Algebra II 19 Settembre 2011

- **Esercizio 1.** Consideriamo l'omomorfismo $\phi_a: \mathbb{Z}^3 \longrightarrow \mathbb{Z}^3$ dato da $\phi(x,y,z) = (2x+8z,2x+4y+6z,ax+6y+4z)$, con $a \in \mathbb{Z}$. Determinare la classe di isomorfismo di coker (ϕ) in funzione di a.
- **Esercizio 2.** Decidere quali delle seguenti affermazioni e' vera e quale falsa. Provare se vera, dare un controesempio se falsa.
 - $\bullet\,$ a. Se Ae' un dominio artiniano allora e' un campo
 - b. Se A e' un PID allora $\mathfrak{J}(A) = (0)$.
 - c. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}$ come \mathbb{Z} -moduli.
- Esercizio 3. Siano $N\subset M,\ N'\subset M'$ A-moduli, tali che $M/N\cong M'/N'\cong A.$ Provare che:
 - a. La successione $0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$ spezza.
 - b. Se $N \cong N'$ allora $M \cong M'$.
- Esercizio 4. Sia $I = (xy^2 z, xyz 1, xz y) \subset \mathbb{Q}[x, y, z].$
 - a. Provare che $I = \sqrt{I}$
 - b. Trovare i divisori di zero in $\mathbb{Q}[x, y, z]/I$
 - c. Se $f = x^5 + yz^2 z^5$ provare che $V(I, f) = \emptyset$.