A property of Rio's uniform dependence coefficients

RITA GIULIANO

Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{A} a sub- σ -algebra of \mathcal{F} and X a random variable defined on (Ω, \mathcal{F}, P) and with values in a metric space (\mathcal{G}, δ) . In [1] the following measure of dependence between X and \mathcal{A} is introduced:

DEFINITION. Put

$$\varphi(\mathcal{A}, X) = \sup_{f \in \mathcal{L}_1(\mathcal{G}, \delta)} \left| \left| \mathbf{E}[f(X)|\mathcal{A}] - \mathbf{E}[f(X)] \right| \right|_{\infty},$$

where $\mathcal{L}_1(\mathcal{G}, \delta)$ is the set of 1-lipshitzian functions defined on (\mathcal{G}, δ) and taking values in [0, 1].

We call $\varphi(\mathcal{A}, X)$ the uniform Rio mixing coefficient between X and \mathcal{A} .

In the same paper [1] the uniform dependence coefficients of a sequence $(X_i)_{i \in \mathbb{Z}}$ of realvalued random variables defined on (Ω, \mathcal{F}, P) are defined as follows:

DEFINITION. Let \mathcal{F}_k be the σ -algebra generated by $(X_i)_{i \leq k}$. Put $\varphi_0 = 1$ and, for every integer $r \geq 1$,

$$\varphi_r = \sup_{\substack{k \in \mathbb{Z} \\ r \le r_1 < r_2 < r_3}} \varphi \Big(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) \Big).$$

Then $(\varphi_r)_{r>0}$ is the sequence of the uniform dependence coefficients of $(X_i)_{i\in\mathbb{Z}}$.

REMARK. The random vector $(X_{k+r_1}, X_{k+r_2}, X_{k+r_3})$ takes values in the metric space (\mathbb{R}^3, d) , where d is the euclidean distance. In what follows we shall write $\mathcal{L}_1(\mathbb{R}^3)$ in place of $\mathcal{L}_1(\mathbb{R}^3, d)$.

Let $(X_i)_{i\geq 1}$ be a random sequence, weakly dependent in the sense of Rio. Let $(\varphi_r)_{r\geq 0}$ be the sequence of the uniform dependence coefficient for $(X_i)_{i\geq 1}$. Let $(Y_i)_{i\geq 1}$ be an independent copy of $(X_i)_{i\geq 1}$. For a fixed integer p, define the sequence $(Z_i^{(p)})_{i\in\mathbb{Z}}$ as follows

$$Z_i^{(p)} = \begin{cases} Y_i & \text{for } i \le p \\ \\ X_i & \text{for } i \ge p+1. \end{cases}$$

Denote by $(\tilde{\varphi}_r^{(p)})_{r\geq 0}$ the uniform dependence coefficients of the sequence $(Z_i^{(p)})$. We shall prove the following (rather natural) result

(1) PROPOSITION. For every integer $r \ge 0$ we have

$$\sup_{p\in\mathbb{N}}\tilde{\varphi}_r^{(p)}\leq\varphi_r$$

We need some preliminary lemmas.

(2) LEMMA. Let U, V, W be three random vectors, such that V is independent on (U, W). Then

$$\mathbf{E}[U|(V,W)] = \mathbf{E}[U|W]$$

PROOF. We assume for definiteness that V (resp. W) takes its values in the measurable space (E, \mathcal{E}) (resp. (G, \mathcal{G})).

Put $Z = \mathbf{E}[U|W]$. Z is measurable with respect to W, hence of the form $Z = \psi(W)$ for some measurable function ψ ; since W and V are independent, also $Z = \psi(W)$ and V are independent. Moreover Z, being measurable with respect to W, is measurable with respect to (V, W) since $\sigma(W) \subseteq \sigma(V, W)$.

Let now $A \in \mathcal{E}$ and $B \in \mathcal{G}$. The statement follows from the equalities

$$\begin{split} &\int_{\{V \in A, W \in B\}} U \, dP = \int \mathbf{1}_A(V) \mathbf{1}_B(W) U \, dP = P(V \in A) \int \mathbf{1}_B(W) U \, dP \\ &= P(V \in A) \int_{\{W \in B\}} U \, dP = P(V \in A) \int_{\{W \in B\}} Z \, dP = P(V \in A) \int \mathbf{1}_B(W) Z \, dP \\ &= \int \mathbf{1}_A(V) \mathbf{1}_B(W) Z \, dP = \int_{\{V \in A, W \in B\}} Z \, dP. \end{split}$$

In the above relations, the second equality follows from the independence of V and (U, W), the fourth one from the fact that $Z = \mathbf{E}[U|W]$ and the sixth one from the independence of V and (Z, W).

(3) LEMMA. Let U, V and W be three random vectors, taking values respectively in the measurable spaces $(E, \mathcal{E}), (F, \mathcal{F}), (G, \mathcal{G})$. Assume that U is independent on (V, W), and let $f : E \times G, \mathcal{E} \otimes \mathcal{G} \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function such that $\mathbf{E}[|f(U, W)|]$ is finite. For $y \in G$, put $g(y) = \mathbf{E}[f(U, y)]$. Then

$$\mathbf{E}[f(U, W)|V] = \mathbf{E}[g(W)|V].$$

PROOF. It will be enough to prove that, for every $A \in \mathcal{F}$, we have

$$\int_{\{V \in A\}} f(U, W) dP = \int_{\{V \in A\}} g(W) dP.$$

Now, since U is independent on (V, W), the joint law of (U, V, W) is equal to $\mu_U \otimes \mu_{(V,W)}$ (where μ_U is the law of U and $\mu_{(V,W)}$ the law of (V, W)). Hence, by Fubini's Theorem,

$$\begin{split} &\int_{\{V \in A\}} f(U, W) dP = \int f(u, w) 1_A(v) \mu_U(du) \otimes \mu_{(V, W)}(dv, dw) \\ &= \int 1_A(v) \mu_{(V, W)}(dv, dw) \int f(u, w) \mu_U(du) \\ &= \int 1_A(v) \mu_{(V, W)}(dv, dw) \mathbf{E}[f(U, w)] \\ &= \int 1_A(v) \mu_{(V, W)}(dv, dw) g(w) = \int 1_A(V) g(W) dP = \int_{\{V \in A\}} g(W) dP. \end{split}$$

We pass to the proof of Proposition (1). Put $\mathcal{G}_k = \sigma(Z_i, i \leq k)$. We must evaluate

$$\tilde{\varphi}_r = \sup_{\substack{k \in \mathbb{Z} \\ r \le r_1 < r_2 \le r_3}} \varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})),$$

and we shall prove that

$$\varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})) \le \varphi(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}))$$

for every k (see relations (4), (8), (10) and (15)); we distinguish three cases (i) k = p. For every function $f \in \mathcal{L}_1(\mathbb{R}^3)$ we have

$$\mathbf{E}[f(Z_{p+r_1}, Z_{p+r_2}, Z_{p+r_3})|\mathcal{G}_p] = \mathbf{E}[f(Z_{p+r_1}, Z_{p+r_2}, Z_{p+r_3})]$$

since $(Z_{p+r_1}, Z_{p+r_2}, Z_{p+r_3})$ is independent on $\mathcal{G}_p = \sigma(Z_i, i \leq p)$. It follows that

(4)
$$\varphi(\mathcal{G}_p, (Z_{p+r_1}, Z_{p+r_2}, Z_{p+r_3})) = 0 \le \varphi(\mathcal{F}_p, (X_{p+r_1}, X_{p+r_2}, X_{p+r_3})).$$

(ii) k > p. Put

(5)
$$U = (X_{k+r_1}, X_{k+r_2}, X_{k+r_2}) = (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_2});$$

$$W = (X_{p+1}, \dots, X_k), \qquad V = (\dots, Y_{-1}, Y_0, Y_1, \dots, Y_p)$$

Then (U, W) is independent on V, and $\sigma(V, W) = \mathcal{G}_k$. Applying Lemma (2) we find, for every $f \in \mathcal{L}_1(\mathbb{R}^3)$,

(6)

$$\begin{aligned} \left\| \mathbf{E}[f(U)|\mathcal{G}_{k}] - \mathbf{E}[f(U)] \right\|_{\infty} &= \left\| \mathbf{E}[f(U)|(V,W)] - \mathbf{E}[f(U)] \right\|_{\infty} \\ &= \left\| \mathbf{E}[f(U)|W] - \mathbf{E}[f(U)] \right\|_{\infty} &= \left\| \mathbf{E}[f(U)|X_{p+1}, \dots, X_{k}] - \mathbf{E}[f(U)] \right\|_{\infty} \\ &= \left\| \mathbf{E}[\mathbf{E}[f(U)|\mathcal{F}_{k}]|X_{p+1}, \dots, X_{k}] - \mathbf{E}[f(U)] \right\|_{\infty} \\ &= \left\| \mathbf{E}[\{\mathbf{E}[f(U)|\mathcal{F}_{k}] - \mathbf{E}[f(U)]\} \|X_{p+1}, \dots, X_{k}] \right\|_{\infty}, \end{aligned}$$

since $\sigma(X_{p+1},\ldots,X_k) \subseteq \mathcal{F}_k$. The last member above is less or equal to

(7)
$$\left\| \mathbf{E}[f(U)|\mathcal{F}_k] - \mathbf{E}[f(U)] \right\|_{\infty} \leq \sup_{f \in \mathcal{L}_1(\mathbb{R}^3)} \left\| \mathbf{E}[f(U)|\mathcal{F}_k] - \mathbf{E}[f(U)] \right\|_{\infty} \\ = \varphi \Big(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) \Big).$$

From (6) and (7) we conclude that, for every $f \in \mathcal{L}_1(\mathbb{R}^3)$,

$$\left\| \left| \mathbf{E}[f(U)|\mathcal{G}_k] - \mathbf{E}[f(U)] \right\|_{\infty} \le \varphi \left(\mathcal{F}_k, \left(X_{k+r_1}, X_{k+r_2}, X_{k+r_3} \right) \right),\right\|_{\infty}$$

and finally, by taking the supremum with respect to $f \in \mathcal{L}_1(\mathbb{R}^3)$ in the first member (recall relation (5)),

(8)
$$\varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})) = \varphi(\mathcal{G}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) \\ \leq \varphi(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3})).$$

(iii) k < p. We have

$$\begin{split} \tilde{\varphi}_{r}^{(p)} &= \sup_{\substack{k \in \mathbb{Z} \\ r \leq r_{1} < r_{2} \leq r_{3}}} \varphi(\mathcal{G}_{k}, (Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}})) \\ &= \sup_{r \leq r_{1} < r_{2} \leq r_{3}} \quad \sup_{k \in \mathbb{Z}} \varphi(\mathcal{G}_{k}, (Z_{k+r_{1}}, Z_{k+r_{2}}, Z_{k+r_{3}})). \end{split}$$

The inner supremum can be written as

(9)
$$\left(\sup_{\substack{k\in\mathbb{Z}\\k+r_1\ge p+1}}\varphi(\mathcal{G}_k,(Z_{k+r_1},Z_{k+r_2},Z_{k+r_3}))\right)\vee\left(\sup_{\substack{k\in\mathbb{Z}\\k+r_1\le p}}\varphi(\mathcal{G}_k,(Z_{k+r_1},Z_{k+r_2},Z_{k+r_3}))\right);$$

now, if $k + r_1 \ge p + 1$, we have

(10)
$$\varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})) = 0 \le \varphi(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}));$$

in fact $k + r_1 \ge p + 1 > k + 1$ and $\mathcal{G}_k = \sigma(Z_i, i \le k) = \sigma(Y_i, i \le k)$ (recall that k < p), so that $(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3}) = (X_{k+r_1}, X_{k+r_2}, X_{k+r_3})$ and \mathcal{G}_k are independent and relation (10) follows by the same argument used in point (i).

Now we evaluate $\varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3}))$ for $k + r_1 \leq p$. In order to fix ideas, assume for the moment that $k + r_1 \leq p , and put$

$$U = (X_{k+r_2}, X_{k+r_3}) = (Z_{k+r_2}, Z_{k+r_3}), \qquad W = Y_{k+r_1} = Z_{k+r_1}$$
$$V = (\dots, Y_{-1}, Y_0, \dots, Y_k) = (\dots, Z_{-1}, Z_0, \dots, Z_k).$$

Then U is independent on (V, W), $\mathcal{G}_k = \sigma(V)$, and we can apply Lemma (3), so obtaining, for every $f \in \mathcal{L}_1(\mathbb{R}^3)$,

(11)
$$\mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})|\mathcal{G}_k] = \mathbf{E}[f(W, U)|V] = \mathbf{E}[g(W)|V] = \mathbf{E}[g(W)|V] = \mathbf{E}[g(Y_{k+r_1})|\mathcal{G}_k],$$

where $g(y) = \mathbf{E}[f(y, X_{k+r_2}, X_{k+r_3})]$. By taking expectation of both members of (11), we get also

(12)
$$\mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})] = \mathbf{E}[g(Y_{k+r_1})].$$

From (11) and (12) we deduce

(13)
$$\begin{aligned} \left\| \mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})|\mathcal{G}_k] - \mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})] \right\|_{\infty} \\ &= \left\| \left| \mathbf{E}[g(Y_{k+r_1})|\mathcal{G}_k] - \mathbf{E}[g(Y_{k+r_1})] \right\|_{\infty} \\ &= \left\| \left| \mathbf{E}[g(X_{k+r_1})|\mathcal{F}_k] - \mathbf{E}[g(X_{k+r_1})] \right\|_{\infty}, \end{aligned} \right.$$

since $\mathcal{G}_k = \sigma(Y_i, i \leq k)$ and $(X_i)_{i \in \mathbb{Z}}$ and $(Y_i)_{i \in \mathbb{Z}}$ have the same law. Since the function $\tilde{g}: (s, t, v) \mapsto g(s)$ belongs to $\mathcal{L}_1(\mathbb{R}^3)$, the last member in relation (13) is less or equal to

(14)
$$\sup_{f \in \mathcal{L}_1(\mathbb{R}^3)} \left\| \mathbf{E}[f(X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) | \mathcal{F}_k] - \mathbf{E}[f(X_{k+r_1}, X_{k+r_2}, X_{k+r_3})] \right\|_{\infty}$$
$$= \varphi \big(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) \big).$$

From (13) and (14) we conclude that

$$\left\| \left\| \mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3}) | \mathcal{G}_k] - \mathbf{E}[f(Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})] \right\|_{\infty} \right\|_{\infty}$$

 $\leq \varphi \left(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3}) \right)$

and taking the supremum with respect to $f \in \mathcal{L}_1(\mathbb{R}^3)$ in the first member of the above relation, we get

(15)
$$\varphi(\mathcal{G}_k, (Z_{k+r_1}, Z_{k+r_2}, Z_{k+r_3})) \leq \varphi(\mathcal{F}_k, (X_{k+r_1}, X_{k+r_2}, X_{k+r_3})).$$

The above argument can be repeated word by word if $k+r_1 < k+r_2 \le p < p+1 \le k+r_3$; it becomes even easier if $k+r_1 < k+r_2 < k+r_3 \le p$.

The proof of Proposition (1) is concluded.

References

[1] **Rio E.**, (1996) Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes, Probab. Theory Relat. Fields, **104**, 255-282. MR1373378 (96k:60061)