A property of Rio's uniform dependence coefficients

Rita Giuliano

Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{A} a sub- σ-algebra of \mathcal{F} and X a random variable defined on (Ω, \mathcal{F}, P) and with values in a metric space (\mathcal{G}, δ). In [1] the following measure of dependence between X and \mathcal{A} is introduced:

Definition. Put

$$
\varphi(\mathcal{A}, X)=\sup _{f \in \mathcal{L}_{1}(\mathcal{G}, \delta)}\|\mathbf{E}[f(X) \mid \mathcal{A}]-\mathbf{E}[f(X)]\|_{\infty}
$$

where $\mathcal{L}_{1}(\mathcal{G}, \delta)$ is the set of 1-lipshitzian functions defined on (\mathcal{G}, δ) and taking values in $[0,1]$.
We call $\varphi(\mathcal{A}, X)$ the uniform Rio mixing coefficient between X and \mathcal{A}.
In the same paper [1] the uniform dependence coefficients of a sequence $\left(X_{i}\right)_{i \in \mathbb{Z}}$ of realvalued random variables defined on (Ω, \mathcal{F}, P) are defined as follows:

Definition. Let \mathcal{F}_{k} be the σ-algebra generated by $\left(X_{i}\right)_{i \leq k}$. Put $\varphi_{0}=1$ and, for every integer $r \geq 1$,

$$
\varphi_{r}=\sup _{\substack{k \in \mathbb{Z} \\ r \leq r_{1}<r_{2}<r_{3}}} \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right)
$$

Then $\left(\varphi_{r}\right)_{r \geq 0}$ is the sequence of the uniform dependence coefficients of $\left(X_{i}\right)_{i \in \mathbb{Z}}$.
Remark. The random vector $\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)$ takes values in the metric space $\left(\mathbb{R}^{3}, d\right)$, where d is the euclidean distance. In what follows we shall write $\mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$ in place of $\mathcal{L}_{1}\left(\mathbb{R}^{3}, d\right)$.

Let $\left.\left(X_{i}\right)_{i \geq 1}\right)$ be a random sequence, weakly dependent in the sense of Rio. Let $\left(\varphi_{r}\right)_{r \geq 0}$ be the sequence of the uniform dependence coefficient for $\left.\left(X_{i}\right)_{i \geq 1}\right)$. Let $\left(Y_{i}\right)_{i \geq 1}$ be an independent copy of $\left(X_{i}\right)_{i \geq 1}$. For a fixed integer p, define the sequence $\left(Z_{i}^{(\bar{p})}\right)_{i \in \mathbb{Z}}$ as follows

$$
Z_{i}^{(p)}= \begin{cases}Y_{i} & \text { for } i \leq p \\ X_{i} & \text { for } i \geq p+1\end{cases}
$$

Denote by $\left(\tilde{\varphi}_{r}^{(p)}\right)_{r \geq 0}$ the uniform dependence coefficients of the sequence $\left(Z_{i}^{(p)}\right)$. We shall prove the following (rather natural) result
(1) Proposition. For every integer $r \geq 0$ we have

$$
\sup _{p \in \mathbb{N}} \tilde{\varphi}_{r}^{(p)} \leq \varphi_{r}
$$

We need some preliminary lemmas.
(2) Lemma. Let U, V, W be three random vectors, such that V is independent on (U, W). Then

$$
\mathbf{E}[U \mid(V, W)]=\mathbf{E}[U \mid W]
$$

Proof. We assume for definiteness that V (resp. W) takes its values in the measurable space $(E, \mathcal{E})(\operatorname{resp} .(G, \mathcal{G}))$.
Put $Z=\mathbf{E}[U \mid W] . Z$ is measurable with respect to W, hence of the form $Z=\psi(W)$ for some measurable function ψ; since W and V are independent, also $Z=\psi(W)$ and V are independent. Moreover Z, being measurable with respect to W, is measurable with respect to (V, W) since $\sigma(W) \subseteq \sigma(V, W)$.
Let now $A \in \mathcal{E}$ and $B \in \mathcal{G}$. The statement follows from the equalities

$$
\begin{aligned}
& \int_{\{V \in A, W \in B\}} U d P=\int 1_{A}(V) 1_{B}(W) U d P=P(V \in A) \int 1_{B}(W) U d P \\
& =P(V \in A) \int_{\{W \in B\}} U d P=P(V \in A) \int_{\{W \in B\}} Z d P=P(V \in A) \int 1_{B}(W) Z d P \\
& =\int 1_{A}(V) 1_{B}(W) Z d P=\int_{\{V \in A, W \in B\}} Z d P .
\end{aligned}
$$

In the above relations, the second equality follows from the independence of V and (U, W), the fourth one from the fact that $Z=\mathbf{E}[U \mid W]$ and the sixth one from the independence of V and (Z, W).
(3) Lemma. Let U, V and W be three random vectors, taking values respectively in the measurable spaces $(E, \mathcal{E}),(F, \mathcal{F}),(G, \mathcal{G})$. Assume that U is independent on (V, W), and let $f: E \times G, \mathcal{E} \otimes \mathcal{G} \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function such that $\mathbf{E}[|f(U, W)|]$ is finite. For $y \in G$, put $g(y)=\mathbf{E}[f(U, y)]$. Then

$$
\mathbf{E}[f(U, W) \mid V]=\mathbf{E}[g(W) \mid V] .
$$

Proof. It will be enough to prove that, for every $A \in \mathcal{F}$, we have

$$
\int_{\{V \in A\}} f(U, W) d P=\int_{\{V \in A\}} g(W) d P
$$

Now, since U is independent on (V, W), the joint law of (U, V, W) is equal to $\mu_{U} \otimes \mu_{(V, W)}$ (where μ_{U} is the law of U and $\mu_{(V, W)}$ the law of (V, W)). Hence, by Fubini's Theorem,

$$
\begin{aligned}
& \int_{\{V \in A\}} f(U, W) d P=\int f(u, w) 1_{A}(v) \mu_{U}(d u) \otimes \mu_{(V, W)}(d v, d w) \\
& =\int 1_{A}(v) \mu_{(V, W)}(d v, d w) \int f(u, w) \mu_{U}(d u) \\
& =\int 1_{A}(v) \mu_{(V, W)}(d v, d w) \mathbf{E}[f(U, w)] \\
& =\int 1_{A}(v) \mu_{(V, W)}(d v, d w) g(w)=\int 1_{A}(V) g(W) d P=\int_{\{V \in A\}} g(W) d P .
\end{aligned}
$$

We pass to the proof of Proposition (1). Put $\mathcal{G}_{k}=\sigma\left(Z_{i}, i \leq k\right)$. We must evaluate

$$
\tilde{\varphi}_{r}=\sup _{\substack{k \in \mathbb{Z} \\ r \leq r_{1}<r_{2} \leq r_{3}}} \varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right)
$$

and we shall prove that

$$
\varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right) \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right)
$$

for every k (see relations (4), (8), (10) and (15)); we distinguish three cases
(i) $k=p$. For every function $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$ we have

$$
\mathbf{E}\left[f\left(Z_{p+r_{1}}, Z_{p+r_{2}}, Z_{p+r_{3}}\right) \mid \mathcal{G}_{p}\right]=\mathbf{E}\left[f\left(Z_{p+r_{1}}, Z_{p+r_{2}}, Z_{p+r_{3}}\right)\right]
$$

since $\left(Z_{p+r_{1}}, Z_{p+r_{2}}, Z_{p+r_{3}}\right)$ is independent on $\mathcal{G}_{p}=\sigma\left(Z_{i}, i \leq p\right)$.
It follows that

$$
\begin{equation*}
\varphi\left(\mathcal{G}_{p},\left(Z_{p+r_{1}}, Z_{p+r_{2}}, Z_{p+r_{3}}\right)\right)=0 \leq \varphi\left(\mathcal{F}_{p},\left(X_{p+r_{1}}, X_{p+r_{2}}, X_{p+r_{3}}\right)\right) . \tag{4}
\end{equation*}
$$

(ii) $k>p$. Put

$$
\begin{gather*}
U=\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{2}}\right)=\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{2}}\right) ; \tag{5}\\
W=\left(X_{p+1}, \ldots, X_{k}\right), \quad V=\left(\ldots,, Y_{-1}, Y_{0}, Y_{1}, \ldots, Y_{p}\right) .
\end{gather*}
$$

Then (U, W) is independent on V, and $\sigma(V, W)=\mathcal{G}_{k}$. Applying Lemma (2) we find, for every $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$,

$$
\begin{align*}
& \left\|\mathbf{E}\left[f(U) \mid \mathcal{G}_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty}=\|\mathbf{E}[f(U) \mid(V, W)]-\mathbf{E}[f(U)]\|_{\infty} \\
= & \|\mathbf{E}[f(U) \mid W]-\mathbf{E}[f(U)]\|_{\infty}=\left\|\mathbf{E}\left[f(U) \mid X_{p+1}, \ldots, X_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty} \tag{6}\\
= & \left\|\mathbf{E}\left[\mathbf{E}\left[f(U) \mid \mathcal{F}_{k}\right] \mid X_{p+1}, \ldots, X_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty} \\
= & \left\|\mathbf{E}\left[\left\{\mathbf{E}\left[f(U) \mid \mathcal{F}_{k}\right]-\mathbf{E}[f(U)]\right\} \mid X_{p+1}, \ldots, X_{k}\right]\right\|_{\infty},
\end{align*}
$$

since $\sigma\left(X_{p+1}, \ldots, X_{k}\right) \subseteq \mathcal{F}_{k}$. The last member above is less or equal to

$$
\begin{align*}
\left\|\mathbf{E}\left[f(U) \mid \mathcal{F}_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty} & \leq \sup _{f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)}\left\|\mathbf{E}\left[f(U) \mid \mathcal{F}_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty} \tag{7}\\
& =\varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right)
\end{align*}
$$

From (6) and (7) we conclude that, for every $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$,

$$
\left\|\mathbf{E}\left[f(U) \mid \mathcal{G}_{k}\right]-\mathbf{E}[f(U)]\right\|_{\infty} \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right)
$$

and finally, by taking the supremum with respect to $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$ in the first member (recall relation (5)),

$$
\begin{align*}
\varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right) & =\varphi\left(\mathcal{G}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right. \\
& \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right) . \tag{8}
\end{align*}
$$

(iii) $k<p$. We have

$$
\begin{aligned}
& \tilde{\varphi}_{r}^{(p)}=\sup _{k \in \mathbb{Z}} \varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right) \\
& =\sup _{r \leq r_{1} \leq r_{3}} \sup _{k \in r_{1} \leq r_{3}} \varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right) .
\end{aligned}
$$

The inner supremum can be written as

$$
\begin{equation*}
\left(\sup _{\substack{k \in \mathbb{Z} \\ k+r_{1} \geq p+1}} \varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right)\right) \vee\left(\sup _{\substack{k \in \mathbb{Z} \\ k+r_{1} \leq p}} \varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right)\right) ; \tag{9}
\end{equation*}
$$

now, if $k+r_{1} \geq p+1$, we have

$$
\begin{equation*}
\varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right)=0 \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right) \tag{10}
\end{equation*}
$$

in fact $k+r_{1} \geq p+1>k+1$ and $\mathcal{G}_{k}=\sigma\left(Z_{i}, i \leq k\right)=\sigma\left(Y_{i}, i \leq k\right)$ (recall that $\left.k<p\right)$, so that $\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)=\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)$ and \mathcal{G}_{k} are independent and relation (10) follows by the same argument used in point (i).

Now we evaluate $\varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right)$ for $k+r_{1} \leq p$.
In order to fix ideas, assume for the moment that $k+r_{1} \leq p<p+1 \leq k+r_{2}<k+r_{3}$, and put

$$
\begin{gathered}
U=\left(X_{k+r_{2}}, X_{k+r_{3}}\right)=\left(Z_{k+r_{2}}, Z_{k+r_{3}}\right), \quad W=Y_{k+r_{1}}=Z_{k+r_{1}} \\
V=\left(\ldots, Y_{-1}, Y_{0}, \ldots, Y_{k}\right)=\left(\ldots, Z_{-1}, Z_{0}, \ldots, Z_{k}\right)
\end{gathered}
$$

Then U is independent on $(V, W), \mathcal{G}_{k}=\sigma(V)$, and we can apply Lemma (3), so obtaining, for every $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$,

$$
\begin{align*}
\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right) \mid \mathcal{G}_{k}\right] & =\mathbf{E}[f(W, U) \mid V]=\mathbf{E}[g(W) \mid V]= \\
& =\mathbf{E}\left[g\left(Y_{k+r_{1}}\right) \mid \mathcal{G}_{k}\right], \tag{11}
\end{align*}
$$

where $g(y)=\mathbf{E}\left[f\left(y, X_{k+r_{2}}, X_{k+r_{3}}\right)\right]$. By taking expectation of both members of (11), we get also

$$
\begin{equation*}
\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right]=\mathbf{E}\left[g\left(Y_{k+r_{1}}\right)\right] . \tag{12}
\end{equation*}
$$

From (11) and (12) we deduce

$$
\begin{align*}
& \left\|\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right) \mid \mathcal{G}_{k}\right]-\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right]\right\|_{\infty} \\
= & \left\|\mathbf{E}\left[g\left(Y_{k+r_{1}}\right) \mid \mathcal{G}_{k}\right]-\mathbf{E}\left[g\left(Y_{k+r_{1}}\right)\right]\right\|_{\infty} \tag{13}\\
= & \left\|\mathbf{E}\left[g\left(X_{k+r_{1}}\right) \mid \mathcal{F}_{k}\right]-\mathbf{E}\left[g\left(X_{k+r_{1}}\right)\right]\right\|_{\infty}
\end{align*}
$$

since $\mathcal{G}_{k}=\sigma\left(Y_{i}, i \leq k\right)$ and $\left(X_{i}\right)_{i \in \mathbb{Z}}$ and $\left(Y_{i}\right)_{i \in \mathbb{Z}}$ have the same law.
Since the function $\tilde{g}:(s, t, v) \mapsto g(s)$ belongs to $\mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$, the last member in relation (13) is less or equal to

$$
\begin{align*}
& \sup _{f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)}\left\|\mathbf{E}\left[f\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right) \mid \mathcal{F}_{k}\right]-\mathbf{E}\left[f\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right]\right\|_{\infty} \tag{14}\\
& =\varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right) .
\end{align*}
$$

From (13) and (14) we conclude that

$$
\begin{aligned}
& \left\|\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right) \mid \mathcal{G}_{k}\right]-\mathbf{E}\left[f\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right]\right\|_{\infty} \\
& \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right)
\end{aligned}
$$

and taking the supremum with respect to $f \in \mathcal{L}_{1}\left(\mathbb{R}^{3}\right)$ in the first member of the above relation, we get

$$
\begin{equation*}
\varphi\left(\mathcal{G}_{k},\left(Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}}\right)\right) \leq \varphi\left(\mathcal{F}_{k},\left(X_{k+r_{1}}, X_{k+r_{2}}, X_{k+r_{3}}\right)\right) . \tag{15}
\end{equation*}
$$

The above argument can be repeated word by word if $k+r_{1}<k+r_{2} \leq p<p+1 \leq k+r_{3}$; it becomes even easier if $k+r_{1}<k+r_{2}<k+r_{3} \leq p$.

The proof of Proposition (1) is concluded.

References

[1] Rio E., (1996) Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes, Probab. Theory Relat. Fields, 104, 255-282. MR1373378 (96k:60061)

