companion linearizations and the recovery of minimal indices,
submitted to SIAM J. Matrix Anal. Appl.

Joint work with Froilán M. Dopico (Universidad Carlos III de
Madrid) and D. Steven Mackey (Western Michigan Univer-
sity)

Generic spectral perturbation results for matrix poly-
nomials
Froilán M. Dopico, Universidad Carlos III de Madrid,
Leganés, Spain

dopico@math.uc3m.es
Thu 17:35, Room Fermi

In this talk, we deal with two spectral perturbation prob-
lems for matrix polynomials. In the first one, we consider the
change of the elementary divisors of a regular matrix polyno-
mial under a perturbation of low rank, while in the second
one, we consider the first order perturbation term in the per-
turbation expansions of the eigenvalues of a square singular
matrix polynomial. A common feature of these two problems
is that, although the behavior of the considered magnitudes
under an arbitrary perturbation may be very complicated, the
“generic” behavior can be described in a compact and sharp
way, where by “generic” behavior we understand the one that
holds for all perturbations except those in a proper algebraic
manifold of zero measure in the set of perturbations.

Joint work with Fernando De Terán (Universidad Carlos III
de Madrid)

On nonlinear eigenvalue problems with applications
to absorptive photonic crystals
C. Engström, ETH Zurich, Switzerland
christian.engstroem@sam.ethz.ch
Fri 15:00, Room Fermi

Dielectric and metallic photonic crystals are promising mate-
rials for controlling and manipulating electromagnetic waves
[1]. For frequency independent material models consider-
able mathematical progress has been made [2]. In the fre-
quency dependent case, however, the nonlinearity of the spec-
tral problem complicates the analysis. We study the spectrum
of a scalar operator-valued function with periodic coefficients,
which after application of the Floquet transform become a
family of spectral problems on the torus. The frequency de-
pendence of the material parameters lead to spectral analy-
sis of a family of holomorphic operator-valued functions. We
show that the spectrum for a passive material model consists
of isolated eigenvalues of finite geometrical multiplicity. These
eigenvalues depend continuously on the quasi momentum and
all non-zero eigenvalues have a non-zero imaginary part when-
ever losses (absorption) occur [3].

Lorentz permittivity model, which is a common model for
solid materials, lead to a rational eigenvalue problem. We
study both the self-adjoint case and the non-self-adjoint case.
Moreover, a high-order discontinuous Galerkin method is used
to discretize the operator-valued function, and the resulting
matrix problem is transformed into a linear eigenvalue prob-
lem. Finally, we use an implicitly restarted Arnoldi method
to compute approximate eigenpairs of the sparse matrix prob-
lem.

[1] K. Sakoda, Optical properties of photonic crystals, Sprin-
ger-Verlag, Heidelberg, 2001.
[2] P. Kuchment, Floquet theory for partial differential equa-
tions, Birkhäuser, Basel, 1993.
[3] C. Engström, On the spectrum of a holomorphic operator-
valued function with applications to absorptive photonic crys-
tals, To appear.

Computation and continuation of invariant pairs for
polynomial and nonlinear eigenvalue problems
D. Kressner, ETH Zurich, Switzerland
kressner@math.ethz.ch
Fri 15:25, Room Fermi

We consider matrix eigenvalue problems that are polynomial
or genuinely nonlinear in the eigenvalue parameter. One of the
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most fundamental differences to the linear case is that distinct
eigenvalues may have linearly dependent eigenvectors or even
share the same eigenvector. This can be a severe hindrance
in the development of general numerical schemes for comput-
ing several eigenvalues of a polynomial or nonlinear eigenvalue
problem, either simultaneously or subsequently. The purpose
of this talk is to show that the concept of invariant pairs of-
fers a way of representing eigenvalues and eigenvectors that
is insensitive to this phenomenon. We will demonstrate the
use of this concept with a number of numerical examples and
discuss continuation methods for invariant pairs.

[1] T. Betcke and D. Kressner. Perturbation, Computation
and Refinement of Invariant Pairs for Matrix Polynomials.
Technical report 2009-21, Seminar for applied mathematics,
ETH Zurich, July 2009. Revised February 2010.
[2] D. Kressner. A block Newton method for nonlinear
eigenvalue problems. Numer. Math., 114(2):355–372, 2009.

Joint work with Timo Betcke (University of Reading)

Leave it to Smith: Canonical Forms for Structured
Matrix Polynomials, Part II
Niloufer Mackey, Western Michigan University, Kalama-
zoo, USA
nil.mackey@wmich.edu
Thu 15:25, Room Fermi

Polynomial eigenvalue problems arise in many applications,
and often the underlying matrix polynomial P is structured
in some way. A much used computational approach to such
problems starts with a linearization such as the companion
form of P , and then applies a general purpose algorithm to
the linearization. But when P is structured, it can be advan-
tageous to use a linearization with the same structure as P ,
if one can be found. It turns out that there are structured
polynomials for which a linearization with the same structure
does not exist. Using the Smith form as the central tool, we
describe which matrix polynomials from the classes of alter-
nating, palindromic, and skew-symmetric polynomials allow
a linearization with the same structure.

[1] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Jordan
Structures of Alternating Matrix Polynomials, Linear Alg.
Appl., v. 432:4, pp. 867–891, 2010.
[2] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Smith
Forms of Palindromic Matrix Polynomials, In preparation.

Joint work with D. Steven Mackey (Western Michigan Univer-
sity), Christian Mehl (Technische Universität Berlin), Volker
Mehrmann (Technische Universität Berlin).

Spectral Equivalence and the Rank Theorem for Ma-
trix Polynomials
D. Steven Mackey, Western Michigan University, Kalama-
zoo, MI, USA
steve.mackey@wmich.edu
Thu 16:45, Room Fermi

We investigate the extent to which two matrix polynomials
of different sizes and degrees, regular or singular, square or
rectangular, can have the same (scalar) spectral data, i.e.,
the same finite and infinite elementary divisors. The classi-
cal example of this phenomenon is the well-known concept
of strong linearization. Taking this example as a prototype,
we introduce the notion of spectral equivalence, describe its
basic properties, and give a variety of examples. For matrix
polynomials P (λ) that are singular, the minimal indices of

P (λ) are another type of scalar spectral-like data that en-
code important properties of the left and right nullspaces of
P (λ). When two singular matrix polynomials are spectrally
equivalent, what are the possible relationships between their
minimal indices? For example, can they be equal? In try-
ing to answer these questions, we prove the Rank Theorem
for Matrix Polynomials, a simple but fundamental relation
between elementary divisors, minimal indices, and rank that
holds for any matrix polynomial.

Earlier results analyzing the relationship between the min-
imal indices of a singular polynomial and those of several par-
ticular classes of strong linearization can be found in the re-
cent papers [1] and [2].

[1] F. De Terán, F.M. Dopico, and D.S. Mackey, Lineariza-
tions of singular matrix polynomials and the recovery of
minimal indices, Electron. J. Linear Alg., 18 (2009), pp.
371–402.
[2] F. De Terán, F.M. Dopico, and D.S. Mackey, Fiedler
companion linearizations and the recovery of minimal indices,
submitted to SIAM J. Matrix Anal. Appl.

Joint work with Fernando De Terán (Universidad Carlos III
de Madrid) and Froilán M. Dopico (Universidad Carlos III de
Madrid).

Leave it to Smith: Canonical Forms for Structured
Matrix Polynomials, Part I
Christian Mehl, Technische Universität Berlin, Germany
mehl@math.tu-berlin.de
Thu 15:00, Room Fermi

Polynomial eigenvalue problems arise in many applications,
and often the underlying matrix polynomial P is structured
in some way. A much used computational approach to such
problems starts with a linearization such as the companion
form of P , and then applies a general purpose algorithm to
the linearization. But when P is structured, it can be advan-
tageous to use a linearization with the same structure as P ,
if one can be found. It turns out that there are structured
polynomials for which a linearization with the same structure
does not exist. Using the Smith form as the central tool, we
describe which matrix polynomials from the classes of alter-
nating, palindromic, and skew-symmetric polynomials allow
a linearization with the same structure.

[1] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Jordan
Structures of Alternating Matrix Polynomials, Linear Alg.
Appl., v. 432:4, pp. 867–891, 2010.
[2] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Smith
Forms of Palindromic Matrix Polynomials, In preparation.

Joint work with D. Steven Mackey (Western Michigan Univer-
sity), Niloufer Mackey (Western Michigan University), Volker
Mehrmann (Technische Universität Berlin).

Nonlinear eigenvalue problems in acoustic field com-
putation
V. Mehrmann, TU Berlin, Germany
mehrmann@math.tu-berlin.de
Fri 12:15, Room Fermi

We will discuss the numerical solution of large scale para-
metric eigenvalue problems arising in acoustic field problems.
In current industrial applications a few eigenvalues in a speci-
fied region of the complex plane have be computed for nonlin-
ear eigenvalue problems with several million degrees of free-
dom within an optimization loop. Based on geometric, topo-
logical or material changes the acoustic field within modern
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cars is then optimized on the basis of the eigenvalue compu-
tations.

We will discuss the currently used methods and their prop-
erties from a numerical and computational point of view. In
particular we discuss homotopy methods and eigenvalue con-
tinuation techniques.

Joint work with T. Baumgarten (TU Berlin), C. Schröder (TU
Berlin)

A “shift-and-deflate” technique for matrix polynomi-
als
B. Meini, University of Pisa, Italy
meini@dm.unipi.it
Fri 11:25, Room Fermi

Let P (z) =
Pn
i=0 Aiz

i be a regular k×k matrix polynomial of
degree n, and let λ ∈ C, u ∈ Ck, u 6= 0 such that P (λ)u = 0.
Given µ ∈ C ∪ {∞}, the shift technique introduced in [2]
allows to trasform the matrix polynomial P (z) into a new
k× k matrix polynomial P̃ (z) of degree n such that P̃ (µ)u =
0. That is, the root λ of P (z) is shifted to the root µ of
P̃ (z), and the remaining roots are kept unchanged. In [1]
the authors show how to deflate a couple of known roots of a
quadratic matrix polynomial P (z), by trasforming P (z) into
a (k − 1) × (k − 1) matrix polynomial P̂ (z), having as roots
the unknown roots of P (z). The aim of this talk is to show
how the shift technique can be used to the same purpose in a
much simpler way. Moreover, if P (z) has a specific structure,
like symmetric matrix coefficients, or palindromic structure,
then the matrix polynomial P̂ (z) can be constructed with the
same structure of the original polynomial.

[1] D. Garvey, C. Munro, and F. Tisseur. Deflating Quadratic
Matrix Polynomials with Structure Preserving Transforma-
tions. MIMS EPrint 2009.22, March 2009.
[2] C. He, B. Meini, and N. H. Rhee. A shifted cyclic re-
duction algorithm for quasi-birth-death problems. SIAM J.
Matrix Anal. Appl., 23(3):673–691, 2001/02.

Structure Preserving Transformations for Quadratic
Matrix Polynomials
F. Tisseur, The University of Manchester, UK.
ftisseur@ma.man.ac.uk
Thu 15:50, Room Fermi

A structure preserving transformations (SPT) is a map
transforming a quadratic matrix polynomial Q(λ) = λ2A2 +

λA1 + A0 into a new quadratic eQ(λ) = λ2 eA2 + λ eA1 + eA0

isospectral toQ(λ) (i.e., Q and eQ have the same Jordan canon-
ical form). Two essential points are

1. An SPT does not act on the polynomial Q: it is defined
as an action on a linearization L of Q.

2. Computationally, an SPT can be applied by working only
with the n × n coefficient matrices of Q, avoiding com-
putations on the larger pencil L.

In this talk we describe the concept of SPTs and present recent
developments involving them. SPTs are a novel and promising
approach to solving quadratic eigenproblems.

Nonlinear low rank modification of a symmetric eigen-
value problem
H. Voss, Hamburg University of Technology, Germany
voss@tuhh.de
Fri 11:50, Room Fermi

In a recent report Huang, Bai and Su [1] studied existence
and uniqueness results and interlacing properties of nonlin-
ear rank-one modifications of symmetric eigenvalue problem.
In this talk we generalize the uniqueness conditions and we
discuss generalizations to low rank modifications. Based on
approximation properties of the Rayleigh functional we de-
sign numerical methods the local convergence of which are
quadratic or even cubic. Numerical examples demonstrate
their efficiency. We further consider low rank modifications of
hyperbolic quadratic eigenvalue problems and more general
nonlinear eigenvalue problems allowing for a minmax charac-
terization of their eigenvalues.

[1] X. Huang, Z. Bai, Y. Su, Nonlinear rank-one modification
of a symmetric eigenvalue problem, Technical Report, UC
Davis, 2009, to appear in Math. Comp.
[2] H. Voss, K. Yildiztekin, Nonlinear low rank modification of
a symmetric eigenvalue problem, Technical Report, Hamburg
University of Technology, 2009, Submitted to SIAm J. Matrix
Anal. Appl.

Joint work with K. Yildiztekin (Hamburg University of Tech-
nology)

Spectral graph theory
Vladimir S. Nikiforov, Department of Mathematical

Sciences, The University of Memphis, TN,
Dragan Stevanovic, Faculty of Science and Mathematics,

University of Nis, Serbia

Spectral graph theory is a fast developing field in mod-
ern discrete mathematics with important applications in
computer science, chemistry and operational research.
By merging combinatorial techniques with algebraic and
analytical methods it creates new approaches to hard
discrete problems and gives new insights in classical
Linear Algebra. The proposed minisymposium will bring
together leading researchers on graph spectra to present
their recent results and to discuss new achievements and
problems. This meeting will further increase collabora-
tion and boost the development of the field.

The structure of graphs with small M-indices
F. Belardo, University of Messina, Italy
fbelardo@gmail.com
Tue 17:10, Room C

In this talk we consider simple graphs and as graph matrices
the adjacency matrix A(G), the Laplacian matrix L(G) =
D(G) − A(G) and the signless Laplacian matrix Q(G) =
D(G) + A(G). Let M -index be the largest eigenvalue of G
with respect to the graph matrix M .

By synthesizing the results of [1,2,3], we show that almost

all graphs whose A-index does not exceed
p

2 +
√

5 are graphs
whose {L,Q}-index does not exceed 2 + ε, where 2 + ε ≈
4.38298 is the real root of x3 − 6x2 + 8x− 4. Furthermore we
consider the analogy between the structure of graphs whose
A-index does not exceed 3

2

√
2 and the structure of graphs

whose {L,Q}-index does not exceed 4.5.

Finally, we discuss the analogies between
p

2 +
√

5 (or
3
2

√
2) as limit point for the index in the A-theory and 2 + ε

(resp. 4.5) as limit point for the index in the {L,Q}-theory
of graph spectra.
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[1] F. Belardo, E.M. Li Marzi, S.K. Simić, Ordering graphs

with index in the interval (2,
p

2 +
√

5), Discrete Applied
Math., 156/10 (2008), pp. 1670–1682.
[2] J.F. Wang, Q.X. Huang, F. Belardo, E.M. Li Marzi, On
graphs whose signless Laplacian index does not exceed 4.5,
Linear Algebra Appl., 431 issues 1–2 (2009), pp. 162–178.
[3] J.F. Wang, F. Belardo, Q.X. Huang, E.M. Li Marzi, On
graphs whose Laplacian index does not exceed 4.5, submitted.

Graphs of given order and size and minimal algebraic
connectivity
T. Bıyıkoğlu, Işık University, İstanbul, Turkey
turker.biyikoglu@isikun.edu.tr
Wed 11:00, Room C

We investigate the structure of connected graphs that have
minimal algebraic connectivity among all graphs with given
number of vertices and edges. It has been conjectured [1] that
such graphs are so called path-complete graphs. In this talk
we show that the concept of geometric nodal domains can be
used to derive some necessary conditions on the structure of
graphs which have minimal algebraic connectivity. In partic-
ular we show that such extremal graphs consists of a chain of
complete graphs which cannot have to many big cliques.

[1] S. Belhaiza et al., Variable neighborhood search for
extremal graphs. XI. Bounds on Algebraic Connectivity,
pp.1–16. In: D. Avis et al., Graph Theory and Combinatorial
Optimization, New York, 2005. DOI: 10.1007/0-387-25592-
3 1

Joint work with J. Leydold (WU Vienna, Austria)

Graph Eigenvalues in Combinatorial Optimization
Domingos M. Cardoso, Departamento de Matemática, Uni-
versidade de Aveiro, 3810-193 Aveiro, Portugal
dcardoso@ua.pt
Tue 17:35, Room C

A number of remarkable spectral properties of graphs with
applications in combinatorial optimization are surveyed and
a few additional ones are introduced. Namely, several spectral
bounds on the clique number, stability number, and chromatic
number of graphs are analyzed and spectral graph tools for
deciding about the existence of particular combinatorial struc-
tures (as it is the case of dominating induced matchings) are
presented.

Decompositions of complete hypergraphs
S.M. Cioabă, University of Delaware, USA
cioaba@math.udel.edu
Tue 15:50, Room C

A classical result of Graham and Pollak states that the min-
imum number of complete bipartite subgraphs that partition
the edges of a complete graph on n vertices is n-1. In this talk,
I will describe our attempts at proving a natural hypergraph
version of Graham-Pollak’s theorem.

[1] S. M. Cioabă, A. Kündgen and J. Verstraëte, On de-
compositions of complete hypergraphs, J. Combin. Theory,
Series A Volume 116, Issue 7, October 2009, Pages 1232-1234.

Joint work with Andre Kündgen (Cal State San Marcos) and
Jacques Verstraëte(UC San Diego).

Some topics on integral graphs
D. Cvetković, Mathematical institute SANU, Belgrade, Ser-
bia

ecvetkod@etf.rs
Tue 15:00, Room C

The M -spectrum of a graph is the spectrum of a graph matrix
M (adjacency matrix A, Laplacian L, signless Laplacian Q,
etc.). A graph is called M-integral if its M -spectrum consists
entirely of integers. If the matrix M is fixed, we say, for short,
integral instead of M -integral. A graph which is A-, L- and
Q-integral is called ALQ-integral. A survey on integral graphs
can be found in [1].

Integral graphs have recently found some applications in
quantum computing, multiprocessor systems and chemistry.

Let G be a graph with the largest A-eigenvalue λ1 and the
diameter D. The quantity (D+ 1)λ1 is called the tightness of
G and is denoted by t(G). There are exactly 69 non-trivial
connected graphs G with t(G) ≤ 9 and among them 14 graphs
are A-integral [2]. We present a classification of A-integral
graphs G with t(G) < 24.

In integral graphs on n vertices there exist sets of n inde-
pendent integral eigenvectors. Such sets can be constructed
using star partitions of graphs and can be useful in treating
the load balancing problems in multiprocessor systems and
some problems in combinatorial optimization.

Some results on L- and ALQ-integral graphs are presented
as well.

[1] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D.
Stevanović, A survey on integral graphs, Univ. Beograd, Publ.
Elektrotehn. Fak., Ser. Mat., 13(2002), 42-65.
[2] D. Cvetković, T. Davidović, Multiprocessor interconnec-
tion networks with small tightness, Internat. J. Foundations
Computer Sci., 20(2009), No. 5, 941-963.

Constructing infinite families of ALQ-integral graphs
Nair M.M. de Abreu, Federal University of Rio de Janeiro,
Brazil
nairabreunovoa@gmail.com
Tue 15:25, Room C

Let G = (V,E) be a simple graph on n vertices and D =
diag(d1, . . . , dn) be the diagonal matrix of its vertex degrees.
Let A be the adjacency, L = A − D the Laplacian and
Q = A+D the signless Laplacian matrices of G. Since 1974,
when Harary and Schwenk posed the question Which graphs
have integral spectra? [1], the search for graphs whose ad-
jacency eigenvalues or Laplacian eigenvalues are all integers
(here called A-integral graphs and L-integral graphs, respec-
tively) has been on. More recently, Q-integral graphs (graphs
whose signless Laplacian spectrum consists entirely of inte-
gers) were introduced in the literature [2–6]. It is known that
these three concepts coincide for regular graphs. Also, for bi-
partite graphs, L-integral and Q-integral graphs are the same.
A graph is called ALQ-integral graph if it is simultaneously
an A−, L− and Q−integral graph. Among all 172 connected
Q-integral graphs up to 10 vertices, there are 42 ALQ-integral
graphs, but only one of them is neither regular and nor bipar-
tite [4]. Our aim is to show how to construct infinite families
of non regular and non bipartite graphs but all of them ALQ-
integral graphs.

[1] F. Harary, A.J. Schwenk, Which graphs have integral
spectra?, in: R. Bari, F. Harary (Eds.), “Graphs and Combi-
natorics”, Lecture Notes in Mathematics, vol. 406, Springer,
Berlin, 1974, pp. 45-51.
[2] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacian
of finite graphs, Linear Algebra and its Applications 423
(2007) 155-171.
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[3] S. Simić, Z. Stanić, Q-integral graphs with edge-degrees at
most five, Discrete Math. 308 (2008) 4625-4634.
[4] Z. Stanić, There are exactly 172 connected Q-integral
graphs up to 10 vertices, Novi Sad J. Math. 37 n. 2 (2007)
193-205.
[5] Z. Stanić, Some results on Q-integral graphs, Ars Combi-
natoria 90 (2009), 321-335.
[6] M.A.A. de Freitas et al., Infinite families of
Q-integral graphs, Linear Algebra Appl. (2009),
doi:10.1016/j.laa.2009.06.029

Joint work with M.A.A. de Freitas (Federal University of Rio
de Janeiro), R.R. Del-Vecchio (Fluminense Federal Univer-
sity) and C.T.M. Vinagre (Fluminense Federal University)

Distance spectral radius of trees
Aleksandar Ilić, Faculty of Sciences and Mathematics, Uni-
versity of Nǐs, Serbia
aleksandari@gmail.com
Wed 11:50, Room C

Distance energy is a newly introduced molecular graph-based
analog of the total π-electron energy, and it is defined as the
sum of the absolute eigenvalues of the distance matrix. For
trees and unicyclic graphs, the distance energy is equal to
the doubled value of the distance spectral radius (the largest
eigenvalue of the distance matrix).

We introduce two general transformations that strictly in-
crease and decrease the distance spectral radius and provide
an alternative proof that the path Pn has maximal distance
spectral radius, while the star Sn has minimal distance spec-
tral radius among trees on n vertices. We prove that a cater-
pillar Cn,d, obtained from the path Pd with all pendant ver-
tices attached at the center vertex of Pd, has minimal spec-
tral radius among trees with n vertices and diameter d. In
addition, we characterize n-vertex trees with given match-
ing number m which minimize the distance spectral radius.
The extremal tree A(n,m) is a spur, obtained from the star
Sn−m+1 by attaching a pendant edge to each of certain m−1
non-central vertices of Sn−m+1.

In conclusion, we pose some conjectures concerning the ex-
tremal trees with minimum or maximum distance spectral
radius based on the computer search among trees on n ≤ 24
vertices.

Algebraic connectivity and vertex-deleted subgraphs
Steve Kirkland, Hamilton Institute, National University of
Ireland, Maynooth
stephen.kirkland@nuim.ie
Tue 16:45, Room C

Given an undirected graph G, its Laplacian matrix L can
be written as L = D − A, where A is the (0, 1) adjacency
matrix for G, and D is the diagonal matrix of vertex degrees.
The second smallest eigenvalue of L is known as the algebraic
connectivity of G, and this quantity has been the subject of
a good deal of work over the last several decades. In this
talk, we will discuss some recent work relating the algebraic
connectivity of a graph G to that of the graph formed from
G by deleting a vertex and its incident edges.

Geometric nodal domains and extremal graphs with
minimal k-th laplacian eigenvalue
J. Leydold, WU Vienna, Austria
josef.leydold@wu.ac.at
Wed 12:40, Room C

A method for characterizing graphs that have smallest (or
largest) Laplacian eigenvalue within a particular class of
graphs works as following: Take a Perron vector, rearrange the
edges of the graph and compare the respective Rayleigh quo-
tients. By the Rayleigh-Ritz Theorem we can draw some con-
clusions about the change of the smallest eigenvalue. This ap-
proach, however, does not work for the k-th Laplacian eigen-
value, as now we have to use the Courant-Fisher Theorem
that involves minimization of the Rayleigh quotients with re-
spect to constraints that are hard to control. In this talk we
show that sometimes we can get local properties of extremal
graphs by means of the concept of geometric nodal domains
and Dirichlet matrices. This is in particular the case for the
algebraic connectivity.

Joint work with T. Bıyıkoğlu (Işık University, İstanbul)

A generalization of Fiedler’s lemma and some appli-
cations
Enide Andrade Martins, Departamento de Matemática,
Universidade de Aveiro, Aveiro, Portugal
enide@ua.pt
Wed 11:25, Room C

In a previous paper, [1], a Fiedler’s lemma introduced in [2]
was used to obtain eigenspaces of graphs, and applied to graph
energy. In this talk, this Fiedler’s lemma is generalized and its
generalization is applied to the determination of eigenvalues
of graphs belonging to a particular family and also to the
determinations of the graph energy (including lower and upper
bounds).

[1] M. Robbiano, E. A. Martins and I. Gutman, Extending
a theorem by Fiedler and applications to graph energy,
MATCH Commun. Math. Comput. Chem. 64 (2010),
145-156.
[2] M. Fiedler, Eigenvalues of nonnegative symmetric matri-
ces, Linear Algebra Appl. 9 (1974), 119-142.

Joint work with D.M. Cardoso (University of Aveiro), I. Gut-
man (University of Kragujevac) and Maria Robbiano (North
Catholic University, Chile)

Forbidden subgraphs for some classes of treelike re-
flexive graphs
B. Mihailović, School of Electrical Engineering, University
of Belgrade, Serbia
mihailovicb@etf.rs
Wed 12:15, Room C

Reflexive graphs are simple graphs whose second largest eigen-
value of (0, 1) - adjacency matrix does not exceed 2. Treelike
graph, or a cactus, is a graph in which any two cycles are
edge disjoint. Several classes of treelike reflexive graphs have
been characterized through sets of maximal graphs. This pa-
per presents another possible approach to the characterization
of such graphs, i.e. via corresponding sets of forbidden sub-
graphs, and gives such sets for some classes of treelike reflexive
graphs.

[1] V. Brankov, D. Cvetković, S. Simić, D. Stevanović:
Simultaneous editing and multilabelling of graphs in system
newGRAPH, Univ. Beograd, Publ. Elektrotehn. Fak., Ser.
Mat. 17, pp. 112-121, 2006.
[2] D. M. Cvetković, M. Doob, H. Sachs: Spectra of
Graphs-Theory and Application. Deutscher Verlag der
Wissenschaften-Academic Press, Berlin-New York, 1980;
second edition 1982; third edition, Johann Ambrosius Barth
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Verlag, Heidelberg-Leipzig, 1995.
[3] D. Cvetković, L. Kraus, S. Simić: Discussing graph theory
with a computer, Implementation of algorithms. Univ.
Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No.
716-No. 734, pp. 100-104, 1981.
[4] B. Mihailović, Z. Radosavljević: On a class of tricyclic
reflexive cactuses. Univ. Beograd, Publ. Elektrotehn. Fak.,
Ser. Mat., 16, pp. 55-63, 2005.
[5] A. Neumaier, J. J. Seidel: Discrete hyperbolic geometry.
Combinatorica, 3, pp. 219-237, 1983.
[6] Z. Radosavljević, M. Rašajski: Multicyclic treelike
reflexive graphs. Discrete Math, Vol. 296/1, pp. 43-57, 2005.
[7] Z. Radosavljević, S. Simić: Which bicyclic graphs are
reflexive? Univ. Beograd, Publ. Elektroteh. Fak., Ser. Mat.,
7, pp. 90-104, 1996.

Joint work with Z. Radosavljević, M. Rašajski (School of Elec-
trical Engineering, University of Belgrade, Serbia)

Matrix Inequalities — In Memory of
Ky Fan

Chi-Kwong Li, College of William and Mary, Williamsburg,
Virginia, USA

Fuzhen Zhang, Nova Southeastern University, Florida, USA

The purpose of this symposium is to stimulate researches
in the area of matrix and operator inequalities and to
provide an opportunity for mathematicians in the field
to exchange ideas and share most recent developments
and information.

On distance measures between positive semidefinite
matrices and their applications in quantum informa-
tion theory
Koenraad M.R. Audenaert, Royal Holloway, University of
London, UK
koenraad.audenaert@rhul.ac.uk
Mon 11:00, Auditorium

The theory of matrix inequalities has many applications in
quantum information theory. In this talk we consider a num-
ber of distance measures between quantum states that are
commonly used. Many problems in quantum information the-
ory depend on finding useful relationships between these dis-
tance measures. These relationships can be generalised to
matrix inequalities for positive semidefinite matrices. We give
an overview of these inequalities, some of which are straight-
forward consequences of known inequalities, while others have
been open problems for a long time, e.g. an inequality concern-
ing the generalisation of the Chernoff distance between two
probability distributions to quantum states. In addition, a
number of conjectured inequalities are presented, too. In par-
ticular, we present some recent progress on a conjectured in-
equality involving N positive semidefinite matrices that would
fill the only remaining gap in an argument extending the quan-
tum Chernoff distance to N quantum states.

Joint work with Milan Mosonyi (Budapest University of Tech-
nology and Economics)

Matrix subadditivity inequalities
Jean-Christophe Bourin, Université de Franche-Comté,
France

jcbourin@univ-fcomte.fr
Mon 11:25, Auditorium

This talk surveys several recent results of functional analytic
spirit in matrix analysis. Most of these results are subaddi-
tivity inequalities for symmetric norms (or unitarily invariant
norms) and concave functions of operators. In case of nor-
mal operators, this leads to some estimates for partitioned
matrices.

−(σ1 − σ2)4 ≥ 0
Roger A. Horn, University of Utah, Salt Lake City, Utah
USA
rhorn@math.utah.edu
Mon 11:50, Auditorium

In 1961, D. C. Youla discovered a block upper triangular form
to which any square complex matrix A can be reduced by
a unitary congruence, that is, A → UAUT , in which U is
unitary. We revisit Youla’s form and describe a canonical
form for its diagonal blocks. The inequality in the title plays
a key role in identifying the diagonal blocks associated with
real negative eigenvalues of AĀ.

Jensen matrix inequalities and direct sums
Fuad Kittaneh, University of Jordan, Jordan
fkitt@ju.edu.jo
Mon 12:15, Auditorium

Let A,X and Y be n-by-n complex matrices such that A is
positive semi-definite and X, Y are contractions. We prove
that if f is an increasing convex function on [0,∞) such that
f(0) ≤ 0, then the eigenvalues of f(|X∗AY |) are dominated
by those of X∗f(A)X ⊕Y ∗f(A)Y . Several related results are
considered.

Joint work with J.-C. Bourin (Université de Franche-Comté)
and O. Hirzallah (Hashemite University)

Operator Radii and Unitary Operators
Chi-Kwong Li, Department of Mathematics, College of
William and Mary, Williamsburg, USA
ckli@wm.edu
Tue 11:00, Auditorium

Let ρ ≥ 1 and wρ(A) be the operator radius of a linear oper-
ator A. Suppose m is a positive integer. It is shown that for
a given invertible linear operator A acting on a Hilbert space,
one has wρ(A

−m) ≥ wρ(A)−m. The equality holds if and only
if A is a multiple of a unitary operator.

Joint work with Tsuyoshi Ando, Professor Emeritus,
Hokkaido University.

Perturbation of Partitioned Hermitian Generalized
Eigenvalue Problem
Ren-Cang Li, University of Texas at Arlington, TX, USA
rcli@uta.edu
Tue 11:25, Auditorium

We are concerned with Hermitian positive definite generalized
eigenvalue problem A− λB for partitioned

A =

„
A11

A22

«
, B =

„
B11

B22

«
,

where both A and B are Hermitian and B is positive definite.
Bounds on how its eigenvalues varies when A and B are per-
turbed by Hermitian matrices. These bounds are generally of
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linear order with respect to the perturbations in the diagonal
blocks and of quadratic order with respect to the perturba-
tions in the off-diagonal blocks. The results for the special
case of no perturbations in the diagonal blocks can be used
to bound the changes of eigenvalues of a Hermitian positive
definite generalized eigenvalue problem after its off-diagonal
blocks are dropped, a situation occurs frequently in eigenvalue
computations.

Stewart and Sun (1990) observed that different copies of
a multiple eigenvalue for the generalized eigenvalue problem
may behave very differently. Recently, Nakatsukasa (2009)
successfully obtained quantitative estimates to explain the
behavior. In this talk, we will present different estimates.

Supported in part by the National Science Foundation under
Grant No. DMS-0702335 and DMS-0810506.

One horse racing story, two card games, and three
matrix theorems
Yiu-Tung Poon, Iowa State University, U. S. A.
ytpoon@iastate.edu
Tue 11:50, Auditorium

Motivated by a horse racing story in ancient China, we con-
sider two card games. Let D1 and D2 be two diagonal ma-
trices whose diagonal entries correspond to the card values
of the two players of the card games. There is a correspon-
dence between the outcomes of the first card game and the
possible inertia of a matrix of the form P tD1P − QtD2Q,
where P and Q are permutation matrices. It turns out that
there is also a correspondence between the outcomes of the
second card game and the possible inertia of a matrix of the
form U∗D1U − V ∗D2V , where U and V are complex unitary
(or real orthogonal) matrices. Using the simple strategy in
the ancient story, we describe all the possible outcomes of
the card games and the inertia of the corresponding matrices
P tD1P − QtD2Q and U∗D1U − V ∗D2V . Related problems
and results are also mentioned.

Joint work with Chi-Kwong Li ( Department of Mathematics,
The College of William and Mary, U.S.A.)

Loewner matrices and matrix convexity
Takashi Sano, Yamagata University, Japan
sano@sci.kj.yamagata-u.ac.jp
Tue 12:15, Auditorium

In this talk, our results on Loewner matrices
h
f(pi)−f(pj)

pi−pj

i
in

[1] and [2] will be presented. Moreover, related results are to
be reported.

[1] R. Bhatia, T. Sano, Loewner matrices and operator con-
vexity, Math. Ann. 344 (2009), no. 3, 703–716.
[2] R. Bhatia, T. Sano, Positivity and conditional positivity
of Loewner matrices, to appear in Positivity.

Inequalities in Construction of Higher Rank Numer-
ical Ranges
Raymond Nung-Sing Sze, Department of Applied Mathe-
matics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong
raymond.sze@inet.polyu.edu.hk
Thu 11:00, Auditorium

Given a positive integer k, the higher rank numerical range
Λk(A) of a matrix A is the set of complex λ such that for some
rank k projection P we have PAP = λP . It has been shown

that the set Λk(A) can be constructed by infinitely many in-
equalities of A. In particular, only finite many inequalities are
needed if A is normal. In this talk, we revisit and demonstrate
these constructions and related results.

Joint work with H.L. Gau (National Central University), C.K.
Li (College of William and Mary), and Y.T. Poon (Iowa State
University)

Determinant and Pfaffian of sum of skew symmetric
matrices
Tin-Yau Tam, Auburn University, USA
tamtiny@auburn.edu
Thu 11:25, Auditorium

We completely describe the determinants of the sum of orbits
of two real skew symmetric matrices, under similarity action
of orthogonal group and the special orthogonal group respec-
tively. We also study the Pfaffian case and the complex case.
Inequalities are obtained.

Joint work with Mary Clair Thompson (Auburn University)

Revisiting a Permanent Conjecture on Positive
Semidefinite Matrices
Fuzhen Zhang, Nova Southeastern University, Fort Laud-
erdale, USA
zhang@nova.edu
Thu 11:50, Auditorium

We will revisit the permanent conjecture per(A ◦ B) ≤
per(A)per(B) with the maximizing matrix approach, where
A and B are positive semidefinite matrices and A ◦ B is the
Hadamard product of A and B.

The Equality Cases for the Inequalities of Oppen-
heim and Schur for Positive Semi-definite Matrices
Xiao-Dong Zhang, Shanghai Jiao Tong University,
P. R. China
xiaodong@sjtu.edu.cn
Thu 12:15, Auditorium

In matrix inequality theory, the inequalities of Oppenheim
and Schur for positive semi-definite matrices are well known.
In this talk, we investigate under which conditions the
Hadamard product of two positive semi-definite matrices are
singular. These results are used to give necessary and suffi-
cient conditions for equality in the inequalities of Oppenheim
and Schur for positive semi-definite matrices.

[1] R. B. Bapat and T. E. S. Ragharan, Nonnegative Ma-
trices and Applications, Cambridge University Press, 1997.

[2] A. Oppenheim, Inequalities connected with definite Her-
mitian forms, J. London Math. Soc. 5 (1930), 114-119.

[3] X.-D. Zhang, and C.-X. Ding, The equality cases for the
inequality of Oppenheim and Schur for positive semi-definite
matrices, Czechoslovak Mathematical Journal, 59 (134)
(2009), 197-206.

Joint work with Chang-Xing Ding (Shanghai Jiao Tong Uni-
versity)

Linear Algebra and Inverse Problems
Marco Donatelli, Università ”Insubria”, Como, Italy
James Nagy, Emory University, Atlanta, GA, USA
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Inverse problems arise in many important applications,
including medical imaging, microscopy, geophysics, and
astrophysics. Because they often involve large scale,
extremely ill-conditioned linear systems, linear alge-
bra problems associated with inverse problems are
extremely challenging to solve, both mathematically and
computationally. Solution schemes require enforcing
regularization, using for example prior information
and/or by imposing constraints on the solution. In
addition, matrix approximations and fast algorithms for
structured matrices must be employed. The speakers
in this minisymposium will report on recent research
developments involving linear algebra aspects of inverse
problems, including algorithms and other computational
issues.

Nonsmooth/Smoothing Optimization Approaches to
Structured Inverse Quadratic Eigenvalue Problems
Z.-J. Bai, Xiamen University, People’s Republic of China
zjbai@xmu.edu.cn
Thu 16:45, Room Galilei

Structured inverse quadratic eigenvalue problems arise in the
fields of structural dynamics, acoustics, electrical circuit simu-
lation, fluid mechanics, etc. In this talk, we present some non-
smooth/smoothing optimization methods for solving struc-
tured inverse quadratic eigenvalue problems. The proposed
algorithms are based on the recent developments in strong
semismooth matrix-valued functions [1] and strong semis-
mooth eigenvalues of symmetric matrices [2]. The global and
locally fast convergence is established. Numerical experiments
show the efficiency of the proposed methods.

[1] D. Sun and J. Sun, Semismooth matrix valued functions,
Math. Oper. Res., 27, pp. 150-169, 2002.
[2] D. Sun and J. Sun, Strong semismoothness of eigenvalues
of symmetric matrices and its application to inverse eigen-
value problems, SIAM J. Numer. Anal. 40, pp. 2352-2367,
2002.

Bayesian Hypermodels for Inverse Problems
Johnathan M. Bardsley, University of Montana, USA
johnathan.bardsley@umontana.edu
Wed 12:15, Room Galilei

In this talk, I will discuss inverse problems in the context of
Bayesian statistics, where the regularization function corre-
sponds to the negative-log of the prior probability density.
From the Bayesian perspective, the regularization parameter
can be viewed as a hyper-parameter, i.e. as a random vari-
able with some known distribution. Adding this element of
uncertainty to the value of the regularization parameter is not
only honest, it allows for increased flexibility. For example,
one can sample from the posterior regularization parameter
distribution, obtaining an empirical density (histogram) and
hence confidence intervals for the regularization parameter.
One can also allow for the regularization parameter to be spa-
tially dependent (i.e. vector valued), which leads to adaptive
methods and Bayesian learning. Numerical examples will be
used to illustrate the various concepts.

A survey of scaled gradient projected methods for
nonnegative image reconstruction

M. Bertero, University of Genova, Italy
bertero@disi.unige.it
Wed 12:40, Room Galilei

In a regularization or Bayesian approach, the ill-posed prob-
lem of image reconstruction with nonnegativity constraint is
reduced to the constrained minimization of a convex function.
Implicit methods have a fast asymptotic convergence rate but
require to solve a linear equation per iteration while explicit
methods, with a slower convergence, require only matrix-
vector multiplications. However, a recently proposed class
of scaled gradient projection (SGP) method [1] can provide
efficient algorithms, thus proposing these explicit methods as
an interesting alternative to the implicit ones. Moreover, in
the case of non-regularized minimization these methods still
exhibit the semi-convergence property.

In this talk, after a general outline of the proposed SGP,
we discuss a few applications. The first is to the problem of
the nonnegative least-squares solution [3], the second to the
denoising of images corrupted by Poisson noise [2] and the
third to the non-regularized deblurring of Poisson data [1]. In
such a case the SGP algorithm provides an acceleration of the
standard EM method. Future applications to the regularized
deblurring of Poisson data are also briefly discussed.

[1] S. Bonettini, R. Zanella and L. Zanni, A scaled gradient
projection method for constrained image deblurring, Inverse
Problems, 25, 015002 (23pp), 2009.
[2] R. Zanella, P. Boccacci, L. Zanni and M. Bertero, Efficient
gradient projection methods for edge-preserving removal of
Poisson noise, Inverse Problems, 25, 045010 (24pp), 2009.
[3] F. Benvenuto, R. Zanella, L. Zanni and M. Bertero, Non-
negative least-squares image deblurring: improved gradient
projection approaches, Inverse Problems, 26, 025004 (18pp),
2010.

Joint work with S. Bonettini (University of Ferrara), R.
Zanella and L. Zanni (University of Modena-Reggio Emilia),
F. Benvenuto and P. Boccacci (University of Genova)

Designing Optimal Filters for Ill-Posed Inverse Prob-
lems
J. Chung, University of Maryland, College Park
jmchung@cs.umd.edu
Thu 17:10, Room Galilei

Filtering methods are essential for computing reasonable solu-
tions to ill-posed inverse problems. Without proper filtering,
it is well known that small amounts of noise in the data may
amplify, resulting in catastrophic errors in the solution. How-
ever, standard filtering methods such as Truncated-SVD and
Tikhonov filtering may perform poorly for a given problem or
application. In this paper, we are interested in designing opti-
mal filters for a given operator of a given application. Utiliz-
ing techniques from stochastical and numerical optimization,
we present a novel and efficient approach for constructing op-
timal filters based on minimizing the expected value of the
mean square error estimates. Image deblurring is one appli-
cation that relies heavily on robust filtering techniques, and
numerical examples on testing data illustrate that our pro-
posed filters perform consistently better than well established
filtering methods.

Joint work with M. Chung (Emory University) D. P. O’Leary
(University of Maryland, College Park)

Structured shift-variant imaging systems and invari-
ant approximations via coordinate transformations
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Claudio Estatico, Department of Mathematics and Com-
puter Science, University of Cagliari, Italy
estatico@unica.it
Wed 11:50, Room Galilei

In the simplest Fredholm equations of the first kind arising in
real applications, the integral kernel is shift-invariant, that is,
the impulse response does not change as the object position is
shifted. In image deblurring, this happens when exactly the
same blur covers all the image domain. On the other hand,
in the general case the shape of the impulse response might
change as the object position is changed, that is, different
regions of the image might be subjected to different blurs.
These kinds of blurring models, termed as shift-variant, are
much more involving since they require high numerical com-
plexity in time and memory. However, many shift-variant
integral kernels are intrinsically shift-invariant. We can call
them as structured shift-variant. The well known main ex-
ample is the rotational blur, which arises when the object
rotates with respect to the imaging apparatus. Basically, al-
though the blur changes with respect the object position (in
particular, it is small close to and increases far from the cen-
ter of the rotation), if the coordinate system is changed from
Cartesian to Polar, then the integral kernel becomes explicitly
shift-invariant. In this talk we analyze in a general and alge-
braic setting these kinds of structured shift-variant imaging
systems. In this respect, we propose an algorithm for find-
ing the coordinate transformation which allows a structured
shift-variant PSF to become explicitly shift-invariant. The
usage of the computed coordinate transformation will highly
reduce the numerical complexity of the imaging system. Some
numerical results related to a real application in External Ve-
hicle Speed Control will end the talk.

Level set methods for the reconstruction of electrical
conductivity by eddy current imaging
D. Fasino, University of Udine, Italy
dario.fasino@dimi.uniud.it
Thu 11:50, Room Galilei

We present a numerical method for solving an inverse prob-
lem for the 3D imaging of small, conductive inclusions in an
insulating medium from exterior measurements. The method
exploits a non-destructive technique based on eddy currents
to analyze the response to the field of a probe coil placed at
various positions and excited at different frequencies [1].

The computational problem consists of a large, distributed
parameter estimation problem, having some peculiarities:

• The numerical evaluation of the forward map of the prob-
lem is a very expensive task;

• the sought solution is a piecewise constant function with
a quite small support, and whose nonzero values are pos-
sibly known a priori;

• the continuous relaxation of the problem is a large, very
under-specified, nonlinear problem.

Regularization is introduced as a sort of sparsity constraint on
the (discretized) gradient of level set functions [2]. The talk
illustrates various linear algebraic issues occurring in the nu-
merical solution of this problem. The efficacy of the obtained
method is substantiated by numerical simulations.

[1] A. Pirani, M. Ricci, R. Specogna, A. Tamburrino, F. Tre-
visan. Multi-frequency identification of defects in conducting
media. Inverse Problems 24 (2008), 035011, 18 pp.
[2] A. DeCezaro, A. Leitão, X.-C. Tai. On multiple level-set

regularization methods for inverse problems. Inverse Prob-
lems 25 (2009), 035004, 22 pp.

Joint work with R. Specogna (ruben.specogna@uniud.it, Uni-
versity of Udine, Italy) and F. Trevisan (trevisan@uniud.it,
University of Udine, Italy)

Edge–Preserving Regularization in Color Image Re-
construction
I. Gerace, University of Perugia, Italy
gerace@dmi.unipg.it
Wed 11:25, Room Galilei

Various color image inverse problems can be solved using a
regularization technique. In this way the solution is defined
as the argument of the minimum of an energy function, given
by the sum of two terms. The first term is a consistency
data term while the later one is related to the smoothness
constraints. The design of the energy function is crucial for
a proper image reconstruction. In this paper we focus on the
construction of the smoothness term for an edge–preserving
color image reconstruction.

Ideal images present intensity color discontinuities in cor-
respondence of sharp color variations. By means of a duality
theorem [1], we propose the use of a stabilizer that implicitly
deals with line variables. These variable are related to the dis-
continuities in the intensity field. A correct estimation of the
values of the line variables allows a more efficient image recon-
struction. Many authors have noted as the high frequencies
of the three RBG channels of a ideal image were very sim-
ilar [2][3], so we propose to add to the smoothness term a
new term related to the difference of the finite derivatives in
different channels.

For the minimization of the energy function we propose a
Graduated Non-Convex (GNC) technique and the experimen-
tal results confirm efficiency of the method.

[1] F. Martinelli, Regularization Techniques in Image and Sig-
nal Processing, PhD Thesis, University of Perugia, 2009.
[2] B.K. Gunturk, Y. Altunbasak, R.M. Mersereau, Color
Plane Interpolation using Alternating Projections, IEEE
Transactions on Image Processing, n. 9 vol. 11, pp. 997–
1013, 2002.
[3] J. Mairal, M. Elad, G. Sapiro, Sparse Representation for
Color Image Restoration, IEEE Transactions on Image Pro-
cessing, n. 1 vol. 17, pp 53–69, 2008.

Sparse Approximate Inverse Preconditioning for
Smoothing and Regularization
T. Huckle, Technical University Munich, Germany
huckle@in.tum.de
Thu 17:35, Room Galilei

We consider sparse approximate inverses for preconditioning
iterative methods. Especially we are interested in applications
where the iterative solver should reduce the error only in cer-
tain subspaces like in Multigrid or in ill-posed inverse prob-
lems. We derive two different methods to compute sparse ap-
proximate inverses with different behaviour on high frequency
components and low frequency components. The new precon-
ditioners lead to an improved smoothing property in Multigrid
and to better reconstruction of the blurred data in ill-posed
inverse problems.

Joint work with M. Sedlacek (Technical University Munich)

Edge Preserving Projection-based Regularization
Misha E. Kilmer, Tufts University, Medford, MA, USA
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misha.kilmer@tufts.edu
Thu 11:25, Room Galilei

We present a projection-based regularization strategy and al-
gorithm for retaining edges in a regularized solution. Our al-
gorithm is suitable for large-scale discrete ill-posed problems
arising from the discretization of Fredholm integral equations
of the first kind; for example, image deblurring in two and
three dimensions, the focus of our talk.

Our strategy avoids some of the pitfalls of many other well-
known edge-preserving methods by making use of orthogonal
decompositions/transforms in which components in the so-
called noise and signal subspaces can be generated quickly.
In determining the appropriate orthogonal transform, we ex-
ploit matrix structure as well as properties of the underlying
continuous model. Numerical results show the promise of our
approach.

Joint work with Per Christian Hansen (Technical University
of Denmark), Donghui Chen (Tufts University)

Iterative methods for Tikhonov Regularization
Lothar Reichel, Kent State University, USA
reichel@math.kent.edu
Thu 11:00, Room Galilei

The solution of linear discrete ill-posed problems is very sen-
sitive to perturbations in the data. Tikhonov regularization
is a popular approach to modifying these problems in order to
make them less sensitive. We discuss iterative methods for the
solution of large-scale Tikhonov-regularized problems with a
general linear regularization operator.

Joint work with Hochstenbach, A Neuman, H. Sadok, F. Sgal-
lari, and Q. Ye.

Multisplitting for Regularized Least Squares
Rosemary Renaut, Arizona State University
renaut@asu.edu
Thu 12:15, Room Galilei

Least squares problems are one of the most often used numer-
ical formulations in engineering. Many such problems lead
to ill-posed systems of equations for which a solution may
be found by introducing regularization. The use of multi-
splitting least squares, as originally introduced by Renaut for
well-posed least squares problems, is extended to Tikhonov
regularized large scale least squares problems. Regulariza-
tion at both the global and subproblem level is considered,
hence providing a means for multiple parameter regulariza-
tion of large scale problems. Basic convergence results fol-
low immediately from the original formulation. The iterative
scheme to obtain the global solution uses repeated solves of
local regularized systems each with a fixed system matrix but
updated right hand side. Updates of the underlying Krylov
subspace for the multiple right hand side system improve the
efficiency of the local solver at each step. Numerical validation
is presented for some simple one dimensional signal restora-
tion simulations from the Regularization Toolbox of Hansen.
The reconstruction of Shepp-Logan phantom data provides
an example for a large scale problem. The use of local reg-
ularization parameters is also illustrated for a 1D restoration
problem with variable noise in the signal. The implementa-
tion of the algorithm with GPUs for image restoration will
also be discussed.

Joint work with Youzuo Lin (Arizona State University), Hong-
bin Guo (Arizona State University)

Image restoration by Tikhonov regularization based
on generalized Krylov subspace methods
Fiorella Sgallari, Department of Mathematics-CIRAM,
University of Bologna, Via Saragozza 8, 40123 Bologna, Italy.

sgallari@dm.unibo.it
Wed 11:00, Room Galilei

We describe Tikhonov regularization of large linear discrete
ill-posed problems with a regularization operator of general
form and present an iterative scheme based on a generalized
Krylov subspace method. This method simultaneously re-
duces both the matrix of the linear discrete ill-posed problem
and the regularization operator. The reduced problem so ob-
tained may be solved, e.g., with the aid of the singular value
decomposition. Also, multiparameter Tikhonov regulariza-
tion is discussed. Numerical results illustrate the promise of
problem-oriented operator in image denoising and deblurring.

Joint work with L. Reichel (Kent State University) and Q. YE
(University of Kentucky)

Max Algebras
Peter Butkovic, School of Mathematics The University of

Birmingham, UK
Hans Schneider, Mathematics Department, University of

Wisconsin, Madison, WI, USA

Max-algebra has existed as a form of linear algebra
for almost half a century. We have seen a massive
development in this area especially in the last 15 years.
This is indicated by numerous papers published in
leading journals, 5 books, and a good number of confer-
ences or special sessions. This minisymposium provides
state-of-the-art research presentations by established
researchers in the field.

Representation of maxitive measures
M. Akian, INRIA Saclay–Île-de-France and CMAP, École
Polytechnique, route de Saclay, 91128 Palaiseau Cedex,
France
marianne.akian@inria.fr, poncet@cmap.polytechnique.fr
Thu 12:15, Room Fermi

A maxitive measure is the analogue of a finitely additive
measure or charge, in which the usual addition of reals is re-
placed by the supremum operation in a partially ordered set
(poset). This notion was first introduced by Shilkret (1971),
and reintroduced by many authors with different purposes
such as capacity theory and large deviations, idempotent anal-
ysis and max-plus algebra, fuzzy set theory, optimisation, or
fractal geometry.

A completely maxitive measure has a cardinal density,
which means that there exists a map c such that the measure
of any set is the supremum of c on that set. This property is
related to the theory of residuation or Galois connections, or
dualities.

We shall present and compare various representation re-
sults of this type. For instance, a countably maxitive measure
on the topology of a separable metric space has a density
(see [1] together with a max-plus linear form version shown
by Kolokoltsov and Maslov (1988), see e.g. [2]). Barron,
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Cardaliaguet, and Jensen (2000) have shown a similar rep-
resentation using essential suprema with respect to a usual
positive measure, generalized in [3]. More generally, a maxi-
tive measure can be decomposed as the supremum of a max-
itive measure with density, and a residual maxitive measure
that is null on compact sets [4].

[1] M. Akian. Densities of idempotent measures and large
deviations. Trans. Amer. Math. Soc., 351(11):4515–4543,
1999.
[2] V. Kolokoltsov and V. Maslov. Idempotent analysis and
applications. Kluwer Acad. Publisher, 1997.
[3] P. Poncet. A note on two-valued possibility (σ-maxitive)
measures and Mesiar’s hypothesis. Fuzzy Sets and Systems,
158(16):1843–1845, 2007.
[4] P. Poncet. A decomposition theorem for maxitive
measures, 2009. Accepted for publication in LAA, see also
arXiv:0912.5178.

Joint work with P. Poncet

Tropical approximation of matrix eigenvalues
S. Gaubert, INRIA and CMAP, École Polytechnique,
Palaiseau, France
Marianne.Akian@inria.fr, Stephane.Gaubert@inria.fr,
Meisam.Sharify Najafabadi@inria.fr
Mon 15:00, Auditorium

We establish several inequalities of log-majorization type, re-
lating the moduli of the eigenvalues of a complex matrix with
certain combinatorial objects, the tropical eigenvalues, which
depend only on the moduli of the entries of the matrix. In
nondegenerate cases, the orders of magnitude of the different
eigenvalues of the complex matrix turn out to be given by
the tropical eigenvalues. We use this information to perform
a preprocessing (diagonal scaling) to improve the numerical
accuracy of eigenvalue computations.

Joint work with M. Akian, M. Sharify

Characterization of non-strictly-monotone interval
eigenvectors in
max-min algebra
Martin Gavalec, University of Hradec Králové, Czech Re-
public
martin.gavalec@uhk.cz
Mon 16:45, Auditorium

The interval eigenproblem in max-min algebra for non-
strictly-monotone eigenvectors is studied. For given real ma-
trices A,A of type (n, n), the matrix interval A = [A,A] is
defined as the set of all matrices A, for which the inequalities
A ≤ A ≤ A hold true. For given real vectors x, x of type (n, 1)
the vector interval X = [x, x] is the set of all vectors x with
x ≤ x ≤ x. The interval eigenproblem A⊗X = X is the prob-
lem of finding a solution to the equation A ⊗ x = x in max-
min algebra, with additional conditions that the coefficient
matrix A belongs to the given interval A, and the eigenvector
x belongs to X. Six types of solvability of the interval eigen-
problem are introduced, according to various combinations of
quantifiers applied to A ∈ A and x ∈ X. The characterization
of all six types in the form of necessary and sufficient condition
is given, with restriction to non-strictly-monotone eigenvec-
tors. The conditions can be verified in polynomial time. All
true implications between the solvability types are presented,
and the false implications are illustrated by counter-examples.

Joint work with Ján Plavka (Technical University in Košice)
and Hana Tomášková (University of Hradec Králové)

Tropical Rank and Beyond
Alexander Guterman, Moscow State University, Russia
guterman@list.ru
Mon 15:25, Auditorium

Rank functions over various classes of semirings are intensively
investigated during the last decades. Among the other rank
functions the following two are very important.

Let (S,⊕,⊗) be a semiring, Σk be the permutation group
on {1, . . . , k}, Ak ⊂ Σk be the subgroup of even permutations.

A matrix A = [aij ] ∈Mk(S) is said to be tropically singular
if there exists a subset T ∈ Σk such thatM

σ∈T

a1σ(1) ⊗ · · · ⊗ akσ(k) =
M

σ∈Σk\T

a1σ(1) ⊗ · · · ⊗ akσ(k).

Note that for tropical semirings this definition coincides with
the classical one: the minimum in the permanent expression

per(A) :=
L
σ∈Sk

a1σ(1) ⊗ · · · ⊗ akσ(k)

= min{a1σ(1) + . . .+ akσ(k) : σ ∈ Sk}

is attained at least twice.
Otherwise A is tropically non-singular .
Tropical rank of M ∈ Mn(S) is the largest r such that M

has a tropically non-singular r × r minor.
A matrix A = [aij ] ∈Mk(R) is said to be d-singular ifM
σ∈Ak

a1σ(1) ⊗ · · · ⊗ akσ(k) =
M

σ∈Σk\Ak

a1σ(1) ⊗ · · · ⊗ akσ(k).

Otherwise A is d-non-singular .
Determinantal rank of M ∈ Mn(S) is the largest r such

that M has a d-non-singular r × r minor.
This talk is devoted to our recent investigations of these

two rank functions and their interrelations.

On the dual product and the dual residuation over
idempotent semiring of intervals
L. Hardouin, University of Angers, France
laurent.hardouin@univ-angers.fr
Mon 17:35, Auditorium

An idempotent semiring S can be endowed with a partial or-
der relation defined as a � b ⇔ a ⊕ b = b ⇔ a ∧ b = a,
in other words the sum operator ⊕ corresponds to the least
upper bound of the set {a, b}. According to this order rela-
tion it is possible to obtain the greatest solution of equation
A ⊗ X � B where A,X and B are matrices of proper di-
mension and (A ⊗ X)ij =

L
k=1...n

(aik ⊗ xkj). The greatest

solution is obtained by considering residuation theory and is
practically given by (X)kj =

V
i=1...m

(aik ◦\bij), where aik ◦\bij
is the greatest solution of the scalar equation aik ⊗ xkj � bij .
In this talk we will consider the dual matrix product A �X
defined as (A�X)ij =

V
k=1...n

(aik ⊗ xkj), and the dual resid-

uation to deal with computation of the smallest solution of
inequality A � X � B. Due to the lack of distributivity of
operator ⊗ over the infimum operator ∧, the existence of this
unique solution is not always ensured. A sufficient condition
is obtained when all the elements of the semiring admit an
inverse, i.e. ∀a ∈ S, ∃b such that a ⊗ b = e where e is the
identity element of the semiring. This condition is fulfilled
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in (max-plus) algebra, and allows to deal with opposite semi-
modules in [1], but it is not the case in semirings of intervals
such as introduced in [2]. Nevertheless a sufficient condition
allowing to compute this smallest solution in this algebraic
setting will be given.

[1] G. Cohen, S. Gaubert, and J.P. Quadrat. Duality and
separation theorems in idempotent semimodules. Linear
Algebra and its Applications, 379:395–422, 2004.
[2] L. Hardouin, B. Cottenceau, M. Lhommeau, and E. Le
Corronc. Interval systems over idempotent semiring. Linear
Algebra and its Applications, 431(5-7):855–862, August 2009.

Joint work with B. Cottenceau (University of Angers) and E.
Le Corronc (University of Angers)

Nonlinear Markov games
V. Kolokoltsov, University of Warwick, UK
v.kolokoltsov@warwick.ac.uk
Thu 11:00, Room Fermi

I will discuss a new class of stochastic games that I call
nonlinear Markov games, as they arise as a (competitive) con-
trolled version of nonlinear Markov processes (an emerging
field of intensive research, see e.g. [1]-[3]. This class of games
can model a variety of situation for economics and epidemics,
statistical physics, and pursuit - evasion processes. Further
discussion of this topic will be given in author’s monograph
[4].

Roughly speaking, a nonlinear Markov process is defined by
the property that its future behavior depends on the past not
only via its present position, but also its present distribution.
A nonlinear Markov semigroup can be considered as a non-
linear deterministic dynamic system, though on a weird state
space of measures (notwithstanding the fact that the specific
structure of generators allows for a nontrivial stochastic inter-
pretation of the evolution, which can be thought of as solving
integral equation based on a path integral). Thus, as the
stochastic control theory is a natural extension of the deter-
ministic control, we are going to further extend it by turning
back to deterministic control, but of measures. In particular,
as introducing stochasticity in control destroys the max-plus
linearity of the Bellman operator, the introduction of a non-
linear control can restore this linearity.

[1] V. Kolokoltsov. Nonlinear Markov Semigroups and Inter-
acting Lévy Type Processes. Journ. Stat. Physics 126:3
(2007), 585-642.
[2] T.D. Frank. Nonlinear Markov processes. Phys. Lett. A
372:25 (2008), 4553-4555.
[3] M. Zak. Quantum Evolution as a Nonlinear Markov Pro-
cess. Foundations of Physics Letters 15:3 (2002), 229-243.
[4] V. N. Kolokoltsov. Nonlinear Markov processes and kinetic
equations. Monograph. To appear in Cambridge University
Press 2010.

Supervisory control of a class of implicit systems
R. Bacos, IRCCyN, CNRS, Nantes, France.
Roberto.Bacos@irccyn.ec-nantes.fr
Thu 11:25, Room Fermi

We aim at addressing the positive invariance of polytopic
regions for implicit systems of the form

Fẇ(t) =

νX
k=0

Gkx(t− δk) . (1)

Such a system arises from network models, in particular for a
class of timed Petri nets, called linear nets [1]. A particularly
important problem in this context is that of the supervisory
control . For Petri nets [2], it consists of guarantying a bound
on the variable w(t), specified in terms of a polytopic region
P(H,h) = {w|Hw ≤ h}. Thus, the supervisory control prob-
lem comes down to the positive invariance of the polytope
P(H,h).

An important feature of system (1) is that in general, it is
not regular, since the matrices F , andGk, are rectangular. We
aim at addressing the positive invariance of polytopic regions
for such a system, trying to generalize the known results, that
concern square regular systems [3].

[1] L. Libeaut, Sur l’utilisation des diöıdes pour la commande
des systèmes à événements discrets, PhD thesis, Ecole
Centrale de Nantes, France, 1996.
[2] M.V. Iordache and P.J. Antsaklis, A survey on the
supervision of Petri nets, DES Workshop PN 2005, Miami,
FL, June 21, 2005.
[3] S. Tarbouriech and E.B. Castelan, Positively invariant
sets for singular discrete-time systems, Int. J. of Systems
Science, vol.24, no.9, pp.1687-1705, 1993.

Joint work with J.J. Loiseau (IRCCyN, CNRS, Nantes,
France)

An Idempotent Approach to Continuous-Time
Stochastic Control Using Projection Operations
William M. McEneaney, University of California San
Diego, USA
wmceneaney@ucsd.edu
Wed 11:00, Room Fermi

It is now well-known that many classes of deterministic control
problems may be solved by max-plus or min-plus (more gen-
erally, idempotent) numerical methods. It has recently been
discovered that idempotent methods are applicable to stochas-
tic control and games. The methods are related to the curse-
of-dimensionality-free idempotent methods for deterministic
control. The first such methods for stochastic control were
developed only for discrete-time problems. The key tools
enabling their development were the idempotent distributive
property and the fact that certain solution forms are retained
through application of the dynamic programming semigroup
operator. Using this technology, the value function can be
propagated backwards with a representation as a pointwise
minimum of quadratic or affine forms.

Here, we will remove the severe restriction to discrete-time
problems. We obtain approximate solutions to the problems
through repeated application of approximate backward dy-
namic programming operators. A generalization of the min-
plus distributive property, applicable to continuum versions
will be obtained. This will allow interchange of expectations
over normal random variables with infimum operators. At
each time-step, the solution will be represented as an infi-
mum over a set of quadratic forms. Backward propagation is
reduced to simple standard-sense linear algebraic operations
for the coefficients in the representation. The difficulty with
the approach is an extreme curse-of-complexity, wherein the
number of terms in the min-plus expansion grows very rapidly
as one propagates. The complexity growth will be attenuated
via projection onto a lower dimensional min-plus subspace at
each time step. At each step, one desires to project onto the
optimal subspace relative to the solution approximation.
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Joint work with Hidehiro Kaise (Nagoya University, Japan)

Max-plus linear systems
G. Merlet, Université de la Méditerranée, France
merlet@iml.univ-mrs.fr
Mon 15:50, Auditorium

Stochastic max-plus linear systems are defined as iterates of
a random max-plus linear map. In this talk, we will present
their long term behaviour and compare it to the one of positive
linear systems. The first order results (law of large numbers
[1,3]) are based on subadditivity and approximation by linear
systems while the second order ones (Central limit theorems,
[2]) rely on the geometric properties of action of the maps on
the max-plus projective space and the approximation by sum
of independant real variables.

[1] T. Bousch et Jean Mairesse, Finite-range topical functions
and uniformly topical functions, Dynamical Systems 21, 1
(2006), pp. 73-114.
[2] G. Merlet, A central limit theorem for stochastic recur-
sive sequences of topical operators, Ann. Appl. Probab. 17
(2007), no. 4, 1347-1361.
[3] G. Merlet, Cycle time of stochastic max-plus linear sys-
tems, Electronic Journal of Probability 13 (2008), Paper 12,
322-340.

Convex structures and separation in max-min (fuzzy)
algebra
V. Nitica, West Chester University, USA
vnitica@wcupa.edu
Thu 11:50, Room Fermi

We present classification and separation results in max-min
convexity. Separation by hyperplanes/halfspaces is a standard
tool in convex geometry and its tropical (max-plus) analogue.
Several separation results in max-min convex geometry are
based on semispaces [1]. A counterexample to separation by
hyperplanes in max-min convexity is shown in [2]. In the talk
we answer the question which semispaces are hyperplanes and
when it is possible to separate by hyperplanes in max-min
convex geometry: a point can be separated from a convex set
that does not contain it, if and only if the point belongs to the
main diagonal. Further new separation results are presented,
such as separation of a closed box from a max-min convex set
by max-min semispaces. This can be regarded as an interval
extension of the known separation results by semispaces [1].
We give a constructive proof of the separation in the case when
the box satisfies a certain condition, and we show that the
separation is never possible when the condition is not satisfied.
These results hold in arbitrary finite dimension. We also study
the separation of two max-min convex sets by a box and by
a box and a semispace. These results hold only in the 2-dim
case, and we provide counterexamples in the 3-dim case. The
talk is based on [3] and [4].

[1] V. Nitica, The structure of max-min hyperplanes, Linear
Algebra Appl., 432, pp. 402-429, 2010.
[2] V. Nitica and I. Singer, Contributions to max-min convex
geometry. II. Semispaces and convex sets, Linear Algebra
Appl., 428, pp. 2085–2115, 2008.
[3] V. Nitica and S. Sergeev, On hyperplanes and semispaces
in max-min convex geometry, to appear in Kybernetika.
arXiv:math/0910.0557
[4] V. Nitica and S. Sergeev, An interval version of separation
by semispaces in max-min convexity, submitted to Linear

Algebra Appl. arXiv:math/0910.0566

Joint work with S. Sergeev, University of Birmingham, UK

On the maximum cycle geometric mean
A. Peperko, University of Ljubljana, Slovenia
aljosa.peperko@fmf.uni-lj.si and aljosa.peperko@fs.uni-lj.si
Wed 12:15, Room Fermi

The maximum cycle geometric mean µ(A) of a n × n non-
negative matrix A plays a role of the spectral radius in max
algebra. We generalize the notion of the maximum circuit
geometric mean to infinite non-negative matrices and provide
several descriptions under certain conditions. In particular,
we provide the max algebra description of µ(K), which pro-
vides connection to Bonsall’s spectral radius and thus to max-
eigenvalues.

If time allows, we will also consider some problems about
submultiplicativity, subadditivity and the generalized spectral
radius in max algebra.

Efficient algorithms for checking of the robustness and
for computing the greatest eigenvector of a matrix in
a fuzzy algebra
Ján Plavka, Technical University in Košice, Slovak Republic

Jan.Plavka@tuke.sk
Mon 17:10, Auditorium

Let (B,≤) be a nonempty, bounded, linearly order set and
a ⊕ b = max(a, b), a ⊗ b = min(a, b) for a, b ∈ B. A vector x
is said to be a λ-eigenvector of a square matrix A if A⊗ x =
λ ⊗ x for some λ ∈ B. We introduce some properties of the
greatest λ-eigenvector of a given matrix A and in this context
derive the O(n2 logn) algorithm for computing the greatest λ-
eigenvector [1]. A given matrix A is called (strongly) λ-robust
if for every x the vector Ak ⊗ x is an (greatest) eigenvector of
A for some natural number k. We present a characterization
of λ-robust and strongly λ-robust matrices. As a consequence,
an efficient algorithm for checking the λ-robustness and strong
λ-robustness of a given matrix is introduced [2].

[1] M. Gavalec, J. Plavka, J. Polák: On the O(n2 logn) algo-
rithm for computing the greatest λ-eigenvector in fuzzy
algebra (in preparation).

[2] J. Plavka: On the λ-robustness of matrices in a fuzzy
algebra (submitted).

Joint work with Martin Gavalec (University of Hradec
Králové, Czech Republic) and Ján Polák (Technical Univer-
sity in Košice, Slovak Republic)

Fundamental Traffic Diagrams : A Maxplus Point of
View
J.-P. Quadrat, INRIA-Rocquencourt, France
Jean-Pierre.Quadrat@inria.fr
Wed 11:25, Room Fermi

Following Daganzo we discuss the variational formulation of
the Lighthill-Witham-Richards equation describing the traffic
on a road. First, we consider the case of a circular road with
a very simple dynamics which is minplus linear. We extend
it to the case of two roads with a junction with the right pri-
ority. The equation obtained is no more an Hamilton-Jacobi-
Bellman equation. To study the eigenvalue problem extending
the standard minplus one, we consider a space discretization of
the equation. The discrete problem can be solved analytically,
it gives the eigenvalue as function of the car density. The limit
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when the discretization step goes to zero gives a very simple
formula. This eigenvalue gives a good approximation of what
we call “the global fundamental traffic diagram” (the relation
between the density and the average flow in the system). This
global fundamental diagram must be distinguished from the
standard fundamental diagram which is local, obtained empir-
ically and, in the concave case, can be seen as an hamiltonian
of a control problem.

[1] C. F. Daganzo: A variational formulation of kinematic
waves: Basic theory and complex boundary conditions.
Transportation Research part B, 39(2), 187-196, 2005.
[2] J. Lighthill, J. B. Whitham: On kinetic waves: II A
theory of traffic Flow on long crowded roads, Proc. Royal
Society A229 p. 281-345, 1955.
[3] N. Farhi: Modélisation minplus et commande du trafic
de villes régulière, thesis dissertation, University Paris 1
Panthéon - Sorbonne, 2008.

Joint work with N. Farhi (INRIA-Grenoble) & M. Goursat
(INRIA-Rocquencourt)

The level set method for the two-sided eigenproblem
in max-plus algebra
S. Sergeev, University of Birmingham, UK
sergeevs@maths.bham.ac.uk
Wed 11:50, Room Fermi

We consider the max-plus analogue of the eigenproblem for
matrix pencils, Ax = λBx. We show that the spectrum of
(A,B) (i.e., the set of possible values of λ) is a finite union
of intervals, which can be computed by a pseudo-polynomial
number of calls to an oracle that computes the value of a mean
payoff game. The proof relies on the introduction of a spectral
function, which we interpret in terms of the least Chebyshev
distance between Ax and λBx. The spectrum is obtained as
the zero level set of this function.

Joint work with S. Gaubert (INRIA and École Polytechnique,
France)

Optimization Problems under (max, min)-Linear
Two-sided Equality Constraints
Karel Zimmermann, Charles University, Faculty of Mathe-
matics and Physics
karel.zimmermann@mff.cuni.cz
Wed 12:40, Room Fermi

We consider the following optimization problem:

minimize f(x) ≡ maxj∈J fj(xj)

subject to

maxj∈J(aij ∧ xj) = maxj∈J(bij ∧ xj) ,

xj ≤ xj ≤ xj , j ∈ J ,

where I, J are finite index sets, fj : R1 → R1 are continuous
unimodal functions, aij , bij , xj , xj are real numbers, and α ∧
β ≡ min{α, β} for any α, β ∈ R1.
An iteration method for solving the optimization problem is
proposed. The method is based on a method for finding the
maximum element of the set of feasible solutions of the given
optimization problem combined with a bisection iterations.
As a result an approximate solution of the given problem is
obtained. Possibilities of applications of the considered class
of problems are presented. The method is further used to

approximate minimization of Lipschitzian objective functions
under the given constraints. Extensions and generalizations
of the presented results are briefly discussed.

Joint work with Martin Gavalec (University of Hradec
Králové)

Generalized Inverses and Applications
Nieves Castro-Gonzalez, Universidad Politécnica de Madrid,

Spain
Pedro Patricio, Departamento de Matematica, Universidade

do Minho, Braga, Portugal

Fredholm’s method to solve a particular integral
equation in 1903, was probably the first written work
on generalized inverses. In 1906, Moore formulated the
generalized inverse of a matrix in an algebraic setting,
which was published in 1920, and in the thirties von
Neumann used generalized inverses in his studies of
continuous geometries and regular rings. Kaplansky
and Penrose, in 1955, independently showed that the
Moore “reciprocal inverse” could be represented by four
equations, now known as Moore-Penrose equations. A
big expansion of this area came in the fifties, when
C.R. Rao and J. Chipman made use of the connection
between generalized inverses, least squares and statistics.
Generalized inverses, as we know them presently, cover a
wide range of mathematical areas, such as matrix theory,
operator theory, c*-algebras, semi-groups or rinRoom
Fermigs. They appear in numerous applications that
include areas such as linear estimation, differential
and difference equations, Markov chains, graphics,
cryptography, coding theory, incomplete data recovery
and robotics. The aim of this mini-symposium, is to
gather researchers involved in the study of generalized
inverses and to encourage the exchange of ideas.

Analytic Perturbations of Generalized Inverses
Konstantin Avrachenkov, INRIA Sophia Antipolis,
France
K.Avrachenkov@sophia.inria.fr
Mon 12:15, Room Galilei

We investigate analytic perturbations of the reduced resolvent
of a finite dimensional linear operator (also known as Drazin
inverse in linear algebra literature). By analytic perturba-
tions we mean the perturbed operator depends analytically
on a perturbation parameter. Our approach is based on spec-
tral theory of linear operators as well as on a new notion of
group reduced resolvent. It allows to treat regular and sin-
gular perturbations in a unified framework. We produce an
algorithm for computing the coefficients of the Laurent series
of the perturbed reduced resolvent. In particular, the reg-
ular part coefficients can be calculated by simple recursive
formulae. Finally, we apply these results to the perturbation
analysis of Moore-Penrose generalized inverses.

Joint work with J. B. Lasserre (LAAS-CNRS)

On group invertibility and representations for the
group inverse of partitioned matrices
N. Castro-González, Facultad de Informática, Universi-
dad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid,
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Spain
nieves@fi.upm.es
Mon 15:00, Room Galilei

In recent papers [1],[2], necessary and sufficient conditions
were derived for a partitioned matrix to have several gener-
alized inverses, including inner, reflexive and Moore-Penrose
inverse, with Banachiewicz-Schur form. We recall that, if

M =

„
A B
C D

«
and A= denotes a generalized inverse of A,

then the Schur generalized complement of A in M is defined
as S = D − CA=B, and we say that the generalized inverse
of M has the Banachiewicz-Schur form when it is expresible
in the form

M= =

„
A= +A=BS=CA= −A=BS=

−S=CA= S=

«
.

In this talk, firstly, we address the problem of develop-
ing conditions under which the Drazin inverse of a parti-
tioned matrix can be obtained by a formula which involves
the Banachiewicz-Schur form. Conditions for the existence of
the group inverse of partitioned matrices satisfying the rank
formula rank(M) = rank(AD)+ rank(SD) are given. (Joint
work with M.F. Mart́ınez-Serrano).

Next, we study the group invertibility and give representa-
tions for the group inverse of a type of block matrices with
applications in graph theory. (Joint work with J. Robles and
J.Y. Vélez-Cerrada).

The research is partially supported by Project MTM2007-
67232, “Ministerio de Educación y Ciencia” of Spain.

[1] J. K. Baksalary, G. P. H. Styan, Generalized inverses of
partitioned matrices in Banachiewicz-Schur form, Linear Al-
gebra Appl., 354 (2002), 41–47.
[2] Y. Tian, Y. Takane, More on generalized inverses of par-
titioned matrices with Banachiewicz-Schur forms, Linear Al-
gebra Appl. 430 (2009) 1641-1655.

Representations and additive properties of the Drazin
inverse
D. Cvetković-Ilić, University of Nǐs, Serbia
dragana@pmf.ni.ac.rs
Tue 15:25, Room Galilei

The theory of Drazin inverses has seen a substantial growth
over the past decades. Beside being of great theoretical inter-
est it has found applications in many diverse areas, including
statistics, numerical analysis, differential equations, Markov
chains, population models, cryptography, control theory etc.
One of the topics on the Drazin inverse that is of consider-
able interest concerns explicit representations for the Drazin
inverse of a 2 × 2 block matrix and explicit representations
for the Drazin inverse of the sum of two matrices. Until now,
there has been no explicit formula for the Drazin inverse of

M =

»
A B
C D

–
in terms of Ad and Dd with arbitrary A,B,C

and D. In the recent years, the representation and characteri-
zation of Drazin inverses of matrices or operators on a Hilbert
space have been considered by many authors.

Using an additive result for the Drazin inverse, we de-
rive formulae for the Drazin inverse of a 2 × 2 block matrix

M =

»
A B
C D

–
, under conditions weaker than those assumed

in papers published before.

Also, we present some additive properties of the general-
ized Drazin inverse in a Banach algebra and find an explicit

expression for the generalized Drazin inverse of the sum a +
b in terms of a, ad, b, bd under various conditions.

A cancellation property of the Moore-Penrose inverse
of triple products
Tobias Damm, Fachbereich Mathematik, TU Kaiserslautern,
Kaiserslautern, Germany
damm@mathematik.uni-kl.de
Mon 17:10, Room Galilei

We study the matrix equation

C(BXC)†B = X† (∗)

where X† is the Moore-Penrose inverse, and we derive con-
ditions for the consistency of (∗). Singular vectors of B and
C are used to obtain all solutions . Applications to compli-
ance matrices in molecular dynamics, to mixed reverse-order
laws of generalized inverses and to weighted Moore-Penrose
inverses are given.

Joint work with Harald Wimmer

New results concerning multiple reverse-order law
Nebojša Č. Dinčić, University of Nǐs, Serbia
ndincic@hotmail.com
Mon 17:35, Room Galilei

In this paper we present new results related to the mixed-
type reverse order law for the Moore-Penrose inverse of the
various products of multiple bounded Hilbert space opera-
tors. Some finite dimensional results are extended to infinite
dimensional settings.

[1] D. S. Djordjevic, N. Č. Dinčić, Reverse order law for the
Moore-Penrose inverse, J. Math. Anal. Appl. 361(1), pp.
252-261, 2010.
[2] T. Damm, H. K. Wimmer, A cancellation property of the
Moore-Penrose inverse of triple products, J. Aust. Math.
Soc. 86, pp. 33-44, 2009.
[3] Y. Tian, Some mixed-type reverse-order laws for the
Moore-Penrose inverse of a triple matrix product, Rocky
Mountain Journal of Mathematics 37(4), pp. 1327-1347, 2007.

Joint work with Dragan S. Djordjević (University of Nǐs)

On deriving the Drazin inverse of a modified matrix
E. Dopazo, Technical University of Madrid, Spain
edopazo@fi.upm.es
Mon 16:45, Room Galilei

Let A be an n× n complex matrix. The Drazin inverse of A
is the unique matrix AD satisfying the relations:

ADAAD = AD, ADA = ADA, Ak+1AD = Ak,

where k is the index of A. The concept of Drazin inverse plays
an important role in various fields like Markov chains, singular
differential and difference equations, iterative methods, etc.

A challenge in this area is to establish formulas for com-
puting the Drazin inverse of a modified matrix in terms of the
Drazin inverse of the original matrix. These formulas will be
of great interest in various applications. They can be useful
when the matrix can be expressed as the sum of a matrix
with a convenient structure and an additive perturbation, in
updating problems, etc.

This problem has been largely studied for invertible ma-
trices. Starting from the well-known formula of Sherman-
Morrison-Woodbury given for the regular case:

(A+ UV ∗)
−1

= A−1 −A−1U
`
I + V ∗A−1U

´−1
V ∗A−1,
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where the matrix A and the Schur complement, I+V ∗A−1U ,
are invertible, an intensive research has been developed.

In the context of generalized inverses, some analogous for-
mulas have been developed for the Moore-Penrose inverse and
for the Drazin inverse under specific conditions. In this pa-
per, we focus on deriving formulas for the Drazin inverse of a
modified matrix in terms of the Drazin inverse of the original
matrix and the generalized Schur complement, which extend
results given in the literature.

This research has been partly supported by project
MTM2007-67232, ”Ministerio de Educación y Ciencia” of
Spain.

Joint work with M.F. Mart́ınez-Serrano (Technical University
of Madrid)

Generalized inverses on the solution of the Toeplitz-
pencil Conjecture
M.C.Gouveia, University of Coimbra, Portugal
mcag@mat.uc.pt
Tue 15:00, Room Galilei

A 1981 conjecture by Bumby, Sontag, Sussmann, and Vas-
concelos [1] says that the polynomial ring C[x] is a so called
Feedback Cyclization (FC) ring. Two exceptional cases of that
conjecture remained unsolved. In 2004 Schmale and Sharma
[3] showed that one of these cases would follow from the truth
of a simple looking conjecture they formulated for Toepliz ma-
trices. In [2] the authors show that the Toeplitz pencil conjec-
ture stated in [1] is equivalent to a conjecture for n×n Hankel
pencils, and it is shown to be implied by another conjecture,
which is called root conjecture, for matrices up to size 8× 8.
In this work we establish how the generalized inverse theory
on matrices over rings can be applied to solve this problem.

[1] R. Bumby, E.D.Sontag, H.J.Sussmann, W.Vasconcelos,
Remarks on the pole shifting problem over commutative rings,
J. Pure and Appl. Algebra 20 (1981) 113-127.
[2]A.Kovacec, M.C.Gouveia, The Hankel Pencil Conjecture,
Linear Algebra Appl. 431(2009) 1509-1525.
[3] W.Schmale, P.Sharma, Cyclizable matrix pairs over
C[x] and a conjecture on Töplitz pencils, Linear Algebra
Appl.389(2004) 33-42.

On the calculation of different type of generalized in-
verses for a rectangular matrix using the Kronecker
canonical form
Athanasios D. Karageorgos, Department of Mathemat-
ics, University of Athens, GR
athkar@math.uoa.gr
Mon 15:25, Room Galilei

In several significant applications, in control and systems’
modelling theory, the methodology of generalized inverses (for
instance, the Drazin and the Moore-Penrose inverses) and the
Matrix Pencil approach have been extensively used for the
study of generalized (descriptor) linear systems with rectan-
gular (or square) constant coefficients, see for instance [1-4].
In this new paper, we extend the recent results of [5]. Ana-
lytically, three main directions are discussed and presented:
(I) Using the complex Kronecker canonical form, we deter-
mine the {1, 2}-generalized inverse of a rectangular matrix.
(II) Under some interesting additional conditions, the Moore-
Penrose inverse of a rectangular matrix is derived using also
the matrix pencil approach.
(III) Finally, we prove - quite straightforwardly - that the

is no connection between Drazin inverses and the Kronecker
canonical form.

(Selected) References
[1] S.L. Campbell, Singular systems of differential equations,
Pitman (Advanced Publishing Program), Vol. I, 1980, UK.
[2] S.L. Campbell, Singular systems of differential equations,
Pitman (Advanced Publishing Program), Vol. II, 1982, UK.
[3] S.L. Campbell, The Drazin inverse and systems of second
order linear differential equations, Linear and Multilinear
Algebra, Vol. 14 (2), pp. 195-198.
[4] V. Lovass-Nagy and D.L. Powers, On rectangular systems
of differential equations and their application to circuit
theory. Journal of Franklin Institute 299 (6) (1975), pp.
399-407.
[5] G.I. Kalogeropoulos, A.D. Karageorgos, and A.A.
Pantelous, The Drazin inverse through the matrix pencil
approach and its application to the study of generalized
linear systems with rectangular or square coefficient matrices,
Electronic Journal of Linear Algebra, Vol. 17, 2008, pp.
118-138.

Joint work with Athanasios A. Pantelous (Department of
Mathematical Sciences, University of Liverpool) and Grigoris
I. Kalogeropoulos (Department of Mathematics, University of
Athens, Greece)

On Generalized Inverses and Green’s Relations
X. Mary, Université Paris Ouest - Nanterre La Défense (Paris
X) (France)
xavier.mary@u-paris10.fr
Tue 16:45, Room Galilei

We study generalized inverses on semigroups by means of
Green’s relations. We first define the notion of inverse along
an element and study its properties. Then we show that the
classical generalized inverses (group inverse, Drazin inverse
and Moore-Penrose inverse) belong to this class. Finally, we
prove continuity results for the inverse along an element, in
topological rings and Banach algebras.

Recent results on generalized inverses
D. Mosić, University of Nǐs, Serbia
sknme@ptt.rs
Tue 17:10, Room Galilei

We present recent results on generalized inverse of elements
in rings with involution. Particularly, the characterizations of
partial isometries, EP and star-dagger elements in rings with
involution are discussed. We also give several characteriza-
tions of Moore-Penrose-invertible normal and Hermitian ele-
ments in rings with involution and the proofs are based on
ring theory only.

Joint work with D. S. Djordjević (University of Nǐs)

The generalized inverse of the rectangular Vander-
monde matrix
Athanasios A. Pantelous, Department of Mathematical
Sciences, University of Liverpool, UK
A.Pantelous@liverpool.ac.uk
Mon 11:50, Room Galilei

A Vandermonde matrix is defined in terms of scalars
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λ1, λ2, ..., λm by

Vnm = Vn(λ1, λ2, ..., λm) =

26664
1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λm · · · λn−1
m

37775 .
This particular general family of matrices plays a significant
role in different areas of mathematics and applied sciences, see
[2], [4] etc. Following the existing literature, the most impor-
tant applications of the Vandermonde matrix are appeared in
approximation problems such as interpolation, least squares
and moment problems.
Explicit formulas for solving Vandermonde systems and com-
puting the inverse it are well known, see [1], [3-5] etc.
In this paper, we will discuss and present analytically the
generalized inverse of the Rectangular Vandermonde matrix.
This general class of Vandermonde matrix has been also ap-
peared in control theory, see for instance [2] for more details.

(Selected) References
[1] A. Eisinberg and G. Fedele, On the inversion of the Van-
dermonde matrix, Applied Mathematics and Computation,
174, pp. 1384-1396.
[2] A.D. Karageorgos, A.A. Pantelous and G.I. Kalogeropou-
los, Transferring instantly the state of higher-order linear
descriptor (regular) differential systems using impulsive
inputs, Journal of Control Science and Engineering, pp. 1-32,
2009.
[3] I. Kaufman, The inversion of the Vandermonde matrix
and the transformation to the Jordan canonical form, IEEE
Trans. Automat. Control, 14, pp. 774-777, 1969.
[4] A. Klinger, The Vandermonde matrix, Amer. Math.
Monthly, 74 (5), pp. 571-574, 1967.
[5] H.J. Wertz, On the numerical inversion of a recurrent
problem: The Vandermonde matrix, IEEE Trans. Automat.
Control, 10, p. 492, 1965.

Joint work with Athanasios D. Karageorgos and Grigoris I.
Kalogeropoulos (Department of Mathematics, University of
Athens, Greece)

Additive Drazin inverses
Pedro Patŕıcio, Universidade do Minho, Portugal
pedro@math.uminho.pt
Mon 15:50, Room Galilei

We will address to the representation of the Drazin inverses,
over a general (associative, with unity) ring, of the block ma-

trix M =

»
a c
b 0

–
, in which the (2,2) block is zero. We aim

for results in terms of “words” in the three blocks a, b and
c, and their g-inverses, such as inner or Drazin inverses. The
search for a formula for this Drazin inverse is closely related
to the “additive problem” of finding the D-inverse of a sum
(a+ b)d in terms of words in a and b, and their g-inverses. As
a special case, we shall examine the existence and representa-
tion of the group inverse of M .

[1] R. E. Hartwig and J. Shoaf, Group inverses and Drazin
inverses of bidiagonal and triangular Toeplitz matrices. J.
Austral. Math. Soc. Ser. A 24 (1977), no. 1, 10–34.
[2] R. E. Hartwig, Y.Wei and G. Wang, Some additive results
on Drazin inverse. Linear Algebra Appl. 322 (2001), no.
1-3, 207–217.
[3] P. Patŕıcio and R. E. Hartwig, Some additive results on
Drazin inverses, Appl. Math. Comput. 215 (2009), no. 2,

530–538.
[4] P. Patŕıcio and R. Puystjens, About the von Neumann
regularity of triangular block matrices. Linear Algebra Appl.
332/334 (2001), 485–502.

Joint work with R.E. Hartwig (North Carolina State Univer-
sity, USA)

Magic generalized inverses
George P. H. Styan, McGill University, Montréal (Québec),
Canada
styan@math.mcgill.ca
Mon 11:00, Room Galilei

We consider singular fully-magic matrices in which the num-
bers in all the rows and columns and in the two main di-
agonals sum to the same number. Our interest focuses on
such magic matrices for which the Moore–Penrose inverse
and/or Drazin inverse may also be fully-magic, building on
results in [1,2,3,4]. Examples include the matrices for some
of the fully-magic squares considered by Heinrich Cornelius
Agrippa von Nettesheim (1486–1535), Albrecht Dürer (1471–
1528), and Bernard Frénicle de Bessy (c. 1605–1675).

[1] Stephen J. Kirkland & Michael Neumann, Group inverses
of M-matrices associated with nonnegative matrices having
few eigenvalues, Linear Algebra and its Applications, 220, pp.
181–213, 1995.
[2] Peter Loly, Ian Cameron, Walter Trump & Daniel
Schindel, Magic square spectra, Linear Algebra and its
Applications, 430 (10), pp. 2659–2680, 2009.
[3] George P. H. Styan, An illustrated (philatelic) introduc-
tion to magic matrices and statistics, with special emphasis
on magic matrices having 3 nonzero eigenvalues, Invited talk
presented at the Annual Meeting of the Statistical Society of
Canada, St. Johns, Newfoundland, Canada, June 2007.
[4] Dietrich Trenkler & Götz Trenkler, Magic squares,
melancholy and the Moore–Penrose inverse, Image: The
Bulletin of the International Linear Algebra Society, 27, pp.
3–10, 2001.

Joint work with Ka Lok Chu (Dawson College), S. W. Drury
(McGill University) & Götz Trenkler (Universität Dortmund)

Nonnegative Drazin-projectors
Néstor Thome, Instituto de Matemática Multidisciplinar,
Universidad Politécnica de Valencia, Spain
njthome@mat.upv.es
Tue 15:50, Room Galilei

In [1] a characterization of nonnegative matrices with nonneg-
ative Drazin inverse was developed. Later, in [2] the authors
gave a characterization of nonnegative matrices A such that
AA# is a nonnegative matrix, where A# denotes the group
inverse of the square matrix A. In the last paper only the case
of matrices with index 1 was studied. The product AA# will
be called the group-projector of the matrix A.

In this work, firstly, a necessary and sufficient condition to
obtain matrices A with nonnegative group projector is pre-
sented. The main contribution of this result is that the non-
negativity condition on the matrix A is removed. Next, the
case of the matrix A with index greater than 1 is also ana-
lyzed. In this situation, an extended result for the nonnega-
tivity of the Drazin-projector of A (that is, AAD ≥ O, where
AD represents the Drazin inverse of A) is obtained.

This paper has been partially supported by DGI grant
MTM2007-64477 and by grant UPV number 2659.
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[1] S. K. Jain, V. K. Goel. Nonnegative matrices having
nonnegative Drazin pseudoinverses. Linear Algebra and its
Applications 29, 173–183 (1980).
[2] S. K. Jain, J. Tynan. Nonnegative matrices A with
AA# ≥ O. Linear Algebra and its Applications 379, 381–394
(2004).

Joint work with Alicia Herrero (Instituto de Matemática
Multidisciplinar, Universidad Politécnica de Valencia, Spain)
and Francisco J. Ramı́rez (Instituto Tecnológico de Santo
Domingo, Dominican Republic)

Condition numbers for the LS and Tikhonov regular-
ization of discrete ill-posed problems
Yimin Wei, Fudan University, China
yimin.wei@gmail.com
Mon 11:25, Room Galilei

One of the most successful methods for solving the lin-
ear least-squares (LS) problem min

x
||Ax − b|| with a highly

ill-conditioned or rank deficient coefficient matrix A is the
method of Tikhonov regularization. In this talk, we derive the
normwise, mixed and componentwise condition numbers and
componentwise perturbation bounds for LS and the Tikhonov
regularization. Our results are sharper than the known re-
sults. Some numerical examples are given to illustrate our
results.

[1] F. Cucker, H. Diao and Y. Wei, On mixed and componen-
twise condition numbers for Moore-Penrose inverse and linear
least squares problems, Math. Comput., 78(258) (2007), 947-
963.
[2] P. Hansen, Perturbation bounds for discrete Tikhonov reg-
ularization, Inverse Problems, 5 (1989) 41-44.

Linear Algebra in Curves and Surfaces
Modeling

Costanza Conti, Università di Firenze, Italy,
Carla Manni, Università di Roma Tor Vergata, Italy

Geometric modeling is the branch of applied mathe-
matics devoted to methods and algorithms for mathe-
matical description of shapes. Two-dimensional models
are of crucial interest in design, technical drawing and
computer typography, while three-dimensional models
are central to computer-aided-geometric-design (CAGD)
and computer-aided-manufacturing (CAM), and widely
used in many applied technical fields such as civil and
mechanical engineering, architecture, geology, medical
image processing, scientific visualization, entertainment.
Moreover, since CAGD methods are main ingredients in
Isogeometric analysis – an emergent new paradigm for
numerical treatment of PDEs which can be seen as a
superset of FEMs – it turns out that geometric modeling
acquires some relevance also in this area. The main goal
of geometric modeling is to create and improve methods,
and algorithms for curve and surface representations
which is mainly achieved by means of suitable class of
functions like splines, or refinable functions to which
linear subdivision schemes are associated. For both, the
manipulation and the analysis of such a class of func-
tions, several tools of linear algebra play a crucial role
like those suited for structured matrices, totally positive
matrices, polynomial equations or computation of joint

spectral radius. Therefore, aim of this mini-symposium
is to gather scientists that, working on different aspects
of curves ad surface modeling, face classical and new
linear algebra problems and use linear algebra tools to
move a step forward in their respective fields.

The 17–th Hilbert’s problem and tight wavelet frames
Maria Charina, TU-Dortmund, Germany
maria.charina@uni-dortmund.de
Tue 16:45, Room Fermi

The 17–th Hilbert’s problem was solved in 1927 by Emil Artin.
It says that each real, non–negative, multivariate polynomial
can be written as a sum of squares of some rational functions.
Hilbert in 1888 and Motzkin in 1960 showed that in general
one cannot replace rational functions by polynomials in such
polynomial representations. In the bivariate case, it is still
an open question, the so–called sos problem, if any Laurent
polynomial is a sum of squares of some other Laurent poly-
nomials. In the dimention greater or equal to 3, this question
has a negative answer as proved by Scheiderer in 1999. In
this talk we show how to reduce the problem of constructing
of tight wavelet frames, a certain redundant family of func-
tions, to the pure algebraic sos problem. The optimization
technique of the semi–definite programing allows us then to
check the existence of the corresponding sos representations
and to determine them, if they exist. Tight wavelet frames
are of special interest as they play an important role in appli-
cations such as e.g. signal andimage processing.

Joint work with Joachim Stöckler (TU-Dortmund, Germany)

An algebraic approach to the construction of multi-
channel wavelet filters
M. Cotronei, University of Reggio Calabria, Italy
mariantonia.cotronei@unirc.it
Tue 11:25, Room Fermi

In previous works [1,2], we proposed full rank refinable func-
tions and multichannel wavelets as the proper wavelet tools
for the analysis of functions which are vector-valued. In the or-
thogonal situation, the matrix filters associated to such func-
tions have to satisfy the so-called matrix quadrature mirror
filter (QMF) equations, which involve a large number of non-
linear conditions. In this talk we propose an efficient and
constructive scheme for finding pairs of matrix solutions to
QMF systems. The construction, which extends a procedure
given in [3] to the full rank case, mainly makes use of spectral
factorization techniques and of a matrix completion algorithm
based on the resolution of generalized Bezout identities. Some
examples illustrate the algorithm and the nature of the result-
ing matrix scaling functions/wavelets.

[1] S. Bacchelli, M. Cotronei, T. Sauer, Wavelets for multi-
channel signals, Adv. Appl. Math., 29, pp. 581–598, 2002.
[2] C. Conti, M. Cotronei, T. Sauer, Full rank positive matrix
symbols: interpolation and orthogonality, BIT, 48, pp. 5–27,
2008.
[3] C. A. Micchelli, T. Sauer, Regularity of multiwavelets,
Adv. Comput. Math., 7(4), pp. 455–545, 1997.

Joint work with C. Conti (University of Firenze, Italy)

Approximate Implicitization and Approximate Null
Spaces
Tor Dokken, SINTEF, Oslo, Norway
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Tor.Dokken@sintef.no
Tue 17:10, Room Fermi

The easy conversion of elementary curves and surfaces (lines,
circles, ellipses, planes, spheres, cylinders, cones,. . . ) to ra-
tional parametric and implicit representations is central in
many algorithms used in CAD-systems. For rational Bézier
and NURBS-surfaces no such easy conversion exists, a ratio-
nal parametric surface of bi-degree (n1, n2) has in the gen-
eral case an algebraic degree of 2n1n2, giving the bi-cubic
Beziér surface a degree 18 implicit representation. Essential
to approximate implicitization is the combination of a rational
parametric surface p(s, t), (s, t) ∈ [0, 1] × [0, 1], with the al-
gebraic surface to be found q(x, y, z, h) = 0. The degree m of
q, should satisfy 0 < m ≤ 2n1n2. The combination results in
the following factorization, q(p(s, t)) = (Db)Ta(s, t), where b
contains the unknown coefficients of q, and a(s, t) is an array
that contains basis function represented in the tensor product
Bernstein basis. Similar expressions exist for rational para-
metric curves and triangular Bézier surfaces. As the Bern-
stein basis is a partition of unity, and (s, t) ∈ [0, 1] × [0, 1] we
have |q(p(s, t))| =

‚‚(Db)Ta(s, t)
‚‚

2
≤
‚‚(Db)T

‚‚
2
‖a(s, t)‖2 ≤‚‚(Db)T

‚‚
2
. The smallest singular values and their respective

coefficient vectors consequently represents alternative implicit
approximations to p(s, t). If m = 2n1n2 we know that an ex-
act solution exists and that the smallest singular value will
be zero. The problem of finding an approximate algebraic
representation of p(s, t) has been refomulated to a problem
of finding an approximate null space of the matrix D. One
obvious choice is Singular Value Decomposition, however, al-
ternative direct elimination methods also exist.

Joint work with Oliver Barrowclough and Jan B. Thomassen,
SINTEF, Oslo, Norway

Structured matrix methods for the construction of
interpolatory subdivision masks
L. Gemignani, University of Pisa, Italy
gemignan@dm.unipi.it
Tue 11:50, Room Fermi

In this talk we discuss the general approach presented in [1]
and [2] for the construction of interpolatory subdivision masks
by relying upon polynomials and structured matrix computa-
tions.

[1]C. Conti, L. Gemignani, L. Romani, From symmetric sub-
division masks of Hurwitz type to interpolatory subdivision
masks, Linear Algebra Appl., 431, pp. 1971-1987, 2009.
[2] C. Conti, L. Gemignani, L. Romani, From approximating
to interpolatory non stationary subdivision schemes with the
same reproduction properties, Submitted.

Joint work with C. Conti (University of Florence), L. Romani
(University of Milano-Bicocca)

Computing the joint spectral radius in some subdivi-
son schemes.
N. Guglielmi, University of L’Aquila, Italy
guglielm@univaq.it
Mon 11:00, Room Fermi

In this talk I will consider the analysis of the joint spectral ra-
dius of infinite matrix sets arising in the convergence analysis
of subdivision schemes [1]. This problem cannot be solved in
the general case and presents serious difficulties also from the
approximation perspective. Nevertheless it can be handled
efficiently when the considered family depends linearly on its

parameters. The main tool is the construction of a polyhedral
invariant set for the family, which might be obtained in finite
time under suitable assumptions. After recalling the main
framework [2] and giving some theoretical results I will show
some illustrative examples.

[1] N. Guglielmi, C. Manni and D. Vitale, On a class of C2

Hermite interpolatory subdivision schemes, in preparation.
[2] N. Guglielmi and M. Zennaro, An algorithm for finding
extremal polytope norms of matrix families, Linear Algebra
and its Applications, vol. 428, pp. 2265–2282, 2008.

Joint work with C. Manni and D. Vitale (University of Roma
2)

Nonnegative Subdivision Revisited
K. Jetter, Universität Hohenheim, Germany
Kurt.Jetter@uni-hohenheim.de
Tue 11:00, Room Fermi

Recent work by X. L. Zhou, see [3] and the references there,
has settled a long-standing question of characterizing conver-
gence of non-negative, univariate subdivision schemes. We
relate some of these results to methods used in the analysis of
non-homogeneous Markov processes. In particular, the con-
vergence result in [1] (refering to even much older references)
is a strong and so far less known basic theorem, from which
convergence of nonnegative subdivision can be derived.

We will develope the main ideas and proofs following this
approach through properties of stochastic matrices, and of
products of families of such matrices. In particular, we will
see that we can avoid the notion of the (in general uncom-
putable) joint spectral radius when dealing with nonnegative
subdivision.

[1] J. M. Anthonisse and H. Tijms, Exponential convergence
of products of stochastic matrices, J. Math. Anal.Appl. 59
(1977), 360–364.
[2] C. A. Micchelli and H. Prautzsch, Uniform refinement of
curves, Lin. Alg. Appl. 114/115 (1989), 841–870.
[3] X.-L. Zhou, Positivity of refinable functions defined by non-
negative masks, Appl. Comput. Harmonic Analysis 27 (2009),
133–156.

Exact calculation of the JSR by depth first search on
infinite trees
Claudia Moeller, Darmstadt University of Technology,
Germany
moeller@mathematik.tu-darmstadt.de
Mon 11:50, Room Fermi

We report on our recent progress in computing precisely the
joint spectral radius of two matrices. For many subdivision
schemes that are relevant in praxis, we are able to specify
the exact value of the associated joint spectral radius. Our
method is based on a depth first search algorithm on an in-
finite binary tree whose knots in the k-th level are matrix
products of length k. Using a colour coding, this infinite tree
has a finite visualisation whose structure can be analysed.

[1] J.Hechler, B.Mößner, U.Reif, C1-Continuity of the gener-
alized four-point scheme, Linear Algebra and its Applications
430(2009) 3019-3029, Elsevier.

Joint work with Nicole Lehmann (Darmstadt University of
Technology) and Ulrich Reif (Darmstadt University of Tech-
nology)
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Parallel interactive shape modelling and deformation
using subdivision surfaces
S. Morigi, University of Bologna, Italy
morigi@dm.unibo.it
Mon 12:15, Room Fermi

Subdivision surfaces provide a compact way to describe a
smooth surface using a polygonal model. They are widely
used in movie production, commercial modelers and game en-
gines. In these contexts the goal is to enable real-time interac-
tive editing, animation and rendering of smooth surface prim-
itives. To achieve this goal we designed a parallel rendering
pipeline which incorporates a special patch-based geometry
shader for subdivision surface, integrated with a simple yet ef-
fective deformation framework for dynamic exact subdivision
surfaces. The field of interactive shape deformation is a very
challenging research field, since complex mathematical formu-
lation have to be implemented in a sufficiently efficient and
numerical robust manner to allow for interactive applications.
Among the surface-based shape deformation techniques we
discuss variational optimization and differential coordinates
methods which modify differential surface properties instead
of spatial coordinates. Linear deformation approaches present
Inherent limitations which can be avoided by nonlinear tech-
niques. However, a common drawback of such methods is
that the computational effort and numerical robustness are
strongly related to the complexity and quality of the surface
tesselation.

Recent advances on the applications of totally non-
negative matrices to C.A.G.D.
J.M. Peña, University of Zaragoza, Spain
jmpena@unizar.es
Tue 17:35, Room Fermi

It is well known that the bases whose collocation matrices are
stochastic and totally nonnegative are the bases in C.A.G.D.
with shape preserving properties. We present new applica-
tions of totally nonnegative matrices to C.A.G.D. We show
that the progressive iteration property related to interpola-
tory curves has a close relationship with iterative methods
applied to totally nonnegative matrices. We also comment
some new optimal properties of bases, which are related with
extremal properties of their corresponding collocation matri-
ces.

Computing the joint spectral characteristics of large
matrices.
V.Yu. Protasov, Moscow State University, Russia
v-protassov@yandex.ru
Mon 11:25, Room Fermi

The joint spectral characteristics of matrices such as the joint
and lower spectral radii, the p-radius, the Lyapunov exponent,
etc., have found many applications, in particular, in the study
of refinement equations and subdivision schemes for curves
and surfaces design. First we introduce a notion of a general
self-similarity equations, whose special case is a refinement
equation. Then we show that all joint spectral characteristics
of matrices appear naturally as various regularity exponents
of solutions of that equation. We consider several approaches
for precise and approximate computation of that characteris-
tics for large matrices (as they usually appear in the study of
subdivision equations). The methods are based on the analy-
sis of the corresponding extremal norms using tools of convex
programming.

Algebraic conditions on non-stationary subdivision
symbols for exponential reproduction
L. Romani, University of Milano-Bicocca, Italy
lucia.romani@unimib.it
Tue 12:15, Room Fermi

We present an accurate investigation of the algebraic condi-
tions that the symbols of a convergent, binary, linear, non-
stationary subdivision scheme should fulfill in order to repro-
duce spaces of exponential polynomials. A subdivision scheme
is said to possess the property of reproducing exponential
polynomials if, for any initial data uniformly sampled from
some exponential polynomial function, the scheme yields the
same function in the limit. The importance of this property
is due to the fact that several functions obtained as combi-
nations of exponential polynomials (such as conic sections,
spirals or special trigonometric and hyperbolic functions) are
of great interest in graphical and engineering applications.
Since the space of exponential polynomials trivially includes
standard polynomials, the results in this work extend the the-
ory recently developed in [1] to the non-stationary context.
As the symbol of the scheme changes from level to level and
the parametrization plays a crucial role in this kind of study,
the proofs of the non-stationary case are often significantly
more difficult and intricate than in the stationary case, and
much of the results previously obtained can not be straight-
forwardly generalized but require a complete reformulation.
To illustrate the potentialities of these simple but very gen-
eral algebraic conditions we will consider affine combinations
of known subdivision symbols with the aim of creating new
non-stationary subdivision schemes with enhanced reproduc-
tion properties.

[1] N. Dyn, K. Hormann, M.A. Sabin, Z. Shen, Polynomial
reproduction by symmetric subdivision schemes, J. Approx.
Theory, 155, pp. 28-42, 2008.

Joint work with C. Conti (University of Firenze)

Tensor Computations in Linear and
Multilinear Algebra

Lek-Heng Lim, Berkeley, CA, USA
Eugene Tyrtyshnikov, RAS Moscow, Russia

Matrix computations with huge-size multilevel matrices,
e.g. of order of 2 to power 100, are not easy to make
feasible even with structure and supercomputers. How-
ever, the former seems much more essential for problems
on that scale. Most important structure on that scale
is related with separation of variables and eventually
with tensors. Thus, successful matrix computations are
becoming tensor computations. The purpose of this
minisymposium is to present the state of the art in
representation and approximation of tensors in higher
dimensions. The accent is made on recent findings, in
particular on the use of matrix methods for generalized
unfolding matrices associated with tensors.

Approximation of High-Order Tensors by Partial
Sampling: New Results and Algorithms
C. Caiafa, LABSP-Brain Science Institute, RIKEN, Japan
ccaiafa@gmail.com
Thu 11:00, Room B
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Recently [1,2,3], a new formula was provided that allows one
to reconstruct a rank-(R1, R2, ..., RN ) Tucker tensor Y ∈
RI1×I2...×IN from a subset of its entries which are deter-
mined by a selected subset of Rn indices in each mode
(n = 1, 2, ..., N). As a generalization of the column-row ma-
trix decomposition (also known as CUR or “skeleton” decom-
position), which approximates a matrix from a subset of its
rows and columns, our result provides a new method for the
approximation of a high dimensional (N ≥ 3) tensor by us-
ing only the information contained in a subset of its n-mode
fibers (n = 1, 2, .., N). The proposed algorithm can be ap-
plied to the case of arbitrary number of dimensions (N ≥ 3)
and the indices are sequentially selected in an optimal way
based on the previously selected ones. In this talk, we an-
alyze and discuss the properties of this method in terms of
the subspaces spanned by the unfolding matrices of the sub-
tensor determined by the selected indices. We also discuss
about its applications for signal processing where low dimen-
sional signals are mapped to higher dimensional tensors and
processed with tensor tools. Experimental results are shown
to illustrate the properties and the potential of this method.

[1] C. Caiafa and A. Cichocki, Generalizing the Column-Row
Matrix Decomposition to Multi-way Arrays, To appear.
[2] C. Caiafa and A. Cichocki, Reconstructing Matrices and
Tensors from Few Vectors, Proc. NOLTA 2009, Oct. 18-21,
2009, Sapporo, Japan.
[3] C. Caiafa and A. Cichocki, Methods for Factorization and
Approximation of Tensors by Partial Fiber Sampling, Cesar
F. Caiafa and Andrzej Cichocki, Proc. CAMSAP 2009, Dec.
13-16, 2009, Aruba, Dutch Antilles.

Joint work with A. Cichocki (LABSP-Brain Science Institute,
RIKEN)

Computing structured tensor decompositions in poly-
nomial time
P. Comon, I3S, CNRS, Univ. of Nice Sophia-Antipolis
pcomon@unice.fr
Thu 11:25, Room B

Tensor decompositions permit to estimate in a determinis-
tic way the parameters in a multi-linear model. Applications
have been already pointed out in antenna array processing
and digital communications [1], among others, and are ex-
tremely attractive provided some diversity at the receiver is
available. In addition, they often involve structured factors.
These deterministic techniques may be opposed to those based
on cumulants, which require the decomposition of symmetric
tensors [2]. More generally, the goal is to represent a func-
tion of three variables (or more) as a sum of functions whose
variable separate.

As opposed to the widely used Alternating Least Squares
algorithm, it is shown that non-iterative algorithms with poly-
nomial complexity exist, when one or several factor matrices
enjoy some structure, such as Toeplitz, Hankel, triangular,
band, etc. Necessary conditions are first given, concerning di-
mensions, bandwidth, and rank [3]. Then sufficient conditions
are provided, along with constructive algorithms, in the case
of third order tensors. These algorithms require solving linear
systems, and computing best rank-1 matrix approximations.
Hence the overall complexity is polynomial if one admits that
the latter rank-1 approximations also have a polynomial com-
plexity.

[1] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, Blind
Parafac receivers for DS-CDMA systems, IEEE Trans. on

Sig. Proc., vol. 48, no. 3, pp. 810–823, Mar. 2000.
[2] P. Comon and G. Golub and L-H. Lim and B. Mourrain,
Symmetric Tensors and Symmetric Tensor Rank, SIAM
Journal on Matrix Analysis Appl., vol.30, no.3, Sept. 2008,
pp.1254–1279.
[3] P. Comon and M. Sorensen and E. Tsigaridas, Decompos-
ing tensors with structured matrix factors reduces to rank-1
approximations, Icassp, Dallas, March 14-19, 2010.

Joint work with M. Sorensen (I3S, University of Nice)

Optimization Problems in Contracted Tensor Net-
works
Mike Espig, Max-Planck-Institute for Mathematics in the
Sciences, Germany
espig@mis.mpg.de
Fri 16:45, Room B

In this talk we discuss a calculus of variations in arbitrary ten-
sor representations with a special focus on contracted tensor
networks and apply it to functionals of practical interest. The
survey provides all necessary ingredients for applying mini-
mization methods in a general setting. The important cases
of target functionals which are linear and quadratic with re-
spect to the tensor product are discussed, and combinations of
these functionals are presented in detail. As an example, we
consider the representation rank compression in tensor net-
works. For the numerical treatment, we introduce efficient
methods. Furthermore, we demonstrate the rate of conver-
gence in numerical tests.

Joint work with Wolfgang Hackbusch (Max-Planck-Institute
for Mathematics in the Sciences) and Reinhold Schneider
(Technical University Berlin)

Most Tensor Problems are NP Hard
Christopher Hillar, Mathematical Sciences Research In-
stitute, Berkeley
chillar@msri.org
Thu 11:50 Room B

The idea that one might extend numerical linear algebra, the
collection of matrix computational methods that form the
workhorse of scientific and engineering computing, to numer-
ical multilinear algebra, an analogous collection of tools in-
volving hypermatrices/tensors, appears very promising and
has attracted a lot of attention recently. We examine here
the computational tractability of some core problems in nu-
merical multilinear algebra. We show that tensor analogues
of several standard problems that are readily computable in
the matrix (i.e. 2-tensor) case are NP hard. Our list here
includes: determining the feasibility of a system of bilinear
equations, determining an eigenvalue, a singular value, or the
spectral norm of a 3-tensor, determining a best rank-1 ap-
proximation to a 3-tensor, determining the rank of a 3-tensor
over the real or complex numbers. Hence making tensor com-
putations feasible is likely to be a challenge.

Joint work with Lek-Heng Lim (University of Berkeley)

Numerical solution of the Hartree-Fock equation in
the multilevel tensor structured format
V. Khoromskaia, Max-Planck-Institute for Mathematics in
the Sciences, Leipzig, Germany
vekh@mis.mpg.de
Fri 17:10, Room B
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We consider the numerical solution of the Hartree-Fock equa-
tion (nonlinear eigenvalue problem) by the novel tensor-
structured methods based on tensor approximation of arising
functions and operators represented on 3D n × n × n Carte-
sian grid [1]. Tensor-structured techniques enable “agglomer-
ated” computation of the three- and six- dimensional volume
integrals [2], with complexity that scales linearly in the one-
dimension grid size n. High accuracy is achieved due to the
multigrid accelerated rank reduction algorithm for 3-rd order
tensors which provides computation of the Hartree potential
on large spacial grids, with n ≤ 104, necessary to resolve mul-
tiple strong cusps in electron density [3]. The discrete non-
linear eigenvalue problem in 3D is solved iteratively by the
multilevel tensor-truncated DIIS scheme on a sequence of re-
fined grids with robust and fast convergence in a moderate
number of iterations, uniformly in n, so that the overall com-
putational cost also scales linearly in n. We present numerical
illustrations for the all electron case of H2O, and pseudopo-
tential case of CH4 and CH3OH.

[1] B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad.
Numerical Solution of the Hartree-Fock Equation in the
Multilevel Tensor-structured Format. Preprint MPI MiS
44/2009, Leipzig, July 2009, submitted.
[2] V. Khoromskaia. Computation of the Hartree-Fock
Exchange in the Tensor-structured Format. Preprint MPI
MiS 25/2009, Leipzig, June 2009.
[3] B. N. Khoromskij and V. Khoromskaia. Multigrid Tensor
Approximation of Function Related Arrays. SIAM J. on Sci.
Comp., 31(4), 3002-3026 (2009).

Joint work with H.-J.Flad and B. Khoromskij

Prospects of Quantics-TT Approximation in Scientific
Computing
Boris N. Khoromskij, Max-Planck-Institute for Mathemat-
ics in the Sciences, Leipzig, Germany
bokh@mis.mpg.de
Fri 11:00, Room B

We discuss the prospects of super-compressed tensor-
structured quantics-TT data formats [1,3,5] in high dimen-
sional numerical modeling. The respective multilinear alge-
bra is based on the multi-folding or quantics representation
of multidimensional data arrays [1,3]. Low rank tensor ap-
proximation via the TT-type dimension splitting scheme [2,4]
leads to logarithmic complexity scaling in the volume size of
a target N-d tensor. Numerical illustrations indicate that the
quantics-TT tensor method has proved its value in application
to various function related tensors arising in quantum chem-
istry and in the traditional FEM/BEM—the tool apparently
works. In particular, this method can be applied in the frame-
work of truncated iteration for solution the high dimensional
elliptic/parabolic problems including stochastic PDEs.

[1] B.N. Khoromskij, O(d logN)-Quantics Approximation
of N-d Tensors in High-Dimensional Numerical Modeling.
Preprint 55/2009, MPI MiS, Leipzig 2009, submitted.
[2] I.V. Oseledets, and E.E. Tyrtyshnikov, Breaking the Curse
of Dimensionality, or How to Use SVD in Many Dimensions.
SIAM J. Sci. Comput., 31, 5(2009), 37-44-3759.
[3] I.V. Oseledets, Tensors Inside of Matrices Give Logarith-
mic Complexity. SIAM J. Matrix Anal., 2009, accepted.
[4] I.V. Oseledets, and E.E. Tyrtyshnikov, TT-Cross Approx-
imation for Multidimensional arrays. Linear Algebra Appl.,
432 (2010), 70-88.
[5] B.N. Khoromskij, I.V. Oseledets, Quantic-TT approxi-

mation of elliptic solution operators in higher dimensions.
Preprint MPI MiS 79/2009, Leipzig 2009, submitted.

Tensor train and QTT decompositions for high-
dimensional tensors
I. Oseledets, Institute of Numerical Mathematics, Russ.
Acad. Sci.
ivan.oseledets@gmail.com
Fri 11:25, Room B

In this talk we develop the basic idea of tensor-train decompo-
sition, which can be considered as natural extention of singu-
lar value decomposition to high dimensions. It does not suffer
from the curse of dimensionality, and can be computed with
the reliability and SVD. Basic subroutines are simple to im-
plement and are available online. QTT decomposition opens
a new application area for tensor decompositions – approxi-
mation of tensors of ”physically small” dimension. It includes
compact representation of functions on sufficiently fine ten-
sor grids with 2D points in each direction, leading to d log
n complexity. When the tensor is in structured format, it is
interesting to perform some operations with it. Some oper-
ations are very intuitive in the tensor-train format, however
some are not. An important operation is finding maximal
and minimal elements. An algorithm usin maximal-volume
submatrices will be presented for finding maximal in modulus
element in the TT format.

Joint work with E. E. Tyrtyshnikov (INM RAS), B. N.
Khoromskij (MIS MPG)

Krylov subspace methods for tensor computations
Berkant Savas, The University of Texas at Austin
berkant@cs.utexas.edu
Fri 11:50, Room B

In this talk we will present a few generalizations of matrix
Krylov methods to tensors. The general objective is to ob-
tain a rank-(p, q, r) approximation of a given l ×m × n ten-
sor A. The problem can be viewed as finding low dimen-
sional signal subspaces associated to the different modes of A.
Krylov methods, similar to the matrix case, are particularly
well suited for problems involving large and sparse tensors or
for tensors that allow efficient multilinear tensor-times-vector
multiplications. We will consider several different types of
tensor in evaluating the proposed methods: (1) tensors with
specified low ranks; (2) low rank tensors with added noise;
and (3) large and sparse tensors. For a few special cases
we will prove that our methods captures the true signal sub-
spaces associated to the tensor within certain number of steps
in the algorithm. For more general cases we propose an ap-
proach, based on the Krylov-Schur method for computing ma-
trix eigenvalues, to improve the subspaces obtained from the
tensor-Krylov procedures. Test results confirm the usefulness
of the proposed methods for the given objective. The techni-
cal report [1] covers part of the topics discussed in this talk.

[1] B. Savas and L. Eldén, Krylov subspace methods for tensor
computations, Technical Report LITH-MAT-R-2009-02-SE,
2009, Dept. of Math., Linköping University.

Joint work with Lars Eldén (Linköping University)

New algorithms for Tucker approximation with appli-
cations to multiplication of tensor-structured matri-
ces and vectors
D. V. Savostyanov, Institute of Numerical Mathematics
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RAS, Moscow
dmitry.savostyanov@gmail.com
Fri 12:15, Room B

New algorithms are proposed for Tucker approximation of ten-
sors (multidimensional arrays) that are not given explicitly,
but are defined by a tensor-by-vectors multiplication opera-
tion. As well as in matrix case, this framework applies to
structured tensors, like sparse tensors, tensors with multilevel
Toeplitz or Hankel structure and so on. We discuss the mer-
its and drawbacks of minimal Krylov recursion [1] and suggest
some possible optimisation for it. We also propose new ap-
proximation methods based on Wedderburn rank-reduction.

As an important application we consider approximate mul-
tiplication of d-dimensional matrices given as Tucker or canon-
ical decomposition with the result being approximated in
Tucker format with optimal values of ranks possible in the
desired accuracy bound. Since mode sizes can be very large,
the result should never appear as full array. Here we compare
Krylov and Wedderburn approaches with previously studied
independent factor filtering [3] and modified variable-rank
Tucker-ALS procedure without a priori knowledge of ranks
[2]. We also propose cheap initialization of Tucker-ALS us-
ing an intrinsic tensor structure of result. Numerical exam-
ples include structured evaluation of typical operators from
Hartree-Fock/Kohn-Sham model, by means of Canonical-to-
Tucker and Tucker-to-Tucker multiplication.

This work was supported by RFBR grants 08-01-00115, 09-
01-12058, 10-01-00811 and RFBR/DFG grant 09-01-91332.

[1] B. Savas, L. Eldén, Krylov subspace method for tensor
computation. Preprint LITH-MAT-R-2009-02-SE, Dep.
Math. Linköpings Univ., February 2009.
[2] I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,
Linear algebra for tensor problems. Computing. 2009. V.
85(3):169-188.
[3] D. V. Savostyanov, E. E. Tyrtyshnikov,Approximate
multiplication of tensor matrices based on the individual
filtering of factors. J. Comp. Math. Math. Phys. 2009. V.
49(10):1662-1677.
[4] I. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov,
Tucker dimensionality reduction of three-dimensional arrays
in linear time. SIAM J. Matrix Anal. Appl. 2008. V.
30(3):936–956.
[5] I. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov,
Cross approximation in tensor electron density computations.
J. Numer. Lin. Alg. Appl. 2009, doi: 10.1002/nla.682.

Joint work with S. A. Goreinov, I. V. Oseledets (Institute of
Numerical Mathematics RAS, Moscow)

Generalized Cross Approximation for 3d-tensors
Jan Schneider, Max Planck Institute for Mathematics in
the Sciences, Leipzig, Germany
jschneid@mis.mpg.de
Fri 17:35, Room B

In this talk we present a generalized version of the Cross Ap-
proximation for 3d-tensors. The given tensor a ∈ Rn×n×n
is represented as a matrix of vectors and 2d adaptive Cross
Approximation is applied in a nested way to get the tensor
decomposition. The explicit formulas are derived for the vec-
tors in the decomposition. The computational complexity of
the proposed algorithm is shown to be linear in n.

Joint work with K. K. Naraparaju (MPI for Mathematics,
Leipzig, Germany)

The future of tensor computations, or how to escape
from the curse of dimensionality
E. Tyrtyshnikov, Insitute of Numerical Mathematics, Russ.
Acad. Sci.
tee@inm.ras.ru
Thu 12:15, Room B

Even ”simple” cases in higher dimensions may require data
elements as many as atoms in the universe. Structure in
data in such cases is the key issue. However, existing tensor
reprensentations of tensors (multilinear forms, multidimen-
sional arrays) suffer from various drawbacks. We propose new
tensor decompositions called TENSOR-TRAIN DECOMPO-
SITIONS and the corresponding numerical algorithms with
then complexity linear in the number of axes. Applications
include interpolation of multi-variate functions, computation
of multi-dimensional integrals, solving PDEs, fast inversion of
tensor structured matrices etc. The new algorithms appeared
as recently as just in the beginning of 2009 and will certainly
be leading to a new generation of numerical algorithms. For
more details see http://pub.inm.ras.ru.

[1] I.Oseledets, E.Tyrtyshnikov, Recursive decomposition of
multidimensional tensors, Doklady Mathematics, vol. 80, no.
1 (2009), pp. 460-462.
[2] N.Zamarashkin, I.Oseledets, E.Tyrtyshnikov, The tensor
structure of the inverse of a banded Toeplitz matrix, Doklady
Mathematics, vol. 80, no. 2 (2009), pp. 669-670.
[3] I. Oseledets, E. Tyrtyshnikov, Breaking the curse of
dimensionality, or how to use SVD in many dimensions.
SIAM J. Sci. Comput., vol 31, no. 5 (2009), pp. 3744-3759.
[4] I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for
multidimensional arrays, Linear Algebra Appl., 432 (2010),
pp. 70-88.

Joint work with I. Oseledets (INM RAS)

Linear Algebra in Quantum Information
Theory

Vittorio Giovannetti,
Simone Severini,

The past two decades have witnessed a wide range
of fundamental discoveries in quantum information
science. These range from protocols revolutionizing
public-key cryptography to novel algorithms and tools
for communication, information processing, and simu-
lation of physical systems. Even if the mathematical
context of quantum information science is wide and
multidisciplinary, linear algebra covers a major role, if
not ubiquitous. In fact, by the standard formulation of
quantum mechanics, physical states and their dynamics
are both represented by matrices. The classification
of quantum states, schemes for error-correcting codes,
methods for allocating quantum resources, promising
models of implementable computation, all need a vast
number of linear algebraic notions and techniques.
This minisymposium is intended as a workshop for
strengthening communication between quantum infor-
mation scientists and the linear algebra community.
The minisymposium is a great occasion to present open
problems and foster collaborations.
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Characterization of circulant graphs having perfect
state transfer
Milan Bašić, Faculty of Sciences and Mathematics, Univer-
sity of Nǐs, Serbia
basic milan@yahoo.com
Fri 15:50, Auditorium

In this paper we answer the question of when circulant quan-
tum spin networks with nearest-neighbor couplings can give
perfect state transfer. The network is described by a circu-
lant graph G, which is characterized by its circulant adjacency
matrix A. Formally, we say that there exists a perfect state
transfer (PST) between vertices a, b ∈ V (G) if |F (τ)ab| = 1,
for some positive real number τ , where F (t) = exp(ıAt). Sax-
ena, Severini, Shparlinski in [3]proved that |F (τ)aa| = 1 for
some a ∈ V (G) and τ ∈ R+ if and only if all eigenvalues of G
are integer (that is, the graph is integral). The integral circu-
lant graph ICGn(D) has the vertex set Zn = {0, 1, 2, . . . , n−1}
and vertices a and b are adjacent if gcd(a− b, n) ∈ D, where
D ⊆ {d : d | n, 1 ≤ d < n}. These graphs are highly symmet-
ric and have important applications in chemical graph theory.
We show that ICGn(D) has PST if and only if n ∈ 4N and
D = D3 ∪ D2 ∪ 2D2 ∪ 4D2 ∪ {n/2a}, where D3 ⊆ {d : d |
n, n/d ∈ 8N}, D2 ⊆ {d : d | n, n/d ∈ 8N + 4} \ {n/4}
and a ∈ {1, 2}. We have thus answered the question of com-
plete characterization of perfect state transfer in integral cir-
culant graphs raised in [1]Furthermore, we also calculate per-
fect quantum communication distance (distance between ver-
tices where PST occurs) and describe the spectra of integral
circulant graphs having PST. For n ∈ 4N classes of ICGn(D)
such that PST exists between non-antipodal vertices are char-
acterized. This answers a question posed by Godsil in [2]. We
conclude by giving a closed form expression calculating the
number of integral circulant graphs of a given order having
PST.

[1] R.J. Angeles-Canul, R.M. Norton, M.C. Opperman, C.C.
Paribello, M.C. Russell, C. Tamonk, Perfect state transfer,
integral circulants and join of graphs, Quantum Information
and Computation, Vol. 10, No. 3&4 (2010) 0325–0342.
[2] C.D. Godsil, Periodic Graphs, arXiv:0806.2074v1
[math.CO] 12 Jun 2008.
[3] N. Saxena, S. Severini, I. Shparlinski, Parameters of inte-
gral circulant graphs and periodic quantum dynamics, Inter-
national Journal of Quantum Information 5 (2007), 417–430.

Indirect Hamiltonian Estimation
Daniel Burgarth, Imperial College London

Fri 15:00, Auditorium

It is well known that certain matrices with band structure
are uniquely determined by their spectrum and only a few
components of their eigenstates [1]. Recently, these methods
have been applied to quantum spin models, demonstrating
that Hamiltonian tomography can be performed indirectly [2-
5]. From the perspective of quantum information this is useful
because the standard process tomography is very inefficient.
Further graph theoretical criteria were developed that tell us
which components of the eigenstates need to be known in
order to infer the full matrix (i.e., Hamiltonian) [4,6]. We
review such methods and show how they can be generalized
to arbitrary quadratic Hamiltonians of bosons or fermions [7].

[1] G. M. L. Gladwell, Inverse Problems in Vibration (Kluver,
Dordrecht, 2004).

[2] D. Burgarth, K. Maruyama and F. Nori, Phys. Rev. A
79, 020305(R) (2009).
[3] C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev.
Lett. 102, 187203 (2009).
[4] D. Burgarth and K. Maruyama, New J. Phys. 11, 103019
(2009).
[5] M. Wiesniak and M. Markiewicz, arXiv:0911.3579v1.
[6] F. Barioli, W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben,
B. Shader, P. V.
D. Driessche and H. V. D. Holst, to appear in Lin. Alg. App.
[7] D. Burgarth, K. Maruyama and F. Nori, in preparation.

Joint work with K. Maruyama and F. Nori (RIKEN, Japan)

A quantum algorithm for linear systems of equations
Aram Harrow, University of Bristol and Massachusetts
Institute of Technology

Thu 16:45, Auditorium

Solving linear systems of equations is a common problem that
arises both on its own and as a subroutine in more complex
problems: given a matrix A and a vector b, find a vector x
such that Ax = b. We consider the case where one doesn’t
need to know the solution x itself, but rather an approxi-
mation of the expectation value of some operator associated
with x, e.g., x′Mx for some matrix M . In this case, when
A is sparse, N by N and has condition number κ, classical
algorithms can find x and estimate x′Mx in O(N

p
(κ)) time.

Here, we exhibit a quantum algorithm for this task that runs
in poly(logN,κ) time, an exponential improvement over the
best classical algorithm. This talk is based on arXiv:0811.3171

Joint work with Avinatan Hassidim and Seth Lloyd

Higher-order functions in Quantum Theory
Paolo Perinotti, University of Pavia

Thu 17:10, Auditorium

I will introduce the theory of higher-order functions in Quan-
tum Theory. The main theorems and their application to cir-
cuit optimisation problems will be reviewed. I will show how
the theory of Quantum Combs provides a proper framework to
describe and optimise all quantum algorithms explored so far,
but does not exhaust the theory of Quantum Computation.
I will exhibit the primitive of quantum switch, and show the
problems that such a simple task poses to the characterisation
of the full hierarchy of higher order maps.

Joint work with G. Chiribella and G. M. D’Ariano

Perfect state transfer in integral circulant graphs
Marko Petkovic, University of Nis

Fri 15:25, Auditorium

The existence of perfect state transfer (PST) in quantum spin
networks has been proposed by Christandl et. al. (2004)
where they considered simple paths as a potential candidates
for the network topology. Furthermore, Saxena, Severini and
Shparlinski (2007) considered the networks based on circulant
graphs. We extend the result of Saxena, Severini and Shpar-
linski (2007) and give the simple condition for characterizing
all integral circulant graphs (ICGs) having the PST in terms
of its eigenvalues. In this paper, it is proven that there exist
integral circulant graph with n vertices having perfect state
transfer if and only if 4 | n. There are found several classes of
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integral circulant graphs having perfect state transfer for val-
ues of n divisible by 4. Moreover we proved the non-existence
of PST for several other classes of integral circulant graphs
whose order is divisible by 4. These classes cover the class of
graphs where divisor set contains exactly two elements. Ob-
tained results provides the first of two steps in solving the
general problem: Which integral circulant graphs have PST?

Complex Hadamard matrices and combinatorial
designs
Ferenc Szollosi, Central European University, Budapest

Thu 15:50, Auditorium

In the first part of the talk we present a design theoreti-
cal approach to construct new, previously unknown complex
Hadamard matrices of prime orders. Our methods general-
ize and extend the earlier results of de la Harpe–Jones [1]
and Munemasa–Watatani [2] and offer a theoretical explana-
tion for the existence of some sporadic examples of complex
Hadamard matrices in the existing literature. In the second
part we obtain equiangular tight frames of square orders from
complex Hadamard matrices settling a recent question of Bod-
mann et al [3].

[1] P. de la Harpe and V.F.R. Jones, ”Paires de sous-algèbres
semi-simples et graphes fortement réguliers,” C.R. Acad. Sci.
Paris 311, Série I, (1990), 147-150.
[2] A. Munemasa, Y. Watatani, Orthogonal pairs of *-
subalgebras and association schemes, C.R. Acad. Sci. Paris
314, Série I, 329-331 (1992).
[3] B.G. Bodmann, V.I. Paulsen and M. Tomforde, Equiangu-
lar tight frames from complex seidel matrices containing cube
roots of unity, Linear Algebra Appl. 430 (2009), pp. 396–417.

Continuous families of complex (generalized)
Hadamard matrices
Wojciech Tadej, Cardinal Stefan Wyszyński University,
Warsaw, Poland
wtadej@wp.pl
Thu 15:25, Auditorium

An N × N complex Hadamard matrix is a matrix with or-
thogonal rows and columns (after rescaling a unitary) with
all entries of modulus equal to one. The search for these is
a special case of the search for unitary preimages of doubly
stochastic matrices, which is of importance in particle physics.
Complex Hadamard matrices have additional applications of
their own, in particular in quantum information theory.

In this talk we present the currently known classification
of complex Hadamard matrices of small size, which includes
various continuous families. Also, results and hypotheses con-
cerning construction of so called affine Hadamard families will
be presented. By affine we mean a family where matrices of
parametrizing phases form a linear subspace of the space of
all real N ×N matrices.

Zero-error communication via quantum channels,
non-commutative graphs and a quantum Lovasz
theta function
Andreas Winter, University of Bristol and National
University of Singapore

Thu 17:35, Auditorium

We present the quantum channel version of Shannon’s zero-
error capacity problem. Motivated by recent progress on this

question, we propose to consider a certain operator space as
the quantum generalisation of the adjacency matrix, in terms
of which the plain, quantum and entanglement-assisted ca-
pacity can be formulated, and for which we show some new
basic properties. Most importantly, we define a quantum ver-
sion of Lovasz’ famous theta function, as the norm-completion
(or stabilisation) of a ”naive” generalisation of theta. We go
on to show that this function upper bounds the number of
entanglement-assisted zero-error messages, that it is given by
a semidefinite programme, whose dual we write down explic-
itly, and that it is multiplicative with respect to the natural
(strong) graph product. We explore various other properties
of the new quantity, which reduces to Lovasz’ original theta
in the classical case, give several applications, and propose
to study the operator spaces associated to channels as ”non-
commutative graphs”, using the language of Hilbert modules.
The talk is based on arXiv:1002.2514v2 [quant-ph]

Joint work with Runyao Duan, Simone Severini

Generalized numerical range as a versatile tool in the
theory of quantum information
Karol Zyczkowski, Jagiellonian University, and Center for
Theoretical Physics, Warsaw

Thu 15:00, Auditorium

We study operators acting on a composite Hilbert space and
investigate their product numerical range, product spectral
radius and product C–spectral radius. For any Hermitian op-
erator X acting on a bi-partite Hilbert space its product nu-
merical range is formed by the set of all possible expectation
values of X among pure product states, 〈φ| ⊗ 〈ψ|X|ψ〉 ⊗ |φ〉.
Concrete bounds for the product numerical range for Her-
mitian operators are derived. Product numerical range of a
non-Hermitian operator forms a subset of the standard nu-
merical range. While the latter set is convex, the product
range needs not to be convex nor simply connected. Product
numerical range of a tensor product is equal to the Minkowski
product of numerical ranges of individual factors. As an ex-
emplary application of these algebraic tools in the theory of
quantum information we study block positive matrices and
entanglement witnesses. Furthermore, we apply product nu-
merical range to solve the problem of local distinguishability
of a family of two unitary gates. Product C–spectral radius
is useful for finding local fidelity between two states of a com-
posite system, while higher order product numerical range can
be used to design local quantum dark spaces and local error
correction codes.

Matrix Means
Jimmie Lawson, Louisiana State University

Yongdo Lim, Kyungpook National University, Taegu, Korea

The theory of matrix and operator means is currently
an active area of research. Investigations include the
theoretical study of such means, various axiomatic and
variational descriptions and characterizations, compu-
tational algorithms for their approximation, geometric
interpretations and connections, and applications in a
variety of settings. Recent advances include various
approaches to define, study, and compute a variety of
multivariable means. Applications include derivations
of matrix and operator inequalities, finding closed
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formulas and approximating algorithms for the solution
of symmetric and other matrix equations. Another
active direction of research is the employing of means
for the purpose of averaging, with applications including
the averaging of data given in matrix form.

Higher order geometric mean equations based on
monotone and jointly homogeneous maps
Eunkyung Ahn, Kyungpook National University, Korea
ekahn@knu.ac.kr
Fri 12:15, Auditorium

We consider the nonlinear equations based on monotone and
jointly homogeneous maps on the convex cone of positive def-
inite matrices. We’ll derive the uniqueness and existence of
positive definite solution by using Thompson’s part metric
and that the corresponding solution map is again monotone
and jointly homogeneous. Let Ω = Ω(k) be the convex cone
of k × k positive definite matrices. We first show that for
monotone and jointly homogeneous mappings g : Ωn → Ω
and hi : Ω2 → Ω, the equation

x = g(h1(a1, x), h2(a2, x), . . . , hn(an, x))

has a unique solution in Ω if
Pn
i=1 wiαi ∈ [0, 1). Here, a map

g : Ωn → Ω is w = (w1, w2, . . . , wn)-jointly homogeneous if
g(t1a1, t2a2, . . . , tnan) = tw1

1 tw2
2 · · · twnn g(a1, a2, . . . , an) for all

ti > 0 and ai ∈ Ω. Also h : Ω2 → Ω is α-homogeneous if
it is (1 − α, α)-jointly homogeneous. We further show that
if
Pn
i=1 wi = 1 and αi = α for all i, then the solution map

varying over (a1, a2, . . . , an) ∈ Ωn is again order preserving
and w-jointly homogeneous. We apply our results to high
order geometric mean equations of positive definite matrices.

Matrix Means in a Euclidean setting
Koenraad M.R. Audenaert, Royal Holloway, University of
London, UK
koenraad.audenaert@rhul.ac.uk
Wed 12:15, Auditorium

Matrix means are defined for positive semidefinite matrices,
and as such are usually studied from the viewpoint of Rie-
mannian geometry, with the set of positive definite matrices
being a differentiable Riemannian manifold. In this paper,
a completely different approach is taken, inspired by certain
practical problems in quantum state reconstruction. To wit,
we regard the set of positive definite matrices as a subset of the
set of Hermitian matrices, equipped with the Hilbert-Schmidt
(HS) inner product, i.e. as a real Euclidean space.

We investigate which matrix norms obey the requirement
that ‘their value should lie inbetween the values of their ar-
guments’. To make sense of the term ‘inbetween’, we con-
sider a) the HS distance, and b) the angle between matrices
cos θ(A,B) = Tr(A∗B)/

p
Tr(A∗A)Tr(B∗B). We define a

matrix mean C = µ(A,B) to lie within A and B w.r.t. HS
distance if and only if neither the distance between A and C,
nor the distance between B and C exceed the distance be-
tween A and B. Similarly, we define a matrix mean to lie
within A and B w.r.t. angles if and only if neither the angle
between A and C, nor the angle between B and C exceed the
angle between A and B.

It turns out that many matrix means do not satisfy ‘inbe-
tweenness’ in neither sense. Here we show that the inbetween-
ness condition is satisfied by the power means and the Heinz
means, for distances as well as for angles.

Interpolation, geometric mean and matrix Chebyshev
inequalities
Jean-Christophe Bourin, Université de Franche-Comté,
France
jcbourin@univ-fcomte.fr
Wed 11:25, Auditorium

The geometric mean of positive definite matrices may be de-
fined via complex interpolation. This approach leads to to
simple proofs of Ando-Hiai and Furuta inequalities. We then
show how these inequalities are used to obtain new inequali-
ties for positive linear maps, regarded as asymmetric versions
of Kadison and Choi inequalities. This talk is based on a joint
paper with Éric Ricard.

Operator inequalities related to weighted geometric
means
Masatoshi Fujii, Osaka Kyoiku University, Japan
mfujii@cc.osaka-kyoiku.ac.jp
Tue 16:45, Auditorium

The geometric mean A ] B for positive operators A and B is
given by the unique positive solution of the operator equation
XA−1X = B. That is,

A ] B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 .

By virtue of the Kubo-Ando theory, it is generalized to
weighted geometric means as follows: For α ∈ [0, 1]

A ]α B = A
1
2 (A−

1
2BA−

1
2 )αA

1
2 .

It corresponds to the Löwner-Heinz inequality:

A ≥ B ≥ 0 =⇒ Aα ≥ Bα.

There are many useful operator inequalities related to this. A
typical example is the Ando-Hiai inequality (AH):

A ]α B ≤ 1 =⇒ Ar ]α B
r ≤ 1 for r ≥ 1.

In this talk, we discuss generalizations of (AH) and rela-
tions among obtained inequalities. Our basic inequality is as
follows:

If logA ≥ logB for A,B > 0, then

A−r ] r
p+r

Bp ≤ 1

holds for p, r ≥ 0.

Operator equations via an order preserving operator
inequality
Takayuki Furuta, Tokyo University of Science, Japan
furuta@rs.kagu.tus.ac.jp
Tue 15:50, Auditorium

A capital letter means a bounded linear operator on a Hilbert
space. We obtained the following order preserving operator
inequality closely associated with matrix means:

Theorem A. If A ≥ B ≥ 0, then the following (i) and (ii)
hold for p ≥ 1 and r ≥ 0;

(i) (B
r
2ApB

r
2 )

1+r
p+r ≥ B1+r and (ii) A1+r ≥ (A

r
2BpA

r
2 )

1+r
p+r .

Let A be a positive definite operator and B be a self-adjoint
operator. We discuss the existence of positive semidefinite
solutions of the Lyapunov type operator equation

nX
j=1

An−jXAj−1 = B
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via Theorem A and by using the solutions we give concrete
and recordable examples of positive semidefinite matrices as
positive semidefinite solutions of some matrix equations.

The tracial geometric mean in several variables and
related trace inequalities
F. Hansen, University of Copenhagen, Denmark
frank.hansen@econ.ku.dk
Tue 15:00, Auditorium

We introduce the tracial geometric mean of several operator
variables as a generalization of the geometric mean for tuples
of positive numbers. It possesses a number of attractive prop-
erties, including monotonicity and concavity in the operator
variables. The non-commutative Hardy inequality is used to
obtain a generalization of Carleman’s inequality. Other re-
lated trace inequalities are given.

Operator log-convex functions and operator means
F. Hiai, Tohoku University, Japan
hiai@math.is.tohoku.ac.jp
Tue 15:25, Auditorium

We were motivated by the question to determine α ∈ R for
which the functional logω(Aα) is convex in positive opera-
tors A for any positive linear functional ω. In the course of
settling the question, we arrived at the idea to characterize
continuous nonnegative functions f on (0,∞) for which the
operator inequality f

`
A+B

2

´
≤ f(A) # f(B) holds for positive

operators A and B, where A#B is the geometric mean. This
inequality was formerly considered by Aujla, Rawla and Va-
sudeva as a matrix/operator version of log-convex functions.
In fact, it is natural to say that a function f satisfying the
above inequality is operator log-convex, since the numerical
inequality f

`
a+b

2
) ≤

p
f(a)f(b) for a, b > 0 means the con-

vexity of log f and the geometric mean # is the most stan-
dard operator version of geometric mean. We show that a
continuous nonnegative function f on (0,∞) is operator log-
convex if and only if it is operator monotone decreasing, and
furthermore present several equivalent conditions related to
operator means for the operator log-convexity. The operator
log-concavity counterpart is also considered.

Joint work with T. Ando (Hokkaido University)

Recent researches on generalized Furuta-type opera-
tor functions
M. Ito, Maebashi Institute of Technology, Japan
m-ito@maebashi-it.ac.jp
Wed 11:50, Auditorium

In what follows, A and B are positive (semidefinite) oper-
ators on a Hilbert space, and A ≥ 0 (resp. A > 0) denotes
that A is a positive (resp. strictly positive) operator.

Furuta inequality “A ≥ B ≥ 0 ensures A1+r ≥
(A

r
2BpA

r
2 )

1+r
p+r for p ≥ 1 and r ≥ 0” is established in 1987,

and also Furuta showed its generalization (called grand Fu-
ruta inequality) in 1995 as follows: If A ≥ B ≥ 0 with A > 0,
then for each t ∈ [0, 1] and p ≥ 1,

F (r, s) = A
−r
2 {A

r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+rA

−r
2 (1)

is decreasing for r ≥ t and s ≥ 1, and also for each t ∈ [0, 1]
and p ≥ 1,

A1−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r

holds for r ≥ t and s ≥ 1. We remark that grand Furuta
inequality is interpolating Furuta inequality and Ando-Hiai
inequality which is equivalent to the main result of log ma-
jorization. Very recently, Furuta obtained a further extension
of grand Furuta inequality (we call this FGF inequality here).

α-Power mean ]α for α ∈ [0, 1] is defined by A ]α B =

A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 for A > 0 and B ≥ 0. It is known that

α-power mean is very usful for investigating Furuta inequality
and its generalizations. We can express (1) by (1’) with α-
power mean as follows:

F (r, s) = A−r ] 1−t+r
(p−t)s+r

(A
−t
2 BpA

−t
2 )s

= A
−t
2 {A−γ ] 1+γ

β+γ
(At \ β−t

p−t
Bp)}A

−t
2

= A
−t
2 F̂ (β, γ)A

−t
2 ,

(1’)

where β = (p − t)s + t, γ = r − t and A \s B =

A
1
2 (A

−1
2 BA

−1
2 )sA

1
2 for a real number s. (If s ∈ [0, 1], then

\s = ]s.)

In this talk, firstly we shall discuss complementary inequal-
ities and related results to generalized Ando-Hiai inequality
and a generalized Furuta-type operator function. Secondly
we shall obtain a more precise and clear expression of FGF
inequality by considering a mean theoretic proof of grand Fu-
ruta inequality.

Joint work with E. Kamei (Maebashi Institute of Technology)

The Weighted Multivariable AGH-Mean
Se-Jong Kim, Louisiana State University, Baton Rouge, USA

ksejong@math.lsu.edu
Fri 11:00, Auditorium

In this presentation we consider a weighted mean arising as
the geometric mean of the weighted arithmetic and harmonic
n-means of positive definite matrices, what we call the AGH-
mean. This mean is readily computable and exhibits a variety
of other desirable properties, which we describe. We show
that it also has nice variational characterizations. We also
show that it generalizes in a straightforward fashion to a one-
parameter family of weighted means and that many of its
properties carry over to this generalization.

Joint work with J. Lawson (Louisiana State U.), Y. Lim
(Kyungpook National U.)

Weighted Ando-Li-Mathias Geometric Means
Hosoo Lee, Kyungpook National University, Korea
hosoo@knu.ac.kr
Fri 11:50, Auditorium

In [1], Ando-Li-Mathias proposed a successful definition for
geometric means of several positive definite matrices. We
propose a higher order weighted geometric mean based on
the Ando-Li-Mathias symmetrization procedure.

For positive real numbers s and t, G(s, t;A,B) is defined
by G(s, t;A,B) = A# t

s+t
B. A weighted geometric mean

G(t1, t2, . . . , tn;A1, A2, . . . , An) of positive definite matrices
A1, A2, . . . , An and positive real numbers t1, t2, . . . , tn is de-
fined by induction as follows: Assume that the weighted ge-
ometric mean of any (n − 1)− tuple of matrices is defined.
Let
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G((tj)j 6=i; (Aj)j 6=i) =G(t1, . . . , ti−1, ti+1, . . . , tn;

A1, . . . , Ai−1, Ai+1, . . . , An)

and let A
(1)
i = Ai and A

(r+1)
i = G((tj)j 6=i; (A

(r)
j )j 6=i). Then

the sequences A
(r)
i converge to a common limit, denoted by

G(t1, . . . , tn;A1, . . . , An) = limr→∞A
(r)
i .

We show that the weighted mean satisfies the properties
given by Ando-Li-Mathias in a weighted version: consis-
tency with scalars, joint homogeneity, permutation invariance,
monotonicity, continuity, invariance under the congruence and
inversion, joint concavity, self-duality, determinant identity
and arithmetic-geometric-harmonic means inequality.

[1] T. Ando, C.K. Li and R. Mathias, Geometric means,
Linear Algebra Appl., 385 (2004), 305-334.

Joint work with Yongdo Lim (Kyungpook National Univer-
sity) and T. Yamazaki (Kanagawa University)

Weighted Bini-Meini-Poloni Geometric Means
Yongdo Lim, Kyungpook National University, Korea
ylim@knu.ac.kr
Tue 17:35, Auditorium

Taking a weighted version of Bini-Meini-Poloni symmetriza-
tion procedure for a multivariable geometric mean [1], we pro-
pose a definition for a weighted geometric mean of n pos-
itive definite matrices, where the weights vary over all n-
dimensional positive probability vectors. We show that the
weighted mean satisfies multidimensional versions of all prop-
erties that one would expect for a two-variable weighted geo-
metric mean;

(P1) Bn(ω;A1, . . . , An) = Aw1
1 · · ·Awnn for commuting Ai’s;

(P2) (Joint homogeneity);

Bn(ω; a1A1, . . . , anAn) = aw1
1 · · · a

wn
n Bn(ω;A1, . . . , An);

(P3) (Permutation invariance)

Bn(ωσ;Aσ(1), . . . , Aσ(n)) = Bn(ω;A1, . . . , An)

for any permutation σ, where ωσ = (wσ(1), . . . , wσ(n));

(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then
Bn(ω;B1, . . . , Bn) ≤ Bn(ω;A1, . . . , An);

(P5) (Continuity) The map Bn(ω; ·) is continuous;

(P6) (Congruence invariance)

Bn(ω;M∗A1M, . . . ,M∗AnM)

= M∗Bn(ω;A1, . . . , An)M ;

(P7) (Joint concavity) For 0 ≤ t ≤ 1,

Bn(ω;A1 + (1− t)B1, . . . , An + (1− t)Bn)

≥ tBn(ω;A1, . . . , An) + (1− t)Bn(ω;B1, . . . , Bn)

(P8) (Self-duality);
Bn(ω;A−1

1 , . . . , A−1
n )−1 = Bn(ω;A1, . . . , An);

(P9) (Determinantal identity)

DetBn(ω;A1, . . . , An) =

nY
i=1

(DetAi)
wi ;

and

(P10) (AGH mean inequalities)

(

nX
i=1

wiA
−1
i )−1 ≤ Bn(ω;A1, . . . , An) ≤

nX
i=1

wiAi.

[1] D. Bini, B. Meini and F. Poloni, An effective matrix
geometric mean satisfying the Ando-Li-Mathias properties,
Math. Comp. 79 (2010), 437-452.

Joint work with Jimmie Lawson (Louisiana State University)
and Hosoo Lee (Kyungpook National University)

Hermitian metrics and matrix means
M. Pálfia, Budapest University of Technology and Eco-
nomics, Hungary
palfia.miklos@aut.bme.hu
Fri 11:25, Auditorium

Recently there has been great interest in extending matrix
means to several variables. Many authors considered more
or less similar iterative methods to construct a multi-variable
form for matrix means as the limit point of these iterative
procedures. One of the most widely studied matrix mean is
the geometric mean

G(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2.

This mean has several special properties. One of them is that
the geometric mean is the midpoint map of the manifold of
positive definite matrices endowed with the metric induced by
the inner product

〈U, V 〉p = Tr{p−1Up−1V }

defined for the tangent space at p. This space is also a Her-
mitian symmetric space.

Here we show that every matrix mean is the midpoint map
of a hermitian symmetric space defined over the space of posi-
tive definite matrices [3]. In particularly we show that this is a
special case of a more general phenomenon. Given a holomor-
phic function that has a unique fixed point and fullfills some
other properties, automatically induces a hermitian metric on
the space of positive definite matrices. These manifolds also
turn out to be Riemannian symmetric spaces so therefore also
Lie Groups.

We will show that the geometric mean, the harmonic mean
and the arithmetic mean obey this construction, so we get the
correct corresponding metrics.

After this we consider an iterative multi-variable extension
method for means given as midpoint maps in k−convex metric
spaces [2]. We use k−convexity to show that the procedure
converges and we also give bounds on the rate of convergence.
Later we consider the center of mass on these spaces and we
give upper bounds on the distance of the center of mass of the
starting points and the limit point of the iterative procedure.
We will also give sufficient conditions for the two points to be
identical.

Considering once again the k−convexity condition we leave
this general setting and move back to the case of hermi-
tian metrics on the space of positive definite matrices. As
a conclusion we use this machinery given for k−convex met-
ric spaces on these symmetric spaces to extend two-variable
matrix means to several variables similarly as in [1].

[1] M. Pálfia, Iterative multi-variable extensions to the
two-variable mean of positive-definite matrices, SIAM J.
Matrix Anal. Appl., to appear.
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[2] M. Pálfia, Midpoint maps in metric spaces and the center
of mass, preprint.
[3] M. Pálfia, Hermitian symmetric spaces and means of
positive definite matrices, in preparation.

Pólya-Szegö inequality for the chaotically geometric
mean
Y. Seo, Faculty of Engineering, Shibaura Institute of Tech-
nology, Saitama 337-8570, Japan
yukis@sic.shibaura-it.ac.jp
Wed 11:00, Auditorium

Greub-Rheinboldt showed the generalized Pólya-Szegö in-
equality, which is equivalent to the Kantorovich inequality:
Let A and B be commuting positive operators on a Hilbert
space H such that mI ≤ A,B ≤ MI for some scalars

0 < m < M . Then
p

(Ax, x)(Bx, x) ≤ M+m

2
√
Mm

(A
1
2B

1
2 x, x) for

every unit vector x ∈ H. Fujii, Izumino, Nakamoto and Seo
showed the non-commutative version: Let A and B be positive
operators on H such that mI ≤ A,B ≤ MI for some scalars
0 < m < M . Then

p
(Ax, x)(Bx, x) ≤ M+m

2
√
Mm

(A]Bx, x)
for every unit vector x ∈ H, where the geometric mean
A]B of A and B in the sense of Kubo-Ando is defined by

A]B = A1/2
“
A−1/2BA−1/2

”1/2

A1/2. Ando-Li-Mathias de-

fined the geometric mean of n-operators and by using it Ya-
mazaki showed an n-variable version of Pólya-Szegö inequal-
ity. Moreover, Lawson-Lim defined the weighted geometric
mean of n-operators, which extends to the Ando-Li-Mathias
geometric mean.

Let α = (α1, α2, · · · , αn) be a weight vector if
Pn
i=1 αi = 1

and αi ≥ 0 for all i = 1, · · · , n. For positive invertible opera-
tors A1, A2, · · ·An on a Hilbert space H, the chaotically geo-
metric mean of A1, A2, · · ·An for a weight vector α is defined
by ♦α(A1, · · · , An) = exp

`Pn
i=1 αi logAi

´
. If A1, A2, · · ·An

mutually commute, then ♦α(A1, · · · , An) = Aα1
1 · · ·Aαnn . The

geometric mean ] have a monotone property and the chaoti-
cally geometric mean does not have a monotone property.

In this talk, we show the chaotically geometric mean ver-
sion of Pólya-Szegö inequality: Let A1, A2, · · ·An be pos-
itive invertible operators on a Hilbert space H such that
mI ≤ Ai ≤MI for some scalars 0 < m < M and i = 1, · · · , n.
Put h = M

m
. Then for each weight vector α

1

S(h)
(♦α(A1, · · · , An)x, x) ≤ (A1x, x)α1 · · · (Anx, x)αn

≤ S(h)(♦α(A1, · · · , An)x, x)

for every unit vector x ∈ H, where the Specht ratio S(h) is

defined by S(h) = (h−1)h
1

h−1

e log h
(h 6= 1, h > 0) and S(1) =

1.

Operator Monotone Functions, Positive Definite Ker-
nels and Majorization
Mitsuru Uchiyama, Shimane University , Japan
uchiyama@riko.shimane-u.ac.jp
Wed 12:40, Auditorium

Let f(t) be a real continuous function on an interval, and
consider the operator function f(X) defined for Hermitian
operatorsX. We will show that if f(X) is increasing w.r.t. the
operator order, then for F (t) =

R
f(t)dt the operator function

F (X) is convex. Let h(t) and g(t) be C1 functions defined
on an interval I. Suppose h(t) is non-decreasing and g(t) is
increasing. Then we will define the continuous kernel function

Kh, g by Kh, g(t, s) = (h(t) − h(s))/(g(t) − g(s)), which is a
generalization of the Löwner kernel function. We will see that
it is positive definite if and only if h(A) ≤ h(B) whenever
g(A) ≤ g(B) for Hermitian operators A,B, and give a method
to construct a lot of infinitely divisible kernel functions.

[1] M. Uchiyama, Operator Monotone Functions, Positive Def-
inite Kernels and Majorization, to appear PAMS
[2] M. Uchiyama, A new majorization between functions,
polynomials, and operator inequalities II, J. Math. Soc.
Japan 60(2008) no. 1, 291–310

On properties of geometric mean of n-operators via
Riemannian metric
Takeaki Yamazaki, Kanagawa University, Japan
yamazt26@kanagawa-u.ac.jp
Tue 17:10, Auditorium

For positive matrices A1, · · · , An, arithmetic mean
A(A1, · · · , An) = A1+···+An

n
of A1, · · · , An can be de-

fined by

A(A1, · · · , An) = arcmin

nX
i=1

‖Ai −X‖2,

where arcminf(X) means the point X0 at which the func-
tion f(X) attains its minimum value and ‖ · ‖ means operator
norm. If we use Riemannian metric in the above definition in-
stead of operator norm, geometric mean Gδ(A1, · · · , An) can
be considered as

Gδ(A1, · · · , An) = arcmin

nX
i=1

δ2
2(Ai, X).

In this talk, we shall introduce properties of geometric mean
of n-operators from the view point of operator inequality.

Contributed Talks

A Representation of the Inverse of Tridiagonal Ma-
trices with Nested Functions
J. C. Abderramán Marrero, ETSIT-UPM Technical Univ.
of Madrid, Spain.
jcam@mat.upm.es
Mon 15:00, Room A

The elements of the inverse of any finite tridiagonal matrix can
be expressed in terms of determinants of certain tridiagonal
submatrices. This gives simple proofs to known properties, [4],
and linear recurrences, [2, 3], of the elements of the inverse of
a tridiagonal matrix. A direct representation for the elements
of the inverse matrix is also achieved by expressing those de-
terminants in terms of nested functions of the elements of the
tridiagonal matrix. This is equivalent to the expressions given
in [3]. As an illustration, the resolvent matrix, which arises
in spectral theory of finite Jacobi matrices, [1], is detailed.

[1] P. C. Gibson, Inverse spectral theory of finite Jacobi
matrices, Trans. Amer. Math. Soc. 354 (2002) 4703-4749.
[2] R.K. Kittappa, A representation of the solution of the n-th
order linear difference equation with variable coefficients,
Linear Algebra Appl. 193 (1993) 211-222.
[3] R.K. Mallik, The inverse of a tridiagonal matrix, Linear
Algebra Appl. 325 (2001) 109-139.
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[4] G. Strang, T. Nguyen, The interplay of ranks of subma-
trices, SIAM Review 46:4 (2004) 637-646.

Joint work with M. Rachidi (Académie de Reims, France)

Which digraphs with ring structure are essentially
cyclic?
R.P. Agaev, Institute of Control Sciences of RAS, Moscow,
Russia
arpo@ipu.ru; agaraf@rambler.ru
Fri 15:25, Room C

The Laplacian matrix of a digraph G with vertex set V (G) =
{1, . . . , n} and arc set E(G) is the matrix L = (`ij) ∈ Rn×n in
which, for j 6= i, `ij = −1 whenever (i, j) ∈ E(G), otherwise
`ij = 0; `ii = −

P
j 6=i `ij , i, j ∈ V (G).

We say that a digraph is essentially cyclic if its Laplacian
spectrum is not completely real. The problem of characteriz-
ing essentially cyclic digraphs is difficult and yet unsolved. In
the present paper, this problem is solved with respect to the
class of digraphs with ring structure. By such a digraph we
mean a digraph that contains a Hamiltonian cycle and whose
remaining arcs belong to the inverse Hamiltonian cycle. Two
partial results are as follows:

Theorem 1. Let Ln be the Laplacian matrix of the digraph
Gn whose arcs form the Hamiltonian cycle (1, n), (n, n −
1), . . . , (2, 1), the path (1, 2), (2, 3), . . . , (i− 1, i), and the path
(i+ 1, i+ 2), . . . , (n− 1, n), where 1 ≤ i < n. Then:

1. The characteristic polynomial of Ln is ∆Ln(λ) =
Zi(λ)Zn−i(λ) − (−1)n, where Zi(x) = (x − 2)Zi−1(x) −
Zi−2(x), Z0(x) ≡ 1, and Z1(x) ≡ x− 1.

2. If n is even, then Gn is essentially cyclic for all i except
for i = n

2
, in which case the eigenvalues of Ln are 4 cos2 πk

n

and 4 cos2 πk
n+2

, k = 1, . . . , n
2

.
3. If n is odd, then Gn is essentially cyclic for all i except

for i = n−1
2

and i = n+1
2
, in which case the eigenvalues of Ln

are 4 cos2 πk
n+1

, k = 1, . . . , n.

Theorem 2. Let Gn be a digraph on n > 3 vertices con-
stituted by the cycle (1, n), (n, n−1), . . . , (2, 1) and the oppo-
site cycle (1, 2), (2, 3), . . . , (n − 1, n), (n, 1) in which i (2 <
i < n) arcs are missing. Then Gn is essentially cyclic and
the Laplacian characteristic polynomial of Gn is ∆Ln(λ) =QK
k=1 Zik(λ)−(−1)n, where i1, . . . , iK are the path lengths in

the decomposition of (1, n), (n, n−1), . . . , (2, 1) into the paths
linking the consecutive vertices of indegree 1 in Gn.

The polynomials Zi(x) are closely related to the Chebyshev
polynomials.

We also consider the problem of essential cyclicity for
weighted digraphs.

Joint work with P. Chebotarev (Institute of Control Sciences
of RAS)

Investigating the Numerical Range and q-Numerical
Range of Non Square Matrices
Aik. Aretaki, National Technical University of Athens,
Greece
maroulas@math.ntua.gr
Thu 15:00, Room A

Let Mm,n(C) be the algebra of m × n complex matrices.
For m = n, F (A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖2 = 1} is the
numerical range of A [3]. Recently, it has been proposed [2]
as numerical range of A ∈ Mm,n with respect to B ∈ Mm,n

the compact and convex set

w‖·‖(A,B) =
\
z0∈C

D(z0, ‖A− z0B‖). (1)

Elaborating the eq.(1), we have noticed thatS
‖B‖F≥1 w‖·‖F (A,B) = D(0, ‖A‖F ), thus meaning the

independence of w‖·‖F (A,B) by the matrix B, for ‖B‖F ≥ 1.
Another proposal is the notion of the orthogonal projection
onto the lower or higher dimensional subspace and we define
with respect to an m × n isometry matrix H (m ≥ n):
wl(A) = F (H∗A) or wh(A) = F (AH∗).

In this case, we may have w(A) =
S
H wl(A) =

S
H wh(A)

and even involving (1), we conclude: wl(A) ⊆ w‖·‖2(A,H) ⊆
wh(A).
Further, we generalize the definition of the numerical range
in [1] to the q-numerical range of A ∈ Mn for q ∈ [0, 1] and
we prove for any matrix norm

Fq(A) =
\
z0∈C

D(qz0, ‖A− z0In‖).

Hence, we may define the q-numerical range of A ∈ Mm,n

with respect to B ∈Mm,n the set

w‖·‖(A,B; q) =
\
z0∈C

{z ∈ C : |z − qz0| ≤ ‖A− z0B‖,

‖B‖ ≥ q, q ∈ [0, 1]}.
(2)

Clearly, (2) is a compact and convex set and w‖·‖(A,B; 1) ≡
w‖·‖(A,B) in (1).

[1] F.F. Bonsall and J. Duncan, Numerical Ranges II, London
Mathematical Society Lecture Notes Series, Cambridge
University Press, New York, 1973.
[2] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A
definition of numerical range of rectangular matrices, Linear
Multil. Algebra, 57, 459-475, 2009.
[3] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, Cambridge, 1991.

Joint work with J. Maroulas (National Technical University
of Athens)

Structured matrix algorithms for solving the
Marchenko integral equations
A. Aricò, University of Cagliari, Italy
arico@unica.it
Thu 15:00, Room C

The initial-value problem for the focusing nonlinear
Schroedinger (NLS) equation8<:i qt = qxx + 2q|q|2, x ∈ R, t > 0,

q(x; 0) i.c., x ∈ R,

can be solved by following the various steps of the Inverse
Scattering Transform (IST) [1]. Among them, a crucial step
consists of the numerical solution of two coupled systems of
Marchenko integral equations whose kernels are structured.
In fact, their solution uniquely specifies the potential q(x, t)
and its energy density at each point x ∈ R and t ≥ 0.

We illustrate numerical algorithms for solving the
Marchenko systems that take advantage of the Hankel struc-
ture of the kernels.

[1] C. van der Mee, Direct and inverse scattering for skew-
selfadjoint Hamiltonian systems. In: J.A. Ball, J.W. Helton,
M. Klaus, and L. Rodman (eds.), Current Trends in Operator
Theory and its Applications, Birkhäuser OT 149, Basel and
Boston, 2004, pp. 407–439.
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Joint work with S. Seatzu, C. van der Mee, G. Rodriguez
(University of Cagliari)

Multivariate and directional majorization on Mn,m

A. Armandnejad, Department of Mathematics, Vali-e-Asr
University of Rafsanjan, P. O. box : 7713936417, Rafsanjan,
Iran.
armandnejad@mail.vru.ac.ir
Thu 17:35, Room B

Let Mn,m be the set of all n×m matrices with entries in R. A
square matrix D is called doubly stochastic if it has nonneg-
ative entries and De = e = Dte, where e = (1, 1, ..., 1)t. For
A,B ∈Mn,m, it is said that B is multivariate majorized by A
if there exists an n× n doubly stochastic matrix D such that
B = DA and it is said that B is directionally majorized by
A if for every x ∈ Rn there exists an n× n doubly stochastic
matrix Dx such that Bx = (Dx)Ax. It is clear that the multi-
variate majorization implies the directional majorization but
the converse is not true. In this paper we investigate some
cases where the multivariate and directional majorization are
equivalent on Mn,m .

[1] A. Armandnejad, H. Heydari, Linear functions preserving
gd-majorization from Mn,m to Mn,k. Bull. Iranian Math.
Soc., Submmited.
[2] A.W. Marshall, I. Olkin, Inequalities: Theory of Majoriza-
tion and its Applications, Academic Press , New York, 1979.
[3] F. Martinez Peria, P. Massey and L. Silvestre, Weak ma-
trix majorization, Linear Algebra Appl. 403 (2005) 343-368.

Second order pseudospectra of normal matrices
Gorka Armentia, The Public University of Navarre, Spain
gorka.armentia@unavarra.es
Thu 11:00, Room A

Let A ∈ Cn×n be a normal matrix; a well-known theorem
asserts that for all ε ≥ 0 the ordinary ε-pseudospectrum of
A, Λε(A), is the union of the closed disks of radius ε centered
at the eigenvalues of A. We will give a proof of the converse
theorem.

Let us define the second order ε-pseudospectrum of any
matrix M ∈ Cn×n as the set of complex numbers z such that
there exists a ∆ ∈ Cn×n which satisfies ‖∆‖ ≤ ε and z is
a multiple eigenvalue of M + ∆. Let us denote this set by
Λε,2(M). Here ‖ · ‖ stands for the spectral norm.

In this talk we will present a proof of the fact that for any
normal matrix A, the set Λε,2(A) is a union of closed disks,
whose centers and radiuses will be determined in terms of the
eigenvalues of A and ε.

[1] M. Karow. Geometry of spectral value sets. Ph.D. Thesis,
Universität Bremen, 2003.
[2] A.N. Malyshev. A formula for the 2-norm distance from
a matrix to the set of matrices with multiple eigenvalues.
Numer. Math. 83 (3), pp. 443-454, 1999.

Joint work with Juan-Miguel Gracia (The University of the
Basque Country, Spain) and Francisco E. Velasco (The Uni-
versity of the Basque Country, Spain)

Spectral regularity of Banach algebras of operators
Harm Bart, Erasmus University Rotterdam
bart@ese.eur.nl
Fri 16:45, Room Galilei

Let B be a Banach algebra with unit element. If D is a
bounded Cauchy domain in the complex plane and f is an an-

alytic B-valued function taking invertible values on the bound-
ary ∂D of D, the contour integral

1

2πi

Z
∂D

f ′(λ)f(λ)−1dλ (1)

is well-defined. By Cauchy’s theorem, it is equal to the zero
element in B when f has invertible values on all of D. The
Banach algebra B is said to be spectrally regular if the con-
verse of this is true. This means that (1) can only vanish
in the trivial case where f takes invertible values on all of
D. If B = C, the integral (1) counts the number of zeros
of f inside D; hence C is spectrally regular. More generally,
as a straightforward consequence of a result by A.S. Markus
and E.I. Sigal (1970), this also holds for the matrix algebra
Cn×n. The Banach algebra L(X) of all bounded linear oper-
ators on an infinite dimensional Banach space X is generally
not spectrally regular (example: X = `2). In the talk we dis-
cuss sufficient conditions for spectral regularity of the Banach
subalgebra L(X;M) of L(X) consisting of the bounded lin-
ear operators on X leaving invariant all members of a given
collection M of closed subspaces of X. New aspects of non-
commutative Gelfand theory play a central role.

Joint work with T. Ehrhardt (Santa Cruz, California) and
B. Silbermann (Chemnitz, Germany)

On the boundary of the Krein space tracial numerical
range
Natalia Bebiano, University of Coimbra, Portugal

Thu 15:25, Room A

Let J be a Hermitian involutive n × n complex matrix with
signature (r, n− r), 0 ≤ r ≤ n. We consider Cn endowed with
the indefinite inner product defined by [x, y] = y∗Jx, y, x ∈ C.

For any two n×n complex matrices C and A, the J-tracial
numerical range of A (with respect to C), is denoted and
defined as:

W J
C (A) =

˘
tr(CUAU−1) : U belongs to the J-unitary group

¯
.

This set is connected in the Gaussian plane C, it has a symme-
try property, namely W J

C (A) = W J
A(C), and several convexity

results for this set are known.
In this talk, the boundary generating curve of W J

C (A) are
obtained and the connection between the J-normality of A
and the smoothness of W J

C (A) is deduced.

Joint work with H. Nakazato (Hirosaki University), Ana
Nata (Polytechnic Institute of Tomar, Portugal), J. P. da
Providência (University of Coimbra, Portugal)

Computing the block factorization of complex Hankel
matrices: application to the Euclidean algorithm
S. Belhaj, University of Tunis El Manar, Tunisia & Univer-
sity of Franche-Comté, France
skander.belhaj@univ-fcomte.fr
Fri 15:25, Room B

In this work, we present an algorithm for finding an approx-
imate block diagonalization of complex Hankel matrices via
an inversion techniques of an upper triangular Toeplitz ma-
trix, specifically, by simple forward substitution. Our method
is based on the results of [1] for computing an approximate
block diagonalization of real Hankel matrices. We also con-
sider an approximate block diagonalization of complex Hankel
matrices via Schur complementation. An application of our
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algorithm by calculating the ”approximate” polynomial quo-
tient and remainder appearing in the Euclidean algorithm is
also given. We have implemented our algorithms in Matlab.
Numerical examples are included. They show the effectiveness
of our strategy.

[1] S. Belhaj, A fast method to block-diagonalize a Hankel
matrix, Numer. Algor., 47, pp. 15–34, 2008.

Matrix Polynomials in the Max Algebra; Eigenvalues,
Eigenvectors and Inequalities
Buket Benek Gursoy, Hamilton Institute, National Uni-
versity of Ireland, Maynooth, Ireland
buket.benek@nuim.ie
Thu 15:25, Room B

The max algebra consists of the set of nonnegative real num-
bers together with two binary operations: maximization de-
noted by ⊕ and multiplication denoted by ⊗. Matrix opera-
tions over the max algebra are defined in the natural manner.
We consider matrix polynomials of the form

P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1

where A0, A1, . . . , Am−1 ∈ Rnxn are nonnegative matrices.
Specifically, in the sprit of [1], we first present a version of the
Perron-Frobenius Theorem [2] for polynomials of this type.
Applications of this result to the convergence properties of
multistep difference equations over the max algebra are also
described. Finally, we discuss the relation between µ(P (λ)),
the largest max eigenvalue of P (λ), and the maximal cycle ge-
ometric mean, µ(P (1)), of the nonnegative matrix P (1). Sev-
eral inequalities relating µ(P (λ)) and µ(P (1)), echoing similar
results for the conventional algebra, are described.

[1] P. J. Psarrakos and M. J. Tsatsomeros, A primer of
Perron- Frobenius theory for matrix polynomials, Linear
Algebra Appl. 393 (2004) 333-351.
[2] R.B. Bapat, A max version of the PerronFrobenius
theorem, Linear Algebra Appl. 275-276 (1998) 3-18.

Joint work with Oliver Mason (Hamilton Institute, National
University of Ireland, Maynooth)

The matrix equation XA−AX = f(X)
G. Bourgeois, Université Marseille-Luminy
bourgeois.gerald@gmail.com
Thu 15:25, Room C

Let f be an analytic function defined on a complex domain
Ω and A ∈ Mn(C). We assume that there exists unique α
satisfying f(α) = 0. When f ′(α) = 0 and A is nonderoga-
tory, we solve completely the equation XA − AX = f(X).
This generalizes Burde’s result. When f ′(α) 6= 0, we give a
method to solve completely the equation XA− AX = f(X):
we reduce the problem to solve a sequence of Sylvester equa-
tions. Solutions of the equation f(XA − AX) = X are also
given in particular cases.

The importance of a dummy paper
E. Bozzo, University of Udine, Italy
enrico.bozzo@uniud.it
Wed 11:50, Room A

Link analysis has been proposed recently as a tool for rank-
ing scientific publications. For example, in [1,2] a collection of
papers is modeled as the states of a Markov chain, with a tran-
sition probability associated with every citation. To enforce
regularity, the chain is modified by adding a state associated

to a dummy paper, which cites and is cited by all the papers
in the collection. Paper ranking is obtained by computing
the invariant probability vector of the modified chain. Not
very surprisingly, in this model the dummy paper receives the
highest score.

In similar contexts, as the Google search engine or the
EigenFactor bibliometric index, regularity of the Markov
chain is obtained by allowing random jumps from every state
to every other state, performed with a prescribed probability
usually tuned by means of a parameter 0 ≤ α < 1.

In this talk we show that the two approaches give rise to
two out of a wider family of models, depending on n param-
eters 0 ≤ αi < 1, where i = 1, . . . , n and n is the number
of states. The parameter αi tunes the probability of the ran-
dom jump from state i or, equivalently, the probability of the
transition from the i-th paper to the dummy paper. These pa-
rameters can be used to introduce time dependent features in
the models e.g., by lowering parameter values of older states.
Within this family of models, we study the problem of node
updating, which for a generic Markov chain is quite difficult.
We show that a certain subfamily, which includes the dummy
paper model, has desirable properties from this point of view,
generalizing a result presented in [1].

[1] D. A. Bini, G. Del Corso, F. Romani. A combined ap-
proach for evaluating papers authors and scientific journals,
Technical Report TR-08-10, Dipartmento di Informatica,
University of Pisa, 2008.
[2] D. A. Bini, G. Del Corso, F. Romani. Evaluating scientific
products by means of citation-based models: a first analysis
and validation ETNA 33 (2008-2009), 1–16.

Joint work with D. Fasino (University of Udine)

Algebraic reflexivity for semigroups of operators
J. Bračič, University of Ljubljana, Slovenia
janko.bracic@fmf.uni-lj.si
Tue 11:00, Room B

Let V be a vector space over a field F. For a non-empty set
T of linear transformations on V , let Lst T be the family of
all T -invariant subsets of V . For a non-empty family M of
subsets of V , let Sgr M be the set of all linear transformations
T on V satisfying M ⊂ LstT . Then Lst T is a lattice with
respect to the taking unions and intersections. Sgr M is a
multiplicative semigroup of linear transformations. It is easily
seen that T ⊆ Sgr Lst T . A multiplicative semigroup S of
linear transformations is said to be algebraicaly reflexive if
Sgr LstS = S.

We study algebraic reflexivity of multiplicative semigroups
of linear transformations and give some examples of alge-
braic reflexive semigroups. At the end we characterize those
bounded linear operators on a complex Banach space that are
determined by the lattice of invariant subsets.

[1] J. Bračič, Algebraic reflexivity for semigroup of operators,
Electron. J. Linear Algebra, 18, pp. 745-760, 2009.

Lorentzian Distance Matrices
Isabel Brás, University of Aveiro, Portugal
ibras@ua.pt
Tue 11:50, Room A

We consider distance matrices in the Lorentzian n-space,
R1,n−1. A matrixD = [dij ]i,j= 1,...,m is said to be a Lorentzian
distance matrix if there exists a set of points of R1,n−1,
X = {x1, x2, . . . , xm}, such that dij = ||xi − xj ||2◦, where
||.||◦ denotes the Lorentzian norm.
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In this study we present an alternative proof for a clas-
sical characterization, due to [1], of this type of matrices.
Other characterizations are also taken into consideration. It
is known that every Euclidian distance matrix is an elliptic
matrix, we prove that every elliptic matrix is a Lorentzian
distance matrix. With this framework, we investigate how to
distinguish the elliptic matrices that are strictly Lorentzian
(i.e., non Euclidian).

[1] I. J. Shoenberg. Remarks to Maurice Frechet’s Article
“Sur La Definition Axiomatique D’Une Classe D’Espace
Distances Vectoriellement Applicable Sur L’Espace De
Hilbert”. The Annals of Mathematics, 2nd Ser., Vol. 36, No.
3. (Jul., 1935), pp. 724-732.

Joint work with A. Breda (University of Aveiro)

On the gaps in the set of exponents of primitive
boolean circulant matrices
M. I. Bueno Cachadina, The University of California, Santa
Barbara, USA
mbueno@math.ucsb.edu
Thu 17:10, Room C

It is well-known that the maximum exponent that an n-by-n
boolean primitive circulant matrix can attain is n − 1. We
consider the problem of describing the possible exponents at-
tained by these kind of matrices. This problem is equivalent
to the following two problems: 1) finding the set of exponents
attained by primitive Cayley digraphs on a cyclic group ; 2)
determining the set of orders of bases for Zn. We present
a conjecture for the possible such exponents and prove this
conjecture in several cases. We also find the maximum ex-
ponent that n-by-n boolean primitive circulant matrices with
constant number of nonzero entries in its generating vector
can attain and give matrices attaining such exponents.

Joint work with S. Furtado (Faculdade de Economia do Porto,
Portugal)

Naturally graded n-dimensional Leibniz algebras of
nilindex n− 3.
E.M. Cañete, Universidad de Sevilla, Spain
elisacamol@us.es
Fri 17:10, Room Galilei

Leibniz algebras present a “non commutative” analogue of Lie
algebras and they were introduced by J.-L. Loday, [5], as alge-
bras which satisfy the following Leibniz identity: [x, [y, z]] =
[[x, y], z]− [[x, z], y].

It should be noted that Lie algebras are particular cases of
Leibniz algebras. For a given Leibniz algebra L we consider
lower central series: L1 = L and Lk+1 = [Lk, L1], k ≥ 1.

A Leibniz algebra L is called nilpotent if there exists s ∈ N
such that Ls = {0}. The minimum number satisfying this
property is called the nilindex of L. For an n-dimensional
Leibniz algebra, we have the natural filtration:

L ⊇ L2 ⊇ · · · ⊇ Ln−3 ⊇ Ln−2 ⊇ Ln−1 ⊇ Ln ⊇ Ln+1 = {0}.

Then the description of n-dimensional algebras L with the
following conditions: Ln−i 6= {0}, Ln−i+1 = {0}, 0 ≤ i ≤ n−1
for any value of i gives pairwise non isomorphic classes of alge-
bras, more precisely, for different i the defined classes of alge-
bras are disjoint. Evidently, the nilindex of an n-dimensional
algebra does not exceed n + 1. A Leibniz algebra is called
zero-filiform, filiform and quasi-filiform, if its nilindex is equal

to n+ 1, n and n− 1, respectively. The classification of nat-
urally graded algebras is obtained already. In other words,
n-dimensional naturally graded Leibniz algebras with length
of the natural filtration equal to n+ 1, n and n−1 are known
[1], [2], [3] and [4]. The descriptions of some subclasses of
naturally graded Leibniz algebras with length of the filtra-
tion n − 2 were obtained. The main result of this work is to
complete the classification of complex n-dimensional naturally
graded Leibniz algebras with length of the filtration equal to
n− 2.

[1] Sh.A. Ayupov, B.A. Omirov, On some classes of nilpotent
Leibniz algebras, (Russian) Sibirsk. Mat. Zh., 42 (1), pp.
18-29, 2001; translation in Siberian Math. J., 42 (1), pp.
15-24, 2001.
[2] L.M. Camacho, J.R. Gómez, A.J. González, B.A. Omirov,
Naturally graded quasi-filiform Leibniz algebras, Journal of
Symbolic Computation, 44, pp. 527–539, 2009.
[3] L.M. Camacho, J.R. Gómez, A.J. González, B. A. Omirov,
Naturally graded 2-filiform Leibniz algebras, Communica-
tions in Algebra, To appear.
[4] J.R. Gómez, A. Jiménez-Merchán, Naturally graded
quasi-filiform Lie algebras, J. Algebra, 256(1), pp. 211-228,
2002.
[5] J.L. Loday, Une version non commutative des algébres de
Lie: les algébres de Leibniz, Ens. Math., 39, pp. 269-293,
1993.

Joint work with L.M. Camacho (Universidad Sevilla), J.R.
Gómez (Universidad Sevilla), Sh.B. Redjepov (Institute
of Mathematics and Information Technologues, Uzbekistan
Academy of Science)

Block-diagonal stability for switched systems
Ana Catarina S. Carapito, Universidade da Beira Interior,
Portugal
carapito@mat.ubi.pt
Fri 16:45, Room Fermi

A switched linear system is a family of time invariant linear
systems, called the system bank, together with a switching
law that determines how the time invariant systems commute
among themselves. We consider switched systems with a finite
system bank {Σp = (Ap, Bp, Cp, Dp) : p ∈ P}, where P a
finite index set. It is a well-known fact that the existence of
a positive definite matrix P such that ATp P + PAp < 0, for
all p ∈ P, implies the stability of the overall switched system,
under arbitrary switching. In this case, the time invariant
system Σp are said to have a common quadratic Lyapunov
function.

In this work, we assume that the system matrices Ap have
a pre-specified block structure and we investigate the exis-
tence of a common quadratic Lyapunov function with block-
diagonal structure.

[1] Isabel Brás, Ana Carapito, Paula Rocha, Block-diagonal
stability for switched systems, In preparation.

Joint work with Isabel Brás (Universidade de Aveiro) and
Paula Rocha (Universidade do Porto)

The set of feedback assignable polynomials to a non-
controllable single-input linear system
M.V. Carriegos, Universidad de León, Spain
miguel.carriegos@unileon.es
Tue 17:10, Room B

A canonical form for generic single input linear systems over
a Bézout domain R (including non-reachable/non-controllable
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cases) is given. This canonical form can be used to compute
effectively the set of assignable polynomials of a given linear
system and some feedback invariants.

We also generalize a classical result in control theory by
proving that given a Bézout domain and a single input linear
system Σ = (A, b) ∈ Rn×n × Rn×1, the smallest principal
ideal (q) ⊆ R[z] of R[z] containing Un(z1−A, b) is a feedback
invariant and divides all feedback assignable polynomials to
Σ.

(k, τ)-regular sets of circulant graphs
P. Carvalho, University of Aveiro, Portugal
paula.carvalho@ua.pt
Fri 15:00, Room C

Given a graph G = (V (G), E(G)), a subset of vertices ∅ 6= S ⊆
V (G) is a (k, τ)-regular set if S induces a k-regular subgraph in
G and every vertex in V (G)\S has exactly τ neighbors in S. In
this presentation we introduce some results on the character-
ization of (k, τ)-regular sets for circulant graphs with symbol
that fulfills some requirements and we prove the existence of
(k, τ)-regular sets for certain values on the order of G, namely,
|V (G)| even and |V (G)| multiple of 3. According to [1], a sub-
set ∅ 6= S ⊆ V (G) of a regular graph is a (k, τ)-regular set
if and only if k − τ is an eigenvalue of G. Since circulant
graphs are regular graphs, from the above results we obtain
a combinatorial characterization of the spectrum of circulant
graphs.

[1] D. M. Thompson, Eigengraphs: constructing strongly
regular graphs with block designs, Utilitas Math., 20, pp.
83-115, 1981.

Joint work with P. Rama (University of Aveiro)

Low-Rank Approximation of Graph Similarity Matri-
ces
Thomas P. Cason, Université catholique de Louvain, Bel-
gium
http://www.inma.ucl.ac.be/∼cason/
Mon 11:50, Room A

Graphs are a powerful tool for many practical problems such
as pattern recognition, shape analysis, image processing and
data mining. Measures of graph similarity have a broad ar-
ray of applications, including comparing chemical structures,
navigating complex networks like the World Wide Web, and
analyzing different kinds of biological data [1].

Blondel et al. introduced the notion of similarity between
nodes of two graphs in [2]. They defined a similarity measure
as a fixed point of the even iterates of the following recurrence

S0 = 1m,n , Sk+1 =M(Sk)/ ‖M(Sk)‖ ,

where M(S) := ASBT + ATSB and A and B are graph ad-
jacency matrices. One can prove that the similarity matrix is

solution of max
〈S,S〉=1

Φ(S) = tr
“
STM2(S)

”
. When S is large,

the iteration becomes computationally expensive. Hence one
can think to modify the problem in order to find an approx-
imation of S at lower cost. In this work, we consider the
approximation of the similarity matrix S in S, the set of ma-
trices of norm 1 and rank at most k.

We propose the following algorithm to find stationary
points of Φ

S+ := arg max
S̃∈S

tr
“
S̃TM2(S)

”
(1)

The maximum is achieved when S is aligned with the domi-
nant space of M2(S). One iteration of (1) costs

6 (m2 + n2) k + 17 (m+ n) k2 +O(k3)

whereas one full rank iteration costs 4(m2n+ n2m).
We characterize the fixed points of (1) and prove that all ac-

cumulation points are stationary points of Φ(S). Preliminary
results were presented in [3].

[1] L. Zager. Graph Similarity and Matching. PhD thesis,
MIT, may 2005.
[2] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart,
and P. Van Dooren. A measure of similarity between
graph vertices: applications to synonym extraction and Web
searching. SIAM Review, 46(4):647–666, 2004.
[3] T. Cason, P.-A. Absil, and P. Van Dooren. Iterative
methods for low rank approximation of graph similarity
matrices. Presented at 7th MLG, 2009.

Joint work with P.-A. Absil and P. Van Dooren (UC Louvain,
Belgium)

Perturbation analysis of Markov chains: a matrix cal-
culus approach
Hal Caswell, Woods Hole Oceanographic Institution, USA
hcaswell@whoi.edu
Wed 11:50, Room B

Whenever Markov chains are used as models of real-world phe-
nomena, perturbation analysis, quantifying the sensitivity of
conclusions to changes in parameters, is an important prob-
lem. The Magnus-Neudecker formalism for matrix calculus
provides easily computable solutions for many such problems.
Here, I will summarize some recent results on the perturbation
analysis of absorbing and ergodic finite-state Markov chains.
In absorbing chains, interest focuses on questions related to
the time to absorbtion, and a key to these results is the fun-
damental matrix N = (I−U)−1, where U is the matrix of
transition probabilities among the transient states. Suppose
that U is a function of a parameter vector θ. Then it can be
shown that

dvecN

dθT
=
“
NT ⊗N

” dvecU

dθT
(1)

where the vec operator stacks columns of a matrix one above
the next, and ⊗ denotes the Kronecker product. Extensions
of this result will be shown for the sensitivity and elasticity
of the moments of the time to absorbtion, for discrete- and
continuous-time absorbing chains. When applied to ergodic
chains, the approach yields the sensitivity of the stationary
distribution p̂. Let P be the transition matrix, assumed to
be a function of a parameter vector θ; then

dp̂

dθT
=
“
I−P + p̂eTP

”−1 “
p̂T ⊗ I− p̂T ⊗ p̂eT

” dvecP

dθT

(2)
where e is a vector of ones. I will illustrate the results with
some ecological and demographic applications.

Combinatorial Identities from LU Decomposition of
Matrices
Marc Chamberland, Grinnell College, USA
chamberland@math.grinnell.edu
Mon 11:25, Room A

The LU decomposition is a standard tool used in numerical
linear algebra. This talk shows how this tool may be used to
obtain combinatorial identities, some of which are new. As a
simple example, choose the (i, j) entry of a 6 × 6 matrix to



54

be F 2
i+j−1, where Fk is the kth Fibonacci number. An LU

decomposition produces

26666666666666664

1 1 4 9 25 64

1 4 9 25 64 169

4 9 25 64 169 441

9 25 64 169 441 1156

25 64 169 441 1156 3025

64 169 441 1156 3025 7921

37777777777777775
=

26666666666666664

1 0 0 0 0 0

1 1 0 0 0 0

4 5/3 1 0 0 0

9 16/3 2 1 0 0

25 13 6 0 1 0

64 35 15 0 0 1

37777777777777775

26666666666666664

1 1 4 9 25 64

0 3 5 16 39 105

0 0 2/3 4/3 4 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

37777777777777775

Recognizing the terms in the factored matrices yields the
identity

F 2
i+j−1 = F 2

i F
2
j +

1

3
Fi−1Fi+2Fj−1Fj+2 +

2

3
Fi−2Fi−1Fj−2Fj−1

Many diverse identities will be given by performing an LU de-
composition on matrices whose terms involve binomial coef-
ficients, number theoretic functions, orthogonal polynomials,
q-series, and multiple derivatives of functions.

Graph Laplacians and Logarithmic Forest Distances
P. Chebotarev, Institute of Control Sciences of the RAS,
Russia
chv@member.ams.org
Fri 17:35, Room C

A new parametric family of distances for graph vertices is pro-
posed. At the extreme values of the parameter, the family gen-
erates the shortest-path distance and the resistance distance
(coinciding with the commute time distance). A distinctive
feature of the family members is that they are graph-geodetic:
d(i, j) + d(j, k) = d(i, k) if and only if every path from i to k
passes through j. The family is constructed as follows:

Qα = (I + αL)−1,

where α ∈ R+ is a parameter and L is the Laplacian matrix
of the graph,

Hα = γ (α− 1)
−−−−−→
logαQα,

where α 6= 1, γ ∈ R+, and the logarithm
−−−−−→
logαQα is taken

entrywise, and finally,

Dα = 1
2
(hα1T + 1hT

α)−Hα,

where hα is the column of the diagonal entries of Hα and
1 = (1, . . . , 1)T, provides the matrix of distances. The proofs
of the properties of the family [1] involve the matrix forest
theorem [2] and the graph bottleneck inequality [3]. On the
possible applications, see [4]. A sensible choice of the scaling

parameter γ is γ = ln(e + α
2
n ). The distances are called the

logarithmic forest distances.

[1] P. Chebotarev, A family of graph distances
generalizing both the shortest-path and the resis-
tance distances, arXiv preprint math.CO/0810.2717.
http://arXiv.org/abs/0810.2717
[2] P. Chebotarev, R. Agaev, Forest matrices around the
Laplacian matrix, Linear Algebra and its Applications, 356,
pp. 253–274, 2002.
[3] P. Chebotarev, A graph bottleneck in-
equality, arXiv preprint math.CO/ 0810.2732.

http://arxiv.org/abs/0810.2732
[4] L. Yen, M. Saerens, A. Mantrach, M. Shimbo, A family of
dissimilarity measures between nodes generalizing both the
shortest-path and the commute-time distances, 14th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 785–793, 2008.

Eigenpairs of Adjacency Matrices of Balanced Signed
Graphs
Mei-Qin Chen, Department of Mathematics and Computer
Science, The Citadel
chenm@citadel.edu
Thu 16:45, Room C

In this paper, we present results on eigenvalues λ and their
associated eigenvectors x of an adjacency matrix A of a bal-
anced signed graph. A graph G = (V,E) consists of a set V of
vertices and a set E of edges between two adjoined vertices.
A signed graph is a graph for which each edge is labeled with
either + or −. A signed graph is said to be balanced if there
are an even number of negative signs in each cycle (a simple
closed path).

Signed graphs were first introduced and studied by F.
Harary to handle a problem in social psychology. It was shown
by Harary in 1953 that a signed graph is balanced if and only
if its vertex set V can be divided into two sets (either of which
may be empty), X and Y , so that each edge between the sets
is negative and each within a set is positive. Based on this
fundamental theorem for balanced signed graphs, vertices of a
balanced signed graph can be labeled in a way so that its adja-
cency matrix is well structured. Using this special structure,
we find exactly all eigenvalues and their associated eigenvec-
tors of the adjacency matrix A of a given balanced signed
graph. We will present eigenpairs (λ, x) of adjacency matri-
ces of three types of balanced signed graphs: (1) graphs that
are complete; (2) graphs with t vertices in X or in Y that are
not connected; and (3) graphs that are bipartite.

Joint work with Spencer P. Hurd (The Citadel)

On classical adjoint-commuting mappings between
matrix algebras
Wai-Leong Chooi, University of Malaya, Malaysia.
wlchooi@um.edu.my

Fri 17:35, Room Galilei

Let F be a field and let m and n be integers with m,n > 2.
Let Mn denote the algebra of n× n matrices over F. In this
note, we characterize mappings ψ : Mn → Mm that satisfy
one of the following conditions:

[1] |F| = 2 or |F| > n, and ψ(adj (A + αB)) = adj (ψ(A) +
αψ(B)) for all A,B ∈Mn and α ∈ F with ψ(In) 6= 0.

[2] ψ is surjective and ψ(adj (A − B)) = adj (ψ(A) − ψ(B))
for all A,B ∈Mn.

Here, adj A denotes the classical adjoint of the matrix A, and
In is the identity matrix of order n. We give examples show-
ing the indispensability of the assumption ψ(In) 6= 0 in our
results.

Joint work with Wei-Shean Ng (Universiti Tunku Addul Rah-
man, Malaysia.)

A numerical range for rectangular matrices and ma-
trix polynomials
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Ch. Chorianopoulos, National Technical University of
Athens, Greece
horjoe@yahoo.gr
Tue 15:00, Room B

The numerical range of an operator can be written as an (in-
finite) intersection of closed circular discs. This interesting
property was observed by Bonsall and Duncan (1973), and
leads (in a natural way) to a definition of numerical range of
rectangular complex matrices. The new range is always com-
pact and convex, and satisfies basic properties of the standard
numerical range. The proposed definition is also extended to
the case of matrix polynomials.

Joint work with P. Psarrakos (National Technical University
of Athens)

Solution of Non-Symmetric Algebraic Riccati Equa-
tions from Transport Theory
Eric King-wah Chu, Monash University, Melbourne, Aus-
tralia
eric.chu@sci.monash.edu.au
Tue 15:50, Room Fermi

Transport theory [1,3] provides a rich source of mathematical
problems. For example, from (i) a differential-integral equa-
tion in a two-dimensional model, or (ii) a differential equation
in a one-dimensional multi-state model, we shall derive and
study the non-symmetric algebraic Riccati equation

B− −XF− − F+X +XB+X = 0,

where (i) F± ≡ I − ŝPD±, B− ≡ (b̂I + ŝP )D− and B+ ≡
b̂I + ŝPD+ with positive diagonal matrices D±, a low-ranked
P and positive parameters b̂ and ŝ; or (ii) F± ≡ (I − F )D±

and B− ≡ BD− with possibly low-ranked matrices F and B.
These are generalizations of the one studied by Juang in [2].

We prove the existence of the minimal solution X∗ under
physically reasonable assumptions, and study its numerical
computation by fixed point and Newton iterations. We shall
also study several special cases. For example, when (i) b̂ = 0
and P is low-ranked, then X∗ = ŝUV > is low-ranked; or (ii)
when B and F are low-ranked, then X∗ = T ◦(UV >) with the
low-ranked UV >. The solution can then be computed using
more efficient iterative processes. Numerical examples will be
given to illustrate our theoretical results.

[1] R. E. Bellman, and G. M. Wing, An Introduction to
Invariant Imbedding, Wiley, New York, 1975.
[2] J. Juang, Existence of algebraic matrix Riccati equations
arising in transport theory, Lin. Alg. Applic., 230:89–100,
1995.
[3] G. M. Wing, An Introduction to Transport Theory, Wiley,
New York , 1962.

Joint work with J. Juang (National Chiao Tung University),
T. Li (Southeast University), and W.-W. Lin (National Chiao
Tung University)

On normal Hankel matrices
V. N. Chugunov, Institute of Numerical Mathematics, Rus-
sian Academy of Sciences, ul.Gubkina 8, Moscow, 119991 Rus-
sia
vadim@bach.inm.ras.ru
Mon 15:25, Room A

The normal Hankel problem is the one of characterizing the
matrices that are normal and Hankel at the same time. This

problem turned out to be much harder than the normal
Toeplitz problem, which the authors solved in early 1990’s.

In this talk, we give a sketch of the complete solution of the
normal Hankel problem. We present a general approach that
allows us to obtain all the classes of normal Hankel matrices
as special cases of a unified scheme.

Joint work with Kh. D. Ikramov (Faculty of Computa-
tional Mathematics and Cybernetics, Moscow State Univer-
sity, Leninskie gory, Moscow, 119992 Russia)

A Lower Bound for the Distance from a Controllable
Switched Linear System to an Uncontrollable One
J. Clotet, Universitat Politècnica de Catalunya, Spain
josep.clotet@upc.edu
Tue 15:25, Room A

We consider the set of controllable switched linear systems
(SLS). Since the parameters of a given mathematical model
are usually determined only approximately, an uncontrollable
system may appear as a controllable one. In other words, in
general an uncontrollable system becomes controllable when
perturbing. Nevertheless, the converse may also occur if per-
turbations are big enough. In this work we obtain a lower
bound for the distance from a controllable SLS to the nearest
SLS which is uncontrollable, thus determining a safety neigh-
bourhood for any controllable SLS.

[1] D. Boley, Estimating the Sensitivity of the Algebraic
Structures of Pencils with Simple Eigenvalues Estimates,
SIAM J. Matrix Anal. Appl. 11 n. 4, pp. 632-643, 1990.
[2] D. Boley, Wu-Sheng Lu, Measuring how far a controllable
system is from an uncontrollable one, IEEE Trans. on
Automatic Control AC-31, pp. 249-251, 1986.
[3] J. Clotet, Ma

¯ Isabel Garćıa-Planas, M. D. Magret,
Estimating distances from quadruples satisfying stability
properties to quadruples not satisfying them, Linear Algebra
and its Applications 332-334, pp. 541-567, 2001.
[4] J. Clotet, J. Ferrer, M. D. Magret, Switched Singular
Linear Systems, Proceedings of the 17th Mediterranean
Conference on Control and Automation, pp. 1343-1347,
2009.
[5] R. Eising, Between controllable and uncontrollable, Syst.
Control Letters 4, no. 5, pp. 263-264, 1984.
[6] B. Meng, J. F. Zhang, Reachability Conditions for
Switched Linear Singular Systems, IEEE Transactions on
Automatic Control, 51 (3), pp. 482-488, 2006.
[7] Z. Sun, S. S. Ge, Switched Linear Systems, London,
England. Springer, 2005.

Joint work with J. Ferrer, M. D. Magret (Universitat
Politècnica de Catalunya)

What’s New? Matrix Methods for Extracting Update
Summaries
John M. Conroy, IDA Center for Computing Sciences,
Bowie, MD, USA
conroyjohnm@gmail.com
Wed 11:00, Room A

In this talk we will describe the use of linear algebra to de-
velop algorithms to extract information from text documents.
The problem is two-fold: Given an initial cluster of documents
returned from a query, construct a brief summary of the clus-
ter. Later, given a second cluster of documents relevant to the
query, generate an update summary, which focuses on what is
new. See [1] and [2] for more details.
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[1] John M. Conroy, Judith D. Schlesinger, and Dianne P.
OLeary. In Proceedings of the ACL06/COLING06, page 152,
Sydney, Australia, July 2006.
[2] NIST. Text analysis conference, http://www.nist.gov/tac,
2009.

Joint work with Judith D. Schlesinger, IDA/CCS & Dianne
P. O’Leary, UMCP.

On the faces of faces of the tridiagonal Birkhoff poly-
tope
Liliana Costa, University of Aveiro, Portugal
lilianacosta@ua.pt
Thu 16:45, Room B

Doubly stochastic matrices (i.e. real square matrices with
nonnegative entries and all rows and columns sums equal to
one) have been studied quite extensively. This denomination
is associated to probability distributions and it is amazing the
diversity of branches of mathematics in which doubly stochas-
tic matrices arise: geometry, combinatorics, optimization the-
ory, graph theory and statistics. In 1946, Birkhoff published
a remarkable result asserting that a matrix in the polytope of
n × n nonnegative doubly stochastic matrices, Ωn, is a ver-
tex if and only if it is a permutation matrix. In fact, Ωn is
the convex hull of all permutation matrices of order n. The
Birkhoff polytope Ωn is also known as transportation polytope
or doubly stochastic matrices polytope.

In 2004, Dahl, [3], discussed the subclass of Ωn consisting
of the tridiagonal doubly stochastic matrices and the corre-
sponding subpolytope

Ωtn = {A ∈ Ωn : A is tridiagonal},

the so-called tridiagonal Birkhoff polytope, and studied the
facial structure of Ωtn.

In this talk we present an interpretation of p-faces, p =
0, 1, . . . , of the tridiagonal Birkhoff polytope, Ωtn, in terms of
graph theory. And, for a given p-face of Ωtn, we determine the
number of faces of dimension zero, one, two or three, that are
contained in it and we discuss their nature. In fact, a 2-face
of Ωtn is a triangle or a quadrilateral and the 3-faces can be
at most hexahedrons.

[1] L. Costa, C. M. da Fonseca, E. A. Martins, The diameter
of the acyclic Birkhoff polytope, Linear Algebra Appl. 428
(2008), 1524-1537.
[2] L. Costa, E. A. Martins, Faces of faces of the tridiagonal
Birkhoff polytope, Linear Algebra Appl. 432, No. 6,
1384-1404 (2010).
[3] G. Dahl, Tridiagonal doubly stochastic matrices, Linear
Algebra Appl., 390(2004), 197-208.

Joint work with Enide Andrade Martins (University of Aveiro)

Matrices with Prescribed Characteristic Polynomials
and Prescribed Entries
G. Cravo, University of Madeira and CELC, Portugal
gcravo@uma.pt
Fri 17:10, Auditorium

An important problem that has been studied for some
decades, is the description of the possible eigenvalues of a
square matrix over a field, when some of its entries are pre-
scribed and the other entries are unknown.

Another important problem that motivates our work is the
description of the possible eigenvalues or the characteristic

polynomial of a partitioned matrix of the form A = [Ai,j ], over
a field, where the blocks Ai,j are of type pi×pj (i, j ∈ {1, 2}),
when some of the blocks Ai,j are prescribed and the others
are unknown.

In our work we intend to unify the previous problems.
Indeed, our main goal is to describe the possible eigenval-
ues or the characteristic polynomial of a partitioned matrix
of the form C = [Ci,j ] ∈ Fn×n, where F is an arbitrary
field, n = p1 + · · · + pk, the blocks Ci,j are of type pi × pj
(i, j ∈ {1, . . . , k}), and some of its blocks are prescribed and
the others vary. For this more general question we just ob-
tained some partial results. In order to give more insight into
this problem, we considered the particular situation k = 3.

Furthermore, we still analyze the possibility of the pair of
the form

(C1, C2) =

„»
C1,1 C1,2

C2,1 C2,1

–
,

»
C1,3

C2,3

–«
being completely controllable (where the blocks Ci,j are of
type pi × pj , i ∈ {1, 2}, j ∈ {1, 2, 3}), when three of its blocks
are prescribed.

Pairs of matrices that preserve the value of a general-
ized matrix function on the set of the upper triangular
matrices
Henrique F. da Cruz, Universidade da Beira Interior, Por-
tugal
hcruz@mat.ubi.pt
Tue 15:00, Room Fermi

Let H be a subgroup of the symmetric group of degree m, let
χ be an irreducible character of H and let F be an arbitrary
field of characteristic zero. In this talk we give conditions that
characterize the pairs of m-square matrices over F, that leave
invariant the value of a generalized matrix function associated
with H and χ on the set of the upper triangular matrices, that
is, denoting by dHχ the generalized matrix function associated
with H and χ and by TUn (F) the set of m-square upper trian-
gular matrices, we describe the pairs (A,B) of m×m matrices
over F that satisfies

dHχ (AXB) = dHχ (X),

for all X ∈ TUn (F).

[1] Rosário Fernandes, Henrique F. da Cruz, Pairs of matri-
ces that preserve the value of a generalized matrix function
on the set of the upper triangular matrices, submitted.

Joint work with Rosário Fernandes (Universidade Nova de
Lisboa)

An algebraic method for solving some evolution prob-
lems
Z. Dahmani, University of Mostaganem, Algeria
zzdahmani@yahoo.fr
Tue 15:50, Room A

In this talk, we employ an algebraic method, which is based
on resolution of linear algebraic systems, to derive traveling
wave solutions for some nonlinear evolution problems. The
obtained solutions include also kink solutions. Using this lin-
ear method, we present some examples which appear in var-
ious areas of applied mathematics such as modeling of fluid
dynamics and population dynamics.

Imputing Missing Entries in a Data Matrix
Achiya Dax, Hydrological Service, Jerusalem 91360, Israel
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dax20@water.gov.il
Wed 11:25, Room A

The problem of imputing missing entries of a data matrix is
easy to state: Some entries of the matrix are unknown and
we want to assign “appropriate values” to these entries. The
need for solving such problems arises in several applications,
ranging from traditional fields to modern ones. Typical tradi-
tional fields are Statistical analysis of incomplete survey data,
Business Reports, Meteorology and Hydrology. Modern ap-
plications arise in Machine Learning, Data Mining, DNA mi-
croarrays data, Computer Vision, Recommender Systems and
Collaborative Filtering. The problem is highly interesting and
challenging. Many ingenious algorithms have been proposed,
and there is vast literature on imputing techniques. Yet, most
of the papers consider the imputing problem within the con-
text of a specific application. The current survey attempts to
provide a broader view of the problem, one that exposes the
large variety of existing methods, with focus on linear algebra
and optimization issues. Old and new methods are examined
and explained. The equivalence theorems that we prove reveal
surprising relations between apparently different methods.

The first part of the talk introduces the problem and sur-
veys the main solution approaches. Starting from simple av-
eraging methods we outline some basic imputing algorithms,
including iterative column regression (ICR), k nearest neigh-
bors (KNN) imputing and iterative SVD imputing. Then we
move on to consider recently proposed methods, such as tail
minimization (FRAA), rank minimization, and nuclear norm
minimization. As our survey shows, the construction of a low-
rank approximating matrix is the ultimate goal of several im-
puting methods. The second part of the talk considers direct
minimization methods that achieve this task. The methods
discussed include successive rank-one modifications (SROM),
alternating least squares (ALS), Newton, Gauss-Newton, and
Wiberg’s algorithm.

Obtaining canonical forms associated with the prob-
lem of perturbation of one column of a controllable
pair
I. de Hoyos, Universidad del Páıs Vasco, Spain
inmaculada.dehoyos@ehu.es
Fri 17:10, Room Fermi

Let (A,B) be a completely controllable matrix pair. When
we consider the problem of characterizing the controllability
indices of all the matrix pairs obtained by small perturbations
on one column of B, a new equivalence relation arises in a
natural way.

This equivalence relation is a kind of partial feedback equiv-
alence. As a consequence the controllability indices are invari-
ant, but they do not form a complete system of invariants.

We have found some new invariants for this equivalence
relation. These invariants are of two types: continuous and
discrete.

Finally, we have achieved a procedure which allows us to
obtain canonical forms in terms of the invariants.

Joint work with I. Baragaña (Universidad del Páıs Vasco), M.
A. Beitia (Universidad del Páıs Vasco)

Eigenvalues computation of possibly unsymmetric
quasiseparable matrices by LR steps
Gianna M. Del Corso, Department of Computer Science,
University of Pisa, Italy
delcorso@di.unipi.it
Fri 12:15, Room Pacinotti

In the last few years many numerical techniques for computing
eigenvalues of structured rank matrices have been proposed.
Most of them are based on QR iterations since, in the sym-
metric case, the rank structure is preserved and high accuracy
is guaranteed. In the unsymmetric case, however the QR algo-
rithm destroys the rank structure, which is instead preserved
if LR iterations are used. We show that almost all quasisepa-
rable matrices can be represented in terms of the parameters
involved in their Neville factorization, and that this represen-
tation is preserved under LR steps. Moreover, we propose an
implicit shifted LR method with a linear cost per step. We
show that for totally nonnegative matrices the algorithm is
stable and does not incur in breakdown also if the Laguerre
shift is used. Computational evidence shows that good ac-
curacy is obtained also when applied to symmetric positive
definite matrices.

Joint work with Roberto Bevilacqua (University of Pisa) and
Enrico Bozzo (University of Udine)

Preserving quasi-commutativity on self-adjoint oper-
ators
G. Dolinar, University of Ljubljana, Slovenia
gregor.dolinar@fe.uni-lj.si
Mon 11:00, Room B

Let H be a separable Hilbert space and Bsa(H) the set
of all bounded linear self-adjoint operators. We say that
A,B ∈ Bsa(H) quasi-commute if there exists a nonzero ξ ∈ C
such that AB = ξBA, and that Φ: Bsa(H) → Bsa(H) pre-
serves quasi-commutativity in both directions when the fol-
lowing holds: Φ(A) quasi-commutes with Φ(B) if and only if
A quasi-commutes with B. Classification of bijective maps
on Bsa(H) which preserve quasi-commutativity in both direc-
tions will be presented.

[1] G. Dolinar, B. Kuzma, General preservers of quasi-
commutativity, Canad. J. Math., in press.
[2] G. Dolinar, B. Kuzma, General preservers of quasi-
commutativity on hermitian matrices, Electron. J. Linear
Algebra 17 (2008) 436444.
[3] G. Dolinar, B. Kuzma, General preservers of quasi-
commutativity on self-adjoint operators, J. Math. Anal.
Appl. (2009), doi:10.1016/j.jmaa.2009.11.007, in press.

Joint work with B. Kuzma (University of Primorska)

P-rank corrections for box-constrained global opti-
mization problems
S. Fanelli, University of Rome ”Tor Vergata”, Italy
fanelli@mat.uniroma2.it
Fri 15:25, Room Galilei

In previous papers the author et alii showed that BFSG-
type methods approximating the hessian of twice continuously
differentiable functions with a structured matrix are very ef-
ficient to compute local minima, particularly in the secant
case. Moreover, by utilizing a suitable BFGS-type algorithm,
a general theorem ensuring the convergence to the global mini-
mum of unconstrained twice continuously differentiable func-
tions was recently proved.
A family of important deterministic methods for global opti-
mization is based upon the theory of terminal attractors and
repellers. Unfortunately, the utilization of scalar repellers is
unsuitable when the dimension n of the problem assumes val-
ues of operational interest.
On the other hand, the algorithms founded on the classical
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αBB technique are often ineffective for computational rea-
sons, even if, more recently, the utilization of a new class of
convex under-estimators and relaxations has significantly im-
proved the performances of this approach.
In order to increase the power of the repeller in the tunneling
phase, the utilization of repeller matrices with a proper struc-
ture is certainly promising and deserves investigation. More
precisely, it is interesting to test the performances obtained
by approximating the optimal (unknown) repeller matrix with
the sum of a diagonal matrix and a low rank one. The cor-
responding tunneling phase must be, in fact, properly super-
imposed in the global optimization algorithm in the frame of
the αBB computational scheme.
Numerical experiences on a wide set of classical and well
known optimization problems show that the latter approach
has a significant effect on the efficiency of the whole global
optimization procedure.

Commutativity preservers on matrix algebras
Ajda Fošner, Gea College, Dunajska 156, SI-1000 Ljubljana,
Slovenia
ajda.fosner@gea-college.si, ajda.fosner@uni-mb.si
Tue 12:15, Room B

Let Mn(F) be the algebra of all n× n matrices over the field
F. A map φ : Mn(F) → Mn(F) preserves commutativity if
φ(A)φ(B) = φ(B)φ(A) whenever AB = BA, A,B ∈ Mn(F).
If φ is bijective and both φ and φ−1 preserve commutativity,
then we say that φ preserves commutativity in both directions.
We will represent recent results on general (non-linear) maps
on some matrix algebras that preserve commutativity in both
directions or in one direction only. We will talk about com-
plex and real matrices, hermitian, symmetric, and alternate
matrices.

On J-normal matrices with J ′-normal principal sub-
matrices
S. Furtado, University of Porto and CELC, Portugal
sbf@fep.up.pt
Tue 12:15, Room A

Let Mn be the algebra of n × n complex matrices and let
J = Ir ⊕ −In−r ∈ Mn, 0 ≤ r ≤ n. Consider the indefinite
inner product [·, ·] defined by [x, y] = y∗Jx, x, y ∈ Cn. A
matrix A ∈ Mn is said to be J-normal if A#A = AA#, in
which A# is the J-adjoint of A defined by [Ax, y] = [x,A#y]
for any x, y ∈ Cn (that is, A# = JA∗J).

A matrix B of size m×m, m < n, is said to be imbeddable
in A ∈Mn if there exists a matrix V of size n×m such that
V #V = Im and V #AV = B.

Let J ′ = Ir−p ⊕ −In−r−q, with 0 ≤ p ≤ r, 0 ≤ q ≤ n − r.
In this talk we consider the following problem: give necessary
and sufficient conditions for a J ′-normal matrix B ∈Mn−p−q
to be imbeddable in a J-normal matrix A ∈ Mn. We present
an answer to this problem in some particular cases. When
n = r, the matrix A is normal and the problem was solved
by Fan and Pall (1957) for q = 1. When n = r and A has
real eigenvalues, then A is Hermitian and the answer to the
problem is given by the well known interlacing relations for
the eigenvalues of A and B.

Joint work with N. Bebiano and J. Providencia (University of
Coimbra)

A refined Young inequality and related results
S. Furuichi, Nihon University, Tokyo, Japan

furuichi@chs.nihon-u.ac.jp
Mon 17:35, Room C

In this talk, we study on refinements of some inequalities re-
lated to Young inequality for scalar and for operator. As our
main results, we show refined Young inequalities for two posi-
tive operators. Our results refine the ordering relations among
the arithmetic mean, the geometric mean and the harmonic
mean. Moreover, we give supplements for refined Young in-
equalities for two positive real numbers. And then we also give
operator inequalities based on the supplemental inequalities.

In addition, (if we have an enough time to talk), we show
two type of the reverse inequalities of the refined Young in-
equality for two positive operators, applying the reverse in-
equalities of the refined Young inequality for positive real
numbers

Our talk is based on our recent results [1,2].

[1] S. Furuichi and M. Lin, On refined Young inequalities,
arXiv:1001.0195.
[2] S. Furuichi, Reverse inequalities for a refined Young
inequality, arXiv:1001.0535.

Joint work with Minghua Lin (University of Regina)

Disturbance decoupling for singular systems by feed-
back and output injection
M. I. Garćıa-Planas, Universitat Politècnica de Catalunya,
Spain
maria.isabel.garcia@upc.edu
Tue 15:00, Room A

We study the disturbance decoupling problem for linear time
invariant singular systems. We give necessary and sufficient
conditions for the existence of a solution to the disturbance de-
coupling problem with or without stability via a proportional
and derivative feedback and proportional and derivative out-
put injection that also makes the resulting closed-loop system
regular and/or of index at most one. All results are based
on canonical reduced forms that can be computed using a
complete system of invariants.

[1] A. Ailon, A solution to the disturbance decoupling problem
in singular systems via analogy with state-space systems, Au-
tomatica J. IFAC, 29 (1993), pp. 1541-1545.
[2] D. Chu and V. Mehrmann, Disturbance Decoupling for
Descriptor Systems by state feedback. Siam J. Control Optim.
vol. 38 (6), pp. 1830-1858, (2000).
[3] Ma I. Garćıa-Planas, Regularizing Generalized Linear Sys-
tems by means a Derivative Feedback. Physcon-2003 Proc.
vol. 4, pp. 1134-1140, (2003).
[4] L. R. Fletcher and A. Asaraai, On disturbance decoupling
in descriptor systems, SIAM J. Control Optim., 27 (1989),
pp. 1319-1332.
[5] A. S. Morse and W. M. Wonham, Decoupling and pole
assignment by dynamic compensation, SIAM J. Control, 8
(1970), pp. 317-337.

Full Rank Factorization with Quasy Neville Elimina-
tion Process
Maria T. Gassó, Instituto de Matemática Multidisciplinar,
Universidad Politécnica de Valencia, Spain
mgasso@mat.upv.es
Thu 15:25, Room Galilei

Let A be a real m×n matrix with rank(A) = p. A decomposi-
tion A = LS is called full rank factorization of A, if L ∈ Rm×p,
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S ∈ Rp×n and rank(L) = rank(S) = p. Several authors have
studied different classes of matrices obtaining properties and
characterizations of them in terms of full rank factorizations.
Recently, Cantó et al. (see [1]) obtain a characterization of
tn (totally negative) and tnp (totally nonpositive) matrices in
terms of their full rank factorization in echelon form.

In [2] the authors introduced a variant of the Neville elim-
ination process, Quasi-Neville elimination, which consists of
leaving the zero row in its position and continuing the elimina-
tion process with the matrix obtained from A by deleting the
zero rows. The essence of this process is to use the property
N introduced by M. Gasca and J.M. Peña in [3]: An n ×m
real matrix A satisfies the condition N if whenever we have
carried some rows down to the bottom in the Neville elimina-
tion of A, those rows were zero rows, and the same condition
is satisfied in the Neville elimination of UT . In this work we
introduce a new class of matrices weakening the N condition.

Definition. Let A be an m×n real matrix. A satisfies the
condition WN if A satisfies the property N only for rows.

By applying Quasy Neville elimination process we can prove
the following result.

Theorem. Let A be an m×n real matrix, with rank(A) =
p and satisfying the WN condition. Then A admits a full rank
factorization in echelon form

A = LS,

where L is a lower echelon matrix of size m×p, S is an upper
echelon matrix of size p× n and rank(L) = rank(S) = p.

From this result we obtain a full rank factorization in eche-
lon form of a class of matrices that contains the classes of tn,
tnp, TP (totally positive), TNN (totally nonnegative) matri-
ces. This class also includes the sign regular matrices intro-
duced in [4], some Vandermonde matrices and the semisepa-
rable matrices.

Consider the following matrix

A =

2664
2 3 1 0 −1
0 0 0 0 0
1 3 2 4 5
1 3 2 4 6

3775 .
We can prove that this matrix satisfies the WN condition,

but does not satisfy the N condition. In addition, we can
observe that this matrix is neither TP , TNN , tn nor tnp.

[1] R. Cantó, B. Ricarte and A.Urbano, Full rank factor-
ization in echelon form of totally nonpositive (negative)
rectangular matrices, Linear Algebra and its Applications,
DOI: 10.1016/j.laa.2009.07.020.
[2] M. Gassó and Juan R. Torregrosa, A totally positive fac-
torization of rectangular matrices by the Neville elimination,
SIAM Journal Matrix Anal. Applications, 25(4) pp. 986-994,
2004.
[3] M. Gasca and J.M. Peña, Total positivity and Neville
elimination, Linear Algebra and its Applications, 165, pp.
25-44, 1992.
[4] V. Cortes and J.M. Peña, Sign Regular Matrices and
Neville elimination, Linear Algebra and its Applications, 421,
pp. 53-62, 2007.

Joint work with M. Abad and Juan R. Torregrosa (Instituto
de Matemática Multidisciplinar, Universidad Politécnica de
Valencia, Spain)

The Padé iterations for the matrix sign function and
their reciprocals are optimal

F. Greco, Università di Perugia, Italy
greco@dmi.unipg.it
Tue 15:25, Room Fermi

Rational iterations of the form zk+1 = ϕ(zk), for some rational
function ϕ(z) = a(z)/b(z), having attractive fixed points at
1 and −1 locally converge to the sign function and thus they
can be used to compute important matrix functions such as
the matrix sign function and the matrix square root.

We show that among the rational iterations locally converg-
ing with order s > 1 to the sign function, the ones belonging
to the Padé family and their reciprocals are the unique with
the lowest sum of the degrees of numerator and denominator.

This provides a good motivation for their choice in numer-
ical computation.

Joint work with B. Iannazzo (Università di Perugia) and F.
Poloni (SNS, Pisa)

Perturbation theory for block operator matrices and
applications
Luka Grubǐsić, Department of Mathematics, University of
Zagreb, Bijenička 30, 10000 Zagreb, Croatia
luka.grubisic@math.hr
Thu 11:50, Room A

Block operator matrices are matrices whose entries are linear
operators on Hilbert or Banach spaces. Both bounded and
unbounded operators are allowed as matrix entries. Such ob-
jects have found various applications—over the last 20 years—
in both applied as well as theoretical mathematics. However,
until an excellent recent monograph of C. Tretter their spec-
tral theory has not found its way into standard textbooks. We
refer an interested reader to the monograph for a extensive re-
view of the relevant literature. In this talk we present new re-
sults in the relative perturbation theory for unbounded block
operator matrices. As a first application we discuss adap-
tive finite element eigenvalue methods from the viewpoint of
the spectral theory of block operator matrices. As a result we
obtain robust reliability and efficiency estimates for the eigen-
value and eigenvector estimation. Furthermore, we introduce
the notion of the enhanced Ritz value and show that it can be
used to obtain new computable eigenvalue enclosures which
are sharper than those which can be obtained from Ritz val-
ues. To illustrate the versatility of the block operator matrix
approach we briefly and informally show an application of our
results in the spectral theory of operator realizations of elliptic
systems of partial differential equations. The basic flavor of
the whole theory is a notrivial application of standard results
from Linear Algebra in the rigorous theory of elliptic partial
differential equations.

A Null Space Free Jacobi-Davidson Iteration for
Three Dimensional Photonic Crystals
Tsung-Ming Huang, Department of Mathematics, National
Taiwan Normal University, Taipei, 116, Taiwan
min@math.ntnu.edu.tw
Thu 15:50, Room C

We present an efficient null space free Jacobi-Davidson
method to compute the positive eigenvalues of the degenerate
elliptic operator arising from Maxwell’s equations. We con-
sider spatial compatible discretizations such as Yee’s scheme
which guarantee the existence of a discrete vector potential.
During the Jacobi-Davidson iteration, the correction process
is applied to the vector potential instead. The correction equa-
tion is solved approximately as in standard Jacobi-Davidson
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approach. The computational cost of the transformation from
the vector potential to the corrector is negligible. As a conse-
quence, the expanding subspace automatically stays out of the
null space and no extra projection step is needed. This new
method is mathematically equivalent to the standard Jacobi-
Davidson method for solving the corresponding generalized
eigenvalue problem but the expanding subspace automatically
stays out of the null space. Numerical evidence confirms that
the new method is much more efficient than the standard
Jacobi-Davidson method.

Joint work with Yin-Liang Huang (National Taiwan Univer-
sity), Wen-Wei Lin (National Chiao Tung University) and
Wei-Cheng Wang (National Tsing Hua University)

H-expansive matrices in indefinite inner product
spaces and their invariant subspaces
DB Janse van Rensburg, North-West University, Potchef-
stroom, South Africa
dawie.jansevanrensburg@nwu.ac.za
Tue 11:00, Room A

We consider indefinite inner products given by a square real
invertible symmetric matrix H = HT : [x, y] = (Hx, y), [1].
On the Euclidean space equipped with this indefinite inner
product, we consider matrices A for which A∗HA−H is non-
negative definite. Such matrices are called H-expansive ma-
trices.

We are interested in the construction of A-invariant maxi-
mal H-nonnegative and nonpositive subspaces. The complex
case has already been treated by means of a suitable Cayley
transform, [2]. The problem when A is real and A has both 1
and -1 as eigenvalues cannot be treated in a straightforward
way by means of Cayley transform. We propose a more direct
approach. The uniqueness and stability of these subspaces are
also studied.

[1] I. Gohberg, P. Lancaster, L. Rodman, Indefinite Linear
Algebra and Applications. Birkhäuser Verlag, Basel, 2005.
[2] J.H. Fourie, G. Groenewald and A.C.M. Ran. Positive
real matrices in indefinite inner product spaces and invariant
maximal semidefinite subspaces Linear Algebra and its
Applications, Vol. 424, (2007), 346-370.

Joint work with J.H. Fourie (NWU, Potchefstroom, SA), G.
Groenewald (NWU, Potchefstroom, SA), A.C.M. Ran (VU,
Amsterdam, NL)

The Development of Excel and Sage Math tools for
Linear Algebra
Kyung-Won Kim, Sungkyunkwan University, Korea
kwkim@skku.edu
Fri 15:25, Room A

It has been well-known that applications of technology is get-
ting more important for our Linear Algebra class. In partic-
ular, MS Excel and Sage Math have been a powerful tools on
E-learning environment of today. We will introduce what we
have done on the developement of MS Excel tools and Sage
Math tools for our Linear Algebra class. We would like share
our experiences in this talk.

On a confluent Vandermonde matrix polynomial
André Klein, University of Amsterdam, The Netherlands
a.a.b.klein@uva.nl
Mon 15:50, Room A

In a paper, [1], the null space of a Vandermonde matrix poly-
nomial of block Toeplitz type has been studied. This was

of relevance for the characterization of a matrix polynomial
equation having non-unique solutions. The origin of the prob-
lem can be retrieved in [2], where an interconnection between
the Fisher information matrix of an ARMAX process and a
solution to a Stein equation is established. We shall now con-
sider the problem by embedding the results in [1] in a much
more general approach to obtain properties of matrix poly-
nomials that can be viewed as generalizations of a confluent
Vandermonde matrix.

[1] A.Klein and P.Spreij, Recursive solution of certain
structured linear systems, SIAM Journal on Matrix Analysis
and Applications, Vol.29, No.4 (2007), 1191–1217.
[2] A.Klein and P.Spreij, On the solution of Stein’s equation
and Fisher’s information matrix of an ARMAX process,
Linear Algebra and its Applications, 396 (2005), 1–34.

Joint work with Peter Spreij (University of Amsterdam)

Solvability of regular pencils for quadratic inverse
eigenvalue problem
Yueh-Cheng Kuo, National University of Kaohsiung, Tai-
wan
yckuo@nuk.edu.tw
Fri 17:35, Auditorium

In this paper, we are interested in the study of solvability of
the quadratic inverse eigenvalue problem (QIEP) of dimen-
sion n. Let k∗ = (1 +

√
1 + 8n)/2 and 0 ≤ k < k∗, and

for m := n + k prescribed eigenpairs {(λj , xj)}mj=1, we prove
that, generically, there is a constructible nonsingular symmet-
ric quadratic pencil solution Q(λ) ≡ λ2M + λC + K to the
QIEP such that Q(λj)xj = 0 (j = 1, . . . ,m). If k∗ ≤ k ≤ n,
we show that, generically, all symmetric quadratic pencil so-
lutions are singular. We also derive the dimension of the so-
lution subspace of the QIEP for both cases. Furthermore, we
develop an algorithm for finding a symmetric positive definite
M for the QIEP if it exists.

Joint work with Yunfeng Cai (Peking University), Wen-Wei
Lin (National Chiao Tung University) and Shu-Fang Xu
(Peking University)

Jordan orthogonality homomorphisms on Hermitian
matrices.
B. Kuzma, 1University of Primorska, Slovenia, and 2IMFM
Slovenia.
bojan.kuzma@famnit.upr.si
Mon 12:15, Room B

One of the products to consider on complex Hermitian matri-
ces is the Jordan product AB+BA. We say that two Hermi-
tian matrices are Jordan-orthogonal if their Jordan product
vanishes. Additive maps which preserve Jordan orthogonality
on Hermitian matrices and their infinite-dimensional counter-
part, i.e., self-adjoint operators, have recently been investi-
gated by Hou and Zhao [1] on self-adjoint operators and by
Chebotar, Ke and Lee [2] on matrix rings with involution.

In applications it is imperative to obtain strong structural
results with the minimum possible assumptions. We thereby
classify homomorphisms of Jordan orthogonality on Hermi-
tian matrices, i.e. we classify maps (without additivity or
bijectivity assumptions) with the property that AB+BA = 0
implies the same condition on the images of matrices. We also
added one rather small, but unavoidable, technical assump-
tion that no nonzero matrix is annihilated. With such a lim-
ited restrictions on map we can not hope for a nice structural
result on the whole Hermitian matrices. Nonetheless, with the
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help of our results we could show that every nonconstant ho-
momorphism of Jordan product on Hermitian matrices (again
nor additivity nor bijectivity is assumed) is automatically a
linear Jordan isomorphism.

[1] L. Zhao, J. Hou, Zero-product preserving additive maps
on symmetric operator spaces and self-adjoint operator
spaces, Linear Alg. Appl., 399, pp. 235-244, 2005.
[2] M.A. Chebotar, W.-F. Ke, P.-H. Lee, N.-C. Wong,
Mappings preserving zero products, Studia Math., 155, pp.
7794, 2003.

Joint work with A. Fošner (IMFM Slovenia), N.-S. Sze (Dept.
of Applied Math., The Hong Kong Polytechnic University,
Humg Hom, Hong Kong), and T. Kuzma

Trace Inequalities for Logarithms and Powers of J-
Hermitian Matrices
R. Lemos, University of Aveiro, Portugal
rute@ua.pt
Mon 17:10, Room C

Some spectral inequalities are presented for the trace of log-
arithms, exponentials and powers of J-Hermitian matrices,
J = Ir ⊕−In−r, 0 < r < n. These inequalities are established
in the context of indefinite inner product spaces and they are
known to be valid for Hilbert space operators or operator al-
gebras.

Key words: Indefinite inner product space, J-Hermitian ma-
trix, relative entropy, Tsallis entropy, Klein inequality, Peierls-
Bogoliubov inequality.

Joint work with N. Bebiano (University of Coimbra), J.
Providência (University of Coimbra), G. Soares (University
of Trás-os-Montes e Alto Douro)

Integer partitions and linear systems over the ring of
real continuous functions defined on the unit circle
M. M. López-Cabeceira, University of León, Spain
mmlopc@unileon.es
Thu 15:00, Room B

A locally Brunovsky linear system is a reachable linear system
locally feedback equivalent to a classical canonical form.
Let R be the ring of real continuous functions defined on the
unit circle. We describe an algorithm for generating all locally
Brunovsky classes over R and give a bound of the number of
such classes through integer partitions with special conditions.

Generalized Krein Conditions on the Parameters of a
Strongly Regular Graph
Vasco Moço Mano, University of Porto, Portugal
c0881024@alunos.fc.up.pt
Thu 15:50, Room A

Let X be a strongly regular graph with three distinct eigen-
values. We associate a three dimensional Euclidean Jordan
algebra V to the adjacency matrix of X. Then we generalize
the Krein parameters of a strongly regular graph and obtain
some generalized Krein admissibility conditions for strongly
regular graphs.

[1] D. M. Cardoso and L. A. Vieira, Euclidean Jordan Alge-
bras with Strongly Regular Graphs, Journal of Mathematical
Sciences, Vol 120, pp. 881-894, 2004.
[2] J. H. van Lint and R. M. Wilson, A Course in Combina-
torics, Cambridge University Press, Cambridge, 2004.
[3] L. A. Vieira, Euclidean Jordan Algebras and Inequalities

on the Parameters of a Strongly Regular Graph, AIP Conf.
Proc. 1168, pp. 995-998, 2009.

Joint work with Domingos Cardoso (University of Aveiro,
CEOC), Enide Martins (University of Aveiro, CEOC), Luis
Vieira (University of Porto, CMUP)

Accurate eigenvalues of Said-Ball-Vandermonde ma-
trices
A. Marco, University of Alcalá, Spain
ana.marco@uah.es
Fri 11:00, Room Pacinotti

Said-Ball-Vandermonde matrices are a generalization of the
Vandermonde matrices arising when the power basis is re-
placed by the Said-Ball basis. When the nodes are inside the
interval (0, 1), then those matrices are strictly totally positive
[1]. In this work an algorithm for computing the bidiago-
nal decomposition of those Said-Ball-Vandermonde matrices
is presented, which allows us to use known algorithms for com-
puting the eigenvalues of totally positive matrices represented
by their bidiagonal decomposition [2]. The algorithm is shown
to be fast and to guarantee high relative accuracy. Some nu-
merical experiments which illustrate the good behaviour of
the algorithm are included.

[1] J. Delgado and J. M. Peña, On the generalized Ball bases,
Advances in Computational Mathematics, 24, pp. 263-280,
2006.
[2] P. Koev, Accurate eigenvalues and SVDs of totally
nonnegative matrices, SIAM Journal on Matrix Analysis and
Applications, 21, pp. 1-23, 2005.

Joint work with J. J. Mart́ınez (University of Alcalá)

Multi-way adaptive solution of parametric PDE
eigenvalue problems
Agnieszka Miedlar, TU Berlin, Germany
miedlar@math.tu-berlin.de
Mon 15:00, Room Fermi

In this talk we present a multi-way adaptive method for para-
metric eigenvalue problems. A posteriori error estimates for
eigenvalues and associated eigenfunctions for both self- and
non-selfadjoint problems will be introduced. These estimates
take into account an inexact solution of the corresponding al-
gebraic eigenvalue problem. In our adaptive algorithm we bal-
ance the discretization and algebraic error, and introduce the
efficient stopping criteria. Additionally, for the non-selfadjoint
problem we discuss a new computational procedure based on
the adaptive homotopy approach. This is partially a joint
work with C. Carstensen, J. Gedicke (HU Berlin, Germany).

Joint work with Volker Mehrmann (TU Berlin, Germany)

On the growth factor for generalised orthogonal ma-
trices
M. Mitrouli, University of Athens, Greece
mmitroul@math.uoa.gr
Mon 11:00, Room A

When Gaussian elimination is applied on a completely piv-
oted (CP) matrix A the growth factor is defined as g(n,A) =
max{p1,p2,...,pn}

|a11|
, where p1, p2, . . . , pn are the pivots of A. In

1968 Cryer [1] formulated the following conjecture.

g(n,A) ≤ n, with equality iff A is a Hadamard matrix.
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We will describe the progress on the equality part of this con-
jecture by presenting all the results concerning the growth
factor for Hadamard matrices Hn of dimension n, for binary
Hadamard matrices and for weighing matrices of order n and
weight k. The latest matrices can achieve moderate growth
factor. All these matrices are special cases of generalised or-
thogonal matrices. Also we will develop theoretical method-
ologies [3,4] computing the minors of the above type matrices
which can lead to numerical algorithms evaluating their piv-
ots. A great difficulty arises at the study of this problem be-
cause the pivot pattern is not invariant under H-equivalence.
In [2] the unique pivot pattern for H12 was presented and in [5]
all 34 possible pivot patterns of H16 were demonstrated the-
oretically and the complete pivoting conjecture for H16 was
proved. The determination of the pivot patterns for H20 and
for higher dimensions remains open.

[1] C.W. Cryer, Pivot size in Gaussian elimination, Numer.
Math., 12, pp. 335-345, 1968.
[2] A. Edelman and W. Mascarenhas, On the complete piv-
oting conjecture for a Hadamard matrix of order 12, Linear
Multilinear Algebra,38,pp. 181-187, 1995.
[3] C. Koukouvinos, E. Lappas, M. Mitrouli, and J. Se-
berry,An algorithm to find formulae and values of minors of
Hadamard matrices: II, Linear Algebra Appl., 371, pp. 111-
124, 2003.
[4] C. Kravvaritis and M. Mitrouli, Evaluation of Minors as-
sociated to weighing matrices, Linear Algebra Appl. 426 pp.
774-809, 2007.
[5] C. Kravvaritis and M. Mitrouli, The growth factor of a
Hadamard matrix of order 16 is 16, Numer. Linear Algebra
Appl., 16, pp. 715-743, 2009.

High Relative Accuracy Implicit Jacobi Algorithm for
the SVD
Juan M. Molera, Universidad Carlos III de Madrid, Spain
molera@math.uc3m.es
Mon 15:25, Room Fermi

We prove that a Jacobi-like algorithm applied implicitly on
a decomposition A = XDY T of a matrix A, where D is di-
agonal, and X,Y are well conditioned, computes all singular
values of A to high relative accuracy. The relative error in
every eigenvalue is bounded by O(εmax [κ(X), κ(Y )]), where
ε is the machine precision and κ(X) = ‖X‖2‖X−1‖2, κ(Y ) =
‖Y ‖2‖Y −1‖2 are, respectively, the spectral condition number
of X and Y . The singular vectors are also computed accu-
rately in the appropriate sense. We compare it with previous
algorithms for the same problem [1] and see that the new
algorithm is faster and more accurate. This work is an exten-
sion of the Jacobi implicit algorithm presented in [2] for the
symmetric eigenproblem.

[1] J. Demmel et al., Linear Algebra and its Applications,
299 (1999) 21-80
[2] F. M. Dopico, P. Koev and J. M. Molera, Numer. Math.
113 (2009) 519-553

Joint work with Froilán M. Dopico and Johan Ceballos (Uni-
versidad Carlos III de Madrid, Spain)

Tensor approach to mixed high-order moments of ab-
sorbing Markov chains
D. Nemirovsky, INRIA Sophia Antipolis - Méditerranée
danil.nemirovsky@gmail.com
Thu 15:50, Room B

Moments of an absorbing Markov chain are considered. First
moments and non-mixed second moments of the number of
visits are determined in classical textbooks such as the book
of J. Kemeny and J. Snell “Finite Markov Chains”. The
reason is that the first moments and the non-mixed second
moments can be easily expressed in a matrix form using the
fundamental matrix of the absorbing Markov chain. Since
the representation of the mixed moments of higher orders in
a matrix form is not straightforward, if ever possible, they
were not calculated. The gap is filled now. Tensor approach
to the mixed high-order moments is proposed and compact
closed-form expressions for the moments are discovered.

Computing Low Rank Approximations of Tensors
Mechie Nkengla, University of Illinois Chicago, USA
nkengla@msn.com
Mon 12:15, Room A

We work on reliable and efficient algorithms for the best low
rank approximation and decompositions of tensors. By ex-
ploring non-orthogonality required decompositions such as a
CUR-like method for tensor, we investigate the concept of
whether unfolding (or matricization) in a particular mode
makes a difference in the approximation scheme by experi-
mentation on very large data sets. We also show that by
padding the large data set with zeroes, the computational
cost of the least-square algorithm is improved. Heuristic based
methods such as this provide an advantage in terms of com-
putational complexities and we show that even without an
intrinsic bound on the approximation error, the approxima-
tions are quite acceptable.

Joint work with Shmuel Friedland (University of Illinois at
Chicago)

Exploiting structures in palindromic polynomial
eigenvalue problems
Vanni Noferini, University of Pisa, Italy
noferini@mail.dm.unipi.it
Fri 17:35, Room Fermi

Representing palindromic matrix polynomials in the Dickson
polynomial basis leads to structured generalized eigenvalue
problems. We propose a linearization of the latter problem
by means of a suitable matrix pencil having rank-structured
block coefficients. We discuss a stragegy, based on the QZ
method, to exploit this rank-structure and to tackle the asso-
ciated nonlinear eigenvalue problem.

Commuting and noncommuting graphs of matrices
over semirings
Polona Oblak, University of Ljubljana, Slovenia
polona.oblak@fri.uni-lj.si
Thu 17:35, Room C

The commuting graph Γ(S) of a set S is the graph, whose
vertex set is the set of all noncentral elements of S and x− y
is an edge in Γ(S) if xy = yx and x 6= y. Its complement is
called the noncommuting graph of S.

In the talk, we give diameters and girths of the commuting
and noncommuting graphs of certain subsets of matrices over
semirings, namely for the set of nilpotent matrices, invertible
matrices, noninvertible matrices and the full matrix semiring.

Joint work with David Dolžan (University of Ljubljana)

PageRank and Social Competences on Social Network
Sites
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F. Pedroche, Institut de Matemàtica Multidisciplinària.
Universitat Politècnica de València. Espanya.
pedroche@imm.upv.es
Wed 12:15, Room A

In this communication a new method to classify the users of an
SNS (Social Network Site) into groups is shown. The method
is based on the PageRank algorithm. Competitivity groups are
sets of nodes that compete among each other to gain PageR-
ank via the personalization vector. Specific features of the
SNSs (such as number of friends or activity of the users) can
modify the ranking inside each Competitivity group. We call
these features Social Competences. Some numerical examples
are shown.

[1] D. M. Boyd y N. B. Ellison. Social Network Sites: Def-
initions, History, and Scholarship. Journal of Computer-
Mediated Communication. 13 (2008) 210-230.
[2] R. Criado, J. Flores, M.I.Gonzlez-Vasco, J. Pello. Choos-
ing a leader on a complex network. Journal of Computational
and Applied Mathematics, 204 (2007) 10-17.
[3] V. Latora and M. Marchiori. How the science of com-
plex networks can help developing strategies against terror-
ism. Chaos, Solitons and Fractals, 20, (2004), 69-75.
[4] S. Serra-Capizzano. Jordan Canonical Form of the Google
Matrix: A Potential Contribution to the PageRank Compu-
tation. SIAM Journal on Matrix Analysis and Applications,
27-2,(2005), 305-312.

Computation of Canonical Forms and Miniversal De-
formations of Bimodal Dynamical Systems
M. Peña, Universitat Politècnica de Catalunya, Spain
marta.penya@upc.edu
Tue 17:35, Room B

Canonical forms for controllable bimodal dynamical linear
systerms (BDLS) have been used by different authors. The
uncontrollable case appears naturally, for example, when con-
sidering parametrized families of such systems, where the un-
controllability of some of their members can not be avoided
by means of a generic perturbation. Here we provide an algo-
rithm to obtain canonical forms for BDLS, both in the con-
trollable and uncontrollable cases, for n = 2 and n = 3, which
are the most frequent dimensions in the applications. We ap-
ply them to compute the miniversal deformation of a triple
defining a BDLS, in order to study its local perturbations and
bifurcation diagram.

[1] V. I. Arnold, On matrices depending on parameters.
Uspekhi Mat. Nauk., 26, 1971.
[2] V. Carmona, E. Freire, E. Ponce, F. Torres, On simplifying
and classifying piecewise linear systems, IEEE Trans. on
Circuits and Systems, 49, pp. 609-620, 2002.
[3] M. di Bernardo, C. J. Budd, A. Champneys, P. Kowalczyk,
Piecewise- Smooth Dynamical Systems, Springer-Verlag,
London, 2008.
[4] J. Ferrer, M. D. Magret, M. Peña, Bimodal piecewise lin-
ear systems. Reduced Forms, accepted in Int. J. Bifurcation
and Chaos.
[5] J. Ferrer, M. D. Magret, J. R. Pacha, M. Peña, Planar
Bimodal Piecewise Linear Systems. Bifurcation Diagrams,
submitted to Bolet́ın SEMA.
[6] A. Tannenbaum, Invariance and System Theory: Alge-
braic and Geometric Aspects, LNM 845, Springer Verlag,
1981.

Joint work with J. Ferrer, M. D. Magret, J. R. Pacha (Univer-
sitat Politècnica de Catalunya)

On the spectral radius of non-negative matrices
A. Peperko, University of Ljubljana, Slovenia
aljosa.peperko@fmf.uni-lj.si and aljosa.peperko@fs.uni-lj.si
Mon 15:25, Room B

Let K1, . . ., Kn be (infinite) non-negative matrices that define
operators on a Banach sequence space. Given a function f :
[0,∞)× . . .× [0,∞)→ [0,∞) of n variables, we define a non-
negative matrix f̂(K1, . . . ,Kn) and consider the inequality

r(f̂(K1, . . . ,Kn)) ≤ 1

n
(r(K1) + · · ·+ r(Kn)) ,

where r denotes the spectral radius. We find the largest func-
tion f for which this inequality holds for all K1, . . ., Kn. We
also obtain an infinite-dimensional extension of the result of
Cohen asserting that the spectral radius is a convex function
of the diagonal entries of a non-negative matrix.

[1] J.E. Cohen, Convexity of the dominant eigenvalue of an
essentially nonnegative matrix, Proc. Amer. Math. Soc, 81,
pp. 657-658, 1981.
[2] R. Drnovšek, A. Peperko, On the spectral radius of
positive operators on Banach sequence spaces, submitted to
Linear Algebra Appl.
[3] R. Drnovšek, A. Peperko, Inequalities for the Hadamard
weighted geometric mean of positive kernel operators on
Banach function spaces, Positivity, 10, pp. 613-626, 2006.
[4] L. Elsner, C.R. Johnson and J.A. Dias Da Silva, The
Perron root of a weighted geometric mean of nonnegative
matrices, Lin. Multilin. Alg., 24, pp. 1-13, 1989.
[5] T. Kato, Superconvexity of the spectral radius, and
convexity of the spectral bound and the type, Math. Z., 180,
pp. 265-273, 1982.
[6] A. Peperko, Inequalities for the spectral radius of non-
negative functions, Positivity, 13, 255-272, 2009.

Joint work with R. Drnovšek (University of Ljubljana, Slove-
nia)

Singular two-parameter eigenvalue problems and bi-
variate polynomial systems
B. Plestenjak, University of Ljubljana, Slovenia
bor.plestenjak@fmf.uni-lj.si
Mon 17:10, Room Fermi

It is well known that roots of a scalar polynomial p(x) are the
eigenvalues of its companion matrix. Therefore, one can apply
various numerical methods for the eigenproblem to compute
the roots of the polynomial.

We will generalize this approach to bivariate polynomial
systems

p1(x, y) = 0,
(1)

p2(x, y) = 0.

It is possible to construct matrices Ai, Bi, and Ci, such that
det(Ai + λBi + µCi) = pi(λ, µ) for i = 1, 2. The roots of
(1) are then the eigenvalues of the two-parameter eigenvalue
problem

A1x1 = λB1x1 + µC1x1,
(2)

A2x2 = λB2x2 + µC2x2.

The dimension of the matrices Ai, Bi and Ci is much larger
than the order of the polynomial pi and the two-parameter
eigenvalue problem (2) is singular. Recent results and numer-
ical methods for singular two-parameter eigenvalue problems
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[2,3] enable us to compute the finite eigenvalues of (2). Com-
bined with the Jacobi–Davidson approach [1], this might be
an alternative when we are interested only in part of the roots
that are close to a given target.

[1] M. E. Hochstenbach and B. Plestenjak, Harmonic
Rayleigh–Ritz extraction for the multiparameter eigenvalue
problem, Electron. Trans. Numer. Anal. 29 (2008),
pp. 81–96.
[2] A. Muhič and B. Plestenjak, On the quadratic two-
parameter eigenvalue problem and its linearization, to appear
in Linear Algebra Appl..
[3] A. Muhič and B. Plestenjak, On the singular two-
parameter eigenvalue problem, Electron. J. Linear Algebra,
18 (2009), pp. 420–437.

Joint work with A. Muhič (University of Ljubljana)

When several matrices share an invariant cone ?
V.Yu. Protasov, Moscow State University, Russia
v-protassov@yandex.ru
Mon 15:00, Room B

We analyze finite families of linear operators {A1, . . . , Am}
acting in Rd and sharing a common invariant cone in that
space, i.e., there is a closed pointed nondegenerate cone
K ⊂ Rd such that AiK ⊂ K for all i = 1, . . . ,m. Special prop-
erties of such families have found many applications in the
study of joint spectral radii, the Lyapunov exponents, com-
binatorics, graphs and large networks, etc. Operators with
a common invariant cone, act, in some sense, “in the same
direction” and inherit most of special properties of matrices
with nonnegative entries. We preset a sharp criterion for a
finite family of operators to possess a common invariant cone.
The criterion reduces the problem to equality of two special
numbers that depend on the family. In spite of theoretical
simplicity of the criterion, the practical implementation may
be difficult because of the high algorithmic complexity of the
problem. We show that the problem of existence of a com-
mon invariant cone for four matrices with integral entries is
algorithmically undecidable. This means that there is no al-
gorithm, which for any family of four matrices with integral
entries gives the answer “yes” or “no” within finite time. In
particular, this problem is NP-hard. On the other hand, some
corollaries of the criterion lead to simple sufficient and neces-
sary conditions for the existence of an invariant cone. Finally,
we formulate an approximative analogue of the problem and
introduce a “co-directional number” of several matrices. This
parameter is close to zero if and only if there is a small per-
turbation of matrices, after which they get an invariant cone.
An algorithm for its computation is presented.

The distance from a matrix polynomial to a pre-
scribed multiple eigenvalue
P. Psarrakos, National Technical University of Athens,
Greece
ppsarr@math.ntua.gr
Thu 12:15, Room A

The spectrum of an n × n matrix polynomial P (λ) =Pm
j=0 Ajλ

j (detAm 6= 0) is σ(P ) = {λ ∈ C : detP (λ) = 0}.
An eigenvalue λ0 ∈ σ(P ) is called multiple if its multiplicity as
a zero of detP (λ), that is, its algebraic multiplicity, is greater
than 1. Moreover, the geometric multiplicity of λ0 ∈ σ(P )
is the dimension of the null space of matrix P (λ0). In this
work, we are interested in perturbations of P (λ) of the form
Q(λ) =

Pm
j=0(Aj +∆j)λ

j , where the matrices ∆j ∈ Cn×n are

arbitrary. In particular, for a scalar µ ∈ C, we define a dis-
tance from P (λ) to µ as a multiple eigenvalue and a distance
from P (λ) to µ as an eigenvalue with geometric multiplicity
κ. Using the singular value decomposition of matrix P (µ), we
compute the first distance and an associated optimal pertur-
bation of P (λ). Moreover, for the second distance, we obtain
upper and lower bounds, constructing perturbations of P (λ)
that correspond to the upper bounds. Finally, numerical ex-
amples are presented to illustrate and evaluate our results.

Joint work with N. Papathanasiou (National Technical Uni-
versity of Athens)

Minimum polynomials and spaces of matrices with
special rank properties
Rachel Quinlan, National University of Ireland, Galway
rachel.quinlan@nuigalway.ie
Mon 11:50, Room B

Let V be a vector space of dimension n over a field K that ad-
mits cyclic extensions of degree n. Then V may be equipped
with the structure of a field extension L of K, with cyclic
Galois group 〈σ〉 of order n. From Artin’s theorem on lin-
ear independence of characters it follows that every K-linear
endomorphism of V has a unique expression of the form

a0id + a1σ + · · ·+ an−1σ
n−1, ai ∈ L.

Thus the K-linear endomorphisms of L can be identified with
“polynomial-type” expressions of degree at most n − 1 in σ.
If p(σ) is such an expression, we show that the kernel of the
endomorphism corresponding to p(σ) is at most equal to the
degree of p(σ). Furthermore, if W = 〈a1, a2, . . . ak〉, we show
that up to multiplication by an element of L× there is a unique
polynomial of degree k in σ that annihilates exactly W . Such
a polynomial is given by

mW (σ) = det

0BBB@
a1 a2 . . . ak id

σ(a1) σ(a2) . . . σ(ak) σ
...

...
...

...

σk(a1) σk(a2) . . . σk(ak) σk

1CCCA
By considering K-endomorphisms of V as L-linear combina-
tions of Galois group elements, it is possible to construct sub-
spaces with special rank properties of the space Mn(K) of
n × n matrices over K, and its subspaces An(k) of skew-
symmetric matrices and Sn(k) of symmetric matrices. For
example if n = 2m + 1 is odd, it can be shown that An(K)
contains a chain of subspaces

An(k) = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Am = 0.

with the property that Ai+1 has codimension n in Ai and
for each i < m the non-zero elements of Ai all have rank
exceeding 2i.

Joint work with R. Gow (University College Dublin)

Integral graphs with regularity constraints
P. Rama, University of Aveiro, Portugal
prama@ua.pt
Fri 16:45, Room C

Given a graph G = (V (G), E(G)), a subset of vertices ∅ 6= S ⊆
V (G) is a (k, τ)-regular set if S induces a k-regular subgraph
in G and every vertex v ∈ V (G) \ S has exactly τ neighbors
in S.
We characterize some known classes of integral graphs with
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(k, τ)-regular sets corresponding to all distinct eigenvalues and
identify some particular integral graphs with this property.
We also present some graph operations that generate integral
graphs with (k, τ)-regular sets for all distinct eigenvalues from
integral graphs with the same property.

Joint work with P. Carvalho (University of Aveiro)

The pair of operators T
[∗]
T and TT

[∗]
; J–dilations and

canonical forms.
A.C.M. Ran, Department of Mathematics, VU University
Amsterdam
ran@few.vu.nl
Tue 11:25, Room A

The problem of comparing the operators T
[∗]
T and TT

[∗]
in

indefinite inner product spaces has already attracted some
attention. One of the motivations was a result stating that a
matrix T admits polar decomposition if and only if the canon-

ical forms of T
[∗]
T and TT

[∗]
are the same. In the finite dimen-

sional situation canonical forms of the matrices in question
were considered for some special cases in [4]. Later on in [1]
a full description was provided. On the other hand, the infi-
nite dimensional case is far from being fully understood. For
example, zero can be a singular critical point of one of the
operators, while it is in the positive spectrum of the other
operator. Further examples can be found in [2], where the
notions of regular and singular critical point were studied for

the pair T
[∗]
T and TT

[∗]
. In this talk we present a method of

dilation (reduction) for the operator T , which is quite natural

for the study of the properties of T
[∗]
T and TT

[∗]
. This con-

struction has its origins in [3], and is similar to a construction
implicitly used in [1]. Both the infinite and the finite dimen-
sional case will be discussed, as well as an alternative proof of
one of the main results of [1].

[1] C. Mehl, V. Mehrmann, H. Xu, Structured decompositions
for matrix triples: SVD-like concepts for structured matrices.
Operators and Matrices, 3 (2009), 303-356.
[2] A.C.M. Ran, M. Wojtylak, Analysis of spectral points
of the operators T [∗]T and TT [∗] in a Krein space, Integral
Equations and Operator Theory, 63 (2009), 263-280.
[3] P. Jonas, H. Langer, B. Textorius, Models and unitary
equivalence of cyclic selfadjoint operators in Pontrjagin
spaces, Operator Theory: Advances and Applications, 59
(1992), 252-284.
[4] J.S. Kes, A.C.M. Ran, On the relation between XX [∗]

and X [∗]X in an indefinite inner product space, Operators
and Matrices, 1, No. 2 (2007), 181-197.

Joint work with M. Wojtylak

On the pole placement problem for singular systems
A. Roca, Politechnic University of Valencia, Spain
aroca@mat.upv.es
Tue 16:45, Room B

Given a singular system with outputs

Eẋ = Ax+Bu,
y = Cx,

E,A ∈ Fh×n, B ∈ Fh×m, C ∈ F p×n, and a monic homoge-
neous polynomial f ∈ F [x, y], we obtain necessary and suf-
ficient conditions for the existence of a state feedback ma-
trix F and an output injection K such that the state matrix

sE−(A+BF+KC) has f as characteristic polynomial, under
a regularizability condition on the system.

Joint work with F.C. Silva (University of Lisbon, Portugal)

Partitioned triangular tridiagonalization: rounding
error analysis
M. Rozložńık, Institute of Computer Science, Czech
Academy of Sciences, Prague, Czech Republic
miro@cs.cas.cz
Mon 15:50, Room Fermi

We consider a partitioned algorithm for reducing the sym-
metric matrix A to tridiagonal form, which computes a fac-
torization PAPT = LTLT where P is a permutation matrix,
L is lower triangular with a unit diagonal and bounded off-
diagonal elements, and T is symmetric tridiagonal. We show
that such a partitioned factorization is backward stable pro-
vided that the corresponding growth factor is not too large
(the entries can grow in the factor T ). The only slight change
with respect to the basic (nonpartitioned ) algorithm is in
the constant that includes the the size of partition which, on
the other hand, allows to exploit modern computer architec-
tures through the use of the level-3 BLAS. Experimental re-
sults demonstrate that such algorithm achieves approximately
the same level of performance as the blocked Bunch-Kaufman
code implemented in Lapack. The Bunch-Kaufman method
is also conditionally backward stable (assuming no or moder-
ate growth in triangular factors) making these two main ap-
proaches comparable also from the numerical stability point
of view.

[1] M. Rozloznik, G. Shklarski and S. Toledo: Partitioned
triangular tridiagonalization, to appear in ACM Transactions
on Mathematical Software.

Joint work with G. Shklarski and S. Toledo (Tel-Aviv Univer-
sity)

Single-input systems over von Neumann regular rings
A. Sáez-Schwedt, University of León, Spain
asaes@unileon.es
Thu 15:50, Room Galilei

This talk deals with the study of linear systems with scalars
in a commutative von Neumann regular ring, i.e. a zero-
dimensional ring with no nonzero nilpotents (for example
Z/(n), where n is a squarefree integer). It is shown that a
commutative ring is von Neumann regular if and only if any
single-input system is feedback equivalent to a special normal
form. This normal form, which can be obtained by an ex-
plicit algorithm, is associated to a collection of principal ideals
which determine completeley the structure of the reachability
submodule of the system.

K-hyperbolas and polynomial numerical hulls of nor-
mal matrices
Abbas Salemi, Shahid Bahonar University of Kerman, Ker-
man, Iran.
salemi@mail.uk.ac.ir
Fri 11:50, Room Galilei

Let A ∈ Mn be a normal matrix and let k ∈ N. In this note
we introduce the notions ”k-hyperbola” and ”k-hyperbolic re-
gion”. The polynomial numerical hull of order k, denoted by
V k(A) is characterized by the intersection of k-hyperbolic re-
gions. Also, the locus of V n−1(A) in the complex plane is
determined.
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[1] H.R. Afshin, M.A. Mehrjoofard and A. Salemi, Polyno-
mial numerical hulls of order 3, Electronic Journal of Linear
Algebra, 18(2009) 253-263.
[2] Ch. Davis, C. K. Li and A. Salemi, Polynomial numerical
hulls of matrices, Linear Algebra and its Applications,
428(2008) 137–153.
[3] A. Greenbaum, Generalizations of the field of values useful
in the study of polynomial functions of a matrix, Linear
Algebra and Its Applications, 347(2002) 233–249.
[4] O. Nevanlinna, Convergence of Iterations for Linear
Equations, Birkhäuser, Basel, 1993.

Joint work with Hamid Reza Afshin, Mohammad Ali
Mehrjoofard (Vali-E-Asr University of Rafsanjan, Rafsanjan,
Iran)

Spectra and cycles of length m in regular tournaments
of order n
S.V. Savchenko , L.D. Landau Institute for Theoretical
Physics, Russian Academy of Sciences
savch@itp.ac.ru
Fri 17:10, Room C

A tournament T is an orientation of a complete graph. A
tournament is regular if the out-set and in-set of each vertex
have the same number of vertices. Let cm(T ) be the number
of cycles of length m ≥ 3 in T. It is well known that any two
regular tournaments of (odd) order n have the same number
of cycles of length 3 (M.G. Kendall & B. Babington Smith,
1940). The case of m = 4 is more complicated. Let RLTn
be the unique regular locally transitive tournament of order
n and DRn be a doubly-regular tournament of this order.
According to the results of U. Colombo (1964) and B. Alspach
& C. Tabib (1982), for any regular tournament T of order n,
we have c4(DRn) ≤ c4(T ) ≤ c4(RLTn). In the present talk,
based on matrix methods, we show that 2c4(T ) + c5(T ) =
n(n− 1)(n+ 1)(n− 3)(n+ 3)/160. This implies c5(RLTn) ≤
c5(T ) ≤ c5(DRn) for any regular tournament T of order n.

Note that if m = 3, 4, 5, then mcm(T ) is equal to the trace
trm(T ) of the mth power of the adjacency matrix of T. While
6c6(T ) does not equal tr6(T ), we show that c6(T ) is also a
function of the spectrum of a regular tournament T. The corre-
sponding pure spectral expression for c6(T ) allows us to prove
the inequality c6(T ) ≤ c6(DRn) with equality holding if and
only if T = DRn or T = Kz7. We also determine the value of
c6(RLTn) and conjecture that this value is the minimum num-
ber of 6-cycles in the class of regular tournaments of order n.
Finally, we determine the coefficients at nm and nm−1 in the
expansion of the expression for both cm(DRn) and cm(RLTn)
in the case of arbitrary length m > 3. This allows us to state
that for a sufficiently large order n, cm(RLTn) < cm(DRn)
if m ≡ 1, 2, 3 mod 4, and cm(RLTn) > cm(DRn) if m ≡ 0
mod 4. In particular, the last inequality means that DRn can-
not be a maximizer of cm(T ) for each m ≥ 5.

Adjacency preserving maps
P. Šemrl, University of Ljubljana, Slovenia
peter.semrl@fmf.uni-lj.si
Tue 11:25, Room B

Two matrices are said to be adjacent if one is a rank one
perturbation of the other. The classical Hua’s theorems char-
acterize bijective maps on various matrix spaces preserving
adjacency in both directions. We will present some recently
obtained improvements of these results.

Spectral analysis of inexact constraint precondition-
ing for saddle point matrices
D. Sesana, University of Insubria, Como - Italy
debora.sesana@uninsubria.it
Fri 11:50, Room Pacinotti

Linear systems with nonsingular coefficient matrix of the form
A =

ˆ
A,BT ;B, 0

˜
, A ∈ Rn×n, B ∈ Rm×n, arise in many

applications associated with the numerical solution of saddle
point problems. We consider the case where A is symmetric
and highly indefinite, so that preconditioning is mandatory if
the associated system is to be solved with a Krylov subspace
method. In constrained optimization problems, precondition-
ers of the form

P =

»
In 0

BD−1 Im

– »
D 0
0 −H

– »
In D−1BT

0 Im

–
,

where D and H approximate A and BD−1BT , respectively,
are particularly effective. In several applications it is sufficient
to choose D to be a scaled multiple of the identity, so that
efforts focus on the approximation to BD−1BT , which often
cannot be computed explicitly [5].

In this talk we present a spectral analysis of the precon-
ditioned matrix P−1A as H moves away from its ideal and
computationally expensive version Hex = BD−1BT . Much
is known about the spectrum in the ideal case, characterized
by a rich spectral structure, with non-trivial Jordan blocks
and favourable real eigenvalue distribution [3, 4]. The spec-
tral analysis of the general though far more realistic case
H 6= BD−1BT has received less attention (see, e.g., [1, 2,
5]), possibly due to the difficulty of dealing with Jordan block
perturbations. We show that a two-step procedure allows one
to successfully handle this complex structure, revealing the
true spectral perturbation induced by a workable choice of H.

[1] H. S. Dollar, Constraint-style preconditioners for regular-
ized saddle-point problems, SIMAX, 29(2007), pp. 672–684.
[2] H. S. Dollar and A. J. Wathen, Approximate factorization
constraint preconditioners for saddle-point matrices, SISC,
27(2006), pp. 1555–1572.
[3] R. E. Ewing, R. D. Lazarov, P. Lu and P. S. Vassilevski,
Preconditioning indefinite systems ..., in Notes in Math.,
Springer, 1990, vol. 1457, pp. 28–43.
[4] L. Lukšan and J. Vlček, Indefinitely preconditioned
inexact Newton method for ..., Numer. Linear Algebra Appl.,
5(1998), pp.219–247.
[5] I. Perugia and V. Simoncini, Block-diagonal and indefinite
symmetric preconditioners ..., Numer. Linear Algebra Appl.,
7(2000), pp. 585–616.

Joint work with V. Simoncini (Università di Bologna)

Jacobi-type algorithms for the Hamiltonian eigen-
value problem
Ivan Slapnicar, Technical University Berlin, Germany
slapnica@math.tu-berlin.de
Mon 17:35, Room Fermi

We present recent results on Jacobi-type algorithms for real
Hamiltonian matrices. We describe both, real and complex
algorithms. The algorithms use orthogonal (unitary) and non-
orthogonal shear transformations. Convergence and accuracy
properties of the algorithms are discussed.

Computational aspects of the Moore-Penrose inverse
Alicja Smoktunowicz, Warsaw University of Technology,
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Poland
smok@mini.pw.edu.pl
Fri 15:00, Room Galilei

In the last years a number of fast algorithms for computing
the Moore-Penrose inverse of structured and block matrices
have been designed. There is a variety of new papers dealing
with numerical algorithms, whose authors neglect the issue
of numerical stability of their algorithms and focus only on
complexity (number of arithmetic operations). However, very
often they are not accurate up to the limitations of data and
conditioning of the problem.

In this talk we present a comparison of certain direct and
iterative algorithms for computing the Moore-Penrose inverse,
from the point of view of numerical stability and algebraic
complexity.

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses:
Theory and Applications, 2nd edn., Springer, New York,
2003.
[2] Å. Björck, Numerical Methods for Least Squares Prob-
lems, SIAM, Philadelphia, PA, USA, 1996.
[3] N.J. Higham, Accuracy and Stability of Numerical
Algorithms, SIAM, Philadelphia, 1996.
[4] T. Söderström and G.W. Stewart, On the numerical
properties of an iterative method for computing the Moore-
Penrose generalized inverse, SIAM J. Numer. Anal., 11, pp.
61-74, 1974.

Joint work with Iwona Wróbel (Warsaw University of Tech-
nology).

Solving large-scale nonnegative least-squares
S. Sra, Max Planck Institute for Biological Cybernetics,
Tübingen, Germany
suvrit@tuebingen.mpg.de
Fri 15:50, Room Galilei

We study the fundamental problem of nonnegative least
squares. This problem was apparently introduced by Law-
son and Hanson [1] under the name NNLS. As is evident
from its name, NNLS seeks least-squares solutions that are
also nonnegative. Owing to its wide-applicability numerous
algorithms have been derived for NNLS, beginning from the
active-set approach of Lawson and Hanson [1] leading up to
the sophisticated interior-point method of Bellavia et al. [2].
We present a new algorithm for NNLS that combines pro-
jected subgradients with the non-monotonic gradient descent
idea of Barzilai and Borwein [3]. Our resulting algorithm is
called BBSG, and we guarantee its convergence by exploiting
properties of NNLS in conjunction with projected subgradi-
ents. BBSG is surprisingly simple and scales well to large
problems. We substantiate our claims by empirically evaluat-
ing BBSG and comparing it with established convex solvers
and specialized NNLS algorithms. The numerical results sug-
gest that BBSG is a practical method for solving large-scale
NNLS problems.

[1] C. L. Lawson and R. J. Hanson. Solving Least Squares
Problems. Prentice-Hall. 1974.
[2] S. Bellavia, M. Macconi, and B. Morini. An interior point
Newton-like method for nonnegative least- squares problems
with degenerate solution. Numerical Linear Algebra with
Applications, 13(10):825–846, 2006.
[3] J. Barzilai and J. M. Borwein. Two-Point Step Size
Gradient Methods. IMA J. Numer. Analy., 8(1):141–148,
1988.

Joint work with D. Kim and I. S. Dhillon (University of Texas
at Austin)

The Sinkhorn-Knopp Fixed Point Problem with Pat-
terned Matrices
David Strong, Pepperdine University
David.Strong@Pepperdine.edu
Thu 17:10, Room B

We consider the Sinkhorn-Knopp Fixed Point Problem

(AT (A~x)(−1))(−1) = ~x

where (-1) is the entry-wise inverse of a vector. This problem
arises from work originally done in the 1960s by Sinkhorn and
Knopp [1] for transforming a matrix into a doubly stochas-
tic matrix by the pre- and post-multiplication of a matrix by
diagonal matrices: D1AD2. This process has a variety of ap-
plications, including most recently in web page rankings, e.g.
in a Google search. We have investigated the types of solu-
tions that arise in solving this fixed point equation both in the
general case and for specific types of matrices, in particular,
patterned matrices. The results in the circulant case are par-
ticularly interesting and exhibit a very cyclical behavior. We
share results for the circulant case and other cases involving
various other types of patterned matrices, and relate our re-
sults to the original problem of trying to transform a matrix
into a doubly stochastic one. The majority of this work was
done by undergraduates under my supervision.

[1] Richard Sinkhorn and Paul Knopp, Concerning nonnega-
tive matrices and doubly stochastic matrices, Pacific J. Math-
ematics 21 (1967), pp. 343 - 348.

Spectraloid operator polynomials, the approximate
numerical range and an Eneström-Kakeya theorem in
Hilbert space
J. Swoboda, Max-Planck-Institut für Mathematik, Bonn,
Germany
swoboda@mpim-bonn.mpg.de
Fri 11:00, Room Galilei

We study a class of operator polynomials in Hilbert space,
which are spectraloid in the sense that spectral radius and
numerical radius coincide. The focus is on the spectrum in
the boundary of the numerical range. As an application the
Eneström–Kakeya–Hurwitz theorem on zeros of real polyno-
mials is generalized to Hilbert space.

Joint work with H. K. Wimmer (Universität Würzburg, Ger-
many)

Bifurcation analysis of eigenvalues of polynomial ma-
trices smoothly depending on parameters
S. Tarragona, Universidad de León, Spain
soniatarragona@hotmail.com
Thu 11:25, Room A

Let P (λ) =
Pk
i=0 λ

iAi(p) be a family of monic polynomial
matrices smoothly dependent on a vector of real parameters
p = (p1, . . . , pn). In this work we study behavior of an eigen-
value of the monic polynomial family P (λ).

[1] A. P. Seyranian, A.A. Mailybaev, “Multiparameter Stabil-
ity Theory with Mechanical Applications” World Scientific,
Singapore, 2003.
[2] Ma

¯ I. Garćıa, Introducción a la Teoŕıa de Matrices
Polinomiales. Edicions UPC, Barcelona, 1999.
[3] I. Gohberg, P. Lancaster, L. Rodman, “Matrix Polynomi-
als”, Academic Press, New York, 1982.
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[4] G.W. Stewart, J. Sun, “Matrix Perturbation Theory”,
Academic Press, New York, 1990.

Joint work with M. I. Garćıa-Planas (Universitat Politècnica
de Catalunya)

A class of matrices generalizing the idempotent ones
N. Thome, Universidad Politécnica de Valencia, Spain
njthome@mat.upv.es
Tue 11:50, Room B

In the last years, the concept of idempotency, tripotency
and, in general, {k + 1}-potency has been studied from a
different point of view in the literature. For example, the
case when linear combination of two idempotent (tripotent,
{k+1}-idempotent) matrices is idempotent (tripotent, {k+1}-
idempotent) has been developed [1,2,3]. It seems to be natural
to extend the idea of {k+1}-potency. In this work, we present
such a generalization and we study this kind of matrices giving
some properties of them.

This paper has been partially supported by DGI grant
MTM2007-64477 and by grant Universidad Politécnica de Va-
lencia, PAID-06-09, Ref.: 2659.

[1] J.K. Baksalary, O.M. Baksalary. Idempotency of linear
combinations of two idempotent matrices. Linear Algebra
and its Applications 321, 3-7, 2000.
[2] J.K. Baksalary, O.M. Baksalary, G.P.H. Styan. Idempo-
tency of linear combinations of an idempotent matrix and a
tripotent matrix. Linear Algebra and its Applications 354,
21-34, 2002.
[3] J. Beńıtez, N. Thome. {k}-group periodic matrices. SIAM
J. Matrix Anal. Appl. 28, 1, 9-25, 2006.

Joint work with L. Lebtahi (Universidad Politécnica de Va-
lencia)

On efficient numerical approximation of the scattering
amplitude
P. Tichý, Czech Academy of Sciences, Czech Republic
tichy@cs.cas.cz
Tue 15:50, Room B

This talk presents results on efficient and numerically well-
behaved estimation of the scalar value c∗x, where c∗ denotes
the conjugate transpose of c and x solves the linear system
Ax = b, A ∈ CN×N is a nonsingular complex matrix and b
and c are complex vectors of length N . In other words, we
wish to estimate the scattering amplitude c∗A−1b .

In our understanding, various approaches for numerical ap-
proximation of the scattering amplitude can be viewed as
applications of the general mathematical concept of match-
ing moments model reduction, formulated and used in applied
mathematics by Vorobyev in his remarkable book [3]. Using
the Vorobyev moment problem, matching moments proper-
ties of Krylov subspace methods can be described in a very
natural and straightforward way, see [1]. This talk further
develops the ideas from [1] into efficient estimates of c∗A−1b,
see [2].

We briefly outline the matching moment property of the
Lanczos and Arnoldi algorithms, and specify techniques for
estimating c∗A−1b with A non-Hermitian, including a new al-
gorithm based on the BiCG method. We show its mathemat-
ical equivalence to the existing estimates which use a complex
generalization of Gauss quadrature, and discuss its numeri-
cal properties. The proposed estimate will be compared with
existing approaches using analytic arguments and numerical
experiments on a practically important problem that arises

from the computation of diffraction of light on media with
periodic structure.

[1] Z. Strakoš, Model reduction using the Vorobyev moment
problem, Numer. Algor., Vol. 51, pp. 363–379, July, 2009.
[2] Z. Strakoš and P. Tichý, On efficient numerical approx-
imation of the scattering amplitude c∗A−1b via matching
moments, submitted, 2009.
[3] Y. V. Vorobyev, Methods of moments in applied mathe-
matics, Gordon and Breach Science Publishers, New York,
1965.

Joint work with Z. Strakoš (Czech Academy of Sciences, Czech
Republic)

Computation of the greatest common divisor of poly-
nomials through Sylvester matrices and applications
in image deblurring
D. Triantafyllou, University of Athens, Greece
dtriant@math.uoa.gr
Fri 15:50, Room B

We present new, fast methods computing the greatest com-
mon divisor (GCD) of polynomials. We develop algorithms
computing in an efficient way the upper triangularization of
the Modified Sylvester (MS) [4] and Modified Generalized
Sylvester (MGS) matrix, resulting to the GCD of polynomi-
als. All methods are exploiting the special structure of MS and
MGS matrices, reducing by one order the required complexity
in case of several polynomials. For this case, we propose also
a fast parallel method for the computation of their GCD using
Housholders’ transformations, improving significant the com-
plexity of the classical procedure. The use of floating point
arithmetic can lead to incorrect GCDs. We study the behav-
ior of the numerical implementation of the methods in respect
of the inner accuracy εt of the procedures and the significant
digits that are used. Various values of these quantities many
times can lead to different GCDs or comprimeness [2]. The
complexity is computed for all methods and tables compar-
ing them with the known techniques [1,3] are given. All the
algorithms are tested for several sets of polynomials and the
results are summarized in tables, resulting to useful conclu-
sions. Finally, an interesting application in image deblurring
is given.

[1] S. Barnett, Greatest common divisor of several polynomi-
als, Proc. Cambridge Phil. Soc., 70, pp. 263-268, 1971.
[2] D. A. Bini and P. Boito P., Structured matrix-based
methods for polynomial ε-gcd: Analysis and comparisons,
ISSAC, pp. 9-16, 2007.
[3] I. S. Pace and S. Barnett, Comparison of algorithms for
calculation of g.c.d. of polynomials, Internat. J. System Sci.,
4, pp. 211-226, 1973.
[4] D. Triantafyllou and M. Mitrouli, Two Resultant Based
Methods Computing the Greatest Common Divisor of Two
Polynomials,LNCS,3401,pp.519-526,2005.

Joint work with M. Mitrouli (University of Athens)

A preconditioning approach to the Google pagerank
computing problem
F. Tudisco, Dept of Mathematics, University of Rome “Tor
Vergata”, Italy
tudisco.francesco@gmail.com
Wed 12:40, Room A

It is well known that the Google pagerank vector p can be
computed by solving a sparse linear system Ax = b. In this
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talk we first show that such system can be solved by the Euler-
Richardson (ER) method with the same computational com-
plexity of the power method (which is the standard algorithm
for computing p). Then we observe that, by the particular
structure of the Google matrix, only one eigenvalue of A is
responsible of the low rate of convergence of ER, and that
such eigenvalue can be removed by preconditioning A. In
fact, applying ER to A−1Ax = A−1b for a suitable choice of
the preconditioner A improves the convergence rate roughly
from 0.85k to 0.25k. Further studies to reduce the surplus of
operations per step are in progress.

Joint work with Carmine Di Fiore (difiore@mat.uniroma2.it)

Extreme Distance Field of Values Points: How to
Compute?
Frank Uhlig, Auburn University, Auburn, AL, USA
uhligfd@auburn.edu
Tue 15:25, Room B

The field of values F (A) = {x∗Ax ∈ C|x ∈ Cn} of a square n×
n matrix A contains highly useful information of A. How can
the extreme distance points of F (A) from zero be computed
for a given A? Why are these distances important?

In particular, why: the maximal distance, called the nu-
merical radius r(A), of points p in F (A) from zero determines
the transient behavior of the system governed by A while a
positive minimal distance between zero and F (A), called the
Crawford number, insures stability of the system. These re-
lated problems have quite different flavors: the spectral radius
can be achieved at multiple and even infinitely many points
on the boundary of F (A) regardless of where zero lies, but if
zero lies outside the field of values then the Crawford num-
ber is realized at only one point on the boundary of F (A).
And if zero lies inside F (A), then the (negative) generalized
Crawford number can occur at any number of F (A) boundary
points.

We explain and compare new fast and accurate vector and
geometry based algorithms with recent, but much slower op-
timization type algorithms for these two problems.

Lyapunov Equation Methods for Solving the Matrix
Nonlinear Schrödinger Equation
Cornelis van der Mee, Dip. Matematica e Informatica,
Università di Cagliari
cornelis@krein.unica.it
Thu 15:25, Room C

We derive exact n×m matrix solutions of the focusing matrix
nonlinear Schrödinger (NLS) equation

iut + uxx + 2uu†u = 0, (x, t) ∈ R2, (1)

by considering u(x, t) as the potential in the matrix Zakharov-
Shabat system

∂Ψ

∂x
(x, λ) =

„
iλIn −u(x, t)

u(x, t)† −iλIm

«
Ψ(x, λ), x ∈ R, (2)

and applying inverse scattering of Eq. (2) by solving the cou-
pled Marchenko integral equations. Exploiting the Hankel
structure of its integral kernels and representing them in the
form

Ω(x+ y) = Ce−(x+y)Ae4itA2
B (3)

for suitable matrix triplets (A,B,C), exact solutions u(x, t)
of Eq. (1) are obtained, requiring a careful analysis of two

Lyapunov matrix equations. Next, we discuss various trans-
formations to generate matrix NLS solutions from other such
solutions.

Joint work with Francesco Demontis (Università di Cagliari)

Matrix algebras can be spectrally equivalent with ill
conditioned Toeplitz matrices
P. Vassalos, Athens University of Economics and Business,
Greece
pvassal@aueb.gr
Fri 11:25, Room Pacinotti

In this work, we prove the existence of matrices, τn(f), belong-
ing to τ algebra that are spectrally equivalent with ill condi-
tioned Toeplitz matrices Tn(f). For that, we assume that the
generating function f is real valued, nonnegative, continuous,
with isolated roots of maximum order α ∈ R+. Specifically,
we prove that for 0 ≤ α ≤ 2 there exist a proper clustering of
the eigenvalues of τn(f)−1Tn(f) around unity. For 2 < α < 4,
a weak clustering for the spectrum of the aforemention matrix
is achieved, where the minimum eigenvalue is bounded from
bellow, while a constant number, independent of n, of eigen-
values tend to infinity. The results are generalized to cover
the more interesting, from theoretical and practical point of
view, case of Block Toeplitz with Toeplitz Blocks (BTTB),
matrices. Based on these theoretical statements we propose τ
preconditioners that lead to superlinear convergence both in
1D and 2D case when the condition number of the Toeplitz
matrix is o(n4). Finally, we show that the spectrally equiva-
lence also holds between circulant matrices and ill-conditioned
Toeplitz matrices. The main difference is that the continuous
symbol which generates the Toeplitz matrix should have dis-
crete roots of order less than 2. We perform many numerical
experiments, whose results confirm the validity of theoretical
analysis.

Joint work with D. Noutsos (University of Ioannina)

Francis’s Algorithm
David S. Watkins, Washington State University
watkins@wsu.edu
Mon 16:45, Room Fermi

Francis’s implicitly-shifted QR algorithm has for many years
been the most widely used algorithm for computing eigenval-
ues of matrices. The standard (and time-honored) method of
justifying Francis’s algorithm is to show that each iteration is
equivalent to a step (or several steps) of the explicitly-shifted
QR algorithm. In this talk we will argue that the standard
approach is unduly complicated. Instead one should argue
directly that Francis’s algorithm performs nested subspace it-
erations with a change of coordinate system at each step. This
is done by bringing to light the role of the nested Krylov sub-
spaces that lurk in the transforming matrices.

Block diagonalization for a matrix A when AR = RA
and Rk = I
James R. Weaver, Dept. of Mathematics/Statistics, Uni-
versity of West Florida, Pensacola, USA
jweaver@uwf.edu
Thu 15:00, Room Galilei

This article examines the block diagonalization of a n × n
complex matrix A when AR = RA for a general n×n complex
matrix Rwith the property that Rk = I for a positive integer
k. First find the Jordan Form for the matrix R, which is a
diagonal matrix D in the case Rk = I, and a corresponding
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transforming matrix P . This information is used to find a
block diagonalization of A given some additional information
about the matrix A.

Commutators with maximal Frobenius norm
D. Wenzel, Chemnitz University of Technology, Germany
david.wenzel@mathematik.tu-chemnitz.de
Fri 16:45, Auditorium

When investigating the commutator of two normed n×n ma-
trices, two situations are of special interest: the commuting
case (i.e. the commutator is zero) and the “maximal non-
commuting case” (in which the commutator has a norm as
large as possible). Regarding matrices at random typically
yields pairs very close to commutativity – especially if their
size n is large. Although actually none of these matrices really
commute, except for 2 × 2 matrices it is seemingly hopeless
to find a pair whose commutator admits Frobenius norm

√
2,

which is the known bound for the maximal situation.
We will present an explanation for that behaviour by de-

termining all pairs of real or complex matrices satisfying the
equality

‖XY − Y X‖F =
√

2‖X‖F‖Y ‖F.
The result is a surprisingly simple and meager, but also nicely
structured set. The talk is based on joint work with Che-Man
Cheng and Seak-Weng Vong.

[1] C.-M. Cheng, S.-W. Vong, D. Wenzel, Commutators with
maximal Frobenius norm, Linear Algebra Appl. 432 (2010)
292–306.

Joint work with Che-Man Cheng and Seak-Weng Vong (Uni-
versity of Macau)

Hyperinvariant, characteristic and marked subspaces
Harald Wimmer, Universität Würzburg, Germany
wimmer@mathematik.uni-wuerzburg.de
Mon 11:25, Room B

Abstract: Let V be a finite dimensional vector space
over a field K and f a K-endomorphism of V . We study
three types of f -invariant subspaces, namely hyperinvariant
subspaces, which are invariant under all endomorphisms of V
that commute with f , characteristic subspaces, which remain
fixed under all automorphisms of V that commute with f , and
marked subspaces, which have a Jordan basis (with respect
to f|X) that can be extended to a Jordan basis of V . We
show that a subspace is hyperinvariant if and only if it is
characteristic and marked. If K has more than two elements
then each characteristic subspace is hyperinvariant.

Joint work with Pudji Astuti (ITB Bandung)

Structured matrix methods for the computation of
multiple roots of inexact polynomials
Joab Winkler, University of Sheffield, United Kingdom
j.winkler@dcs.shef.ac.uk
Fri 15:00, Room B

This paper considers the application of structured matrix
methods for the calculation of a structured low rank approx-
imation of the Sylvester resultant matrix of two polynomials
that are corrupted by additive noise. It is shown that this low
rank approximation allows the computation of multiple roots
of inexact polynomials that have been corrupted by additive
noise, such that the multiplicities of the theoretically exact
roots are preserved. Particular problems occur with polyno-
mials whose coefficients vary widely in magnitude, and it is

shown that these polynomials must be processed prior to the
computation of their roots.

The talk will contain computational results that demon-
strate the theoretical analysis.

Joint work with Madina Hasan (University of Sheffield) and
Xin Lao (University of Sheffield)

On the numerical range of companion matrices
Iwona Wróbel, Warsaw University of Technology, Poland
wrubelki@wp.pl, i.wrobel@mini.pw.edu.pl
Fri 11:25, Room Galilei

It is known that the convex hull of the roots of a given polyno-
mial contains the roots of its derivative. This result is known
as the Gauss-Lucas theorem. We will investigate the possibil-
ity of generalizing it to the numerical range of companion ma-
trices and discuss the relation between the numerical ranges of
companion matrices of a polynomial and its derivative. Sev-
eral types of companion matrices will be considered.

Matrix inequalities associated with the data process-
ing inequality
Masahiro Yanagida, Tokyo University of Science, Japan
yanagida@rs.kagu.tus.ac.jp
Mon 16:45, Room C

In the cascade of two channels X → Y → Z, a refined version
of the data processing inequality of the form I(X,Z)

I(X,Y )
≤ c(A)

has been found by Evans and Schulman [1] for binary chan-
nels, where the bound c(A) (≤ 1 generally) depends only on
the channel matrix A of the second channel Y → Z. In this
report we give a general observation that may help us to find
such bounds for non-binary channels, and find one for a cer-
tain symmetric A.

[1] W. S. Evans and L. J. Schulman, Signal propagation and
noisy circuits, IEEE Trans. Inform. Theory 45 (1999), no. 7,
2367–2373.
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D. Stevanović, Mon 11:50, Room C, 15
Michael Stewart, Wed 11:00, Room Pacinotti, 6
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