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Let (Ω,F , P ) be a probability space, A a sub-σ-algebra of F and X a random variable
defined on (Ω,F , P ) and with values in a metric space (G, δ). In [1] the following measure
of dependence between X and A is introduced:

Definition. Put

ϕ(A, X) = sup
f∈L1(G,δ)

∣∣∣∣E[f(X)|A]−E[f(X)]
∣∣∣∣
∞,

where L1(G, δ) is the set of 1-lipshitzian functions defined on (G, δ) and taking values in
[0, 1].
We call ϕ(A, X) the uniform Rio mixing coefficient between X and A.

In the same paper [1] the uniform dependence coefficients of a sequence (Xi)i∈Z of real-
valued random variables defined on (Ω,F , P ) are defined as follows:

Definition. Let Fk be the σ-algebra generated by (Xi)i≤k. Put ϕ0 = 1 and, for every
integer r ≥ 1,

ϕr = sup
k∈Z

r≤r1<r2<r3

ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

Then (ϕr)r≥0 is the sequence of the uniform dependence coefficients of (Xi)i∈Z.

Remark. The random vector (Xk+r1 , Xk+r2 , Xk+r3) takes values in the metric space
(R3, d), where d is the euclidean distance. In what follows we shall write L1(R3) in place
of L1(R3, d).

Let (Xi)i≥1) be a random sequence, weakly dependent in the sense of Rio. Let (ϕr)r≥0

be the sequence of the uniform dependence coefficient for (Xi)i≥1). Let (Yi)i≥1 be an
independent copy of (Xi)i≥1. For a fixed integer p, define the sequence (Z(p)

i )i∈Z as
follows

Z
(p)
i =

{
Yi for i ≤ p

Xi for i ≥ p + 1.

Denote by (ϕ̃(p)
r )r≥0 the uniform dependence coefficients of the sequence (Z(p)

i ). We shall
prove the following (rather natural) result

(1) Proposition. For every integer r ≥ 0 we have

sup
p∈N

ϕ̃(p)
r ≤ ϕr.
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We need some preliminary lemmas.

(2) Lemma. Let U , V , W be three random vectors, such that V is independent on
(U,W ). Then

E[U |(V,W )] = E[U |W ]

Proof. We assume for definiteness that V (resp. W ) takes its values in the measurable
space (E, E) (resp. (G,G)).
Put Z = E[U |W ]. Z is measurable with respect to W , hence of the form Z = ψ(W ) for
some measurable function ψ; since W and V are independent, also Z = ψ(W ) and V
are independent. Moreover Z, being measurable with respect to W , is measurable with
respect to (V, W ) since σ(W ) ⊆ σ(V, W ).
Let now A ∈ E and B ∈ G. The statement follows from the equalities

∫

{V ∈A,W∈B}
U dP =

∫
1A(V )1B(W )U dP = P (V ∈ A)

∫
1B(W )U dP

= P (V ∈ A)
∫

{W∈B}
U dP = P (V ∈ A)

∫

{W∈B}
Z dP = P (V ∈ A)

∫
1B(W )Z dP

=
∫

1A(V )1B(W )Z dP =
∫

{V ∈A,W∈B}
Z dP.

In the above relations, the second equality follows from the independence of V and
(U,W ), the fourth one from the fact that Z = E[U |W ] and the sixth one from the
independence of V and (Z,W ).

(3) Lemma. Let U , V and W be three random vectors, taking values respectively in
the measurable spaces (E, E), (F,F), (G,G). Assume that U is independent on (V, W ),
and let f : E ×G, E ⊗G → (R,B(R)) be a measurable function such that E[|f(U,W )|] is
finite. For y ∈ G, put g(y) = E[f(U, y)]. Then

E[f(U,W )|V ] = E[g(W )|V ].

Proof. It will be enough to prove that, for every A ∈ F , we have

∫

{V ∈A}
f(U,W )dP =

∫

{V ∈A}
g(W )dP.

Now, since U is independent on (V,W ), the joint law of (U, V, W ) is equal to µU ⊗µ(V,W )

(where µU is the law of U and µ(V,W ) the law of (V, W )). Hence, by Fubini’s Theorem,

2



∫

{V ∈A}
f(U,W )dP =

∫
f(u,w)1A(v)µU (du)⊗ µ(V,W )(dv, dw)

=
∫

1A(v)µ(V,W )(dv, dw)
∫

f(u,w)µU (du)

=
∫

1A(v)µ(V,W )(dv, dw)E[f(U,w)]

=
∫

1A(v)µ(V,W )(dv, dw)g(w) =
∫

1A(V )g(W )dP =
∫

{V ∈A}
g(W )d P.

We pass to the proof of Proposition (1). Put Gk = σ(Zi, i ≤ k). We must evaluate

ϕ̃r = sup
k∈Z

r≤r1<r2≤r3

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3)),

and we shall prove that

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3)) ≤ ϕ(Fk, (Xk+r1 , Xk+r2 , Xk+r3))

for every k (see relations (4), (8), (10) and (15)); we distinguish three cases

(i) k = p. For every function f ∈ L1(R3) we have

E[f(Zp+r1 , Zp+r2 , Zp+r3)|Gp] = E[f(Zp+r1 , Zp+r2 , Zp+r3)]

since (Zp+r1 , Zp+r2 , Zp+r3) is independent on Gp = σ(Zi, i ≤ p).
It follows that

(4) ϕ(Gp, (Zp+r1 , Zp+r2 , Zp+r3)) = 0 ≤ ϕ(Fp, (Xp+r1 , Xp+r2 , Xp+r3)).

(ii) k > p. Put

(5) U = (Xk+r1 , Xk+r2 , Xk+r2) = (Zk+r1 , Zk+r2 , Zk+r2);

W = (Xp+1, . . . , Xk), V = (. . . , , Y−1, Y0, Y1, . . . , Yp).

Then (U,W ) is independent on V , and σ(V,W ) = Gk. Applying Lemma (2) we find, for
every f ∈ L1(R3),

(6)

∣∣∣
∣∣∣E[f(U)|Gk]−E[f(U)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E[f(U)|(V,W )]−E[f(U)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E[f(U)|W ]−E[f(U)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E[f(U)|Xp+1, . . . , Xk]−E[f(U)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E

[
E[f(U)|Fk]

∣∣Xp+1, . . . , Xk

]−E[f(U)]
∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E

[{
E[f(U)|Fk]−E[f(U)]

}∣∣Xp+1, . . . , Xk

]∣∣∣
∣∣∣
∞

,
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since σ
(
Xp+1, . . . , Xk

) ⊆ Fk. The last member above is less or equal to

(7)

∣∣∣
∣∣∣E[f(U)|Fk]−E[f(U)]

∣∣∣
∣∣∣
∞
≤ sup

f∈L1(IR3)

∣∣∣
∣∣∣E[f(U)|Fk]−E[f(U)]

∣∣∣
∣∣∣
∞

= ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

From (6) and (7) we conclude that, for every f ∈ L1(R3),

∣∣∣
∣∣∣E[f(U)|Gk]−E[f(U)]

∣∣∣
∣∣∣
∞
≤ ϕ

(Fk, (Xk+r1 , Xk+r2 , Xk+r3)
)
,

and finally, by taking the supremum with respect to f ∈ L1(R3) in the first member
(recall relation (5)),

(8)
ϕ
(Gk, (Zk+r1 , Zk+r2 , Zk+r3)

)
= ϕ

(Gk, (Xk+r1 , Xk+r2 , Xk+r3)

≤ ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

(iii) k < p. We have

ϕ̃(p)
r = sup

k∈Z
r≤r1<r2≤r3

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3))

= sup
r≤r1<r2≤r3

sup
k∈Z

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3)).

The inner supremum can be written as

(9)
(

sup
k∈Z

k+r1≥p+1

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3))
)
∨

(
sup
k∈Z

k+r1≤p

ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3))
)

;

now, if k + r1 ≥ p + 1, we have

(10) ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3)) = 0 ≤ ϕ(Fk, (Xk+r1 , Xk+r2 , Xk+r3));

in fact k + r1 ≥ p + 1 > k + 1 and Gk = σ(Zi, i ≤ k) = σ(Yi, i ≤ k) (recall that k < p), so
that (Zk+r1 , Zk+r2 , Zk+r3) = (Xk+r1 , Xk+r2 , Xk+r3) and Gk are independent and relation
(10) follows by the same argument used in point (i).

Now we evaluate ϕ(Gk, (Zk+r1 , Zk+r2 , Zk+r3)) for k + r1 ≤ p.
In order to fix ideas, assume for the moment that k + r1 ≤ p < p + 1 ≤ k + r2 < k + r3,
and put

U = (Xk+r2 , Xk+r3) = (Zk+r2 , Zk+r3), W = Yk+r1 = Zk+r1

V = (. . . , Y−1, Y0, . . . , Yk) = (. . . , Z−1, Z0, . . . , Zk).

4



Then U is independent on (V, W ), Gk = σ(V ), and we can apply Lemma (3), so obtaining,
for every f ∈ L1(R3),

(11)
E[f(Zk+r1 , Zk+r2 , Zk+r3)|Gk] = E[f(W,U)|V ] = E[g(W )|V ] =

= E[g(Yk+r1)|Gk],

where g(y) = E[f(y,Xk+r2 , Xk+r3)]. By taking expectation of both members of (11), we
get also

(12) E[f(Zk+r1 , Zk+r2 , Zk+r3)] = E[g(Yk+r1)].

From (11) and (12) we deduce

(13)

∣∣∣
∣∣∣E[f(Zk+r1 , Zk+r2 , Zk+r3)|Gk]−E[f(Zk+r1 , Zk+r2 , Zk+r3)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E[g(Yk+r1)|Gk]−E[g(Yk+r1)]

∣∣∣
∣∣∣
∞

=
∣∣∣
∣∣∣E[g(Xk+r1)|Fk]−E[g(Xk+r1)]

∣∣∣
∣∣∣
∞

,

since Gk = σ(Yi, i ≤ k) and (Xi)i∈Z and (Yi)i∈Z have the same law.
Since the function g̃ : (s, t, v) 7→ g(s) belongs to L1(R3), the last member in relation (13)
is less or equal to

(14)
sup

f∈L1(IR3)

∣∣∣
∣∣∣E[f(Xk+r1 , Xk+r2 , Xk+r3)|Fk]−E[f(Xk+r1 , Xk+r2 , Xk+r3)]

∣∣∣
∣∣∣
∞

= ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

From (13) and (14) we conclude that
∣∣∣
∣∣∣E[f(Zk+r1 , Zk+r2 , Zk+r3)|Gk]−E[f(Zk+r1 , Zk+r2 , Zk+r3)]

∣∣∣
∣∣∣
∞

≤ ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

) ,

and taking the supremum with respect to f ∈ L1(R3) in the first member of the above
relation, we get

(15) ϕ
(Gk, (Zk+r1 , Zk+r2 , Zk+r3)

) ≤ ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

The above argument can be repeated word by word if k+r1 < k+r2 ≤ p < p+1 ≤ k+r3;
it becomes even easier if k + r1 < k + r2 < k + r3 ≤ p.

The proof of Proposition (1) is concluded.
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[1] Rio E., (1996) Sur le théorème de Berry-Esseen pour les suites faiblement dépendan-
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