Algebra II - 13 Novembre 2015

Esercizio 1. Siano $N \subsetneq M$ A-moduli. Supponiamo che N goda della seguente proprietà:

 $am \in N \text{ con } a \in A, m \in M \setminus N \Longrightarrow \exists 0 < n \in \mathbb{N} \text{ tale che } a^nM \subset N$

- i) Provare che $\mathfrak{q}_N = \{a \in A \mid aM \subset N\}$ è un ideale primario.
- ii) Sia $\mathfrak{p}_N = \sqrt{\mathfrak{q}_N}$. Se $a \in A$, $m \in M$ e $am \in N$ allora $a \in \mathfrak{p}_N$ oppure $m \in N$.

Esercizio 2. Siano G e H \mathbb{Z} -moduli, determinare la struttura di $G \otimes H$ in ognuno dei seguenti casi:

- i) G e H sono ciclici infiniti.
- ii) G e H sono ciclici finiti.
- iii) G è ciclico finito e H è ciclico infinito.
- iv) G e H sono finitamente generati
- v) $G \in H$ sono liberi.

Esercizio 3. Dire quali delle seguenti affermazioni è vera e quale è falsa. Provare o dare un controesempio:

- 1. Se $I, J \subset A$ sono ideali $\sqrt{I:J} = \sqrt{I}: \sqrt{J}$?
- 2. Sia A commutativo con identità e $I\subset A$ un ideale contenuto in ogni ideale massimale di A. Se M è un A modulo finitamente generato tale che $A/I\otimes_A M=0$ allora M=0.
- 3. Se A è un anello e $I \subset A$ un ideale. Se $\mathfrak{N}(A/I) = 0$ allora I è primo, $(\mathfrak{N}(A/I)$ è il nilradicale di A/I).
- 4. Se $S = \{36^n\}_{n \in \mathbb{N}}$ e $T = \{4^n 9^m\}_{n,m \in \mathbb{N}}$ allora $S^{-1}\mathbb{Z} = T^{-1}\mathbb{Z}$.

Esercizio 4. Determinare la struttura del gruppo abeliano G definito da generatori $\{g_1, g_2, g_3\}$ con relazioni $3g_1 + 9g_2 + 9g_3 = 0$ e $9g_1 - 3g_2 + 9g_3 = 0$. Trovare i possibili ordini degli elementi di G. Gli elementi hanno tutti ordine finito?

Esercizio 5. Sia $I = (x^2 - yz + y^2, xyz - x) \subset \mathbb{C}[x, y, z]$.

- i) Trovare una base di Gröbner ridotta di I, rispetto all'ordinamento lessicografico con x>y>z.
- ii) Trovare le componenti irriducibili di V(I).
- iii) $f = x^2y + x + y + 1 \in \sqrt{I}$?
- iv) $J = I\mathbb{C}[x, y, z]_{(x,y)}$ è un ideale proprio? $\frac{f}{1} \in J$?