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Abstract: Let X, X1, X2 . . . be a sequence of i.i.d. random variables with
X ∈ Lp, 1 < p ≤ 2. For n ≥ 1, let Sn = X1 + . . . + Xn. Developing a pre-
ceding work, adressing the L2-case only, we compare, under strictly weaker
conditions than those of the central limit theorem, the deviation of the se-
ries

∑
n wn1Sn/

√
n<xn

with respect to
∑

n wnP{Sn/
√

n < xn}, for suitable
weights (wn). Extensions to the case 1 < p < 2, with suitable norming
constants, and when the law of X belongs to the domain of attraction of
a p-stable law, are obtained. We deduce strong versions of the a.s. central
limit theorem.

1. Setting of the problem and Main results.

Let X = {X, Xn, n ≥ 1} be a sequence of independent, identically distributed (i.i.d.) random
variables defined on a probability space (Ω,B,P), and let F denote the distribution function of
X, Sn = X1 + . . .+Xn, n ≥ 1 the partial sums of X . Assume first that EX1 = 0, EX2

1 = 1. Let
{xk, k ≥ 0} be an arbitrary sequence of reals, and consider the events Ak =

{
Sk/

√
k < xk

}
.

Let also a sequence of weights w = {wk, k ≥ 1}. Consider the following natural question : when
the weighted deviation

Dw(A) :=
∞∑

k=1

wk

(
1Ak

−P(Ak)
)
, (1.1)

of the series
∑∞

k=1 wk1Ak
with respect to its mean

∑∞
k=1 wkP(Ak), is finite almost surely?

This question is the treated in the present work. Some partial results already exist. Put
for any positive integer n, Yn =

∑
2n≤k<2n+1

1
k

(
1Ak

−P(Ak)
)
. Then the series

∑

k≥1

ckYk, (1.2)

converges P-almost surely, for a reasonable choice of the sequence of reals {ck, k ≥ 1}. For
instance, one can take ck = k−1/2(log k)−b with b > 3/2; so that in view of Kronecker’s Lemma,
(1.2) implies

lim
n→∞

1
log n

n∑

k=1

1
k

[
1{Sk/

√
k<xk} −P

{
Sk/

√
k < xk

}]
a.s.= 0. (1.3)
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By using the CLT, and letting xk ≡ x in (1.3), one obtain the classical Almost Sure Central
Limit Theorem (ASCLT) [5] : P-almost surely, for every real number x,

lim
n→∞

1
log n

n∑

k=1

1
k
1{ Sk√

k
≤x} =

1√
2π

∫ x

−∞
e−u2/2du. (1.4)

When (xk) are not constant, the stronger property (1.3) does not seem connected to the CLT,
although it is established under the CLT assumptions : EX = 0, EX2 < ∞. In this paper, we
show that (1.3) in turn, holds true under a strictly weaker assumption.
Before stating the result, we have to recall the full formulation of (1.3), and for, a useful notion
([4]) from the theory of orthogonal series. Let (T, C, τ) be some probability space and consider
a sequence (fn) of elements of L2(τ). Let aj,k =

∫
T

fj(x)fk(x)dτ(x). A system of functions
(fn) such that the quadratic form defined on l2(N) by : (xn)n 7→

∑
h,k ah,kxhxk is bounded,

is said quasi-orthogonal. Say also that a sequence c = (ck)k ∈ `2 is universal, when the
series

∑
cnψn converges almost everywhere for every orthonormal system of functions (ψn)n.

According to Schur’s Theorem [6, p.56], if c is universal, then the series
∑

cnfn converges almost
everywhere for any quasi-orthogonal system of functions (fn). It follows from Rademacher-
Menchov Theorem, that we can choose ck = k−1/2(log k)−b with b > 3/2. In [3, Theorem 1.1],
it is showed that

the sequence (Yn, n ≥ 1) is a quasi-orthogonal system. (1.5)

We refer to [3] for extensions to independent non identically distributed random variables, and
to more general sequences of sets than Ak =

{
Sk/

√
k < xk

}
. Let p > 1, and consider the class

Fp of distribution functions verifying

(
F (−x) ∨ (1− F (x)

)
= O(

x−p
)

x → +∞. (Fp)

We prove the following result

Theorem 1.1. Assume that F ∈ F2 and is a non degenerate distribution. Then (1.5) holds
true. Further, for any sequence {xk, k ≥ 1} of reals,

lim
n→∞

1
log n

n∑

k=1

1
k
P

{ Sk√
k
≤ xk

}
= c ⇒ lim

n→∞
1

log n

n∑

k=1

1
k
1{ Sk√

k
≤xk}

a.s.= c.

We also prove results for the case F ∈ Fp, p < 2. In this case, more is required on F . Let Gp

of distribution functions verifying

x−p = O((
F (−x) ∨ (1− F (x)

))
x → +∞. (Gp)

Theorem 1.2. Assume for some 1 < p < 2, that F ∈ Fp∩Gp. Let {xk, k ≥ 0} be an arbitrary
sequence of reals. Put for any positive integers k and n,

Ak =
{ Sk

k1/p
< xk

}
, Zn =

∑

2n≤k<2n+1

1
k

(
1Ak

−P(Ak).
)

Then, {Zn, n ≥ 1} is a quasi-orthogonal system.
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We also prove a similar result when F belongs to the domain of attraction of a stable distribution
G : there exist constants {an, n ≥ 1} and {bn, n ≥ 1} such that the distribution of a−1

n Sn − bn

tends to G. Apart from the case α = 1, it is known [1: p.315] that the centering constants
{bn, n ≥ 1} are unnecessary.

Theorem 1.3. Assume that X is centered and F belongs to the domain of attraction of a
stable distribution G with exposant p ∈]1, 2]. Let {xk, k ≥ 0} be an arbitrary sequence of reals.
Put for any positive integers k and n,

Ak =
{Sk

ak
< xk

}
, Zn =

∑

2n≤k<2n+1

1
k

(
1Ak

−P(Ak).
)

Then, {Zn, n ≥ 1} is a quasi-orthogonal system. In particular, P-almost surely, for every
continuity point x of G, we have

lim
n→∞

1
log n

n∑

k=1

1
k
1{Sk/ak≤x} = G(x).

2. Proofs.

We use a notational convention : let C denote a constant depending on F only, which may change
of values at each occurence. We begin with some general Lemmas. Let X = {X, Xn, n ≥ 1} be
a sequence i.i.d. random variables with basic probability space (Ω,B,P).

Lemma 2.1. Assume that E|X| < ∞ and EX = 0. Let b = {bn, n ≥ 1} be some non decreasing
sequence of positive reals. For any integer n,

E
∣∣Sn

∣∣ ≤ 2n

{
bnP

{|X| > bn

}
+

∫ ∞

bn

P
{|X| > u

}
du

}
+

{
nEX21{

|X|≤bn

}}1/2

.

Proof. Write E
∣∣Sn

∣∣ ≤ E
∣∣ ∑n

k=1 Xk1{
|Xk|≤bn

}∣∣ + E
∣∣ ∑n

k=1 Xk1{
|Xk|>bn

}∣∣. Then,

E
∣∣∣

n∑

k=1

Xk1{
|Xk|>bn

}∣∣∣ ≤ nE|X|1{
|X|>bn

} = n
[
bnP

{|X| > bn

}
+

∫ ∞

bn

P
{|X| > u

}
du

]
,

E
∣∣∣

n∑

k=1

Xk1{
|Xk|≤bn

}∣∣∣ ≤ E
∣∣∣

n∑

k=1

(
Xk1{

|Xk|≤bn

} −EX1{
|X|≤bn

})∣∣∣ + n
∣∣EX1{

|X|≤bn

}∣∣.

By centering EX1{
|X|≤bn

} = −EX1{
|X|>bn

}. Now, by a routine symmetrization argument,

letting ε = {εn, n ≥ 1} be a Rademacher sequence independent from the sequence X , with
corresponding expectation symbol Eε

E
∣∣∣

n∑

k=1

(
Xk1{

|Xk|≤bn

} −EX1{
|X|≤bn

})∣∣∣ ≤ EEε

∣∣∣
n∑

k=1

εkXk1{
|Xk|≤bn

})∣∣∣

≤ E
{ n∑

k=1

X2
k1{

|Xk|≤bn

}}1/2

≤
{
E

n∑

k=1

X2
k1{

|Xk|≤bn

}}1/2

= n1/2
{
EX21{

|X|≤bn

}}1/2
.

Combining both inequalities gives the claimed estimate.
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Lemma 2.2. Assume for some p > 1 that F ∈ Fp. Then, E
∣∣Sn

∣∣ = O(n1/p).

Proof. Follows from Lemma 2.1, since condition (Fp) implies

max
{

n1/pP
{|X| > n1/p

}
,

∫ ∞

n1/p

P
{|X| > u

}
du

}
= O(n1/p−1)

EX21{
|X|>n1/p

} = O(n2/p−1)

Lemma 2.3. Assume that F ∈ DA(G) where G is a stable distribution with index 1 < p ≤ 2.
Then,

E
∣∣Sn

∣∣ = O(an).

Proof. By Lemma 2.1,

E
∣∣Sn

∣∣ ≤ 2n

{
anP

{|X| > an

}
+

∫ ∞

an

P
{|X| > u

}
du

}
+

{
nEX21{

|X|≤an

}}1/2

.

• First treat the case 1 < p < 2. Since F ∈ DA(G), by Theorem 1 p.312 and relation (8.6)
p.313 of [1], one has that EX21{|X|≤x} ∼ x2−pL(x), as x →∞, where L : R+ → R is a slowly
varying function; and 1− F (x) + F (−x) ∼ 2−p

p x−pL(x), x →∞. From [1] p. 579, also follows
(for 0 < p ≤ 2)

nL(an)
ap

n
→ c > 0. (2.1)

Thus, immediately nEX21{
|X|≤an

} = O(a2
n), and nanP{|X| > an} = O(an). Write the last

term to estimate as

n

∫ ∞

an

P
{|X| > u

}
du = n

∞∑

k=0

∫ an2k+1

an2k

P
{|X| > u

}
du ≤ n

∞∑

k=0

P
{|X| > an2k

}
an2k.

≤Can
nL(an)

ap
n

∞∑

k=0

2k(1−p) L(an2k)
L(an)

≤ Can

∞∑

k=0

2k(1−p) L(an2k)
L(an)

.

Since L(.) is slowly varying, it can be represented, as x →∞ as

L(x) = C
(
1 + o(1)

)
exp

{ ∫ x

1

ε(u)
u

du
}

,

where C > 0 and limx→∞ ε(u) = 0 (see Appendix 1 in [4]). Let 0 < ε < p− 1. Then, for any n
large enough, every k

L(an2k)
L(an)

≤ C exp
{ ∫ an2k

an

ε(u)
u

du
}
≤ C exp

{
εk log 2

}
= C2εk,

and,
∞∑

k=0

2k(1−p) L(an2k)
L(an)

≤ C
∞∑

k=0

2k(1−p+ε) < ∞.
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This implies that n
∫∞

an
P

{|X| > u
}
du = O(an) too, and finally proves the claim in that case.

• There are only minor changes for the case p = 2. Here U(x) = EX21{|X|≤x} ∼ L(x), as
x → ∞, where L is a slowly varying function, and x2P{|x| > x}/U(x) → 0, as x → ∞.
Plainly nEX21{|X|<an} = O(

a2
n

)
, and nanP{|X| > an} = O(

an

)
. Let 0 < ε < 1. By using

again Karamata’s representation of slowly varying functions, we find that L(an2j)
L(an) ≤ 2εj , if n is

sufficiently large, for any j.
In view of these observations and (2.1), it follows that

n

∫ ∞

an

P{|X| > u} ≤ n
∞∑

k=0

P{|X| > an2j}an2j ≤ C
nL(an)

a2
n

an

∞∑

j=0

2−j L(an2j)
L(an)

≤ Can.

This proves the estimate in this last case.

We now prove a preliminary bound concerning correlations. Let a = {ak, k ≥ 1} be some
increasing unbounded sequence of positive reals. Let also f : R → R be bounded Lipschitz,
with Lipschitz norm ‖f‖BL = ‖f‖L + ‖f‖∞ < ∞, where ‖f‖∞ = supx∈R |f(x)| and

‖ f ‖L = sup
{ |f(x)− f(y)|

|x− y| : x, y ∈ R, x 6= y

}
.

We thus have the inequality
∣∣f(x)− f(y)

∣∣ ≤ 2‖f‖BL

(|x− y| ∧ 1
)
, for x, y ∈ R.

Consider the following condition linking a with X :

there exists a constant C0 such that, for any integers k ≥ 1

E |Sk| ≤ C0ak. (?)

The preceding Lemmas have precisely given examples for which this property is fulfilled. We
now need a suitable version of the correlation inequality in [3].

Proposition 2.4. For any integers k ≤ l, for every Borel set A of R and every bounded
Lipschitz function f , we have

∣∣∣Cov
(
1A(

Sk

ak
), f(

Sl

al
)
)∣∣∣ ≤ 4‖f‖BLE

( |Sk|
al

∧ 1
)
. (2.2)

Further, assume that condition (?) is satisfied. Then, for any Borel set A of R, any bounded
Lipschitz function f , and integers k ≤ l,

∣∣∣Cov
(
1A(

Sk

ak
), f(

Sl

al
)
)∣∣∣ ≤ C‖f‖BL

(ak

al

)
. (2.3)

Proof. Without loss of generality we can assume H = {Sk

ak
∈ A} to be not negligible. Let

EH denote the expectation with respect to the conditional probability P(·|H), and (X ′
n)n an

independent copy of the sequence (Xn)n. Put

Vl =
X ′

1 + · · ·X ′
k + Xk+1 + · · ·+ Xl

al
. (2.4)
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As EH [f(Vl)] = E[f(Sl

al
)], it follows that,

∣∣∣Cov(1A(
Sk

ak
), f(

Sl

al
))

∣∣∣ =
∣∣∣
∫

H

f(
Sl

al
)dP−P(H)

∫
f(

Sl

al
)dP

∣∣∣ = P(H)
∣∣EHf(

Sl

al
)−Ef(

Sl

al
)
∣∣

= P(H)
∣∣∣EHf(

Sl

al
)−EHf(Vl)

∣∣∣ ≤ 2‖f‖BLP(H)EH

(
|Sl

al
− Vl| ∧ 1

)

= 2‖f‖BLE
(
|Sl

al
− Vl| ∧ 1

)
= 2‖f‖BLE

( |Sk − S′k|
al

∧ 1
)

≤ 4‖f‖BLE
( |Sk|

al
∧ 1

)
,

since x 7→ (x ∧ 1) is subadditive on R+. This establishes the first part of the Proposition. The
second part is then a simple consequence of it and condition (?).

Introduce for any λ > 0, the concentration function of Sn : Qn(λ) = supx∈R P(x ≤ Sn ≤ x+λ).
According to Theorem 9 p. 49 in [7], for any i.i.d. sequence X with non degenerate distribution,
there exists an absolute constant C1 such that for any λ ≥ 0, and n

Qn(λ) ≤ C1
λ + 1√

n
. (2.5)

We shall now prove the following

Proposition 2.5. Let 0 < ε ≤ 1. For every Borel set A, any real x and integers k ≤ l, we
have

∣∣∣Cov
(
1A(

Sk

ak
),1(−∞,x](

Sl

al
)
)∣∣∣ ≤ 8

ε
E

( |Sk|
al

∧ 1
)

+ 2Ql(alε). (2.6)

Further, assume that condition (?) is satisfied. Then, for any Borel set A of R, any real x, and
integers k ≤ l,

∣∣∣Cov
(
1A(

Sk

ak
),1(−∞,x](

Sl

al
)
)∣∣∣ ≤ C

{1
ε

(ak

al

)
+ Ql(alε)

}
≤ C

{1
ε

(ak

al

)
+

alε + 1√
l

}
. (2.7)

Proof. Let ε and x be fixed, and define the Lipschitz function fε as

fε(t) = 1(−∞,x](t) + gε(t) = 1(−∞,x](t) + (1 +
x− t

ε
)1(x,x+ε)(t).

Then it is easily checked that ‖fε‖BL = 1 + 1/ε. Let H be the event {Sk

ak
∈ A}; we can assume

that H is not negligible. Let C be the conditional probability P(·|H). Then we have
∣∣∣Cov

(
1A(

Sk

ak
),1(−∞,x](

Sl

al
)
)∣∣∣ = P(H)

∣∣∣C(
Sl

al
≤ x)−P(

Sl

al
≤ x)

∣∣∣.

But,

C(
Sl

al
≤ x)−P(

Sl

al
≤ x) = EC

[
(fε − gε)(

Sl

al
)
]−EP

[
(fε − gε)(

Sl

al
)
]

= EC
[
(fε − gε)(

Sl

al
)
]−EC

[
(fε − gε)(Vl)

]

= EC
[
fε(

Sl

al
)− fε(Vl)

]−EC
[
gε(

Sl

al
)− gε(Vl)

]
,
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where Vl is the random variable defined in (2.4). By arguing as in the proof of Proposition 2.4,
we get ∣∣∣EC[fε(

Sl

al
)− fε(Vl)]

∣∣∣ ≤ 4(1 + 1/ε)
1

P(H)
E

( |Sk|
al

∧ 1
)
, (2.8)

while trivially ∣∣∣EC[gε(
Sl

al
)− gε(Vl)]

∣∣∣ ≤ 2Ql(alε)
P(H)

(2.9)

From (2.8) and (2.9), we deduce the first claimed inequality by summing and multiplying by
P(H). And the second inequality is easily deduced from the first, by definition of condition (?).

Proposition 2.6. Assume that F ∈ F2. Then, for any Borel set A of R, any real x, and
integers k ≤ l, we have

∣∣∣Cov
(
1A(

Sk√
k

),1(−∞,x](
Sl√

l
)
)∣∣∣ ≤ C

(k

l

)1/4

.

Proof. We apply Proposition 2.5 with the choice ak =
√

k. By Lemma 2.2, condition (?) is
satisfied. Then, for every 0 < ε ≤ 1

sup
A,x

|Cov
(
1A(

Sk√
k

),1(−∞,x](
Sl√

l
)
)
| ≤ C

{1
ε

(k

l

)1/2 + ε +
1

l1/2

}
.

The proof is achieved by taking ε = (k/l)1/4; since 1
ε

(
k
l

)1/2 + ε + 1
l1/2 ≤ 3(k/l)1/4.

Proof of Theorem 1.1. Combine Proposition 2.6 with Lemma 7.4.3 of [8] that we recall for
convenience.

Lemma 2.7. Let H be an Hilbert space, and Φ = {fn, n ≥ 1} ⊂ H with correlations aj,k =
〈fj , fk〉. In order that Φ be a quasi-orthogonal system, it is enough that supj≥1

∑
k : k 6=j |aj,k| <

∞.

For proving Theorem 1.2, we need a suitable estimate of Qn(ε). We use Esseen’s estimate
([7], Theorem 3, p.43).

Lemma 2.8. Assume that F ∈ Gp with 1 < p < 2. Then, there exists λ0, such that for any
λ ≥ λ0,

Qn(λ) ≤ Cn−1/2λp/2.

Proof. Let D(X̃, λ) = λ2EX̃21|X̃|<λ+P{|X̃| ≥ λ} define the censored variance of a symmetrized
version X̃ of X. Since X is an i.i.d. sequence, in view of Esseen’s inequality, there exists an
absolute constant C such that any for λ > 0, Qn(λ) ≤ C

[
nD(X̃, λ)

]−1/2. Since X ∈ Gp and
D(X̃, λ) ≥ 1

2P{|X| ≥ λ}, it follows that D(X̃, λ) ≥ Cλ−p for λ is sufficiently large, say λ ≥ λ0.
This proves our claim.
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Corresponding to Proposition 2.6 for the case F ∈ Fp ∩ Gp, is the following statement

Proposition 2.9. Assume that F ∈ Fp ∩ Gp with 1 < p < 2, and let ak = k1/p. Then, there
exists k0 finite, such that for any Borel set A of R, any real x and integers l ≥ k ≥ k0, we have

∣∣∣Cov(1A(
Sk

k1/p
),1(−∞,x](

Sl

l1/p
))

∣∣∣ ≤ C
(k

l

) 1
p+2

.

Proof. We apply Proposition 2.5 with the choice ak = k1/p. By Lemma 2.2, condition (?) is
satisfied. From estimate (2.7), we have

∣∣∣Cov(1A(
Sk

ak
),1(−∞,x](

Sl

al
))

∣∣∣ ≤ C
{1

ε

(k

l

)1/p

+ Ql(alε)
}

Choose ε =
(

k
l

) 2
p(p+2) . Then, εal = l

1
p+2 k

2
p(p+2) . In view of Lemma 2.8, if k is large enough, say

k ≥ k0, then εal ≥ λ0, and so

Ql(alε) ≤ Cl−1/2(alε)p/2 ≤ C
(k

l

) 1
p+2

.

As 1
ε

(
k
l

) 1
p =

(
k
l

) 1
p+2 , this allows to conclude.

Proof of Theorem 1.2. Combine Proposition 2.9 with Lemma 2.7.

Now we pass to the

Proof of Theorem 1.3. By Lemma 2.3 and inequality (2.7) of Proposition 2.5,
∣∣∣Cov

(
1A(

Sk

ak
),1(−∞,x](

Sl

al
)
)∣∣∣ ≤ C

{1
ε

(ak

al

)
+ Ql(alε)

}

Choose ε =
(

ak

al

) 2
p+2 . Then alε = a

p
p+2
l a

2
p+2
k (≥ ak). We use the notation from the proof of

Lemma 2.3 and properties of F mentionned therein. Then, D(X̃, λ) ≥ CL(λ)λ−p for any
λ ≥ λ0, where λ0 depends on F only. And by Esseen’s estimate, for λ ≥ λ0,

Ql(λ) ≤ C
[
lD(X̃, λ)]−1/2 ≤ C

( λp

lL(λ)
)1/2

. (2.10)

Choose k0 sufficiently large to have ak0 ≥ λ0. Applying (2.10) with λ = alε, gives

Ql(alε) ≤ C
a

p2

2(p+2)

l a
p

p+2
k

l1/2L(alε)1/2
≤ C

(ak

al

) p
p+2

( ap
l

lL(al)

)1/2( L(al)
L(alε)

)1/2

.

for l ≥ k ≥ k0, where k0 depends on F only. Let 0 < η < 1. By using again Karamata’s
representation of slowly varying functions, we find that

L(al)
L(alε)

≤ C exp{η log
1
ε
} = C exp{η(

p

p + 2
) log

ak

al
} = C

(ak

al

)η( p
p+2 )

, (2.11)

assuming k large enough, say k ≥ kη. By using this with relation (2.1), we obtain : there exists
a constant Cη depending on F and η only, and kη < ∞, such that for any integers l ≥ k ≥ kη

Ql(alε) = Ql

(
a

p
p+2
l a

2
p+2
k

) ≤ Cη

(ak

al

) (1+η)p
p+2

. (2.12)

By integrating this estimate into inequality (2.7) recalled at the beginning of the proof, we get
∣∣∣Cov(1A(

Sk

ak
),1(−∞,x](

Sl

al
))

∣∣∣ ≤ C
(ak

al

) p
p+2

+ Cη

(ak

al

) (1+η)p
p+2 ≤ Cη

(ak

al

) (1+η)p
p+2

. (2.13)

One then deduce Theorem 1.3 from the combination of (2.13) with Lemma 2.7.
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