0.1 Anelli di frazioni

Vogliamo descrivere in questa sezione una costruzione, detta *localizzazione*, che generalizza la costruzione del campo dei numeri razionali e in generale del campo dei quozienti di un dominio di integrità. Localizzeremo anelli arbitrari usando come denominatori gli elementi di particolari sottoinsiemi S, i sottoinsiemi moltiplicativi. In questo modo otterremo un anello in cui tutti gli elementi di S sono invertibili.

Sia A un anello. Diremo che un sottoinsieme $S \subseteq A$ è moltiplicativamente chiuso o più semplicemente un sottoinsieme moltiplicativo se $1 \in S$ e $s,t \in S \Longrightarrow st \in S$.

Localizzazione di un anello

La relazione:

$$(a,s) \sim (b,t) \iff \text{esiste } u \in S \text{ tale che } u(at-bs) = 0$$

definisce una relazione di equivalenza su $A \times S$. Indichiamo con $\frac{a}{s}$ la classe di equivalenza di un elemento (a, s).

L'insieme $S^{-1}A = {}^{A} \times {}^{S}/_{\sim}$ con le operazioni:

$$-\frac{a}{s} + \frac{b}{t} = \frac{at + sb}{st};$$

$$- \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

con $a, b \in A$, $s, t \in S$ è un anello commutativo con identità, con $0 = \frac{0}{1}$ e $1 = \frac{1}{1}$, che si chiama l'*anello delle frazioni* rispetto a S o la *localizzazione* di A in S. L'applicazione $\varphi_S : A \longrightarrow S^{-1}A$, definita da $\varphi_S(a) = \frac{a}{1}$, è un omomorfismo, detto l'*omomorfismo canonico*.

EXfrac1

T 1. (\rightarrow p. 2) Provare che la relazione:

$$(a,s) \sim (b,t) \iff \text{esiste } u \in S \text{ tale che } u(at-bs) = 0$$

definisce una relazione di equivalenza su $A \times S$.

Soluzione T. 1 La relazione è certamente riflessiva e simmetrica. Proviamo che è transitiva: siano $(a,s) \sim (b,t)$ e $(b,t) \sim (c,r)$. Allora esistono $u,v \in S$ tali che u(at-bs)=0 e v(br-ct)=0, da cui vru(at-bs)=0 e vus(br-ct)=0. Sommando queste relazioni otteniamo vruat-vusct=0, ossia vut(ar-sc)=0, e quindi $(a,s) \sim (c,r)$, dato che $vut \in S$.

EXfrac2

T 2. (\rightarrow p. 2) Provare che l'insieme $S^{-1}A = {}^{A} \times {}^{S}/_{\sim}$ con le operazioni definite sopra è un anello.

SOLfrac2

Soluzione T. 2 È sufficiente dimostrare che le operazioni sono ben definite; l'esistenza dell'elemento neutro per la somma e per il prodotto, l'associativià, la distributività e la commutatività delle operazioni si ricavano direttamente da quelle di A. Supponiamo allora che $\frac{a}{s} = \frac{a'}{s'}$ e $\frac{b}{t} = \frac{b'}{t'}$. Proviamo che $\frac{a}{s} + \frac{b}{t} = \frac{at+sb}{st} = \frac{a't+s'b'}{s't'} = \frac{a'}{s'} + \frac{b'}{t'}$. Per ipotesi, esistono $u, v \in S$ tali che u(as' - a's) = 0 e v(bt' - b't) = 0. Da questo segue uvtt'(as' - a's) = 0 e uvss'(bt' - b't) = 0, sommando si ha la relazione cercata. La stessa verifica si pu fare per il prodotto.

EXfra002

T 3. (\rightarrow p. 2) Provare che φ_S è iniettivo se e solo se $S \cap \mathcal{D}(A) = \emptyset$.

SOLfra002

Soluzione T. 3 Per definizione esiste $a \neq 0$ tale che $\varphi_S(a) = \frac{a}{1} = 0$ se e solo se esiste $u \in S$ tale che ua = 0 ossia se e solo se $u \in S \cap \mathcal{D}(A)$.

EXfra0021

T 4. (\rightarrow p. 2) Provare che $S^{-1}A = 0$ se e solo se $S \cap \mathcal{N}(A) \neq \emptyset$.

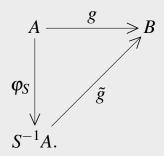
SOLfra0021

Soluzione T. 4 $S^{-1}A = 0$ se e solo se $\frac{0}{1} = \frac{1}{1}$ ossia, per costruzione, se e solo se $0 \in S$ e uindi, dato che S è moltiplicativo se e solo se S contiene un elemento nilpotente.

Una importante proprietà della localizzazione $S^{-1}A$ è che ogni omomorfismo g di A in un anello in cui tutti gli elementi di g(S), sono invertibili, si fattorizza attraverso $S^{-1}A$ e questa proprietà caratterizza unicamente la localizzazione. Infatti si ha:

Proprietà universale dell'anello delle frazioni

Se $g: A \longrightarrow B$ è un omomorfismo di anelli tale che $g(S) \subseteq B^*$, allora esiste un unico omomorfismo di anelli $\tilde{g}: S^{-1}A \longrightarrow B$, tale che $\tilde{g} \circ \varphi_S = g$, ossia tale che il seguente diagramma commuti:



Se inoltre

i) $g(a) = 0 \Rightarrow \exists s \in S \text{ tale che } as = 0$;

ii) $\forall b \in B \ \exists \in A, s \in S \text{ tali che } b = g(a)g(s)^{-1}$

Allora \tilde{g} è un *isomorfismo* e $B \simeq S^{-1}A$

EXfralln

T 5. (\rightarrow p. 3) Dimostrazione della proprietà universale dell'anello delle frazioni.

Soluzione T. 5 Supponiamo che \tilde{g} esista . Allora si ha che per ogni $a \in A$, $\tilde{g}(\frac{a}{1}) = \tilde{g}\varphi_S(a) = g(a)$. Inoltre se $s \in S$ vale anche $\tilde{g}(\frac{1}{s}) = \tilde{g}((\frac{s}{1})^{-1}) = \tilde{g}(\frac{s}{1})^{-1} = g(s)^{-1}$. Da cui segue che

$$\tilde{g}\left(\frac{a}{s}\right) = \tilde{g}\left(\frac{a}{1}\right)\tilde{g}\left(\frac{1}{s}\right) = \tilde{g}(\varphi_S(a))\tilde{g}(\varphi_S(s))^{-1} = g(a)g(s)^{-1}$$

e dunque \tilde{g} è determinato univocamente da g e pertanto è unico.

Proviamo ora l'esistenza di \tilde{g} . Supponiamo che $g(S)\subset B^*$. Se poniamo $\tilde{g}(\frac{a}{s})=g(a)g(s)^{-1}$ e \tilde{g} è ben definito allora è sicuramente un omomorfismo. Supponiamo che $\frac{a}{s}=\frac{b}{t}$ e sia $u\in S$ tale che u(at-bs)=0, allora abbiamo g(u)(g(a)g(t)-g(b)(s))=0 e dato che $g(u)\in B^*$

$$g(a)g(t) = (g(b)g(s)) \implies \tilde{g}\left(\frac{a}{s}\right) = g(a)g(s)^{-1} = g(b)g(t)^{-1} = \tilde{g}\left(\frac{b}{t}\right)$$

quindi \tilde{g} , è ben definito ed è un omorfismo

Proviamo ora che se valgono i) e ii) allora \tilde{g} è un isomorfismo. Si ha che $\tilde{g}(\frac{a}{s}) = g(a)g(s)^{-1}$, quindi se vale ii) \tilde{g} è certamente surgettivo. Inoltre se $\tilde{g}(\frac{a}{s}) = 0$ allora g(a) = 0 e per i) esiste $s \in S$ tale che as = 0. Da questo segue che $\varphi_S(a) = 0$ e quindi \tilde{g} è iniettivo.

Esistono due esempi particolari ed importanti di anelli delle frazioni: il primo è definito da un insieme $S_f = \{f^n\}_{n \in \mathbb{N}}$ costituito dalle potenze di un elemento $f \in A$, in questo caso $S_f^{-1}A$ si indica on A_f . È chiaro che affinché $A_f \neq 0$ si deve avere che $f \notin \mathfrak{N}(A)$.

Il secondo esempio è ottenuto considerando un ideale primo \mathfrak{p} di A e l'insieme moltiplicativo $S = A \setminus \mathfrak{p}$ costituito dal complementare di \mathfrak{p} in A. In questo caso $S^{-1}A$ si chiama la *localizzazione* di A in \mathfrak{p} e si indica on $A_{\mathfrak{p}}$. Vale:

T 6. (\rightarrow p. 4) $A_{\mathfrak{p}}$ è un anello locale con ideale massimale $\mathfrak{m} = \{\frac{a}{s} | a \in \mathfrak{p}, s \in S\}$.

Soluzione T. 6 $\mathfrak{m} = \{\frac{a}{s} \mid a \in \mathfrak{p}\}\$ è un ideale di $A_{\mathfrak{p}}$: se $\frac{a}{s}, \frac{b}{t} \in \mathfrak{m}$ e $\frac{\alpha}{\beta} \in A_{\mathfrak{p}}$ si ha $\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st} \in \mathfrak{m}$ e $\frac{a\alpha}{s\beta} \in \mathfrak{m}$.

Inoltre esso è proprio, infatti, se $(a,s) \sim (1,1)$ per qualche $a \in \mathfrak{p}$, esiste $u \in A \setminus \mathfrak{p}$ tale che $ua = us \in A \setminus \mathfrak{p}$, che non è possibile. Infine osserviamo che se $\frac{a}{s} \notin \mathfrak{m}$ si ha che $a \in S$ e $\frac{s}{a} \in A_{\mathfrak{p}}$, quindi $\frac{a}{s}$ è invertibile, allora $A_{\mathfrak{p}}$ è locale e \mathfrak{m} è l'unico ideale massimale.

Nella costruzione della localizzazione è possibile che si aggiungano non solo gli inversi di elementi di S, ma che risultino invertibili anche altri elementi. Ad esempio se $S = \{6^n\}_{n \in \mathbb{N}} \subset \mathbb{Z}$ allora in $S^{-1}\mathbb{Z}$ anche $\frac{2}{1}$ (e in generale tutti gli elementi dell'insieme $T = \{2^n 3^m\}_{n,m \in \mathbb{N}}$) è invertibile, infatti $\frac{2}{1} \frac{3}{6} = \frac{1}{1}$.

Per analizzare questo fenomeno abbiamo bisogno della seguente definizione.

Definition 0.1. Diciamo che un insieme moltiplicativo $S \subset A$ è saturato se dati $s, t \in A$ tali che $st \in S$ allora $s, t \in S$.

Per esempio il gruppo delle unità A^* di A e il sottoinsieme dei non divisori di zero $S = A \setminus \mathcal{D}(A)$ sono sottoinsiemi moltiplicativi saturati.

Segue immediatamente dalla definizione che se un insieme S è saturato allora si ha che $S = \{a \in A \mid : \frac{a}{1} \in (S^{-1}A)^*\}$. Infatti , $S \subset \{a \in A \mid : \frac{a}{1} \in (S^{-1}A)^*\}$ inoltre se $\frac{a}{1} \in (S^{-1}A)^*$ allora esiste $\frac{b}{s}$ con $s \in S$ tale che $\frac{a}{1}\frac{b}{s} = \frac{1}{1}$ e quindi esiste $u \in S$ tale che $uab = us \in S$, ossia $a \in S$.

Il seguente esercizio caratterizza ulteriormente gli insiemi saturati:

EXcomp-primi

T 7. (\rightarrow p. 5) Un insieme moltiplicativo *S* è saturato se e solo se $S = A \setminus \bigcup_i \mathfrak{p}_i$ con \mathfrak{p}_i ideali primi di *A*.

SOLcomp-primi

Soluzione T. 7 Sia *S* saturato e proviamo che esistono ideali primi $\{\mathfrak{p}_i\}$ tali che $S = A \setminus \bigcup_i \mathfrak{p}_i$.

Consideriamo l'insieme $\mathscr{P} = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset \}$, allora sicuramente $S \subset A \setminus \cup_{\mathfrak{p} \in \mathscr{P}} \mathfrak{p}$. Per provare l'altra inclusione, supponiamo che $a \notin S$ e proviamo che esiste un primo $\mathfrak{p} \in \mathscr{P}$ tale che $a \in \mathfrak{p}$. Dal momento che S è saturato, se $a \notin S$ allora l'elemento $\frac{a}{1}$ non è invertibile in $S^{-1}A$ e quindi esiste un ideale massimale $\mathfrak{m} \subset S^{-1}A$ tale che $\frac{a}{1} \in \mathfrak{m}$. Per la corrispondenza tra gli ideali primi di $S^{-1}A$ e i primi di $S^{-1}A$ che non intersecano S, esiste allora $\mathfrak{p} \subset S$ primo, $\mathfrak{p} \cap S = \emptyset$, tale che $\mathfrak{m} = S^{-1}\mathfrak{p}$ e quindi $\mathfrak{m} = S^{-1}\mathfrak{p}$ con $\mathfrak{p} \in S^{-1}\mathfrak{p}$, e $\mathfrak{p} \in S$. Esiste quindi $\mathfrak{p} \in S$ tale che $\mathfrak{p} \in S$ d cui segue che che $\mathfrak{p} \in S$.

Vediamo ora che il complementare di un'unione di ideali primi è un insieme moltiplicativo saturato. Sia $S = A \setminus \bigcup_i \mathfrak{p}_i$ e vediamo che S è moltiplicativo. Sicuramente $1 \in S$, inoltre se $st \in S$ allora per ogni i si ha $st \notin \mathfrak{p}_i$ e quindi $s,t \in S$, da cui segue che S è moltiplicativo e saturato.

Definiamo la *saturazione* di un insieme $S \subset A$ come il sottoinsieme

$$\overline{S} = \{ s \in A \mid \exists t \in A \text{ t.c. } st \in S \}.$$

Vogliamo caratterizzare la saturazione di un insieme moltiplicativo S e le unità di $S^{-1}A$.

La saturazione di un insieme moltiplicativo

Sia $S \subset A$ un sottoinsieme moltiplicativo e sia \overline{S} la sua saturazione, allora vale:

- ii) Se $S \subset T$ e T è un insieme moltiplicativo saturato allora $\overline{S} \subset T$.
- iii) $\overline{S} = A \setminus \bigcup_{\mathfrak{p} \in \mathscr{P}} \mathfrak{p}$, dove $\mathscr{P} = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset \}$.

Inoltre se indichiamo con $U = (S^{-1}A)^*$ l'insieme delle unità di $S^{-1}A$, si ha

- iv) $U = \{\frac{a}{s} \mid a \in \overline{S}, s \in S\};$ v) $\varphi_S^{-1}(U) = \overline{S};$
- vi) $\bar{S}^{-1}A = S^{-1}A$.

EXsaturati

T 8. $(\rightarrow p. 6)$ Provare le proprietà della saturazione di un insieme moltiplicativo.

SOLsaturati

Soluzione T. 8 i) Se $s \in S$ allora $s1 \in S$ quindi $s \in \overline{S}$.

- ii) Sia $s \in \overline{S}$ allora esiste $t \in A$ tale che $st \in S \subset \overline{T}$ e quindi, dato che T è saturato $s,t \in T$.
- iii) Sia $T = A \setminus \bigcup_{\mathfrak{p} \in \mathscr{P}} \mathfrak{p}$, dove $\mathscr{P} = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset \}$. Questo insieme è saturato e contiene S, quindi dal punto precedente segue che $\overline{S} \subseteq T$.

D'altra parte anche \overline{S} è saturato, quindi per la caratterizzazione degli insiemi saturati, $\overline{S} = A \setminus \bigcup_{\mathfrak{p} \in \overline{\mathscr{P}}} \mathfrak{p}$, dove $\overline{\mathscr{P}} = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap \overline{S} = \emptyset \}$, ma $\overline{\mathscr{P}} \subset \mathscr{P} \operatorname{cos}$ $T \subset \overline{S}$.

- iv) Consideriamo $\frac{a}{s}$ con $a \in \overline{S}$. Allora esiste $t \in S$ tale che $at \in S$ e quindi $\frac{a}{s} \cdot \frac{st}{at} = 1$
- in $S^{-1}A$, ossia $\frac{a}{\varsigma} \in U$. Viceversa, se $\frac{a}{\varsigma} \in U$, sia $\frac{b}{t} \in S^{-1}A$ tale che $\frac{a}{\varsigma} \cdot \frac{b}{t} = 1$. Allora esiste $u \in S$ tale che $abu = stu \in S$ e quindi $a \in \overline{S}$.
- vi) Usiamo la proprietà universale dell'anello delle frazioni. Sia $g:A\longrightarrow \overline{S}^{-1}A$ l'omomrfismo di anelli definito da $g(a) = \frac{a}{1}$. Se proviamo che:
- per ogni s ∈ S si ha che g(s) = ^s/₁ è invertibile in S̄⁻¹A,
 per ogni a ∈ A se g(a) = ^a/₁ = ⁰/₁ allora esiste s ∈ S tale che as = 0
- 3. per ogni elemento $\frac{a}{t} \in \overline{S}^{-1}A$ esistono $b \in A$ e $s \in S$ tali che $\frac{a}{t} = g(a)g(s)^{-1} = \frac{a}{s}$

allora $\varphi_S: S^{-1}A \longrightarrow \overline{S}^{-1}A$, data da $\varphi_S(\frac{a}{s}) = g(a)g(s)^{-1} = \frac{a}{s}$ è un isomorfismo. 1 vale dato che $S \subset \overline{S}$.

- 2. Sia $a \in A$ tale che $g(a) = \frac{a}{\overline{1}} = \frac{0}{\overline{1}}$. Allora esiste $t \in \overline{S}$ tale che ta = 0. Ma per definizione di \overline{S} esiste $u \in A$ tale che $ut \in S$ quindi esiste $s = (ut) \in S$ tale che sa = 0.
- 3. Sia $\frac{a}{t} \in \overline{S}^{-1}A$. Dobbiamo trovare $b \in A$ e $s \in S$ tali che $\frac{a}{t} = \frac{a}{s}$ e quindi deve esistere $t' \in \overline{S}$ tale che t'(as bt) = 0. Sappiamo che esiste $u \in A$ tale che $ut = s \in S$, ma allora se consideriamo t' = 1, b = au, s = ut otteniamo che 1(as tau) = 0 e quindi $\frac{a}{t} = \frac{au}{s}$.

Osservazione. In generale se $S \subset T$ sono due insiemi moltiplicativi di A non è vero che $S^{-1}A \subset T^{-1}A$. Ad esempio se $A = \mathbb{Z}/(6)$ $S = \{1,5\} \subset T = \{1,5,2,4\}$, allora $S^{-1}A = \mathbb{Z}/(6)$ e $T^{-1}A = \mathbb{Z}/(3)$.

Definition 0.2. Dato un sottoinsieme $I \subset A$, definiamo la saturazione di I rispetto a S come l'insieme $I^S = \{a \in A \mid \exists s \in S, \text{ t.c. } as \in I\} = \bigcup_{s \in S} (I:s)$ e diciamo che I è saturato rispetto ad S se $I = I^S$.

EXsat1

T 9. (\rightarrow p. 7) Sia $I \subset A$ un ideale e $\varphi_S : A \longrightarrow S^{-1}A$ l'omomorfismo canonico, allora:

- i) $\ker \varphi_S = (0)^S$;
- ii) $I \subset I^S$;
- iii) I^S è un ideale di A.

SOLsat1

Soluzione T. 9 i) Si ha $\varphi_S(a) = \frac{a}{1} = 0$ se e solo se esiste $u \in S$ tale che au = 0.

- ii) segue dal fatto che $1 \in S$.
- iii) Se $a, b \in I^S$ ossia se esistono $s, t \in S$ tali che $as, bt \in I$ allora $(a+b)st \in I$ e se $c \in A$ allora $cas \in I$.

Usiamo questa nozione per analizzare la corrispondenza fra gli ideali di A e gli ideali di $S^{-1}A$, considerando l'estensione e la contrazione di ideali determinata da φ_S .

Ideali estesi e ideali contratti rispetto a φ_S

- i) se $I \subset A$ è un ideale, $I^e = (\varphi_S(I))$ è la sua estensione rispetto a φ_S e I^S la saturazione di I rispetto a S, allora:
 - a) $I^e = \{ \frac{a}{s} \mid a \in I, s \in S \} = S^{-1}I.$
 - b) $S^{-1}I = S^{-1}A \iff I \cap S \neq \emptyset \iff \varphi_S^{-1}(S^{-1}I) = A.$
 - c) $I^{ec} = I^S$;
- ii) se $J \subset S^{-1}A$ è un ideale e $J^c = \varphi_S^{-1}J$ è la sua contrazione rispetto a φ_S allora:
 - a) $J^{c} = (J^{c})^{S}$;
 - b) $J = J^{ce}$

EXfralde1

T 10. $(\to p. 8)$

Soluzione T. 10 i-a) È chiaro che $S^{-1}I \subset I^e$. Viceversa siano $a, b \in I$ e $\frac{x}{s}, \frac{y}{t} \in I$

 $S^{-1}A$. Allora $a\frac{x}{s} + b\frac{y}{t} = \frac{(axt + bys)}{st}$ e quindi $I^e \subset S^{-1}I$.

- i-b) Se $s \in I \cap S$ allora $1 = \frac{s}{s} \in I^e$ e quindi $I^e = S^{-1}A$ da cui $A = \varphi_S^{-1}(I^e)$. Viceversa se $A = \varphi_S^{-1}(I^e)$ allora $1 \in I^e$ e quindi esistono $a \in I$ e $s \in S$ tali che $\frac{a}{s} = 1$. Per definizione allora esiste $t \in S$ tale che $at = st \in I$ da cui segue che $I \cap S \neq \emptyset$.
- i-c) Sia $a \in I^S$, allora esiste $s \in S$ tale che $as \in I$ e dato che $\frac{a}{1} = \frac{as}{1} \frac{1}{s}$ allora $\frac{a}{1} \in S^{-1}I$ e quindi $I^{ec} \supset I^S$. Viceversa, sia $b \in I^{ec}$ allora esistono $a \in I$ e $s \in s$ tali che $b = \frac{a}{s}$. Quindi esiste $t \in S$ tale che $bst = as \in I$ da cui $b \in I^S$ e cosí $I^{ec} \subset I^S$.
- ii-a) Siano $a \in A$ e $s \in S$ tali che $as \in \varphi_S^{-1}(J)$. Allora $\varphi_S(as) = \frac{as}{1} \in J$ e quindi $\frac{a}{1} \in J$, dato che $\frac{1}{s} \in S^{-1}A$, da cui segue $(\varphi_S^{-1}J)^S \subset \varphi_S^{-1}J$. L'altra inclusione vale poiché $1 \in S$.
- ii-b) Per provare che $J=J^{ce}$, consideriamo $\frac{a}{s}\in J$; allora anche $\frac{a}{1}\in J$ e quindi $a\in \varphi_S^{-1}(J)$ e $\frac{a}{1}\frac{1}{s}\in S^{-1}(\varphi_S^{-1}J)$, cosí $J\subset S^{-1}(\varphi_S^{-1}J)$. Se poi $a\in \varphi_S^{-1}J$ allora

$$\frac{a}{1} \in J$$
 e quindi $J \supset S^{-1}(\varphi_S^{-1}J)$.

Per quanto riguarda gli ideali primi si ha la seguente:

EXprim-est

T 11. (\rightarrow p. 9) Sia A un anello e $S \subset A$ moltiplicativamente chiuso se $\mathfrak{p} \subset A$ è un ideale primo tale che $\mathfrak{p} \cap S\emptyset$ allora $\mathfrak{p} = \mathfrak{p}^S$ e $S^{-1}\mathfrak{p}$ è un ideale primo di $S^{-1}A$. In particolare quindi tutti i primi tali che $\mathfrak{p} \cap S = \emptyset$ sono ideali saturati.

SOLprim-est

Soluzione T. 11 Osserviamo innanzitutto che $\mathfrak{p} \subset \mathfrak{p}^S$ dato che $1 \in S$ e che se $as \in \mathfrak{p}$, dato che $S \cap \mathfrak{p} = \emptyset$, allora $a \in \mathfrak{p}$ e quindi $\mathfrak{p} = \mathfrak{p}^S$. Per quanto riguarda la seconda relazione, notiamo innanzitutto che $S^{-1}\mathfrak{p} \neq S^{-1}A$ e che $\varphi_S^{-1}(S^{-1}\mathfrak{p}) = \mathfrak{p}^S = \mathfrak{p}$, per i punti predenti. Inoltre se $\frac{ab}{st} \in \S^{-1}\mathfrak{p}$ allora esistono $c \in \mathfrak{p}$ e $u \in S$ tali che $\frac{ab}{st} = \frac{c}{u}$ e quindi, per definizione, esiste $u \in S$ tale che $u \in S$ tale ch

Ricapitolando, ogni ideale di $S^{-1}A$ è un ideale esteso e gli ideali contratti di A sono gli ideali saturati rispetto a S, quindi, ricordando la corrispondenza fra gli ideali estesi e gli ideali contratti abbiamo provato che esiste la seguente corrispondenza fra gli ideali di A e di $S^{-1}A$;

Ideali di A e di $S^{-1}A$.

Sia $S \subset A$ un insieme moltiplicativamente chiuso e sia $\varphi_S : A \longrightarrow S^{-1}A$, $\varphi_S(a) = \frac{a}{1}$, l'omomorfismo canonico, allora:

- la mappa $I \longrightarrow S^{-1}I$ che associa a ogni ideale di A il suo ideale esteso rispetto a φ_S è una bigezione fra l'insieme di tutti gli ideali $I \subset A$ tali che $I = I^S$ e l'insieme di tutti gli ideali $J \subset S^{-1}A$, che conserva le inclusioni. La sua inversa è data da $J \longrightarrow \varphi_S^{-1}(J) = J^c$.
- La mappa $\mathfrak{p} \longrightarrow S^{-1}\mathfrak{p}$ è una bigezione fra l'insieme di tutti gli ideali primi $\mathfrak{p} \subset A$ tali che $\mathfrak{p} \cap S = \emptyset$ e l'insieme di tutti gli ideali primi $\mathfrak{q} \subset S^{-1}A$, che conserva le inclusioni. La sua inversa è data da $\mathfrak{q} \longrightarrow \varphi_S^{-1}(\mathfrak{q}) = \mathfrak{q}^c$.

Concludiamo le osservazioni sugli ideali, analizzando il comportamento dell'operazione di localizzazione rispetto alle operazioni fra ideali.

Localizzazione ed operazioni fra ideali

Siano $I, J \subset A$ ideali. Allora si ha:

- i) $S^{-1}(I+J) = S^{-1}I + S^{-1}J$ e la relazione vale anche per le somme *finite*;
- i) $S^{-1}(IJ) = S^{-1}IS^{-1}J$ e la relazione vale anche per le i prodotti *finiti*;
- iii) $S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$ e la relazione vale anche per le intersezioni *finite*;
- iv) $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$. In particulare $S^{-1}\mathfrak{N}(A) = \mathfrak{N}(S^{-1}(A))$.

EXoperazioni-S

T 12. (\rightarrow p. 10) Provare le affermazioni precedenti.

SOLoperazioni-S

Soluzione T. 12 i) e ii) Seguono imediatamente dalle proprietà dell'estensione di ideali.

- iii) Certamente $S^{-1}(I \cap J) \subseteq S^{-1}I \cap S^{-1}J$. Viceversa sia $\alpha \in S^{-1}I \cap S^{-1}J$. Esistono $i \in I, j \in J$ e $s, t \in S$ tali che $\alpha = \frac{i}{s} = \frac{j}{t}$ e quindi esiste $u \in S$ tale che u(it js) = 0. Quindi $uti = usj \in I \cap J$ e $\alpha = \frac{uti}{uts} \in S^{-1}(I \cap J)$.
- iv) Sia $\alpha \in S^{-1}\sqrt{I}$ allora esistono $i \in \sqrt{I}$ e $s \in S$ tali che $\alpha = \frac{i}{s}$. Se $i^n \in I$ allora $\alpha^n = \frac{i^n}{s^n} \in S^{-1}I$, da cui $\alpha \in \sqrt{S^{-1}I}$. Viceversa Sia $\beta = \frac{a}{t} \in \sqrt{S^{-1}I}$, allora esiste n tale che $\beta^n = \frac{a^n}{t^n} \in S^{-1}I$ e quindi $\beta^n = \frac{i}{s}$, con $i \in I$ e $s \in S$, da cui segue che esiste $u \in S$ tale che $ua^n s = ut^n i \in I$, quindi $usa \in \sqrt{I}$ e $\beta = \frac{usa}{ust} \in S^{-1}\sqrt{I}$.