
9 
BCH, Reed-Solomon, and related codes 

9.1 Introductionl 
In Chapter 7 we gave one useful generalization of the (7, 4) Hamming code of 
the Introduction: the family of (2m - 1, 2m - m - 1) single-error-correcting 
Hamming codes. In Chapter 8 we gave a further generalization, to a class of 
codes capable of correcting a single burst of errors. In this chapter, however, 
we will give a far more important and extensive generalization, the multiple-
error-correcting BCH2 and Reed-Solomon codes. 

To motivate the general definition, recall that the parity-check matrix of a 
Hamming code oflength n = 2 m - 1 is given by (see Section 7.4) 

(9.1) 

where (vo, VI, ... , Vn-I) is some ordering of the 2m - 1 nonzero (column) 
vectors from V m = GF(2)m. The matrix H has dimensions m X n, which 
means that it takes m parity-check bits to correct one error. If we wish to 
correct two errors, it stands to reason that m more parity checks will be 
required. Thus we might guess that a matrix of the general form 

Vn-I l' 
Wn-I 

where wo, WI, ... , Wn-I E Vm , will serve as the parity-check matrix for a 
two-error-correcting code oflength n. Since however, the v;'s are distinct, we 
may view the correspondence Vi ----; Wi as a function from V m into itself, and 
write H2 as 

(9.2) 

230 



9.1 Introduction 231 

But how should the function f be chosen? According to the results of 
Section 7.3, H2 will define a two-error-correcting code iff the syndromes of 
the 1 + n + (2) error pattern of weights 0, 1 and 2 are all distinct. Now any 
such syndrome is a sum of a (possibly empty) subset of columns of H 2 , and 
so is a vector in V2m. But to be consistent with our present viewpoint let us 
break the syndrome S = (SI, ... , S2m) in two halves: S = (SI, S2), where 
SI = (SI, ... , sm) and S2 = (Sm+l, ... , S2m) are both in Vm. With this conven-
tion, the syndrome of the all-zero pattern is (0, 0); a single error in position i 
has S = (Vi, f(Vi)); a pair of errors at positions i and j gives 
S = (Vi + v), f(Vi) + f(v})). We can unify these three cases by defining 
f(O) = 0 (notice that since 0 is not a column of H, f has not yet been defined 
at 0); then the condition that these syndromes are all distinct is that the system 
of equations 

feu) + f(v) = S2 (9.3) 

has at most one solution (u, v) for each pair of vectors from V m. (Naturally 
we do not regard the solution (u, v) as distinct from (v, u).) 

Now we must try to find a function f : V m ----; V m, f(O) = 0, with the above 
property. We could try a linear mapping f(v) = Tv for some linear transfor-
mation T, but this doesn't work (see Prob 9.1); so f must be nonlinear. To 
describe nonlinear functions of vectors v E V m, we need to know that it is 
possible to define a multiplication on the vectors of V m, which when com-
bined with the vector addition makes V m into a field. (The field is the Galois 
field GF(2m); the properties of finite fields that we shall need are stated in 
Appendix C.) Using this fact, it is easy to see (see Prob 9.2) that every 
function f : V m ----; V m can be represented by a polynomial. Polynomials of 
degree 2 don't work (see Prob 9.1); but f(v) = v3 does, as we shall shortly 
see. Hence (we change notation to emphasize that from now on we regard the 
elements of V m not as m-dimensional vectors over GF(2), but as scalars from 
GF(2m)) if (ao, aI, ... , an-I) is an arbitrary ordering of the nonzero 
elements of GF(2 m), then the matrix 

(9.4) 

is the parity-check matrix of a two-error-correcting binary code of length 
n = 2m - 1. Equivalently, C = (Co, CI, ... , Cn-I) E Vn is a codeword in 
the code with parity-check matrix H2 iff = = 0. Since 
as a matrix over GF(2), H2 has 2m rows (which are linearly independent for 



232 BCH, Reed-Solomon, and related codes 

m ;:: 3; see Prob. 9.5), the dimension of the code IS ;:: n - 2m 
= 2m -1 - 2m. 

The proof that the matrix H2 in (9.4) does indeed define a two-error-
correcting code, as well as the generalization to t-error-correcting codes, is 
given in the following celebrated theorem. 

Theorem 9.1 Let (ao, aI, ... , an-I) be a list ofn distinct nonzero elements 
of GF(2 m), and let t be a positive integer::;; (n - 1)/2. Then the t X n matrix 

ao al an-I 

a 3 a 3 3 
0 I a n_ 1 

a 5 a 5 5 
H= 0 I a n_ 1 

21-1 a o 
21-1 a l 

21-1 a n_ 1 

is the parity-check matrix of a binary (n, k) code capable of correcting all 
error patterns of weight::;; t, with dimension k ;:: n - mt. 

Proof A vector C = (Co, ... , Cn-d E Vn will be a codeword iff HC T = 0, 
which is equivalent to the following system of t linear equations in the C;'s: 

n-I 

2:Cia{ =0, j=1,3, ... ,2t-1. (9.5) 
i=O 

Squaring the jth equation in (9.5), we get ° = CLCi a{)2 = 
"LC;a;j = (since (x + y)2 = x2 + y2 in characteristic 2 and x2 = x 
in GF(2». Hence an equivalent definition of a codeword is the following 
system of 2 t equations: 

n-I 

2:Cia{ =0, j = 1,2, ... , 2t. (9.6) 
i=O 

It follows that we could equally well use the 2t X n parity-check matrix 

ao al an-I 

a 2 a 2 2 
0 I a n_ 1 

H'= 

a 21 
0 a 21 I a 21 n-I 

to describe the code. According to Theorem 7.3, H, will be the parity-check 



9.1 Introduction 233 

matrix of a t-error-correcting code iff every subset of 2t or fewer columns of 
H' is linearly independent. Now a subset of r columns from H', where 
r 2t, will have the form 

B= 

f3i f ... f3;f 
where 131, 132, ... , f3r are distinct nonzero elements of GF(2). Now consider 
the matrix B' formed from the first r rows of 13: 

B' = ... f3rj. 

f3[ 
The matrix B' is nonsingular, since its determinant is 

1 1 

det(B') = 131 ... f3r det 

13[-1 f3 r- 1 . . . r 

= 131 ... f3r II (f3j - f3i) # 0 
i<j 

by the Vandermonde determinant theorem (see Prob. 9.3). Hence the columns 
of B', let alone those of B, cannot be linearly dependent, and so the code does 
correct all error patterns of weight t. To verify the bound k ;;. n - mt on 
the dimension, observe that the original parity-check matrix H, viewed as a 
matrix with entries from GF(2) rather than GF(2 m ), has dimensions mt X n. 
And by the results of Section 7.1, this means that the dual code has dimension 

mt, and so the code itself has dimension;;' n - mt. D 

The codes described in Theorem 9.1 are called BCH codes, in honor of 
their inventors Bose, Ray-Chaudhuri, and Hocquenghem. These codes are 
important, not so much because of Theorem 9.1 itself (other codes can have 
higher rates and larger minimum distances), but rather because there are 
efficient encoding and, especially, decoding algorithms for them. In the 



234 BCH, Reed-Solomon, and related codes 

next section, we will see that if we choose exactly the right ordering 
(aD, aI, ... , an-d, BCH codes magically become cyclic codes, and so by the 
results of Chapter 8, the encoding automatically becomes simple. Addition-
ally, this "cyclic" view of BCH codes will allow us to refine our estimates of 
the codes' dimensions. Then in Sections 9.3-9.5, we will fully describe one 
version of Berlekamp's famous decoding algorithm for BCH codes. 

9.2 BCH codes as cyclic codes 
Recall the definition of a t-error-corercting BCH code of length n = 
2 m -1: C = (CO, ... , Cn-I) is a codeword iff = 0 for j = 
1,3, ... , 2t - 1 (equivalently, for j = 1,2,3, ... ,2t), where (aD, aI, 
... , an-I) is a list of n distinct nonzero elements of GF(2m). If the list is 
chosen properly, the code becomes a cyclic code, and thereby inherits all the 
implementational machinery available for cyclic codes. These "cyclic" lists 
are those of the form 

(1, a, ... , an-I), 

where n is a divisor of 2m - 1 and a is an element of GF(2m) of order n. 
With respect to such a list, the definition becomes: C = (Co, CI , ... , Cn-I) 
is a codeword iff 

n-I 
LCiaij=O, for j = 1,3, ... , 2t - 1 (or j = 1, 2, 3, ... , 2t). (9.7) 
i=O 

In this realization, the BCH code becomes a cyclic code, in the sense of 
Chapter 8. To see that this is so, let C(x) = Co + Clx + ... + Cn_Ix n- 1 be 
the generating function for the codeword C; then (9.7) becomes 

j = 1, 2, ... , 2t. (9.8) 

Now let C R be the right cyclic shift of the codeword C; its generating function 
is, by Theorem 8.1, CR(x) = xC(x) mod(xn - 1), which means that 
CR(x) = xC(x) + M(x)(x n - 1) for some polynomial M(x). Thus for j = 
1,2, ... , 2t, 

CR(aj ) = ajC(aj ) + M(aj)(ajn - 1). 

But C(aj) = 0 by (9.8), and a jn - 1 = 0 since an = 1. It follows that 
CR(aj ) = 0 for j = 1,2, ... , 2t, so that C R is also in the BCH code defined 
by (9.7), which means that the code is cyclic. 

It now follows from Theorem 8.3 that every BCH code is characterized by 



9.2 BCH codes as cyclic codes 235 

its generator polynomial g(x). But how can we compute g(x)? According to 
the definition, g(x) is the least degree polynomial in the code, i.e., the least-
degree polynomial satisfying g(a) = g(a3) = ... = g(a2t- l ) = O. Now the 
coefficients of g(x) are in GF(2), but the various powers of a are in the larger 
field GF(2m). Thus (see Appendix C) g(x) is the minimal polynomial over 
GF(2) of the subset A = {a, a 3, ... , a 2t- l } of GF(2 m). Hence if A * is 
defined to be the set of all GF(2)-conjugates of elements in A, i.e. 
A* = {{Pi: fJ E A, i O}, then 

g(x) = II (x - fJ)· (9.9) 
f3EA* 

We summarize these results in the following theorem. 

Theorem 9.2 If we define the t-error-correcting BCH code of length n by 
(9.7) or (9.8), then the code is cyclic, with generator polynomial given by 
(9.9). Thus the dimension of the code is given by n - deg(g), i.e., 
k = n -IA*I, where A* is the set of GF(2)-conjugates of A = 
{a, a3, ... , a 2t- l } in GF(2m). D 

Example 9.1 Consider a three-error correcting BCH code of length 15. Let 
a be a primitive root in GF(16); then by Theorem 9.2, the generator 
polynomial is the minimal polynomial of the set A = {a, a3, a 5 }. The 
conjugates ofa are (a, a2, a4, as); ofa3, (a3, a 6, a 12 , a 9); ofa5, (a5, a lO). 

Hence 

and so by Theorem 9.2, the dimension is 15 - 10 = 5. 

To actually compute g(x) for this example, we need a concrete realization 
of GF(16). Let's represent GF(16) according to powers of a primitive root a 
that satisfies a 4 = a + 1. In Table 9.1 the element a j is given as polynomial 
of degree :s: 3 in a; for example, all = a 3 + a 2 + a. The generator poly-
nomial g(x) is the product of the minimal polynomials of a, a3 , and a5 . The 
minimal polynomial of a is by definition X4 + x + 1. The minimal polyno-
mials of a 3---call it g3(X) = g30 + g3lX + g32X2 + g33x3 + g34x4-must 
satisfy g3(a3) = O. From Table 9.1 this equivalent to g30[0001] 
+ g31[1000] + gdl100] + g33[1010] + g34[1111] = [0000]. The only non-
trivial solution to this set of 4 homogeneous equations in the 5 unknowns is 
[g30, g31, g32, g33, g34] = [11111], and so g3(X) = X4 + x3 +x2 + x + 1. 



236 BCH, Reed-Solomon, and related codes 

Table 9.1 The field GF(16) repre-
sented as powers of a, where 
a4 =a+1. 

0 0001 
0010 

2 0100 
3 1000 
4 0011 
5 0110 
6 1100 
7 1011 
8 0101 
9 1010 

10 0111 
11 1110 
12 1111 
13 1101 
14 1001 

Similarily, g5(X) = g50 + g5Ix + g52x2 (we already know that a5 has only 
two conjugates, a 5 and aIO) turns out to be x2 + x + 1. Hence the generator 
polynomial of the three-error-correcting BCH code of length 15 is 
g(x) = (X4 +x+ 1)(x4 +x3 +x2 +x+ 1)(x2 +x+ 1) =x IO +x8 +x5+ X4 
+ x2 + X + 1. Similarly, the parity-check polynomial is h(x) = 
(x 15 + 1)/ g(x) = x 5 + x3 + X + 1. (yVe emphasize, however, that g(x) 
depends on the particular realization of GF(16) given in Table 9.1. See 
Problem 9.6.) D 

Let us summarize what we know about BCH codes so far: they can be 
designed to correct any desired number of errors up to about half the code's 
block length (Theorem 9.1), and they have a very nice algebraic characteriza-
tion as cyclic codes. However, their practical importance is due almost wholly 
to the fact that they have a remarkably efficient decoding algorithm. We will 
begin our discussion of this algorithm in the following section. 

9.3 Decoding BCH codes, Part one: the key equation 
In this section, we will derive the so-called key equation, which is the basis 
for the BCH decoding algorithm. Before we get to the key equation, however, 



9.3 Decoding BCH codes, Part one: the key equation 237 

we must present some preliminary material. We shall present this material 
more generally than is strictly necessary, so that we can refer to it later, when 
we discuss the decoding erasures as well as errors, both for BCH codes and 
for Reed-Solomon codes. 

Thus let F be a field which contains a primitive nth root of unity a.3 We 
first note that 

n-l 

1 - xn = II (1 - aix). 
i=O 

(9.lO) 

This is because the polynomials on both sides of (9.lO) have degree n, 
constant term 1, and roots a- i, for i = 0, 1, ... , n - 1. Next, let 

be an n-dimensional vector over F, and let 

be its discrete Fourier transform (DFT), whose components are defined as 
follows. 

n-l 

Vj = L:Viaij, for j = 0, 1, ... , n - 1. (9.11) 
i=O 

We sometimes call the Vi's the "time-domain" coordinates, and the V/s the 
"frequency-domain" coordinates, of the vector V The time-domain compo-
nents can be recovered from the frequency-domain components via the so-
called "inverse DFT": 

for i=O, 1, ... , n-1. (9.12) 

In (9.12) the "lin" factor in front of the sum must be interpreted with some 
care, in view ofthe possibly finite characteristic of F The number" n" is the 
sum 1 + 1 + ... + 1 (n terms), and" 1 In" is the inverse ofthis number. For 
example, if F has characteristic 2 and n is odd, then 1 In = 1. Apart from this 
small subtlety, however, the proof of (9.12) is identical to the usual proof of 
the inverse DFT formula, and we leave it as Problem 9.8. If we interpret the 
components of V and V as the coefficients of polynomials, i.e., if we define 
generating functions Vex) and Vex) by 

(9.13) 



238 BCH, Reed-Solomon, and related codes 

and 
A A A A I 
V(x) = Vo + Vix + ... + Vn_Ix n- , 

then the DFT and IDFT relationships (9.11) and (9.12) become 

Vi = V(ai ) 

and 

(9.14) 

(9.15) 

(9.16) 

There are many interesting and useful relationships between the time-domain 
and frequency-domain coordinates of a given vector. One of them is that a 
"phase shift" in the time domain corresponds to a "time shift" in the 
frequency domain, in the following sense. It we multiply the ith component of 
V by a fli, i.e., if we define a new vector Vfl as 

Vfl = (Vo, Viafl, ... , Vn_Iafl(n-I), (9.17) 

then its DFT is 

(9.18) 

where in (9.18) the subscripts are taken mod n. We leave the proof of (9.18) 
as Problem 9.10. 

As coding theorists, we are always interested in the weight of a vector. The 
following classical theorem tells us how to estimate the weight in the time 
domain if we know something about the vector in the frequency domain. 

Theorem 9.3 (the BCH argument) Suppose V is a nonzero vector with the 
property that V has m consecutive 0 components, i.e., VJ+I = VJ+2 = ... = VJ+m = O. Then the weight of V is m + 1. 

Proof Let W be the vector obtained by cyclically shifting V until its m 
consecutive O's appear in positions n - m, n - m + 1, ... , n - 1, i.e., 

W=[** ... 
By (9.17) and (9.18), W is the DFT of a vector W whose weight is the same 
as the weight of V. However, by (9.12), Wi = lW(a- i), where 
W(x) = Wo + WIX + ... + Wn_m_IXn-m-l. Since W(x) i; a nonzero poly-
nomial of degree n - m - 1, it follows that Wi = 0 for at most n - m - 1 



9.3 Decoding BCH codes, Part one: the key equation 239 

values of i, and so Wi -=I=- 0 for at least m + 1 values of i. Thus 
wt(V) = wt(W) ;=: m + 1. D 

We are almost ready to introduce the key equation, but we need a few more 
definitions. With the vector V fixed, we define its support set I as follows: 

I = {i : 0 ::;; i ::;; n - 1 and Vi -=I=- O}. (9.19) 

We now define several polynomials associated with V, the locator polynomial, 
the punctured locator polynomials, and the evaluator polynomial. The locator 
polynomial for V is 

ay(x) = II(l- aix). 
iEI 

(9.20) 

For each value of i E I we also define the ith punctured locator polynomial 

= II(1- ajx). 
jEI 
#i 

Finally, we define the evaluator polynomial for Vas 

" (i) Wy(x) = Via y (x). 
iEI 

(9.21) 

(9.22) 

We will need the following lemma later on, for example, in Sections 9.5 
and 9.7 when we discuss the RS/BCH decoding algorithms. 

Lemma 1 gcd(ay(x), Wy(x)) = 1. 

Proof By (9.20), gcd(ay(x), Wy(x)) = Ilo(1 - aix), where J = {i E I : 
wy(a- i ) = O}. By (9.22), if i E I, wy(a- i ) = But by the defini-
tion of I, if i E I, Vi -=I=- 0, and by (9.21), = TI/EJI(l- a j - i) -=I=- O. 

17-1 
Hence the set J is empty, and so gcd(ay(x), Wy(x)) = 1, as asserted. D 

We now come to the promised "key equation." 

Theorem 9.4 (the key equation) For a fixed vector V, the polynomials Vex), 
ay(x), and Wy(x) satisfY 

ay(x) Vex) = Wy(x)(1 - xn). (9.23) 



240 BCH, Reed-Solomon, and related codes 

Proof Using the definitions (9.11), (9.14) and (9.22), we find that 
n-l 

Vex) = L Vi Lxjaij. (9.24) 
iEI j=O 

According to (9.21), av(x) = - aix) for all i E I, and so from (9.24) 
we have 

n-l 

av(x)V(x) = L - aix) Lxjaij 
iEI j=O 

= L - xn) 
iEI 

D 

The following corollary to Theorem 9.3 tells us how to reconstruct the 
nonzero components of V from av(x) and wv(x). It involves the formal 
derivative aYex) ofthe polynomial av(x). (See Problem 9.18.) 

Corollary 1 For each i E I, we have 

V. - _ i wv(a- i ) 
I - a aYea- i )· 

Proof Ifwe differentiate the key equation (9.23) we get 

av(x)V'(x) + aYex)V(x) = wv(x)(-nx n- 1) + wYex)(1 - xn). 

(9.25) 

(9.26) 

Note that if x = a- i with i E I, from (9.20) and (9.10) we see that both av(x) 
and 1 - xn vanish. Thus if x = a- i , (9.26) becomes 

(9.27) 

But from (9.16), V(a- i ) = nVi . This fact, combined with (9.27), completes 
the proof. D 

Corollary 1 says, in effect, that the time-domain coordinates of V can be 
recovered from av(x) and wv(x). The next corollary says that if the first few 
frequency-domain coordinates of V are known, the rest can be recovered from 
av(x) alone, via a simple recursion. In the statement of the corollary, we 
suppose that the coefficients of av(x) are given by 



9.3 Decoding BCH codes, Part one: the key equation 241 

ov(x) = 1 + 0IX + ... + Odxd. 

Corollary 2 For all indices j, we have 

(9.28) 

where all subscripts are to be interpreted mod n. 

Proof The key equation implies that 

Ov(x) Vex) == ° (mod 1 - Xn). (9.29) 

What (9.29) says is that for each j in the range ° ::;; j ::;; n - 1, the coefficient 
of x j in the polynomial ov(x) Vex) mod(1 - xn) is 0. But this coefficient is 
2:.1=00 i V(j-i)modn, so that for each j in the range ° ::;; j ::;; n - 1, we have 

d 

LOiVj-i = 0, (9.30) 
i=O 

where subscripts are to be taken mod n and we have defined 00 = 1. But now 
equation (9.30) is equivalent to the equation (9.28). D 

Example 9.2 We illustrate this material using the field GF(16), in which the 
nonzero elements are represented by the powers of a primitive root a 
satisfying the equation a4 = a + 1. We consider the vector 

v = (0, 0, a2 , 0, 0, 0, 0, a7 , 0, 0, 0, 0, 0, 0, 0). 

Then the polynomial Vex) defined in (9.13) is 

Using (9.11) or (9.15) we can calculate the DFTofV: 

V = (a 12 , a9 , 0, a3 , 1,0, a9 , a6 , 0,1, a 12 , 0, a6 , a3 , 0). 

Thus Vex), as defined in (9.14), is 



242 BCH, Reed-Solomon, and related codes 

1 +xlS 
= (a12 + a 9x)---::--::-

1 + a6x3 

1 + xIS 
= a l2 --:-::------::---::-

1 + a l2x + a9x2 
(9.31 ) 

The support set of V is I = {2, 7}, and so the locator polynomial for V is 

ay(x) = (1 + a 2x)(1 + a7 x) = 1 + a 12x + a 9x 2 . (9.32) 

The polynomials defined in (9.21) are in this case 

= (1 + a7 x), = (1 + a2x). 

The evaluator polynomial Wy(x) defined in (9.22) is 

Wy(x) = a 2(1 +a7x)+a7(1 +a2x) = a l2 . (9.33) 

Combining (9.31), (9.32), and (9.33), we see that the key equation indeed 
holds in this case. To check Corollary 1, we note that from (9.32), 
aYex) = a l2 = Wy(x), so that Corollary 1 becomes simply Vi = ai, for i E I, 
which is true (V2 = a2 and V7 = a7 ). Finally, note that Corollary 2 says in 
this case that 

A 12 A 9 A Vj = a Vj_1 + a Vj- 2 for j = 2, 3, ... , 14, 

so that (using Va = a l2 and VI = a9 as initial conditions) 

V2 = a l2 . a9 + a9 . a l2 = 0, 

VI4 = a l2 . a3 + a9 . a6 = 0, 

which agrees with our direct calculation ofV. D 

With the preliminary material about the key equation out of the way, we 
can begin a serious discussion of the problem of decoding BCH codes. 
Suppose then that C = (Co, CI , ... , Cn-I) is a codeword from the t-error-



9.3 Decoding BCH codes, Part one: the key equation 243 

correcting BCH code oflength n defined by (9.6), which is transmitted over a 
noisy channel, and that R = (Ro, RI , ... , Rn-d is received. We assume that 
the components of Rare O's and 1 's, i.e., are elements of GF(2). We define 
the error pattern as the vector E = (Eo, E I , ... , En) = R - C. The decoder's 
first step is to compute the syndromes 81, 82 ... ,821, which are defined by 

n-I 
8j = LRiaij, 

i=O 
for j = 1, 2, ... , 2t. 

Since R = C + E, and C is a codeword, it follows that 
n-I 

8j = LEiaij , 
i=O 

for j = 1, 2, ... , 2t, 

(9.34) 

(9.35) 

so that, as expected, the syndromes depend only on the error pattern and not 
on the transmitted codeword. Note also that on comparing (9.35) with (9.11), 
we see that 8j is the jth component of the DFT of the error pattern; in other 
words, the syndrome lets us see 2t consecutive components (the first, second, 
... , 2tth) ofE. If we now define the twisted error patter Vas 

(9.36) 

it follows from (9.17) and (9.18) that (81,82 , ... , 82t) = (Vo, VI, 
... , V21- 1). 

The key equation applies to the vector V defined in (9.36); however, since 
we only know the first 2t coefficients of Vex) (i.e., Va, VI, ... , V21-d, we 
focus instead on the key equation reduced mod X 21 : 

a (x) Vex) = w(x) (mod X 21). (9.37) 

(In (9.37) we have dropped the subscript V's on a(x) and w(x).) From (9.19) 
and (9.36) we see that the support set I for V is the set of indices such that 
Ei -# 0, i.e., the set of error locations. For this reason, the polynomial a(x) in 
(9.37) is called the error-locator polynomial. Similarly, the polynomial w(x) 
in (9.37) is called the error-evaluator polynomial. Equation (9.37) is called 
the BCH key equation. 

Now observe that if, given the syndrome of the received word R, or 
equivalently, Vex) mod X21, we could somehow "solve" the BCH key equation 
(9.37) for the polynomials a(x) and w(x), we could then easily recover the 
error pattern E, and thus also the transmitted codeword C = R - E. We could 
do this by first computing the n values a(a- i ), for i = 0, 1, ... , n - 1, which 
would identify the support set I of V defined in (9.19). Then the nonzero 
components of V could be computed by (9.25), and this would give us the 



244 BCH, Reed-Solomon, and related codes 

complete vector V, or equivalently, E (see (9.36». Alternatively, knowing 
("Vo, VI, ... , V2t-d, we could complete the vector V via (9.28), and then 
recover V via an inverse DFT. In the next section, we will see that there is a 
remarkably efficient algorithm for computing a(x) and w(x) from the BCH 
equation, provided we make the additional assumption that the actual number 
of errors that occurred is at most t. (This assumption is necessary, since a t-
error-correcting BCH code is not designed to correct more than terrors.) 

9.4 Euclid's algorithm for polynomials 
This section does not deal directly with the problem of decoding BCH codes. 
The reader should bear in mind, however, that our goal is to solve the BCH 
key equation (Eq. 9.37)) for a (x) and w(x), given V(x)modx2t. 

Throughout this section a(x) and b(x) will be fixed polynomials over a field 
F, with deg a(x) deg b(x).4 Later a(x) will be replaced by x2t, and b(x) by 
the syndrome polynomial Sex). 

Euclid's algorithm is a recursive procedure for finding the greatest common 
divisor (gcd for short) d(x) of a(x» and b(x), and for finding a linear 
combination of a(x) and b(x) equal to d(x), i.e., an equation of the form 

u(x)a(x) + v(x)b(x) = d(x). (9.38) 

The algorithm involves four sequences of polynomials: (Ui(X», (Vi(X», 
(ri(x», (qi(X». The initial conditions are 

U-l(X) = 1, V-leX) = 0, r-l(x) = a(x), 

uo(x) = 0, Vo(x) = 1, ro(x) = b(x) 
(9.39) 

(q-l(X) and qo(x) are not defined). For i 1, qi(X) and ri(x) are defined to be 
the quotient and remainder, respectively, when ri-2(x) is divided by ri-l(x): 

deg ri < deg ri-l. 

The polynomials Ui(X) and Vi(X) are then defined by 

Ui(X) = Ui-2(x) - qi(X)Ui-l(X), 

(9.40) 

(9.41) 

(9.42) 

Since the degrees of the remainders ri are strictly decreasing, there will be a 
last nonzero one; call it rn(x). It turns out that rn(x) is the gcd of a(x) and 
b(x), and furthermore that the desired equation expressing the gcd as a linear 
combination ofthe original two polynomials (cf. Eq. (9.38» is 



9.4 Euclids algorithm for polynomials 245 

Table 9.2 Properties of Euclid's algorithm. 

A Viri-I - Vi-Iri = (-I)ia 
B Uiri-I - Ui-I ri = (-I)i+1 b 
C UiVi-1 - Ui-IVi = (_I)i+1 
D Uia+ Vib = ri 
E deg(ui) + deg(ri - I) = deg(b) 
F deg(vi) + deg(ri - I) = deg(a) 

(9.43) 

Since this particular aspect of Euclud's algorithm is not our main concern, we 
leave the proof ofthese facts to Prob. 9.18(b). 

What is more interesting to us at present is the list shown in Table 9.2 of 
intermediate relationships among the polynomials of Euclid's algorithm. It is 
not difficult to prove these properties by induction on i; see Prob. 9.19(a). 

Example 9.3 Let F = GF(2), a(x) = x 8, b(x) = x6 + X4 + x2 + X + 1. The 
behavior of Euclid's algorithm is given in Table 9.3. 

The i = 4 line of Table 9.3 shows that gcd(a(x), b(x» = I (which is 
obvious anyway), and with Property D from Table 9.2 yields the equation 
(x5 + X4 + x3 + x2)a(x) + (x7 + x6 + x3 + X + l)b(x) = 1. This example is 
continued in Example 9.4. D 

We now focus our attention on Property D in Table 9.2, which can be 
rewritten as 

vi(x)b(x) == ri(x) (mod a(x». (9.44) 

Using Property F and the fact that deg ri-l > deg ri, we get the estimate 

deg Vi + deg ri < deg a. (9.45) 

The main result of this section (Theorem 9.5) is a kind of converse to (9.44) 
and (9.45). We begin with a lemma. 

Lemma 2 Suppose Euclid s algorithm, as described above, is applied to the 
two polynomials a(x) and b(x). Given two integers !l 0 and v 0 with 
!l + v = deg a-I, there exists a unique index j, 0 ::;; j ::;; n, such that: 



246 ReB, Reed-Solomon, and related codes 

Table 9.3 An example of Euclid's algorithm. 

Ui Vi ri 

-1 1 0 x 8 

o 0 1 x 6 + X4 + x 2 + X + 1 
1 x2 + 1 x3 + X + 1 
2 x 3 + 1 x 5 + x 3 + x 2 x 2 

3 x4 + X + 1 x 6 + x4 + x 3 + x 2 + 1 x + 1 
4 x 5 + x4 + x 3 + x 2 X 7 + x 6 + x 3 + X + 1 1 
5 x 6 + X4 + x 2 + X + 1 x 8 0 

deg(vj) fl, 

deg(rj) v. 

Proof Recall that deg ri is a strictly decreasing function 
r n = gcd( a, b), and define the index j uniquely by requiring 

deg rj-l v + 1, 

deg rj v. 

Then by Property F we also have 

deg Vj fl, 

deg Vj+l fl + 1. 

qi 

x 2 + 1 
x 3 + 1 

x 

x+l 
x+l 

(9.46) 

(9.47) 

of i until 

(9.48) 

(9.49) 

(9.50) 

(9.51) 

Equations (9.49) and (9.50) show the existence of an index j satisfying (9.46) 
and (9.47); Eqs. (9.48) and (9.51) show uniqueness. D 

The following theorem is the main result of this section. 

Theorem 9.S Suppose a(x), b(x), vex) and rex) are nonzero polynomials 
satisfYing 

v(x)b(x) == rex) (mod a(x)), 

deg vex) + deg rex) < deg a(x). 

(9.52) 

(9.53) 

Suppose further that vJCx) and rJCx), j = -1, 0, ... , n + 1, are the sequences 
of polynomials produced when Euclid s algorithm is applied to the pair 
(a(x), b(x)). Then there exist a unique index j, 0 j n, and a polynomial 
-"(x) such that 



9.4 Euclids algorithmfor polynomials 

vex) = A(x)vix), 

rex) = A(x)rix). 

247 

(9.54) 

(9.55) 

Proof5 Let j be the index satisfying (9.46) and (9.47) with v = deg r, 
Ii = deg a - deg r - 1. Thus from (9.53) deg(v(x)) ::;; Ii. Then according to 
(9.51) and (9.48), deg Vj+l ;=: Ii + 1 ;=: deg v + 1, and deg rj-l ;=: v + 1 = 
deg r + 1. Hence ifthere is an index such that (9.54) and (9.55) hold, it must 
be unique. 

Now rewrite Property D and Eq. (9.52) as follows: 

ua + vb = r, 

(9.56) 

(9.57) 

where u is some unspecified polynomial. Multiply (9.56) by v and (9.57) 
byv/ 

(9.58) 

(9.59) 

Together (9.58) and (9.59) imply rjv == rVj (mod a). But by (9.47) and (9.53), 
deg(rjv) = deg rj + deg v ::;; v + Ii < deg a. Similarly, by (9.46) and (9.53), 
deg(rvj) = deg r + deg Vj ::;; v + Ii < deg a. It follows that rjv = rVj. This 
fact, combined with (9.58) and (9.59), implies that UjV = UVj. But since 
Property C guarantees that u j and Vj are relatively prime, this means that 

u(x) = A(x)uix), 

vex) = A(x)vix), 

for some polynomial A(X). Then Equation (9.57) becomes AUja + AVjb = r; 
comparing this with Eq. (9.58), we conclude that rex) = A(x)rix). D 

The results of Theorem 9.5 will be used constantly in our forthcoming 
discussion of decoding algorithms for BCH and Reed-Solomon codes. To 
facilitate these discussions, we now introduce the algorithmic procedure 
"Euclid(a(x), b(x), Ii, v)". 

Definition If (a(x), b(x)) is a pair of nonzero polynomials with 
deg a(x) ;=: deg b(x), and if (fi, v) is a pair of nonnegative integers such that 
Ii + v = deg a(x) - 1, Euclid(a(x), b(x), Ii, v) is the procedure that returns 
the unique pair of polynomials (vix), rix)) with deg Vj(x) ::;; Ii and 
deg rix) ::;; v, when Euclids algorithm is applied to the pair (a(x), b(x)). 



248 BCH, Reed-Solomon, and related codes 

The following theorem summarizes the results of this section. 

Theorem 9.6 Suppose vex) and rex) are nonzero polynomials satisfYing 

v(x)b(x) == rex) (mod a(x», 

deg v( x) :s: fi" 

deg rex) :s: v, 

(9.60) 

(9.61) 

(9.62) 

where fi, and v are nonnegative integers such that fi, + v = deg rex) - 1. 
Then if (vix) , rix» is the pair of polynomials returned by 
Euclid(a(x), b(x), fi" v), there is a polynomial lex) such that 

vex) = l(x)vj(x), 

rex) = l(x)rix). 

(9.63) 

(9.64) 

Proof Theorem 9.4 guarantees that there exists a unique index j such that 
(9.63) and (9.64) hold. Furthermore the procedure Euclid(a(x), b(x), fi" v) 
must return this pair, since by (9.63) and (9.64), deg Vj(X) :s: deg vex) :s: fi, and 
deg rix) :s: deg rex) :s: v. D 

Example 9.4 Let a(x) = x 8 , b(x) = x 6 + X4 + x 2 + X + 1, F = GF(2), as in 
Example 9.3. Using Table 9.2, we can tabulate the output of Euclid for the 
eight possible pairs (fl" v): 

(0,7) (1, x 6 +x4 +x2 +x+ 1) 
(1,6) (1, x 6 +x4 +x2 +x+ 1) 
(2,5) (x2 + 1, x 3 +x+ 1) 
(3,4) (x2 + 1, x 3 +x+ 1) 
(4,3) (x2 + 1, x 3 +x+ 1) 
(5, 2) (x5 + x 3 + x2 , x 2 ) 

(6,1) (x6 +X4 +x3 +x2 + 1, x+ 1) 
(7,0) (x7 +x6 +x3 +x+ 1,1) 

Now suppose we wished to "solve" the congruence (x6 + x4 + x2 

+ X + l)a(x) == w(x) (mod x 8), subject to the restriction that dega(x) 
:s: 3, deg w(x) :s: 4. According to Theorem 9.5, we invoke 



9.5 Decoding BCH codes, Part two: the algorithms 249 

Euclid(x8 , x 6 + X4 + x 2 + X + 1,4,3) which by the above table returns 
the pair (x2 + I, x 3 + X + I), so that all solutions to the given problem are of 
the form a(x) = A(X)(x2 + 1), w(x) = A(X)(x3 + X + 1), with degA(x) 1. If 
we further required gcd(a(x), w(x» = 1, then the only solution would be 
a(x) = x2 + 1, w(x) = x3 + X + 1. D 

At this point the application of Theorem 9.4 to the problem of solving the 
key equation for BCH codes should be apparent. In any event we spell it out 
in the next section. 

9.5 Decoding BCH codes, Part two: the algorithms 
Let us recapitulate the BCH decoding problem, which we abandoned 
temporarily at the end of Section 9.3. We are given a received vector R = 
(Ro, Rl, ... , Rn-l), which is a noisy version of an unknown codeword C 
= (Co, C1, ... , Cn-l) from the t-error-correcting BCH code defined by (9.7), 
i.e., R = C + E, where E is the error pattern. Our goal is to recover C from 
R. The first step in the decoding process is to compute the syndrome 
polynomial S(x), defined by 

S(x) = Sl + S2X + ... + S2tX2t-1, (9.65) 

where Sj = Riaij, for j = 1,2, ... , 2t. We saw at the end of Section 9.3 
that S(x) = V(x)modx2t, where V(x) is the generating function for the 
Fourier transform of the vector V defined in (9.36), so that the key equation 
(9.37) becomes 

a(x)S(x) == w(x) (mod x2t), (9.66) 

where a(x) is the error-locator polynomial and w(x) is the error-evaluator 
polynomial. 

The next step in the decoding process is to use Euclid's algorithm, and in 
particular the procedure Euclid(a(x), b(x), fi" v) defined in Section 9.4, to 
solve the key equation for a(x) and w(x). This is possible, since ifthe number 
of errors that actually occurred is t, then by (9.20) and (9.22), 

dega(x) t, 

degw(x) t-l, 

and by Lemma 1, gcd(a(x), w(x» = 1. Thus the hypotheses of Theorem 9.5 
are met with a(x) = x2t, b(x) = S(x), v(x) = a(x), r(x) = w(x), fi, = t, 
v = t - 1, so that if the procedure Euclid(x2t, S(x), t, t - 1) is called it 



250 BCH, Reed-Solomon, and related codes 

will return the polynomial pair (v(x), where vex) = Aa(x), r(x)Aw(X), 
and A is a nonzero scalar. The scalar A can be determined by the fact that 
a(O) = I (see (9.20», i.e., A = V(O)-I, and so 

a(x) = v(x)/v(O), 

w(x) = r(x)/v(O). 

The final step in the decoding algorithm is to use a(x) and w(x) to 
determine the error pattern E = (Eo, E1, ••• , En-I), the hence the corrected 
codeword C = R - E. As we observed at the end of Section 9.3, there are two 
ways to do this, which we shall call the time-domain approach and the 
frequency-domain approach. 

The time-domain approach is based on the fact that 

a(x) = II (1 - aix) 
iEI 

where I is the error-locator set, i.e. 1= {i : Ei -=I- O} (see (9.20) and (9.36». 
Thus in order to find the error locations, one needs to find the reciprocals of 
the roots of the equation a(x) = O. Since there are only n possibilities for the 
roots, viz., 1, a-I, a-2 , ... , a-(n-l), a simple "trial and error" algorithm can 
be used to find E. Thus the so-called "time-domain completion" can be 
described by the following pseudocode fragment. It takes as input a(x) and 
produces the error vector (Eo, E1, ••• , En-I). 

/* Time-Domain Completion */ 

for (i = 0 to n - 1) 
{ 

if (a(a- i ) == 0) 
Ei= 1; 

else 
Ei=O; 

A complete decoding algorithm using the time-domain completion is 
shown in Figure 9.l. Note that the error-evaluator polynomial w(x) is not 
needed-its significance will become apparent only when we consider Reed-
Solomon codes in the next section. 



9.5 Decoding BCH codes, Part two: the algorithms 251 

/* "Time-Domain' , BCH Decoding Algorithm */ 
{ 

for(j=lto2t) 
S. = "'n-1 R.ai}· '] Ul = a I , 

Sex) = Sl + S2X + ... + S2tX2t-1; 

if (S(x) ==0) 
print' 'no errors occurred' , ; 

else 

Euclid (x2t , Sex), t, t-l); 
o(x) = v(x)/v(O); 
for (i = 0 to n-1) 
{ 

if (o(a- i ) == 0) 
Ei= 1; 

else 
Ei=O; 

for (i = 0 to n-1) 
Ci=Ri+Ei; 

print' 'corrected codeword: (Co, C1, ••• ,' Cn- 1)"; 

Figure 9.1 A time domain BCH decoding algorithm. 

The frequency-domain approach is based on Corollary 2 to Theorem 
9.4, which says that the components of V = (Va, ... , Vn-t) can be 

A d A 

computed recursively, via the formula Vj = Li=10iVj-i, where o(x) = 1 + 
0lX + ... + Odxd, provided at least d "initial values" of the vector V are 
known. Since the syndrome provides 2t components of V, viz. 
VI, 172, ... , V2t , and since Euclid(x2t, S(x) , t, t - 1) is guaranteed to 
return a polynomial vex) of degree::;; t, the syndrome values Sl, S2, 
... ,S2t are more than enough to get the recursion started, so that the 
following "frequency-domain completion" will successfully calculate the 
error vector E: 



252 BCH, Reed-Solomon, and related codes 

/* Frequency-Domain Completion */ 
{ 

for(j=2t+lton) 
Sjmodn = L:1=l aiSj-i; 

for (i = 0 to n - 1) 
K = ,\,n-Is·a-ij· , u;=o; , 

A complete decoding algorithm using the frequency-domain completion is 
shown in Figure 9.2. 

Example 9.5 Consider the three-error correcting BCH code of length 15, 
with generator polynomial g(x) = x lO + x8 + x5 + X4 + x2 + X + 1 (see Ex-
ample 9.1). Suppose the vector R = (110000110110101) is received. Then 
the syndrome components Sj are given by Sj = 1 + a j + a 6j + a7j + a9j + 
alOj + a l2j + a l4j , where a is a primitive root in GF(16). Using Table 9.1, 

/ * ' 'Frequency-Domain' , BCH Decoding Algori thIn * / 
for (j = 1 to 2 t) 

S. = '\'n-I R.aij· '} u, = 0' , 
S(x) = SI + S2X + ... + S2tX2t-l; 
if (S(x) ==0) 

print' 'no errors occurred' , ; 
else 

Euclid (x2t , S(x), t, t-l); 
a(x) = u(x)/u(O); 
for (j =2t+lton) 

8.i mod n = L:1=1 aiSj-i; 

for (i = 0 to n - 1) 
K = ,\,'!-IS·a-ij· , u;=O; , 

for (i = 0 to n - 1) 
Ci=Ri+Ei; 

print' 'corrected codeword: (Co, C I , ... , Cn- I )"; 

Figure 9.2 A frequency-domain BCH decoding algorithm. 



9.6 Reed-Solomon codes 253 

together with the fact that S2j = (Problem 9.17), we find that 
SI = a 12 , S2 = a 9, S3 = 0, S4 = a 3, S5 = 1, S6 = 0, and so Sex) =x4 
+a3x 3 + a 9x + a 12 . Applying Euclid's algorithm to the pair (x 6 , Sex)), we 
get the following table: 

Ui Vi ri qi 

-1 1 0 x 6 

0 0 x4 + a 3x 3 + a 9x + a l2 

x2 + a 3x + a6 a 3 x2 + a 3x + a6 

Thus the procedure Euclid(x 6 , Sex), 3, 2) returns the pair 
(x2 + a3 x + a 6 , a 3). Multiplying both of these polynomials by a-6, we there-
fore find that a(x) = 1 + a l2x + a 9x2, and w(x) = a 12 . If we choose the 
time-domain completion, we find that a(a- i ) = 0 for i = 2 and 7, so that the 
error pattern is E = [OOlOOOOlOOOOOO], and the corrected codeword is 
C = [1 11000lO0110lOl]. On the other hand, if we choose the frequency-
domain completion, we use the initial conditions SI = a 12 , S2 = 
a 9 , S3 = 0, S4 = a 3 , S5 = 1, S6 = 0 and the recursion Sj = a 12 Sj_1 + 
a9 Sj-2 to complete the syndrome vector, and find 

S = (So, SI, ... , S15) = (0, a 12 , a9 , 0, a 3, 1,0, a 9, a 6, 0, 1, a 12 , 0, a 6, a3). 

Performing an inverse DFT on the vector S we find that E = 
[OOlOOOOlOOOOOO], and C = [1 11000lO0110lO1] as before. D 

The algorithms in Figures 9.1 and 9.2 will work perfectly if the number 
of errors that occurs is no more that t. If, however, more than terrors 
occur, certain problems can arise. For example, the procedure 
"Euclid(S2t, S(x) , t, t - 1)" could return a polynomial vex) with 
(v)(O) = 0, thereby causing a division by 0 in the step "a(x) = v(x)jv(O)". 
Also, the decoder output C = (Co, CI , ... , Cn-I) may turn out not to be a 
codeword. Therefore in any practical implementation of the decoding algo-
rithms, it will be necessary to test for these abnormal conditions, and print a 
warning, like "more than terrors" if they occur. 

9.6 Reed-Solomon codes 
In the first five sections of this chapter we have developed an elaborate theory 
for BCH codes. They are multiple-error-correcting linear codes over the 



254 BCH, Reed-Solomon, and related codes 

binary field GF(2), whose decoding algorithm requires computations in the 
larger field GF(2m). Thus for BCH codes there are two fields of interest: the 
codeword symbol field GF(2), and the decoder's computation field GF(2 m). 

It turns out that almost the same theory can be used to develop another 
class of codes, the Reed-Solomon codes (RS codes for short). The main 
theoretical difference between RS codes and BCH codes is that for RS codes, 
the symbol field and the computation field are the same. The main practical 
difference between the two classes of codes is that RS codes lend themselves 
naturally to the transmission of information characters, rather than bits. In 
this section we will define and study Reed-Solomon codes. 

Thus let F be any field which contains an element a of order n.6 If r is a 
fixed integer between 1 and n, the set of all vectors C = (Co, C I , ... , Cn-I) 
with components in F such that 

n-I L CaY = 0, for j = 1, 2, ... , r, (9.67) 
i=O 

is called a Reed-Solomon code of length n and redundancy rover F. The 
vectors C belonging to the code are called its codewords. The following 
theorem gives the basic facts about RS codes. 

Theorem 9.7 The code defined by (9.67) is an (n, n - r) cyclic code over F 
with generator polynomial g(x) = n;=1 (x - ai ), and minimum distance 
drnin = r + 1. 

Proof Let C = (Co, C I , ... , Cn-I) be an arbitrary vector oflength n over F 
and let C(x) = Co + Clx + ... + Cn_Ix n- 1 be the corresponding generating 
function. Then (9.67) says that C is a codeword if and only if C(ai ) = 0, for 
j = 1, 2, ... , r, which is the same as saying that C(x) is a multiple of 
g(x) = (x - a)(x - a 2 ) ... (x - a r). But since xn - 1 = n;=1 (x - ai ), it 
follows that g(x) is a divisor of xn - 1, and so by Theorem 8.3(b) the code is 
an (n, n - r) cyclic code with generator polynomial g(x). To prove the 
assertion about dmin, observe that (9.67) says that if C = (Co, CI , ... , Cn-I) 
is the DFT of a codeword, then CI = C2 = ... = Cr = ° (cf. Eq. (9.11». 
Thus by the BCH argument (Theorem 9.3), the weight of any nonzero 
codeword is ;=: r + 1. On the other hand, the generator polynomial 
g(x) = xr + gr_Ixr- 1 + ... + go, when viewed as a codeword, has weight 

r + 1. Thus drnin = r + 1 as asserted. D 

Example 9.6 Consider the (7, 3) Reed-Solomon code over GF(8). If a is a 



9.6 Reed-Solomon codes 255 

primitive root in GF(8) satisfying a3 = a + 1, the generator polynomial for 
the code is g(x) = (x - a)(x - a2)(x - a3)(x - a4 ) = X4 + a 3x3 + x2 + ax 
+ a 3 . If g(x) is viewed as a codeword, it is [a3 , a, 1, a3 , 1, 0, 0], which is of 
weight 5, the minimum weight ofthe code. D 

We note that the (7, 3) RS code over GF(8) in Example 9.6 has dmin = 5, 
whereas the (7, 3) code over GF(2) given in Example 8.2 (and elsewhere in 
Chapter 8) has only dmin = 4. The following theorem shows that for a given n 
and k, RS codes have the largest possible dmin, independent ofthe field F. 

Theorem 9.8 (the Singleton bound) JjC is an (n, k) linear code over afield 
F, then dmin :s: n - k + 1. 

Proof We begin by recalling that if T is a linear transformation mapping a 
finite-dimensional vector space U to another vector space V, then 

rank(T) + nullity(T) = dim(U). (9.68) 

We apply this to the linear transformation T mapping the code C to the space 
F k- I by projecting each codeword onto the first k - 1 coordinates: 

T(Co, CI , ... , Cn-I) = (Co, CI , ... , Ck-2)· 

We know that rank(T) :s: k - 1, since the image F k- I has dimension k - 1. 
Also, dim(C) = k by assumption. Thus (9.68) implies that nullity(T) ;=: 1. 
Thus there exists at least one nonzero codeword C such that T(C) = 0. Such a 
codeword has at least k - 1 zero components, and so has weight at most 
n-k+1. D 

Theorem 9.8 says that dmin :s: n - k + 1 for any (n, k) linear code. On the 
other hand, Theorem 9.7 says that dmin = n - k + 1 for any (n, k) Reed-
Solomon code, and so Reed-Solomon codes are optimal in the sense of 
having the largest possible minimum distance for a given length and dimen-
sion. There is a special name give to linear codes with dmin = n - k + 1; they 
are called maximum-distance separable (MDS) codes. (Some other MDS 
codes are described in Problems 9.24-9.26.) All MDS codes share some very 
interesting mathematical properties; among the most interesting is the follow-
ing, called the interpolation property of MDS codes. 

Theorem 9.9 Let C be an (n, k) MDS code over the field F, and let 
I {O, 1, ... , n - I} be any subset of k coordinate positions. Then for any 



256 BCH, Reed-Solomon, and related codes 

set {ai : i E I} of k elements from F, there exists a unique codeword C such 
that Ci = ai for all i E I. 

Proof We consider the linear transformation PI mapping the code C to F k 
by projecting each codeword onto the index set I; i.e., PICCO, C1, 

... , Cn-l) = (Cil' Ciz , ... , Cik ), where I = {iI, i2 , ... ,id. Applying 
(9.68), which in this case says that rank(PI) + nullity(PI) = dim(C) we see 
that dim(C) = k, since C is a k-dimensional code. Also, nullity(PI) = 0, 
since if there were a nonzero codeword C with PI(C) = 0, that codeword 
would have weight at most n - k, contradicting the fact that C is an MDS 
code. Hence by (9.68) rank(PI) = k, and so the mapping PI : C ----; Fk is 
nonsingular, i.e. one-to-one and onto. Thus every vector in F k appears exactly 
once as the projection of a codeword onto I, which is what the theorem 
promises. D 

We summarize the result of Theorem 9.9 by saying that any subset of k 
coordinate positions of a k-dimensional MDS code is an information set (see 
also Problem 7.13). The proof we have given is short but nonconstructive; 
however, for RS codes there is an efficient interpolation algorithm, which is 
closely related to the Lagrange interpolation formula of numerical analysis. 
The next theorem spells this out. 

Theorem 9.10 Consider the (n, k) Reed-Solomon code over the field F 
defined by (9.67), where k = n - r. There is a one-to-one correspondence 
between the codewords C = (Co, C1, ... , Cn-l) of this code, and the set of 
all polynomials P(x) = Po + PIX + ... + Pk_lXk-1 of degree k - 1 or less 
over F, given by 

Ci = a-i(r+l) pea-i). 

Thus apart from the scaling factors a-i(r+l), the components of a given RS 
codeword are the values of a certain (k - 1 )st-degree polynomial. 

Proof Let C = [C1, ... , Cn-11 be a fixed codeword. We define a "twisted" 
version of C, called D = [Dl, ... , Dn-11, by 

for i = 0, 1, n - 1. (9.69) 

Since by (9.67) we have C1 = C2 = ... = Cr = 0, it follows from (9.17) and 
(9.18) that Dn-r = ... = Dn- 1 = 0. Thus the DFT polynomial for D, denoted 
by D(x), is a polynomial of degree n - r - 1 = k - 1 or less: 



9.6 Reed-Solomon codes 
A A A A k-I 

D(x) = Do + Dlx + ... + Dk-IX . 

Let us define the polynomial P(x) as follows: 

1 A 

P(x) = - D(x). 
n 

257 

Then by (9.16) we have Di = pea-i), for i = 0, 1, ... , n - 1. Combining this 
with (9.69), we obtain C = a-i(r+l) pea-i), which is what we wanted. D 

The following example illustrates Theorem 9.10. 

Example 9.7 Consider the (7,3) RS code described in Example 9.6. Accord-
ing to Theorem 9.9, there is a unique codeword C such that CI = a3 , C4 = a, 
and C6 = a4 . Let us construct this codeword. 

We begin by observing that if I = {I, 4, 6}, Theorem 9.9 guarantees, in 
essence, the existence of a 3 X 7 generator matrix for C ofthe form 

t 
GI46 = * 0 

* 0 

2 
* 
* 
* 

345 
* 0 * 
* 1 * 
* 0 * 

where the * 's are unknown elements of GF(8) which must be determined. 
Once GI46 is known, the desired codeword C is given by 
C = [a3 , a, a 4 ] . G146 . So let's construct the three rows of G146, which we 
shall call CI , C4 , and C6 . 

By Theorem 9.9, any codeword C from the (7,3) RS code can be 
represented as Ci = a-5i P( a-i), where P(x) = Po + PIX + P2X2 is a poly-
nomial of degree 2 or less. Thus for example, if PI (x) denotes the polynomial 
corresponding to the first row C I of G146, we have 

(9.70) 

It follows from the conditions PI(a-4 ) = PI(a-6 ) = 0 in (9.70) that 
PI (x) = A(l + a 4x)(1 + a6x) for some constant A, which can be determined 
by the condition PI(a-l) = a5 . Indeed PI(a-l) = a5 implies A(1 + a3)(1 + 
a5) = a5 , i.e., A = a5 /(1 + a 3)(1 + a5) = l. Thus PI(x) = (1 + a4x) 
(1 + a6x), and so 



258 BCH, Reed-Solomon, and related codes 

C1 = [P1(1), a 2 P1(a-1), a4 P1(a-2 ), a 6 P1(a-3 ), 

a 1 PI (a-4 ), a 3 P1(a-s), as PI (a- 6)] 

= [1, 1, a, a3 , 0, a, 0]. 

Similarly, if P4 (x) and P6(x) denote the quadratic polynomials corresponding 
to the rows C4 and C6 of the generator matrix G146 , then we find that 
P4(x) = a2 (1 + ax)(1 + a6x) and P6(x) = a6 (1 + ax)(1 + a4x). Thus we 
compute 

Combining C1, C4, and C6, we find that the generator matrix Gl46 is 

(1 1 a a 3 ° a 0) 
Gl46 = 1 ° a 6 a 6 1 a 2 ° , 

1 ° a 4 as ° as 1 
and so, finally, the unique codeword C with C1 = a3 , C4 = a, C6 = a 4 is 

C = [a3 , a, a4 ]. Gl46 = [as, a3 , a6 , 0, a, 1, a4 ]. D 

This concludes our theoretical discussion of RS codes; now let's consider 
the practical issues of encoding and decoding them. 

Since by Theorem 9.7, an (n, k) RS code is cyclic, it can be encoded using 
the shift-register techniques developed in Chapter 8. In particular, the general 
encoding circuit of Figure 8.5(a) can be used. However, since an RS code is 
defined over an arbitrary field F-which in practice will never be the binary 
field GF(2) (Problem 9.27)-the three basic components (flip-flops, adders, 
and multipliers) will typically not be "off-the-shelf" items. Although the 
design of these components over the important fields GF(2 m) is an important 
and interesting topic, it is beyond the scope of this book, and we will conclude 
our discussion of RS encoders with Figure 9.3, which shows a systematic 
shift-register encoder for the (7, 3) RS code over GF(8) with g(x) = 
X4 + a 3x3 + x2 + ax + a3 (see Examples 9.6 and 9.7). 

We turn now to the problem of decoding RS codes, which turns out to be 
quite similar to the decoding of BCH codes. In view of the similarity of their 
definitions (compare (9.7» with (9.67», this should not be surprising. 

Let us begin by formally stating the RS decoding problem. We are given a 
received vector R = (Ro, R1, ... , Rn-d, which is a noisy version of an 



In 

9.6 Reed-Solomon codes 
first 3 ticks closed 
last 4 ticks open 

259 

Figure 9.3 A systematic shift-register encoder for the (7, 3) RS code over GF(8) with 
g(x) = X4 + a 3x 3 + x2 + ax + a 3 • 

unknown codeword C = (Co, CI , ... , Cn- I ) from the (n, k) RS code defined 
by (9.67), i.e., R = C + E, where E is the error pattern. Since by Theorem 
9.7, dmin = r + 1, we cannot hope to correctly identify C unless 
wt(E) :s: lr /2 J, and so for the rest of the discussion we shall let t = lr /2 J, 
and assume that wt(E) :s: t. 

The first step in the decoding process is to compute the syndrome poly-
nomial 

(9.71) 

where Sj = 'L7:oI Ria iJ , for j = 1, 2, ... , r. By the results of Section 9.3, if 
we define the "twisted error pattern" by 

V = (Eo, EIa, E2a2, ... , En_Ian-I), 

then Sex) = V(x)modx r, and the key equation (9.23), reduced modxr, 
becomes 

O(x)S(x) == w(x) (modxr), 

where o(x) is the locator polynomial, and w(x) is the evaluator polynomial, 
for the vector V 

At this point the decoding problem is almost exactly the same as it was 
for BCH codes as described in Section 9.5. In particular, if the procedure 
Euclid(x r, S(x) , t, t - 1) is called, it will return the pair of polynomials 
(v(x), r(x)) , where vex) = AO(X) and rex) = AW(X) for some nonzero con-
stant A. 

The final step in the decoding algorithm is to use o(x) and w(x) to determine 
the error pattern E = (Eo, E I , ... , En-d, and hence the original codeword 



260 BCH, Reed-Solomon, and related codes 

c = R - E. As with BCH codes, there are two essentially different ways to do 
this, the time-domain approach and the frequency-domain approach. 

The time-domain approach for RS decoding is similar to the time-domain 
approach for BCH decoding, with one important exception. For BCH codes, 
when the errors are located, their values are immediately known. This is 
because BCH codes are binary, so that Ei = ° or 1 for all i. Thus ifthere is an 
error in position i, i.e., Ei -I 0, then necessarily Ei = 1. However, for RS 
codes, the E/s lie in the "big" field F, so that simply knowing that Ei -lOis 
not enough to indentify E i . In order to evaluate an error whose location is 
known, we use Corollary 1 to Theorem 9.4, which say that if Ei -I 0, i.e., 
o(a-i) = 0, then Vi = aiEi = -aiw(a-i)/o'(a-t i.e., 

E- __ w(a- i ) 
1- o'(a- i )· 

/* ' 'Time-Domain' , RS Decoding Algori thIn */ 
{ 

for(j=ltor) 
S- = R·aij· 'J Ul = a I , 

Sex) = SI + S2X + ... + SrXr- 1; 

if (S(x) = =0) 
print' 'no errors occurred' , ; 

else 

Euclid (x r, Sex), t, t-1); 
o(x) = v(x)/v(O); 
w(x) = r(x)/v(O); 
for (i = 0 to n - 1) 
{ 
if (o(a- i ) == 0) 

Ei = -w(a-i)/o'(a-i); 
else 

Ei=O; 

for (i = 0 to n - 1) 
Ci =Ri - Ei; 

print' 'corrected codeword: (Co, C1, ••• ,' Cn- 1)"; 

Figure 9.4 A time-domain RS decoding algorithm. 

(9.72) 



9.6 Reed-Solomon codes 261 

Thus the time-domain completion of the RS decoding algorithm can be 
written as follows: 

/* Time-Domain Completion */ 
{ 

for (i = 0 to n - 1) 
{ 

if (a(a- i ) == 0) 
Ei = -w(a-i)la'(a-i); 
else 
Ei=O; 

A complete time-domain decoding algorithm for RS codes is shown m 
Figure 9.4. 

The frequency-domain approach to RS decoding is nearly identical to the 
frequency-domain approach to BCH decoding, since the idea of recursive 
completion of the error vector works for an arbitrary field F. Here is a 
pseudocode listing for a frequency-domain completion. 

/* Frequency-Domain Completion */ 

for (j = r + 1 to n) 
Sjmodn = -L:1=I Sj-i; 

for (i = 0 to n - 1) 
E- = l,\,'!-IS·a-ij· 

I nU}=O} , 

A complete RS decoding algorithm using the frequency-domain completion is 
given in Figure 9.5. 

Example 9.8 Consider the (7,3) RS code over GF(23 ) with g(x) = 
(x - a)(x - a 2 )(x - a 3 )(x - a 4 ) = X4 + a 3x3 + x2 + ax + a 3 already con-
sidered in Examples 9.6 and 9.7. Suppose the received vector is 
R = (a3 , a, 1, a2 , 0, a 3 , 1). The syndromes SI = L:Riaij are SI = a 3 , 

S2 = a 4 , S3 = a 4 , S4 = 0, so that Sex) = a 4x2 + a4x + a 3 . If we invoke the 



262 ReB, Reed-Solomon, and related codes 

/ * ' 'Frequency-Domain' , RS Decoding Algori thIn * / 
for(j=ltor) 

S. = "'n-1 R.aij· '] Ul = 0 I , 

Sex) = Sl + S2X + ... + SrXr-1; 
if (S(x) = =0) 

print' 'no errors occurred' , ; 
else 

Euclid (x r, Sex), t, t-1); 
a(x) = v(x)/v(O); 
w(x) = r(x)/v(O); 
for(j=r+1ton) 

5jmodn = - L:1=1 aiSj-i; 
for (i = 0 to n - 1) 

g = 1",n-1 S.a-ij. 
I nu; = 0; , 

for (i = 0 to n - 1) 

print' 'corrected codeword: [Co, C1, ••• , , Cn-d' , ; 

Figure 9.5 A frequency-domain RS decoding algorithm. 

procedure Euclid(x4, a 4x 2 + a 4x + a 3 , 2, 1) we obtain the following 
table: 

Vi(X) ri(x) 

-1 0 x4 
0 1 a4x2 + a4x + a 3 

1 a 3x2 + a 3x + a 5 x+a 

Thus we conclude that a(x) = a-\a5 + a 3x + a 3x2) = 1 + a 5x + a 5x2, and 
w(x) = a-5(x + a) = a2x + a 3 . 

With the time-domain approach, we find that a(a-3 ) = a(a-2) = 0, i.e., 
a(x) = (1 + a2x)(1 + a 3x). Thus the error locations are i = 2 and i = 3. To 
evaluate these two errors, use the formula (9.72), together with the fact that 
a'(x) = a 5, so that w(x)/a'(x) = a4x + a 5, and find 



9.6 Reed-Solomon codes 

Table 9.4 The field GF(8) represented 
as powers of a, where a3 = a + 1. 

o 
1 
2 
3 
4 
5 
6 

001 
010 
100 
011 
llO 
III 
101 

w(a-2) 4 -2 5 3 
E2 = a'(a-2 ) = a . a + a = a , 

w(a-3 ) 
E3 = = a4 . a-3 + a 5 = a6 . a'(a-3) 

263 

Thus E = (0, 0, a3, a6 , 0, 0, 0) and the decoder's output IS C = R + 
E = (a3 , a, a, 1,0, a3 , 1). 

With the frequency-domain approach, we use the initial conditions 
SI = a3, S2 = a4 , S3 = a4, S4 = ° and the recursion (based on the coeffi-
cients of a (x)) Sj = a5 Sj_1 + a 5 Sj-2 to find 

S5 = a 5 . ° + a 5 . a 4 = a2 , 

S7 = So = a 5 . 1 + a 5 . a 2 = a4 . 

Thus S = (So, SI, S2, S3, S4, S5, S6) = (a4, a 3, a4, a4, 0, a2, 1). To obtain 
E, we take an inverse DFTofS, using (9.12): 

A 3 6 E = S = (0, 0, a , a , 0, 0, 0), 

and now the decoding concludes as before. D 

We conclude this section with a brief discussion of two important applica-
tions ofRS codes: burst-error correction and concatenated coding. 

We can illustrate the application to burst-error correction by returning to 
Example 9.8. There we saw the (7,3) RS code over GF(8) in action, 
correcting two symbol errors. But instead of viewing each codeword as a 



264 BCH, Reed-Solomon, and related codes 

7-dimensional vector over GF(8), we can expand each element of GF(8) into 
a 3-dimensional binary vector via Table 9.4 and thereby convert the code-
words into 2l-dimensional binary vectors. In other words, the (7, 3) RS code 
over GF(8) can be viewed as a (21,9) linear code over GF(2). For example, 
the codeword 

C = (a3 , a, a, 1,0, a3 , 1) 

becomes the binary vector 

C = (011 010 010 001 000011 001). 

Now suppose this binary version of C was sent over a binary channel and 
suffered the following error burst oflength 5: 

error 
burst 

E = (000 000 0 Ilioi' 000 000 000) 

Then the received vector would be 

R = (011 010 001 100000011 001), 

which of course differs from C in four positions. Ordinarily it would be 
difficult or impossible to correct four errors in a (21, 9) binary linear code 
(see Problem 9.33), but we can take advantage of the fact that this particular 
set of four errors has occurred in a short burst by observing that when E is 
mapped into a 7-dimensional vector from GF(8), 

E = (0, 0, a3 , a6 , 0, 0, 0), 

it only has weight 2! Thus if we convert R into a vector from GF(8), 

R = (a3 , a, 1, a 2 , 0, a3 , 1), 

we can (and we already did in Example 9.8) find the error pattern and correct 
the errors, via the decoding algorithm of Figure 9.4 or 9.5. In this way the 
original RS code has become a (21,9) binary linear code which is capable of 
correcting many patterns of burst errors. 

The generalization is this: a t-error-correcting RS code of length n over 
GF(2m) can be implemented as an (m(2m - 1), m(2m - 1 - 2t)) linear code 
over GF(2) which is capable of correcting any burst-error pattern that does 
not affect more than t of the symbols in the original GF(2 m) version of the 
codeword. 

We come finally to the application of RS to concatenated coding, a subject 



9.6 Reed-Solomon codes 265 

already mentioned briefly in Chapter 6 (see p. 129). We illustrate with a 
numerical example. 

Suppose the (7,4) binary Hamming code is being used on a BSC with 
crossover probability p = .025, as shown in Figure 9.6. In the notation of 
Figure 9.6, P{u -# u} = L:1=2G)pk(1- pf-k = .0121. The idea of conca-
tenation is to regard the "encoder-BSC-decoder" part of Figure 9.6 as one 
big noisy channel, called the outer channel (the BSC itself becomes the inner 
channel), and to design a code for it. In this example the outer channel is a 
DMC with 16 inputs; the results of this section suggest that we regard these 
inputs and outputs as elements from GF(16) rather than as four-dimensional 
vectors over GF(2). So let us now consider using a (15, 11) RS code over 
GF(16) to reduce the noise in the outer channel, as illustrated in Figure 9.7. 

The RS encoder in Figure 9.7 takes 11 information symbols a = 
(aD, ... , alO) from GF(16) (which are really 44 bits from the original source) 
and produces an RS codeword C = (Co, C1, ... , CI4). The outer channel 
then garbles C, and it is received as R = (Ro, ... , RI4). The RS decoder then 
produces an estimate fJ = (fJo, ... , fJlO) of a, which will be equal to a if the 
outer channel has caused no more than two symbol errors. Thus if 
f (= 0.0121) denotes the probability of decoder error in Figure 9.6, the 
probability of decoder error in Figure 9.7 is not more that 
(};)fk(l - f)15-k = 0.0007. The overall rate of the coding system depicted in 
Figure 9.7 is 11/15 X 4/7 = 0.42; indeed, the system is really just a (105,44) 
binary linear code which has been "factored" in a clever way. We might wish 

inner 
channel .. 

r---------------i 
(X1,· .. ,X7) (Y1'·"'Y7) 

(U1, .. I (v1, .. ·,v4) 

---
...... 1-_______ outer .. 

channel 

Figure 9.6 The (7, 4) Hamming code on a BSC with p = .025. 

(bo,···,blO) 

Figure 9.7 The (15, 11) Reed-Solomon code being used on the outer channel of 
Figure 9.6. 



266 BCH, Reed-Solomon, and related codes 

Outer Channel 

Figure 9.8 A general coded communication system, viewed as a noisy "outer" 
channel. (Compare with Fig. 9.6.) 

to compare this with an approximately comparable unfactored system, say the 
II-error-correcting binary BCH code oflength 127 which is a (127,57) code. 
Its rate (0.45) is slightly higher and its decoder error probability (.0004) is 
slightly lower, but its decoding complexity is considerably larger-for the 
BCH code, the error-locator polynomial will typically be an 11 th-degree 
polynomial over GF(128), whereas for the RS code it will be quadratic 
polynomial over GF(I6). 

The preceding example illustrates both the general idea of concatenation 
and the reason why RS codes are so useful in concatenated systems. Any 
coded communication system can be regarded as a noisy outer channel, as in 
Figure 9.8. However, for this point of view to be useful, we must be able to 
design an outer code capable of correcting most of the errors caused by the 
outer channel, which is likely to be a very complex beast, since its errors are 
caused by inner decoder failures. When the inner decoder fails, that is when 
(VI, ... , Vk) -I- (UI, ... , Uk) in Figure 9.8, the symbols VI, ... , Vk usually 
bear practically no resemblance to UI, ... , Uk. This means that errors in the 
outer channel tend to occur in bursts of length k. And we have already seen 
that RS codes are well suited to burst-error correction. This is the reason why 
RS codes are in widespread use as outer codes in concatenated systems. 

9.7 Decoding when erasures are present 
We have seen that BCH and RS codes can correct multiple errors. In this 
section we will see that they can also correct another class of channel flaws, 
called erasures. An erasure is simply a channel symbol which is received 
illegibly. For example, consider the English word BLOCK. If the third letter is 
changed from a to A, we get BLACK; this is an error in the third position. 
However, if the same word suffers an erasure in the third position, the result 
is BL*CK, where "*" is the erasure symbol. In practice, erasures are quite 
common. They can be expected to occur when the channel noise becomes 



9. 7 Decoding when erasures are present 267 

unusually severe for a short time. For example, if you are trying to talk at the 
airport and a low-flying jet passes overhead, your conversation is erased. Your 
listeners will not mistake what you are trying to say; they will simply not be 
able to understand you. 

In this section, we will learn something about erasure correction. We will 
see that in principle, an erasure is only half as hard to correct as an error 
(Theorem 9.11); and we will see how to modify the BCH and RS decoding 
algorithms in order to correct both erasures and errors. 

To model a channel which can produce erasures as well as errors, we simply 
enlarge the underlying symbol set F to F = F U { * }, where "*" is as above a 
special erasure symbol. The only allowed transmitted symbols are the 
elements of F, but any element in F can be received. The main theoretical 
result about simultaneous erasure-and-error correction follows. (Compare 
with Theorem 7.2.) 

Theorem 9.11 Let C be a code over the alphabet F with minimum distance d. 
Then C is capable of correcting any pattern of eo erasures and 
el errors if eo + 2el ::;; d - 1. 

Proof To prove the theorem, we first introduce the extended Hamming 
distance d H(X, y) between symbols in F: 

dH(x, y) = 1 if x -=I=- y and neither x nor y is "* ", { ° if x = y, 

if x -=I=- y and one of x and y is " * ". 
Thus for example if F = {a, I} and F = {a, 1, *}, then dH(O, 1) = 1, 
d H(1, *) = 1/2, d H(1, 1) = 0. We then extend the definition of d H to vectors 
x = (Xl, ... , xn) and y = (YI, ... , Yn) with components in F as follows: 

n 

d H(X, y) = L d H(Xi, Yi)· 
i=l 

With this definition, d H becomes a metric on the set F n of all n-dimensional 
vectors over F. (See Problem 9.40). Indeed d H(X, y) is just the ordinary 
Hamming distance between x and y, if no erasure symbols are involved in x 
ory. 

We next introduce a special decoding algorithm, called the minimum-
distance decoding (MDD) algorithm for the code C. When the MDD 
algorithm is given as input a received word REF n, it produces as its output a 
codeword Ci for which the extended Hamming distance dH(C i , R) is 



268 BCH, Reed-Solomon, and related codes 

smallest. We will prove Theorem 9.11 by showing that the MDD algorithm 
will correct eo erasures and el errors, if eo + 2el ::;; d - 1. 

Thus suppose that C is the transmitted codeword, and that in transmission 
it suffers eo erasures and el errors, with eo + 2el ::;; d - 1. If R is the 
corresponding garbled version of Ci , then dHCCi , R) = !eo + el ::;; !Cd - 1). 
There can be no other codeword this close to R, since if e.g. 
d HC Cj , R) ::;; !C d - 1) where j -=I i, then by the triangle inequality 

dHCCi , Cj ) ::;; dHCCi , R) + dHCR, Cj ) 

1 1 
::;;"2Cd-l)+"2Cd-l) 

= d-l, 

which contradicts the fact that the code's minimum distance is d. Therefore 
the distance dHCCi , R) is uniquely smallest for j = i, and the MDD algorithm 
will correctly indentify Ci , the actual transmitted codeword. D 

Example 9.9 Let C be the C7, 3) cyclic code from Example 8.2, with code-
words 

Co = 0000000, 

CI = 1011100, 

C2 = 0101110, 

C3 = 0010111, 

C4 = 1001011, 

Cs = 1100101, 

C6 = 1110010, 

C7 = 0111001. 

Since this code is linear, its minimum distance is the same as its minimum 
weight; thus d = 4. According to Theorem 9.11, then, this code is capable of 
correcting eo erasures and el errors, provided eo + 2el ::;; 3. Here is a table of 
the allowed combinations of erasures and errors: 



9. 7 Decoding when erasures are present 

eo 

3 
2 
1 
1 

° ° 

° ° 1 

° 1 

° 

269 

For example, suppose R = [1 1 1 ° * ° 1] is received. The MDD algorithm 
would make the following computations: 

dH(Ci , R) Erasure positions Error positions 

° 4.5 {4} {a, 1, 2, 6} 
1 3.5 {4} {I, 3, 6} 
2 5.5 {4} {a, 2, 3, 5, 6} 
3 3.5 {4} {a, 1, 5} 
4 4.5 {4} {I, 2, 3, 5} 
5 1.5 {4} {2} 
6 2.5 {4} {5,6} 
7 2.5 {4} {a, 3} 

Therefore the MDD would output C5 and conclude that R had suffered an 
erasure in position 4 and an error in position 2, i.e. eo = 1 and el = 1. On the 
other hand if R = [* * * 1 ° 1 0], the computation would run as follows: 

dH(Ci , R) Erasure positions Error positions 

° 3.5 {a, 1, 2} {3,5} 
1 3.5 {a, 1, 2} {4, 5} 
2 2.5 {a, 1, 2} {4} 
3 4.5 {a, 1, 2} {3, 4, 6} 
4 2.5 {a, 1, 2} {6} 
5 5.5 {a, 1, 2} {3, 4, 5, 6} 
6 2.5 {a, 1, 2} {3} 
7 3.5 {a, 1, 2} {5,6} 



270 BCH, Reed-Solomon, and related codes 

Here the algorithm faces a three-way tie (between C2 , C4 , and C6), but no 
matter which of these three it selects, it will conclude that the transmitted 
codeword has suffered 3 erasures and 1 error, which is beyond the code's 
guaranteed correction capabilities. D 

Theorem 9.11 gives the theoretical erasure-and-error correction capability 
of a code in terms of its minimum distance, but from a practical standpoint 
the MDD algorithm used in the proof leaves much to be desired, since it is 
plainly impractical to compare the received word with each of the codewords 
unless the code is very small. Fortunately, for BCH and RS codes, there is a 
simple modification of the basic "errors-only" decoding algorithms we have 
already presented in Section 9.6 (Figs. 9.4 and 9.5), which enables them to 
correct erasures as well as errors. In the remainder of this section, we will 
discuss this modification. 

The erasures-and-errors decoding algorithms for BCH and RS codes, like 
their errors-only counterparts, are virtually identical, but for definiteness we'll 
consider in detail only RS codes. At the end of this section, we'll discuss the 
simple modifications required for BCH codes. By Theorem 9.7, the minimum 
distance of an (n, k) RS code is r + 1, where r = n - k, and so Theorem 
9.11 implies the following. 

Theorem 9.12 Let C be an (n, k) RS code over afield F Then C is capable 
of correcting any pattern of eo erasures and el errors, if eo + 2eI r, where 

D 

Now let's begin our discussion of the erasures-and-errors decoding algo-
rithm for RS codes. Suppose we are given a received vector R = 
(Ro, RI , ... , Rn-d, which is a noisy version of an unknown codeword C = 
(Co, CI , ... , Cn-d, from an (n, k) RS code with generator polynomial 
g(x) = (x - a)(x - a 2 ) ... (x - a r ), with r = n - k. We assume R has suf-
fered eo erasures and el errors, where eo + 2eI r. The first step in the 
decoding algorithm is to store the locations of the erasures. This is done by 
defining the erasure set 10 as 

Io={i:Ro=*}, (9.73) 

and then computing the erasure-location polynomial Go(x): 

Go(x) = II (1 - aix). (9.74) 
iE10 



9. 7 Decoding when erasures are present 271 

(If there are no erasures, ao(x) is defined to be 1.) 
Once the erasure locations have been "stored" in ao(x), the algorithm 

replaces the *'s in R with O's, i.e., a new received vector R' = 
(Ro, RL ... , is defined, as follows: 

if Ri -=I *, 
if Ri = *. (9.75) 

The advantage of replacing the * 's with O's is that unlike *, 0 is an element of 
the field F, and so arithmetic operations can be performed on any component 
of R'. The disadvantage of doing this is that when viewed as a garbled version 
of C, R' will have suffered eo + e1 errors,7 which may exceed the code's 
errors-only correction capability. However, as we shall see, by using the "side 
information" provided by the erasure-locator polynomial ao(x), the errors in 
R' can all be corrected. 

With this preliminary "erasure management" completed, the decoding 
algorithm proceeds in a manner which is similar to the errors-only algorithm. 
In particular, the next step is to compute the syndrome polynomial 
Sex) = Sl + S2X + ... + Srxr-1, where 

n-1 
Sj = LRiaiJ, for j = 1, 2, ... , r. 

i=O 

If now we define the errors-and-erasures vector E' = (Eo, EL ... , as 
E' = R' - C, and the "twisted" errors-and-erasures vector Vby 

v = (Eo, Eta, ... , (9.76) 

then it follows by the results of Section 9.3 that Sex) = V(x)modx r, and the 
key equation (9.37) becomes 

a(x)S(x) == w(x) (modxr), (9.77) 

where a(x) is the locator polynomial, and w(x) is the evaluator polynomial, 
for the vector V. From now on, we'll call a(x) the errors-and-erasures-locator 
polynomial, and w(x) errors-and-erasures-evaluator polynomial. 

Let's focus for a moment on a(x), the errors-and-erasures-Iocator poly-
nomial. We have 

a(x) = II (1 - aix), (9.78) 
iEI 

where 1 is the errors-and-erasures set, i.e., 

1 = 10 U h (9.79) 



272 BCH, Reed-Solomon, and related codes 

where 10 is the erasure set defined in (9.73) and It is the error set defined as 
follows: 

II = {i : Ri -=I- * and Ri -=I- Ci}. 

It thus follows from (9.78) and (9.79) that 

(9.80) 

where ao(x) is as defined in (9.74) and 

al(x) = II(1- aix). (9.81) 
iEh 

Naturally we call al(x) the error-locator polynomial. 
Now we return to the key equation (9.77). In view of (9.80), we already 

know part of a(x), viz. ao(x), and so the decoding algorithm's next step is to 
compute the modified syndrome polynomial So (x), defined as follows: 

So(x) = ao(x)S(x)modx r . (9.82) 

Combining (9.77), (9.80), and (9.82), the key equation becomes 

(9.83) 

At this point, the decoder will know So (x), and wish to compute al(x) and 
w(x), using Euclid's algorithm. Is this possible? Yes, because we have 

degw(x) eo + el - 1 

so that degal + degw eo + 2el - 1 < r = deg x r , since we have assumed 
eo + 2el r. Although it may no longer be true that gcd(a(x), w(x» = 1, it 
will be true that gcd(al(x), w(x» = 1 (see Prob. 9.45). It thus follows from 
Theorem 9.6 that the procedure Euclid(x r , So (x) , fl, v) will return al(x) 
and w(x), if fl and v are chosen properly. To chose fl and v, we reason as 
follows. Since eo + 2el r, we have 

so that degal(x) l(r - eo)/2J. Similarly, 



9. 7 Decoding when erasures are present 273 

lr - eoJ deg w(x) ::;; eo + el - 1 ::;; eo + -2- - 1 

::;; I r eo l- 1 

It is an easy exercise to prove that l(r - eo)/2J + i(r + eo)/21 = r (see 
Prob. 9.43), and so it follows that if we define 

v = I r eo l- 1, (9.84) 

then the procedure Euclid(x r , So(x), fi, v) is guaranteed to return a pair of 
polynomials (v(x), rex)) such that al(x) = AV(X), w(x) = Ar(x), where A is a 
nonzero scalar. To find A we recall that al(O) = 1 (see (9.81)), and so we have 

al(x) = v(x)/v(O), 

w(x) = r(x)/v(O). 

Now, having computed the erasure-locator polynomial ao(x) and the error-
locator polynomial al(x), the algorithm computes the erasure-and-error-
locator polynomial a(x) by polynomial multiplication-see (9.80). 

At this stage, the algorithm has both the locator polynomial a(x) and the 
evaluator polynomial w(x) for the errors-and-erasures vector E', and the 
decoding can be completed by either the "time-domain completion" or 
the "frequency-domain completion" described in Section 9.6. The errors-and-
erasures decoding algorithm is thus summarized in Figure 9.9. 

Example 9.10 We illustrate the erasures-and-errors RS decoding algorithm 
with the (7, 2) RS code over the field GF(8), which has generator polynomial 
g(x) = (x - a)(x - a2 )(x - a3 )(x - a4 )(x - a 5 ) = x 5 + a2x4 + a3x 3 + 
a6x2 + a4x + a. (We are assuming that a, a primitive root in GF(8), is a root 
of the GF(2)-primitive polynomial x3 + x + 1.) The code's redundancy is 
r = 5 and so by Theorem 9.11, it can correct any pattern of eo erasures and el 
errors, provided eo + 2el ::;; 5. Let us take the garbled codeword 



274 BCH, Reed-Solomon, and related codes 

/ *RS Errors -and - Erasures Decoding Algori truu* / 
{ 

} 

Input 10; eo = 1101; 
oo(x) = I1 iE/o(1 - aix); 
for (i E 10 ) 

Ri =0; 
forU= 1,2, ... , r) 

S. = D.aij· '} UI=O Hi , 

Sex) = Sl + S2X + ... + SrXr-1; 
SO(X) = OO(x)S(x)modxr; 
fl = l(r - eo)/2 J; V = i(r + eo)/21 - 1; 
Euclid(xr , So (x) , fl, v); 
01(X) = v(x)/v(O); 
w(x) = r(x)/v(O); 
o(x) = 00(X)Ol(X); 

(Time-domain completion or frequency-domain 
completion) 

Figure 9.9 Decoding RS (or BCH) codes when erasures are present. 

and try to decode it, using the algorithm in Figure 9.9. 
The first phase of the decoding algorithm is the "erasure management," 

which in this case amounts simply to observing that the erasure set is 
10 = {3}, so that eo = 1, the erasure-locator polynomial is 

oo(x) = 1 + a3x, 

and the modified received vector R' is 

The next step is to compute the syndrome values Sl, S2, S3, S4, Ss, using 
R'. We have 

so that a routine calculation gives 

Sl = 1, S2 = 1, S3 = as, S4 = a2 , Ss = a4 . 



9. 7 Decoding when erasures are present 275 

Thus the modified syndrome polynomial So(x) is 

Since eo = 1, r = 5, the parameters f1 and v are 

l5 - 1 J f1= -2- =2, 

IS + II v = 1-2- - 1 = 2. 

Thus we are required to invoke Euclid(x5 , So(x), 2, 2). Here is a summary 
of the work: 

Vi ri qi 

-1 0 x 5 
0 x4 + a4 x3 + a 2 x2 + ax + 1 

x+a4 a 4x3 + a 5x2 + a 4x + a 4 x+a4 
2 a 3x2 + a 4x + a 6 a 4x2 + a 5x + a 6 a 3x + a 5 

Thus Euclid(x5 , So(x), 2, 2) returns (V2(X), r2(x)) = (a3x2 + a 4x + a 6, 
a 4x2 + a 5x + a 6), so that 

and finally 

This completes the "erasure-specific" part of the decoding, i.e., the portion of 
the algorithm described in Figure 9.9. We will now finish the decoding, using 
both the time-domain and frequency-domain completions. 

For the time-domain completion, we note that a'(x) = x2 + a2, and 
compute the following table: 



276 BCH, Reed-Solomon, and related codes 

a(a-i) a'(a-i) w(a-i) Ei = w(a-i)/a'(a-i) 

° ° a 6 a 3 a 4 

a 5 

2 a 4 

3 ° a 4 a 5 a 
4 ° a 3 a 3 

5 a 5 

6 a 5 

Thus the errors-and-erasures vector is E' = [a4 , 0, 0, a, a 3 , 0, 0] (which 
means that there are two errors, in positions ° and 4, in addition to the erasure 
in position 3), and so the decoded codeword is C = R' + E', i.e., 

CA [0 3 6 5 4 2] = ,a, a , a, a , a ,a . 

For the frequency-domain completion, having already computed SI, S2, S3, 
S4, S5, we compute S6 and S7 (= So) via the recursion 

Sj = a2Sj_1 + a2Sj_2 + Sj-3 

(since a(x) = 1 + a2x + a2x2 + a3), and find that S6 = a2, and So = a5. 
Thus the complete syndrome vector S is 

S = [a5, 1, 1, a 5, a2, a4, a2]. 

we now compute the inverse DFT of S, i.e., 

Ej = a 5 + a-i + a-2i + a5- 3i + a2- 4i + a4- 5i + a2- 6i 

This gives 

just as in the time-domain completion, and so 

CA [0 3 6 5 4 2] = ,a, a , a, a , a , a 

as before. D 

Let's conclude this section with a brief discussion of how to decode BCH 
codes when erasures are present. The key difference between the (errors-only) 
decoding algorithm for BCH codes and RS codes is that BCH codes, once the 



9.8 The (23, 12) Golay code 277 

errors have been located, there is no need to evaluate them, since the only 
possible error value is 1. What this means is that when erasures are present, 
the algorithm in Figure 9.9 still holds (with 2t replacing r); the only way in 
which the decoding of BCH codes is simpler is in the implementation of the 
time-domain completion. (Compare Figures 9.3 and 9.4.) 

9.8 The (23, 12) Golay code 
In this section we will discuss an extremely beautiful but alas! nongeneraliz-
able code, the binary (23, 12) Golay code. It is arguably the single most 
important error-correcting code. (There is also an (11, 6) Golay code over 
GF(3); see Probs. 9.64-9.67.) 

We begin with a tantalizing number-theoretic fact. In the 23-dimensional 
vector space over GF(2), which we call V23 , a Hamming sphere of radius 3 
contains 

1 + (213) + (2;) + (2;) = 2048 vectors. 

But 2048 = 211 is an exact power of 2, and thus it is conceivable that we 
could pack V23 with 4096 = 212 spheres of radius 3, exactly, with no overlap. 
If we could perform this combinatorial miracle, the centers of the spheres 
would constitute a code with 212 codewords of length 23 (rate = 
12/23 = 0.52) capable of correcting any error pattern of weight 3. In this 
section, not only will we prove that such a packing is possible; we will show 
that the centers of the spheres can be taken as the codewords in a (23, 12) 
binary cyclic code! 

In coding-theoretic terms, then, we need to construct a binary cyclic 
(23, 12) three-error-correcting code, i.e., one with dmin 7. We base the 
construction on certain properties of the field GF(2 11 ). Since 
211 - 1 = 2047 = 23·89, GF(2 11 ) must contain a primitive 23rd root of unity, 
which we shall call {3. The minimal polynomial of {3 over GF(2) is 
g(x) = ITYEB(X - y), where B = {{32i : i = 0, 1,2, ... } is the set of con-
jugates of {3. A simple computation shows that B contains only 11 elements; 
indeed, 

g(x) = II (x - y), (9.85) 
yEB 

where 

B = {{3i : j = 1, 2, 4, 8, 16,9, 18, 13,3,6, 12}. 


