Algebra II 18 Luglio 2013

Esercizio 1: Sia G_1 il gruppo abeliano generato dagli elementi $\{a, b, c, d\}$ che soddisfano le relazioni

$$\begin{cases}
2a+2b+c+3d = 0 \\
-2b+c+3d = 0
\end{cases}$$

$$-4a+4b-3c-15d = 0$$

$$6a+4b+c+9d = 0$$

$$12a+4b+c+21d = 0$$

e $G_2 \cong coker(\varphi_\alpha)$ dove $\varphi_\alpha: \mathbb{Z}^3 \longrightarrow \mathbb{Z}^3$ è l'omomorfismo di \mathbb{Z} -moduli dato da

$$\varphi_{\alpha}(x, y, z) = (2x + 8y - 4z, \alpha x + 6y + \alpha z, -2x - 2y + 4z).$$

Determinare se esistono valori di $\alpha \in \mathbb{Z}$, tali che G_1 e G_2 siano isomorfi (come \mathbb{Z} -moduli).

Soluzione G_1 , G_2 sono gruppi abeliani finitamente generati, quindi rappresentabili come somma diretta di gruppi ciclici: saranno isomorfi se e solo se le loro rappresentazioni sono uguali. Consideriamo la matrice

$$A = \begin{pmatrix} 2 & 0 & -4 & 6 & 12 \\ 2 & -2 & 4 & 4 & 4 \\ 1 & 1 & -3 & 1 & 1 \\ 3 & 3 & -15 & 9 & 21 \end{pmatrix}$$

 $G_1 \cong coker(\psi)$, dove $\psi : \mathbb{Z}^5 \longrightarrow \mathbb{Z}^4$ è l'omomorfismo associato ad A (rispetto alle basi canoniche). Calcolando la forma di Smith di A si ottiene la matrice:

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

Da cui otteniamo che $G_1 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/6 \oplus \mathbb{Z}$. Affinché $G_1 \cong G_2 \cong coker(\varphi)$ dobbiamo avere che i divisori elementari della matrice

$$C = \left(\begin{array}{ccc} 2 & 8 & -4 \\ \alpha & 6 & \alpha \\ -2 & -2 & 4 \end{array}\right)$$

che rappresenta φ siano 2, 6, 0. Dato che $\Delta_3(C) = \det C = -36a$ l'unico valore possibile è $\alpha = 0$. Poiché si ha anche $d_1(C) = \Delta_1(C) = 2$ e $d_2(C) = \frac{\Delta_2(C)}{d_1(C)} = 6$, per $\alpha = 0$ si ha $G_1 \cong G_2 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/6 \oplus \mathbb{Z}$.

Esercizio 2: Sia A un anello noetheriano. Provare che ogni ideale $J \subseteq A$ che contiene un ideale radicale Q di dimensione zero è radicale oppure J = (1).

Soluzione. Dato che Q è radicale di dimensione zero si ha $Q = \sqrt{Q} = \cap \mathfrak{m}_i$ con \mathfrak{m}_i massimali. Inoltre $J = Q + J = (\cap \mathfrak{m}_i) + J = \cap ((\mathfrak{m}_i + J))$. Dal momento che $\mathfrak{m}_i + J = \mathfrak{m}_i$ o (1) a seconda che si $J \subset \mathfrak{m}_i$ o no si ha che se $J \not\subset \mathfrak{m}_i$ per ogni i allora J = (1) oppure J è intersezione di massimali (gli $\mathfrak{m}_i \supset J$) e quindi radicale.

Esercizio 3: i) Sia $M = \{\frac{a}{p^n} \mid a \in \mathbb{Z} \mid n \in \mathbb{N}\}$ e sia $p \in \mathbb{Z}$ primo. Provare che $M \otimes_{\mathbb{Z}} (M/\mathbb{Z}) = 0$.

ii) Calcolare la dimensione dello spazio vettoriale

$$\mathbb{Q}[x]/(x) \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x^2+1).$$

iii) Sia $\alpha = \sqrt[5]{3}$, provare che $\mathbb{C} \otimes_{\mathbb{Q}} \mathbb{Q}[\alpha] \cong \mathbb{C}^5$.

Soluzione. i) È sufficiente provare che ogni elemento della forma $\alpha \otimes \beta$ è zero. Sia $\alpha = \frac{a}{p^m}$ e $\beta = \frac{b}{p^n} \pmod{\mathbb{Z}}$. Si ha $\alpha \otimes \beta = (\frac{\alpha p^n}{p^{n+m}}) \otimes \beta = p^n(\frac{\alpha}{p^{n+m}}) \otimes \beta = (\frac{\alpha}{p^{n+m}}) \otimes (\frac{bp^n}{p^n}) \pmod{\mathbb{Z}}) = (\frac{\alpha}{p^{n+m}}) \otimes (b \pmod{\mathbb{Z}}) =$

 $(\frac{\alpha}{p^{n+m}}) \otimes 0 = 0$, dato che questi elementi sono generatori, $M \otimes_{\mathbb{Z}} (M/\mathbb{Z}) = 0$.

- ii) Si ha $\mathbb{Q}[x]/(x) \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x^2+1) \cong \mathbb{Q}[x]/(x,x^2+1) \cong 0$. Quindi la dimensione è zero.
- iii) $\mathbb{Q}[\alpha] \cong \mathbb{Q}[x]/(x^5-3)$, e quindi $\mathbb{C} \otimes_{\mathbb{Q}} \mathbb{Q}[\alpha] \cong \mathbb{C} \otimes_{\mathbb{Q}} \mathbb{Q}[x]/(x^5-3) \cong \mathbb{C}[x]/(\prod(x-\alpha_i)) \cong \prod \mathbb{C}[x]/(x-\alpha_i) \cong \mathbb{C}^5$, dove α_i sono i coniugati di α in \mathbb{C} .

Esercizio 4: Sia $I = (xyz - 2, y^2z - x, 3x^2z^2 - y) \subset K[x, y, z].$

- i) Provare che se $K = \mathbb{C}$ allora $\sharp V(I)$ è finita.
- ii) Trovare $p \in \mathbb{Z}$, primi, tali che se $K = \mathbb{Z}/p$, $V(I) = \emptyset$ o $\sharp V(I)$ infinita.

Soluzione. i) L'ideale I contiene un polinomio monico in x, usando questa relazione, $I=(x-y^2z,y^3z^2-2,3y^4z^4-y)$, cosi' per calcolare la base di Gröbner ridotta di I (x>y>x) basta considerare gli ultimi due polinomi. Si ottiene $I=(x-y^2z,y^3-12,6z^2-1)$ il che prova che V(I) è finito.

Se p=3 si ha $I=(xyz+1,y^2z+2x,2y)=(1)$ e quindi $V(I)=\emptyset$. Dato che $V(I)\subset K^3$ se $V(I)\neq\emptyset$ per ogni p è finito.