
Algorithms for Manipulating Algebraic Functions

Master Thesis – M.I.T. (1976)
Barry Marshall Trager

Abstract

Given a base field k, of characteristic zero, with effective procedures for per-
forming arithmetic and factoring polynomials, this thesis presents algorithms
for extending those capabilities to elements of a finite algebraic extension of k.
The algorithms were designed to be embedded in an algebraic symbolic manip-
ulation system. An algebraic factorization algorithm along with a constructive
version of the primitive element theorem is used to construct splitting fields
of polynomials. These fields provide a context in which we can operate sym-
bolically with all the roots of a set of polynomials. One application for this
capability is rational function integration. Previously presented symbolic algo-
rithms concentrated on finding the rational part and were only able to compute
the complete integral in special cases. This thesis presents an algorithm for
finding an algebraic extension field of least degree in which the integral can be
expressed, and then constructs the integral in that field. The problem of alge-
braic function integration is also examined, and a highly efficient procedure is
presented for generating the algebraic part of integrals whose function fields are
defined by a single radical extension of the rational functions.

Contents

1 Introduction 2

2 Representations of Algebraic Expressions 5
2.1 Elementary Operations . 8
2.2 Computing Norm and Trace . 10

2.2.1 Definitions . 10

3 Algebraic Factoring and Splitting Fields 13
3.1 Introduction . 13
3.2 Norms and Algebraic Factoring 14
3.3 Primitive Elements . 17
3.4 Splitting Fields . 18
3.5 Extensions and Comments . 20

4 Rational Function Integration 21

5 Integration of a Class of Algebraic Functions 28

6 Suggestions for Future Work 37

1

Chapter 1

Introduction

Mathematics has always been a natural source of applications for computer sci-
ence. The earliest computers were usually thought of as mere high speed “num-
ber crunchers”. This restriction to numerical problems was caused in part by
the scarcity of languages suitable for manipulating the complex data structures
needed for symbolic calculations. Another limitation was the inability of math-
ematicians to give complete, algorithmic descriptions of the operations which
they routinely performed, e.g. integration. It was felt that these processes were
largely heuristic, depending on experience gained from exposure to a wide vari-
ety of problems. As this learning process was not well understood, there was not
much hope for developing computer systems for performing highly sophisticated
mathematics. On the other hand, algorithms for tasks such as polynomial ma-
nipulation were fairly well understood, and many special purpose systems were
developed for performing these operations. Thus a prerequisite for expanding
the domain of applications of symbolic algebraic manipulation systems is the
systematic development of effective algorithms for performing these “heuristic”
tasks.

The problem of indefinite integration of elementary functions was attacked
along these lines and finally solved, at least theoretically, by the work of Risch.
The earliest attempt at integration was Slagle’s SAINT [21], which used pri-
marily pattern matching and table look up. In view of the way this subject
is traditionally taught, this was thought to be the natural, and perhaps only,
approach. The first really successful and practical program for integration was
Moses’ SIN. Its primary advantage was its dependence on special case algo-
rithms, and almost any problem which it could solve at all was solved quite
rapidly. Unfortunately the inability of SIN to perform a particular integration
did not guarantee that the problem was in fact not integrable.

To perform a mathematical analysis of integration, we need very precise
definitions of “elementary” functions and integrable in “finite terms”. This was
provided by Ritt’s formulation of differential algebra [20]. A differential field is

2

a function field which is closed under differentiation. Following Risch [17] we
define θ to be simple elementary over a differential field D if and only if one of
the following conditions holds:

1. θ is algebraic over D

2. There is an f ∈D, f 6= 0, such that f ′ = fθ′, i.e. θ = log f .

3. There is an f ∈D such that θ′ = θf ′, i.e. θ = exp f .

Let F= D(θ1, . . . , θn) where each θi is simple elementary over D(θ1, . . . , θi−1),
then any g ∈ F is said to be elementary over D. Intuitively, an elementary
function is one defined by a finite tower of algebraic, exponential, and logarith-
mic extensions of the rational functions. An elementary function is said to be
integrable in finite terms if its integral is elementary.

Risch’s decision procedure is based on a theorem of Liouville which gives us
the form of the integral if it is an elementary function. If f is an element of a
differential field D over C, and there is a g elementary over D such that g′ = f ,
then

∫
f = v0 +

∑
ci log vi where vi ∈ D and ci ∈ C. For functions defined by

exponential and logarithmic extensions, Risch’s integration algorithm is reason-
ably efficient in many cases and has already been implemented by Moses and
embedded in SIN. For the algebraic case, however, his algorithm requires many
constructions from algebraic geometry and the existence of practical algorithms
is not yet known.

If we restrict ourselves to purely algebraic functions, Liouville’s theorem
reduces to a theorem originally proved by Abel which states that the integral of
an algebraic function, if it is elementary, will have a purely algebraic part and
a purely logarithmic part. In the fifth chapter of this thesis we present a highly
efficient algorithm for finding the algebraic part of the integral of algebraic
functions involving only a single radical. For this class of functions, we are able
to prove a much stronger result about the form of the integral. This allows us
to avoid all the costly steps in Risch’s approach, and generate directly a linear
system of equations for the integral. If the equations are inconsistent, then the
original problem was not integrable.

One simplifying assumption that mathematicians often make is that all their
operations are being performed over an algebraically closed field. Thus they
assume that they can factor any polynomial into linear factors and perform
operations directly on the roots. This presents a real problem for implemen-
tors of algebraic manipulation systems since we have no effective procedure
for constructing the algebraic closure of a field or performing operations there.
Attempts to use complex floating point approximations to the elements of the
closure can often suffer severely from roundoff errors, especially if many calcula-
tions are being performed. Many of the algorithms currently in use in algebraic
systems require exact arithmetic since they make decisions based on zero tests

3

for the coefficients. Operating with floating point numbers, it is nearly impos-
sible to distinguish small non-zero numbers from a representation of zero with
roundoff present. Related problems also occur when one use interval arithmetic.
Several of the algorithms presented in this thesis provide a partial solution to
this problem. We cannot actually construct the algebraic closure, but given
any particular set of polynomials we can construct their splitting field. This is
the field of least degree over our base field which contains all the roots of all
the polynomials. If we later need the roots of some more polynomials, we can
extend the current splitting field to include their roots also.

Our approach to this problem is to construct a single extension of our base
field in which all the roots are contained. In chapter two we present algorithms
for performing arithmetic with algebraic expressions. If the defining polynomial
for our extension field is univariate, then the expressions we manipulate are
algebraic numbers. If multivariate, then the elements of our field are algebraic
functions. The algorithms presented can be used in either domain.

Once we have constructed a splitting field, we need to be able to factor
polynomials there. In [25] Paul Wang presents an algorithm for factoring mul-
tivariate polynomials over algebraic number fields. His approach is to perform
the factorization modulo powers of small primes and then reconstruct the fac-
torization over the integers using Hensel’s lemma. His algorithm is somewhat
faster than the algebraic factoring algorithm we present, but is restricted to
algebraic numbers. Our algorithm has the advantages of increased generality
and extreme simplicity, and in the context of splitting field calculations, our
factoring algorithm is actually faster than Wang’s.

In [10] Loos presents an algorithm using resultant calculations for reducing
a multiple extension to a simple extension. The defining polynomials he uses
are not irreducible since he wants to avoid factoring. We believe that in practice
the factoring cost is dominated by the resultant cost, and our algorithm finds
the minimal defining polynomial. We then use this primitive element algorithm
iteratively along with our factoring algorithm to compute splitting fields.

In chapter four we use our splitting field algorithm to give a solution to the
problem of rational function integration. Previous work in this area concen-
trated on finding the rational part of the integral. When all the functions in the
transcendental part have rational coefficients, the integration can be completed
by factoring the denominator over Q and then doing a partial fraction decom-
position. However, in some cases the integral cannot be expressed over Q, but
over a finite algebraic extension of Q. The integral can always be expressed in
the splitting field of the denominator of the integrand, but often an extension
field of much lower degree is also sufficient. Performing operations in an exten-
sion field of high degree is very costly, so it becomes important to compute the
integral in an extension field of least degree over Q. Tobey [22] claimed that
a general procedure for finding the smallest field in which the integral can be
expressed was an important research problem. Using the machinery developed
in chapters two and three, we present a complete solution to this problem.

4

Chapter 2

Representations of
Algebraic Expressions

Most early algebraic manipulation systems tried to find a single uniform repre-
sentation for all expressions which they could handle. Simplicity of structure was
a primary design criterion for a working system with a minimum programming
effort. Since these early systems were primarily designed to solve a particular
problem or a very limited class of problems, this requirement was not found too
restrictive and aided communication between independent algorithmic modules.

As systems increased in internal complexity and in the complexity of the
problems they could handle, designers became willing to trade simplicity for
efficiency. This was the advent of multiple representations. Each module could
select a representation which was most appropriate for a particular class of
expressions. Conversion routines and some mechanism for coercing inputs for
each module to the appropriate type were necessary.

In contructing a data type for algebraic expressions, we will carry this ap-
proach to its natural conclusion. We select a representation on the basis of the
transformation to be performed instead of the data itself.

In this chapter we will examine several alternate representations for expres-
sions which are algebraic over our base field k. We are assuming the capability
of representing and manipulating elements of k and will present data structures
and algorithms for extending these capabilities to algebraic extension fields of
finite degree over k. We use subscripts to indicate an association between a func-
tion and some algebraic quantity, but we will drop the subscript when there is
no ambiguity.

Let α be algebraic over a base field k. Then α satisfies a monic irreducible
polynomial with coefficients in k, fα(x) = xn + a1x

n−1 + . . .+ an, ai ∈ k.

5

LetA =


0 0 · · · 0 −an
1 0 · · · 0 −an−1
0 1 · · · 0 −an−1
...

...
. . .

...
...

0 0 · · · 1 −a1


Then A is called the companion matrix of f(x), denoted by C(f(x)) [11].
The characteristic polynomial of any n × n matrix B is defined as the de-

terminant of the matrix xIn − B where In is the n × n identity matrix. We
shall frequently abbreviate this as Det(x − B). It is clearly a polynomial of
degree n. By the Cayley-Hamilton theorem, a matrix satisfies its characteristic
polynomial. The minimal polynomial for B is the polynomial of least degree
which B satisfies, and it therefore divides the characteristic polynomial.

By expanding Det(x − A) in minors along the last column, it is easily seen
that fα(x) is the characteristic polynomial for A = C(f(x)). Since f(x) is
irreducible and the minimal polynomial divides it, f(x) must also be the minimal
polynomial for A.

Let k[x] be the ring of polynomials in x with coefficients in k. Similarly, let
k[A] be the matrix algebra generated by A over k. Any element of k[A] can
be represented as a polynomial in A with coefficients from k. Thus there is a
canonical surjective homomorphism from k[x] to k[A] which simply maps x to A.
The kernel of this homomorphism, the set of all p(x) ∈ k[x] such that p(A) = 0,
is the principal ideal generated by fα(x). The induced map from the quotient
ring k[x]/(f(x)) to k[A] is an isomorphism. In fact, since f(x) is irreducible,
the ideal it generates is prime and therefore the quotient ring is actually a field.
We claim that this field is also isomorphic to k(α), the extension field obtained
by adjoining α to the field k.

By a construction identical to the one above, we can show that k[α], the ring
of polynomials in α is isomorphic to the field k[x]/(f(x)). Thus k[α] is actually
a field and must be identical to k(α), the field of rational functions in α.

Thus we have shown that k[α] and k[A] are both canonically isomorphic to
the field k[x]/(f(x)). Therefore k[α] is isomorphic to k[A] under an isomorphism
which maps α to A.

We now have two alternative representations for elements of k(α), either as
polynomials in α reduced modulo the minimal polynomial, fα(x), or as n × n
matrices in k[A]. Most previous references to algebraic numbers in the computer
science literature have either explicitly or implicitly assumed the polynomial
representation. Actually, there are some operations which can be performed
more easily in the matrix representation. Not only do multiple representations
lead to more efficient algorithms, but we can also gain further insight into this
problem domain by considering algebraic expressions from three points of view:

1. A residue field of a polynomial ring (P-rep)

6

2. An n dimensional vector space over k (V-rep)

3. A commutative matrix algebra over k (M-rep)

In order to utilize all three points of view, we must have algorithms for
changing from one representation to another.

P-rep: polynomials in α of degree less than n with coefficients in k.

V-rep: n-tuple or vector of length n.

M-rep: n× n matrix over k which can be constructed as a polynomial in A.

If we use 1, α, α2, . . . , αn−1 as the basis for our vector space then conversion
between P-rep and V-rep is merely converting a polynomial into the list of its
coefficients.

Before trying to convert to and from matrix form, let us examine the linear
transformation associated with the matrix A operating on the elements of the
vector space described by V-rep. If we take the powers of α as our canonical
basis, then we can represent αk (with k < n) as a vector with 1 in the k + 1st

position and zeros elsewhere. If k < n − 1 then A maps αk to αk+1, however
A(αn−1) = (−an,−an−1, . . . ,−a), since A maps the jth basis vector to the
jth column in A. Thus the effect of applying A to a basis vector is identical
to multiplying the vector by α. In fact A is the linear transformation on the
V-rep vector space corresponding to multiplication by α.

In general, if β ∈ k(α), β = b0+b1α+. . .+bn−1α
n−1, then Mβ = b0In+b1A+

· · ·+ bn−1A
n−1 is the matrix associated with β and represents multiplication by

β as a linear transformation.
If Mβ is calculated by its defining equation above using Horner’s rule then it

requires O(n) matrix multiplications and O(n) matrix additions. Matrix addi-
tion requires O(n2) element additions and matrix multiplication requires O(n3)
element multiplications and O(n3) additions. Thus it would seem that generat-
ing the matrix representation for β requires O(n ∗ n3) = O(n4) multiplications
and O(n ∗ n2) + O(n ∗ n3) = O(n4) additions which would tend to make this
operation prohibitively expensive.

However, we can use the transformational properties of the matrix Mβ to
generate a much improved algorithm. Since Mβ corresponds to multiplication
by β, the jth column of Mβ represents βαj−1, i.e. β times the jth basis vector.
In fact we see that the k + 1st column is just α times the kth column. The
first column is βα0 = β, i.e. just the coefficient vector for β. To get from
the kth to the k + 1st column, we multiply by α. This shifts each component
except the last up one position. The last component was the coefficient of
αn−1 and now becomes the coefficient of αn and must be truncated. Since
αn = −a1αn−1+. . .−an, this truncation involves multiplying the last component
by the coefficient vector for αn and adding the resulting vector to the shifted
version of the previous column. Thus generating any column the previous one

7

requires n multiplications and n−1 additions. Since the first column is simply β,
we must generate n−1 more columns. Therefore generating Mβ from the vector
representation of β requires (n − 1)n multiplications and (n − 1)2 additions or
O(n2) operations. To convert from matrix to V-rep we simply strip off the first
column.

2.1 Elementary Operations

Now that we have fixed our selection of representations, we will discuss algo-
rithms for performing operations on algebraic expressions. The simplest oper-
ations are addition and subtraction of algebraic expressions. In all three rep-
resentations these operations are merely performed element-wise. This requires
O(n) operations in P-rep and V-rep verses O(n2) operations in M-rep.

Multiplication is slightly more complicated. To multiply two algebraic ex-
pressions using M-rep we simply use formal matrix multiplication on the asso-
ciated matrices. This is one of the principal advantages of M-rep; it contains
both the multiplicative and additive structure of the algebraic expressions. Thus
to multiply or divide using M-rep we simply multiply or invert the elements
as matrices. However, we must pay a cost for this algorithmic simplicity. Ma-
trices require O(n2) space instead of O(n), and multiplying matrices reqires
O(n3) operations whereas we can find a slightly more complicated algorithm
for multiplication in the other representations which is O(n2). Note that since
the conversion cost between V-rep and matrices is O(n2), we have the counter
intuitive result that for our special polynomial matrix algebra we can multiply
matrices faster by converting to another representation, multiplying there, and
converting back (total cost = O(n2)).

To multiply elements in P-rep we first multiply them as pure polynomials.
Then we must truncate so that the highest degree term will be less than n. We
accomplish this by using polynomial division with remainder. Our final result is
the remainder after dividing the product polynomial by the minimal polynomial
for α. Both of these steps requires O(n2) operations and therefore so does the
result.

We could perform multiplication in V-rep by converting to and from P-
rep and using the algorithm outlined above. This would also give us an O(n2)
algorithm. But since the vectors in V-rep can be considered one dimensional
arrays, we shall present a multiplication algorithm which exploits this structure.
V-rep is essentially a dense representation for polynomials of bounded degree.
Since algebraic expressions are likely to have few non-zero coefficients after even
a few operations are performed, and since the exponents of the terms do not
have to be stored explicitly in V-rep, this is probably the least space consuming
representation. If we want to take advantage of the presumed denseness of the
operands, we should avoid exponent comparisons and develop algorithms which
process the vectors in a linear fashion.

8

Our multiplication algorithm will be unsymmetric in its treatment of the
operands; to eliminate the need for temporary storage the first operand will
be destroyed during the multiplication process. The inputs to the procedure
are the two multiplicands and a vector supplying the coefficients (except the
leading 1) of Pα(x). Each vector has indices running from 0 to n−1 and the ith
component is the coefficient of αi in the associated polynomial. The annotated
algorithm follows:

algorithm V-mult

input: v1,v2 multiplicands; Minp mininum polynomial for α; (All are n-vectors)

output: ov product vector

(1) for i=0 to n-1 do ov[i]:=0 (initialize)

(2) for i=0 to n-1 do

(1.1) for j=0 to n-1 do ov[j]:= ov[j] + v1[j] * v2[i]

(1.2) lastv1 := v1[n-1] (now multiply v1 by α)

(1.3) for j=n-1 to 1 step -1 do v1[j]:= v1[j-1] - lastv1 * Minp[j]

(1.4) v1[0]:= -lastv1 * Minp[0]

(3) return ov 2

The only remaining elementary operation is division. Since we already have
a multiplication algorithm we can reduce the division problem to inversion, i.e.
computing 1/β, however we will be careful to notice when a particular algorithm
will allow us to compute γ/β at no extra cost.

As with multiplication we will consider M-rep first since it provides us
with the simplest algorithm. Given the matrix Mβ representing β, we can
compute M1/β by formally inverting Mβ as a matrix. In the next section we will
prove that if β 6= 0 then Mβ is nonsingular. Using gaussian elimination matrix
inversion is an O(n3) operation if the elements of the matrix are units, i.e. we
are working over a field. Thus using direct matrix operations, multiplication
and division of algebraic expressions are O(n3).

The extended Euclidean Algorithm [8] provides us with an inversion algo-
rithm for algebraic expressions in P-rep. Let fα(x) be the minimal polynomial
for α over k, and Pβ(α) be our representation for β in P-rep. Since f is an
irreducible polynomial and the degree of P is less than n, the degree of f, f and
P are relatively prime polynomials. By the Euclidean algorithm, we can find
A(x) and B(x) in k[x] such that A(x)P (x) +B(x)f(x) = 1. If we now evaluate
at α, f(α)=0 and A(α) = 1/P (α). Thus A(α) is the representation for 1/β in
P-rep.

9

2.2 Computing Norm and Trace

2.2.1 Definitions

A number α which is algebraic over k satisfies an irreducible polynomial with
coefficients in k. k(α) is the field obtained by adjoining α to k. Let fα(x)
be the unique monic, irreducible equation of degree n which α satisfies. The
conjugates of α over k are the remaining distinct roots of fα, α2, α3, . . ., αn.
If β is any element of k(α) then β can be represented uniquely as a polynomial
in α, of degree less than n, with coefficients from k, Pβ(α). The conjugates of
β considered as an element of k(α) are P (α2), P (α3), . . ., P (αn). If β = P (α)
we will let βi represent P (αi).

Two very useful mappings from k(α) to k are the Norm and Trace. The
Norm(β) is the product of all the conjugates of β relative to k(α) over k. If
we want to emphasize the fields involved we may also write Norm[k(α)/k](β).
Similarly Trace(β) (with the optional subscript) is the sum of the conjugates of
β relative to the extension. Since both trace and norm are symmetric in the αi,
by the fundamental theorem on symmetric functions they both can be expressed
in terms of the coefficients of Pα and thus lie in k.

We can extend the definitions of norm and trace to polynomials in sev-
eral variables with coefficients in k(α). Any such function can be expressed
as G(x1, x2, . . . , xk, α) where G is a polynomial in several variables with coeffi-
cients in k. Then the Norm(G) is the product of G(x1, x2, . . . , xk, αi) over the
n conjugates of α while the Trace(G) is the analogous sum.

The definition given above for the Norm of G coincides with the defini-
tion of Resultant(Pα(y), G(x1, . . . , xk, y)) as presented in [23, p. 86]. Collins
[2] presents a modular resultant algorithm which can be employed to effec-
tively compute norms. Even if the original polynomial is sparse, its norm is
likely to be dense; thus a modular algorithm is probably the optimal choice.
Note that norm is a multiplicative function by definition, i.e. Norm(A ∗ B)
= Norm(A)*Norm(B). Thus we can extend the norm to rational functions by
defining Norm(A/B) = Norm(A)/Norm(B).

We are now ready to prove an extremely important property of norms. (See
[26, pp. 19–20])

Theorem 1 2.1 If f(x, α) is an irreducible polynomial over k(α) then the Norm(f)
is a power of an irreducible polynomial over k

Proof:Assume Norm(f)=C(x) ∗D(x) where gcd(C,D) = 1. Let fi = f(x, αi),
then Norm(f) =

∏
fi. The polynomial f = f1 divides Norm(f) and since

f is irreducible, either f |C or f |D. Assume for concreteness that f |C, i.e.
C = f1 ∗ g1. The fields k(α1) and k(αj) are canonically isomorphic under a
mapping φj which sends α1 to αj and is the identity on k. φj can be extended
to the ring of polynomials in x over those fields and still remain an isomorphism.
Since C(x) has all its coefficients in k it is invariant under φj , but f1 and g1

10

are mapped to fj and gj respectively. Thus the equation C = f1 ∗ g1 becomes
C = fj ∗ gj under φj . Therefore fj |C for 1 ≤ j ≤ n, but gcd(C,D) = 1 implies
that gcd(fj , D) = 1 for all j, and in turn gcd(

∏
fj , D) = 1. But we assumed

that D|Norm(f) =
∏
fj , so we have shown that D = 1. Thus the Norm(f)

cannot be split into two relatively prime factors and can only be some power of
an irreducible polynomial. 2

A simple application of the above theorem is for finding minimal polynomials
for elements of k(α). If β is an element of k(α) then, as above, β = Q(α).
Thus x − β divides the Norm(x − Q(α))=B(x) and therefore B(β) = 0. The
problem remaining is to determine which irreducible factor of B(x) is actually
the minimal polynomial of β. The polynomial x−β is linear and thus obviously
irreducible. By the above theorem we see that B(x) can only be a power of
the minimal polynomial for β, B(x) = Pβ(x)k. Pβ(x) can be found directly by
calculating the gcd(B(x), B′(x)) where B′(x) is the derivative of B(x).

We will now investigate the relationship between the Norm(β) and the
Det(Mβ) where β ∈ k(α). We have already seen that the Det(x −Mα) is the
minimal polynomial for α. We will show that in general Det(x−Mβ) is a power
of the minimal polynomial for β. Thus since Det(x −Mβ) and Norm(x − β)
are both polynomials over k of the same degree and both powers of the same
minimal polynomial, they must be equal. In fact as we might suspect, Det(Mβ)
is always equal to Norm(β) and this will supply us with an alternate algorithm
for computing norms.

It is an elementary result of linear algebra [6, pp. 225–226] that the minimal
polynomial for a matrix and its characteristic polynomial have the same set of
roots, the eigenvalues of the matrix. Because of the representation isomorphism,
the minimal polynomial for any Mβ is the same as the minimal polynomial for
β and is thus irreducible over k. (Note: the minimal polynomial for a gen-
eral matrix is not necessarily irreducible). Since the characteristic polynomial
(Det(x-Mβ)) is a polynomial over k and has the same roots as an irreducible
polynomial, it must be a power of the minimal polynomial. Thus as explained
above, Det(x-Mβ) = Norm(x− β).

By definition Norm(x − β) =
∏

(x − βi) with the product taken over all
the conjugates of β. The constant coefficient (coefficient of x0) of the norm is
(−1)n

∏
βi or (−1)nNorm(β). Similarly the constant coefficient of Det(x−Mβ)

is (−1)nDet(Mβ). Since Norm(x− β) = Det(x−Mβ), their trailing coefficients
must be identical and therefore Norm(β) = Det(Mβ). Thus we now have two
ways to compute the norm, either as a resultant or the determinant of an n×n
matrix where n = deg(k(α)/k).

The coefficient of the xn−1 term in Norm(x−β) is −
∑
βj or -Trace(β). By

expanding Det(x-Mβ) in minors we see that the coefficient of the xn−1 term is
actually the sum of the diagonal elements of the matrix -Mβ . Thus we have
the not very surprising result that the algebraic Trace(β) is equal to the Matrix

11

Trace(Mβ). We now have two ways to compute the Trace(β), either minus the
coefficient of the xn−1 term in Norm(x − β) or the matrix Trace(Mβ). The
second way is by far more efficient, only requiring O(n) operations in M-rep.
If we start in some other representation the time required to compute the trace
is dominated by the time to convert to M-rep or O(n2). M-rep requires O(n2)
space, but if we are only interested in computing the trace from V-rep, we
can modify our conversion algorithm to only use O(n) space and still O(n2)
operations.

algorithm Trace

input: Bvec the V-rep of β ∈ k(α), Pvec the V-rep of the minimal poly. for α

output: Trace[k(α)/k](β) ∈ k

(1) N = Length (Bvec), Trace = 0

(2) for i=0 thru n-1 do

(2.1) Trace = Trace + Bvec[n-1]

(2.2) for j=i+1 thru n-1 do

(2.2.1) Bvec[j] = Bvec[j] - Bvec[i] * Pvec[j-i]

(3) return Trace 2

12

Chapter 3

Algebraic Factoring and
Splitting Fields

3.1 Introduction

For many applications in symbolic mathematics it is necessary to explicitly
describe all the roots of a polynomial. One approach is to compute the roots
numerically to some predetermined accuracy. This is the approach taken in
numerical analysis packages but is generally avoided in symbolic manipulations
as the basic routines such as greatest common divisor and factoring would then
be useless. Another attempt is to try to express the roots in terms of radicals,
but this often cannot be done, and even when it can it leads to great problems
when simplifications are required. The approach taken here is to describe an
extension field of the rationals by the minimal polynomial for some primitive
element and then to express all the roots of the polynomials in terms of that
element. If an irreducible polynomial over k is normal then all of its roots
are rationally expressible in terms of any one of them. Thus the degree of its
splitting field is the same as the degree of the polynomial. For other polynomials,
however, the degree of its splitting field may be as high as n!. This degree
growth tends to make many “computable” problems practical impossibilities.
It then becomes very important to operate in as low degree an extension field
as possible.

This chapter presents a new, simple, and relatively efficient algorithm for
factoring polynomials in several variables over an algebraic number field. This
algorithm is then used iteratively to construct the splitting field of a polyno-
mial over the integers. In the next chapter the factorization and splitting field
algorithms are applied to the problem of determining the transcendental part
of the integral of a rational function. In particular, a constructive procedure is
given for finding the least degree extension field in which the integral can be

13

expressed. Each algorithm is preceded by theorems providing its mathematical
basis.

3.2 Norms and Algebraic Factoring

We assume the existence of some base field of characteristic zero (e.g. the ra-
tionals) over which we have constructive procedures for factoring polynomials.
We also assume the capability is present to perform basic polynomial opera-
tions (e.g. division with remainder) in both the base field and some extension
field of finite degree. Our approach is to map a polynomial over an extension
field to one of higher degree in the base field such that there is an exact cor-
respondence between their factorizations in their respective fields. We use this
correspondence to reconstruct the factorization of the original polynomial over
the extension field.

We now turn to the problem of factoring polynomials with coefficients in
k(α) assuming we have this capability over k. The ability to perform basic
arithmetic in k(α) allows one to compute gcd’s of polynomials over k(α) by the
Euclidean Algorithm. Thus we can perform a square free decomposition on any
polynomial and reduce the factoring problem to square free polynomials.

Our approach to the factorization of f(x,α) is first to make a linear substitu-
tion for x so that the norm(f) is square free. We then factor the norm(f) over
k. Norm(f)=G1(x)G2(x) · · ·Gr(x) with each Gi distinct and irreducible over k.
We claim that gi(x, α) = gcd(f,Gi) is irreducible over k(α) for all i and that
f =

∏
gi.

Theorem 2 3.1 Let f(x, α) be a polynomial over k(α) such that the Norm(f)
is square free. Let

∏
Gi(x) be a complete factorization of the Norm(f) over k.

Then the
∏

gcd(f(x, α), Gi(x)) is a complete factorization of f over k(α).

Proof:Let gi = gcd(f(x, α), Gi(x)), then we must show that each gi is irre-
ducible and that all the irreducible factors of f are among the gi. Let v(x) be
an irreducible factor of f over k(α). By the previous theorem Norm(v) must be
a power of an irreducible polynomial over k, but v|f implies Norm(v)—Norm(f)
and the Norm(f) is square free. Therefore the Norm(v) is irreducible and must
be one of the Gi. Since the Norm(f) is equal to the product of the norms of
each of the irreducible factors of f , each Gj must be the norm of some irre-
ducible factor of f . Assume both v1(x) and v2(x) divide gcd(f,Gi) where v1
and v2 are distinct irreducible factors of f. v1|Gi implies norm(v1)—norm(Gi)
, but Gi(x) is a polynomial over k and its norm is Gi(x)n. The norm(v1)
is irreducible over k and divides a power of the irreducible polynomial Gi(x),
thus the norm(v1)=Gi(x). Similarly the norm(v2)=Gi(x). But (v1v2)|f im-
plies Norm(v1v2)=Gi(x)2|Norm(f) and this contradicts the assumption that
the Norm(f) was square free. Therefore the gcd(f,Gi(x)) must be irreducible
for all i. 2

14

The only missing step in the previously outlined factoring procedure is
finding a linear substitution that makes Norm(f) square free. We claim that
Norm(f(x+sα)) is square free for some s in k. We will prove this in two stages,
first for f(x) a polynomial over k and then extend the result to polynomials
over k(α).

Theorem 3 3.2 If f(x) is a square free polynomial with coefficients in k, then
there are only a finite number of s in k such that Norm(f(x−sα)) has a multiple
root.

Proof:Let the roots of f(x) be β1, β2, . . . , βm, all distinct; then the roots of
f(x−sαj) are β1 +sαj , . . . , βm+sαj . Let G(x) = Norm(f(x−sα)) =

∏
i f(x−

sαi). Thus the roots of G are sαk + βi for k ≤ n,i ≤ m. G can have a multiple
root only if s = (βj − βi)/(αk − αm) where k 6= m. Therefore there are only a
finite number of such values. 2

Lemma 4 If f(x, α) is a square free polynomial with coefficients in k(α) then
there exists a square free polynomial g(x) over k such that f |g.

Proof:Let G(x)=Norm(f(x,α)), let
∏
Gi(x)i be a square free decomposition of

G. Then g(x) =
∏
Gi(x) is a polynomial over k. Since f is square free and we

have only discarded the multiple factors of G(x), g(x) is divisible by f . 2

Corollary 5 If f(x, α) is a square free polynomial over k(α) then there are
only a finite number of s in k such that Norm(f(x− sα)) has a multiple root.

Proof:Let g(x) be a polynomial over k as in the lemma. By theorem 3 there
are only a finite number of s such that Norm(g(x−sα)) has multiple roots. But
f |g implies Norm(f(x− sα, α)) divides Norm(g(x− sα)) and thus any multiple
root of the former is a multiple root of the latter. 2

We are now ready to present the entire factoring algorithm, but we will split
off the norm computation as a subroutine for later use by other procedures.

algorithm sqfr norm

input: f(x, α) a square free polynomial over k(α)

output: a positive integer s, g(x, α) = f(x−sα, α), R(x)=Norm(g(x, α)) a square
free polynomial over k.

(1) s = 0,g(x, α) = f(x, α) [initialize]

15

(2) R(x)=resultant(Pα(y), g(x, y), y) [Norm,(resultant taken with respect to
y)]

(3) If degree(gcd(R(x), R′(x))=0 then return (s,g,R) [sqfr check]

(4) s = s+ 1, g(x, α) = g(x− α, α),go to (2) 2

algorithm alg factor

input: f(x, α) a square free polynomial over k(α)

output: a list of irreducible factors over k(α)

(1) (s,g,R)=sqfr norm(f(x, α))

(2) L=factor(R(x)) [over k, returns list of factors]

(3) If length(L)=1 then return (f) [original poly was irreducible]

(4) For each hi(x) in L Do

(4.1) hi(x, α) = gcd(hi(x), g(x, α))

(4.2) g(x, α) = g(x, α)/hi(x, α) [performed over k(α)]

(4.3) hi(x, α) = hi(x+ sα, α) [undoes linear transformation]

(5) return (L) 2

This factoring algorithm is similar to the one presented in van der Waerden
[23, pp. 136-7] but computationally more efficient. If one wants to factor a
univariate polynomial of degree d over an extension field of degree n, van der
Waerden’s approach requires computing a norm which is bivariate of degree nd
in each variable and then factoring it over k. The algorithm presented above
leads to the computation and factoring of a univariate norm of degree nd. It
appears we have the additional cost of finding a linear transformation which
makes the norm square free. However, the first step in factoring a bivariate
polynomial over the k is to find a substitution for one of the variables which
makes the result square free. Thus there is no actual additional cost and this
algorithm is always superior to van der Waerden’s.

In [25] Paul Wang gives another algorithm for factorization over algebraic
number fields. His approach is an extension of his algorithm for factoring over
the integers [24]. Wang’s algorithm utilized van der Waerden’s technique when
the minimal polynomial for the algebraic number factored over primes, e.g.
x4 +1. He now uses our improved algorithm in this case. In other cases, Wang’s
algorithm appears superior to ours, but not markedly so. We expect to analyze
the computing times in both algorithms in the near future.

16

3.3 Primitive Elements

Next we will present an algorithm for computing a primitive element for a tower
of extension fields. All of the algorithms we have presented have assumed that
the extension field we operate in can be described by the adjunction of a single
element to our base field k. If our current extension field is k(α) and β is
algebraic over k(α) with minimal polynomial Qβ(x, α) then k(α, β) is the field
obtained by adjoining β to k(α). We seek some γ which is algebraic over k such
that k(γ) = k(α, β). The following theorem will prove very useful.

Lemma 6 Let Pα(x) be the minimal polynomial for α over k and β be a root of
Q(x, α), a square free polynomial. If Norm[k(α)/k](Qβ(x)) is square free then
gcd(Pα(x), Q(β, x)) is linear.

Proof:α is clearly a root of both Pα(x) and Q(β, x) since Q(β, α) = 0. Let the
other roots of P (x) be αj for j = 2, . . . , n. If Q(β, αj) = 0 then β is a root of
both Q(x, α) and Q(x, αj), but Norm(Q) is

∏
Q(x, αi) and then β is a multiple

root of the norm. Since the norm is square free this cannot happen and the
only common root of P (x) and Q(β, x) is α. Therefore the gcd(P (x), Q(β, x))
is linear. 2

Theorem 7 3.3 Let Qβ(x, α) be the minimal polynomial for β over k(α) and
Pα(x) be the minimal polynomial for α over k. If Norm[k(α)/k](Qβ(x)) is square
free then k(α, β) = k(β).

Proof:We only need to show that α is representable in k(β). By the lemma
the gcd(Q(β,x),P(x))=x-c, i.e. is linear. c is the only common root of Q(β,x)
and P(x), so c=α. But Q(β,x) and P(x) are both polynomials over k(β) and so
their gcd is over k(β). Thus α=c is in k(β). 2

Given an arbitrary β the norm(Qβ(x, α)) may not be square free, but algo-
rithm sqfr norm will find an integer s and a polynomial g(x,α) such that R(x)
= Norm(g(x, α)) is square free. Since Q(x,α) is irreducible over k(α) and sα is
in k(α), g(x,α) = Q(x-sα,α) is irreducible over k(α). If we let γ be a root of
g(x,α) over k(α) and thus a root of R(x) over k then by theorem 3.3 k(α,γ) =
k(γ). But γ = β+sα so k(α,γ) = k(α,β). Thus γ is the primitive element we
were looking for and R(x) is its minimal polynomial over k.

The algorithm we present for calculating primitive elements is essentially
the same as that presented by Loos [10]. We differ in allowing the minimal
polynomial for β to have coefficients over k(α) instead of requiring it to be over k.
Loos does not guarantee, as we do, that the polynomial returned be irreducible.
To achieve this result we must require that the minimal polynomial for β be
irreducible over k(α) not just irreducible over k. In fact, if we examine our

17

algebraic factoring algorithm, we can determine the conditions under which the
resultant of two irreducible (over k) polynomials will factor. This will happen if
and only if each of the polynomials factors over the extension field determined
by the other polynomial. By symmetry, it is sufficient if one of the polynomials
factors over the other’s extension field.

algorithm primitive element

input: Pα(x) the minimum polynomial for α over k
Qβ(x, α) the minimum polynomial for β over k(α)

output: R(x) the minimum polynomial for γ over k where k(α,β) = k(γ).

A(γ) is a representation of α in k(γ)

B(γ) is a representation of β in k(γ)

(1) (s,g,R) = sqfr norm(Q(x, α),P (x))

(2) α=linsolve(gcd(g(γ,x),P(x))) [arithmetic over k(γ) where γ denotes a root
of R(x), linsolve(ax− b) returns b/a]

(3) β = γ − sα

(4) return (R(x),γ,α,β) 2

3.4 Splitting Fields

The last algorithms to be presented in this section calculate splitting fields.
We restrict our considerations to irreducible polynomials since the composite
field from many such extensions can be found by repeated application of the
primitive element algorithm. Our basic approach will be to alternately adjoin a
root of an irreducible factor of the polynomial to the current extension field and
then refactor the polynomial in the new extension field. As linear factors are
discovered they are put on a separate list and their coefficients are updated as
the extension field changes. If n is the degree of the original polynomial, in the
worst case n− 1 iterations will occur and the primitive element for the splitting
field will be of degree n!.

algorithm split field

input: P(x) a polynomial irreducible over k

output: Rγ(x) the defining polynomial for the splitting field of P(x) and a list of
the roots of P(x) over k(γ).

(1) roots = [], polys = [P(x)]

(2) minpoly = P(x), newminpol = P(x), index = 1, β=γ [γ is a root of
minpoly]

18

(3) replace polys[index] by polys[index]/(x-β), add β to roots, Newfactors =
[], k = 1

(4) for each Pi(x) in polys do

(4.1) (g,s,R) = sqfrnorm(Pi(x),minpoly)

(4.2) L = factor (R(x))

(4.3) for each Qj(x) in L do

(4.3.1) f(x, γ) = gcd(g(x, γ), Qj(x))

[f is an irred. factor of Pi in k(γ)]

(4.3.2) if Deg(Qi)¿Deg(newminpol) then do

(4.3.2.1) newminpol = Qj(x), index=k, new s=s, Bpoly(x,γ) = f(x,γ)

(4.3.3) g(x, γ) = g(x, γ)/f(x, γ)

(4.3.4) f(x, γ) = f(x+ sγ, γ)

(4.3.5) If Deg(f(x, γ)) = 1

(4.3.5.1) then add linsolve(f(x, γ)) to roots

(4.3.5.2) else add f(x, γ) to Newfactors, k = k + 1

[let new γ be a root of newminpol, now we operate in k(new γ)]

(5) α = linsolve(gcd(minpoly,Bpoly(new γ,x)))

(6) β = new γ-new sα

(7) subst α for γ in roots [update for new extension]

(8) If Newfactors = [] then return (newminpol,roots)

(9) subst α for γ in Newfactors

(10) polys = Newfactors, minpoly = newminpol, γ = new γ, go to 3. 2

For comparison, we now present a simpler version of the above algorithm
which avoids performing any factoring. If the splitting field is actually of degree
n! this approach will actually be faster since the attempt at factorization in step
4.2 would always fail and thus be a waste of time. The essence of the splitting
field calculation is repeated primitive element calculations. In the algorithm
above factorization is attempted in the hope that the degree of the splitting
field is much less than n!. The algorithm below always returns a polynomial of
degree n! known as the resolvent [4]. The irreducible factors of this polynomial
over k are all of the same degree, all normal, and are all defining polynomials
for the splitting field of P (x).

algorithm resolvent

19

input: P (x) a polynomial irreducible over k

output: R(x) a polynomial of degree n! such that any irreducible factor of R
defines a splitting field for P

(1) minpoly = P (x), β = γ [γ is a root of minpoly]

(2) P (x, γ) = P (x)/(x− β)

(3) If degree(P)=0 then Return minpoly

(4) (g,s,R) = sqfrnorm(P (x, γ),minpoly)

[Let new γ be a root of R(x), now operate in k(new γ)]

(5) α = linsolve(gcd(minpoly,P (new γ, x)))

(6) β = new γ - sα

(7) subst α for γ in P (x, γ)

(8) minpoly = R(x), γ = new γ, go to 2. 2

3.5 Extensions and Comments

The algorithms presented in this chapter were designed to operate over an ar-
bitrary base field. If we are interested in factoring univariate polynomials over
algebraic number fields then we let our base field be the rational numbers. Given
the capability to factor multivariate polynomial norms over Q as in [24], we can
extend to factoring multivariate polynomials over algebraic number fields. If
we allow our minimal polynomials to have polynomial coefficients then we can
factor polynomials over algebraic function fields.

As algebraic manipulation systems expand their problem domains, the need
for performing operations with quantities satisfying algebraic relationships will
increase. The basic arithmetic operations can be performed by merely using the
side relations to keep the expressions reduced. We have extended factoring to
these domains by mapping the problem to a simpler domain while still preserv-
ing its structure. Then we were able to lift the factorization back to the original
expression. That finding such unramified morphisms can lead to efficient algo-
rithms for algebraic manipulation has been amply demonstrated by the recent
development of modular and p-adic techniques [27].

20

Chapter 4

Rational Function
Integration

We now turn to an application of the algorithms presented in the previous
section. The problem of the symbolic integration of rational functions in the
context of algebraic manipulation has been investigated by Manove et al [14],
Moses [15], Horowitz [7], Tobey [22], and Mack [12]. By Liouville’s theorem the
integral of a rational function can be expressed as a rational function plus a sum
of complex constants times logs of rational functions.∫

R(x) dx = v0(x) +
∑

ci log(vi(x))

Algorithms for obtaining the rational part of the integral are well known and
reasonably efficient [7], [12], but as far as the author knows, no one has actually
presented practical and relatively general algorithms for obtaining the transcen-
dental part. Horowitz limited his investigation to algorithms for obtaining the
rational part. Manove and by extension Moses’ SIN factored the denomina-
tor over the integers and obtained logarithmic terms if the factors were linear
or myquadratics. Tobey examined the transcendental problem and concluded
“There is no generally valid algebraic algorithm for obtaining in a symbolic form
the transcendental part of the integral of a rational function.” He did however
present some algorithms for obtaining the transcendental part in special cases.
He also presented as an unsolved problem the problem of obtaining the least
degree extension field in which the integration can be done.

Starting where Horowitz leaves off, we are interested in integrating a rational
function S(x)/T (x) where T (x) is square free and degree(S(x)) ¡ degree(T (x)).
If we were willing to go to the splitting field of the denominator then we could
perform a partial fraction expansion to get S(x)/T (x) =

∑
ci/(x − θi) where

each ci is an element of the splitting field and θi is a root of the denominator.

21

In fact ci is just the residue of R(x) at θi. This would lead to an expression
for the integral, but could require operating in an extension field of very high
degree. Thus for the sake of efficiency and to promote a more intelligible result,
we propose to find the minimum degree extension field in which the result can
be expressed. We claim that any field which contains all the residues is sufficient
for expressing the integral. This is a significant result since the residues may
be contained in a field of much lower degree than the splitting field of the
denominator.

Our approach to this problem is first to constructively find the extension
field E determined by all of the residues of the integrand. Then we factor
the denominator of the integrand over this field and perform a partial fraction
decomposition. This breaks the original integral into a sum of integrals of proper
rational functions where each denominator is irreducible over E. We claim that
each integral in the sum can be expressed as a single log term.

First we will find a simple expression for the residues in terms of the roots
of the denominator T(x). Let θ be a root of the square free polynomial T(x).
Since θ must then be a simple root, the residue of S(x)/T (x) at θ is S(θ)/T ′(θ).
Since T(x) is square free, the gcd(T (x), T ′(x)) = 1. Thus by the extended
Euclidean algorithm we can find polynomials A(x) and B(x) over k such that
A(x)T (x) +B(x)T ′(x) = S(x), with the degree(B(x)) ¡ degree(T (x)). T (θ) = 0
implies B(θ) = S(θ)/T ′(θ). Since θ was an arbitrary root of T(x) we have
established the following:

Lemma 8 Let S(x) and T (x) be polynomials over k, where T (x) is square free.
Then there exists a polynomial B(x) over k such that for any root θ of T (x) the
residue of S(x)/T (x) at θ is B(θ).

Theorem 9 4.1 Let S(x)/T (x) be a quotient of polynomials where T (x) is ir-
reducible over some ground field k. If all the residues are contained in k then
all the nonzero residues are equal.

Proof:Let B(x) be the polynomial described in the lemma. Let the roots
of T(x) be θi for i=1,. . . ,n. We will operate in the splitting field E of T(x).
Since T(x) is irreducible, its Galois group G(E/k) is transitive and there is an
automorphism φj sending θ1 to θj for each j and leaving k unchanged. Let
c = B(θ1), the residue at θ1. If we apply φj to this equation, the left side
is unchanged since c is in k and the right side is mapped to B(θj) since the
coefficients of B(x) are in k. Thus c = B(θj) for each j and all the residues are
equal. 2

Corollary 10 With S(x) and T (x) as in Theorem 2.1,
∫
S(x)/T (x) dx is ex-

pressible over k.

22

Proof:Let c be the common residue of the θj , then the integrand has the
partial fraction decomposition, S(x)/T (x) =

∑
c/(x − θj). This integrates to

the following:∫
S(x)/T (x) dx =

∑
c log(x− θi) = c log

∏
(x− θi) = c log T (x)

2

All that remains is to transform the integrand so that the corollary applies. If
θ is any root of the denominator T(x) then B(θ) is the residue of S(x)/T (x) at γ,
therefore the resultant(x-B(y),T(y),y) is a polynomial whose roots are precisely
the residues of S(x)/T (x). Using the algorithms presented in the last section we
can compute the splitting field of this polynomial and therefore the least degree
extension which contains all the residues. Then we factor the denominator of the
integrand over this extension field. If we performed a partial fraction decompo-
sition on the resulting rational function, each term in the sum would satisfy the
hypotheses of the corollary and thus be directly integrable. But the actual com-
putation of the partial fraction decomposition is unnecessary. Since we know
the form of the result as

∑
ci log(fi(x, γ)) where the fi’s are the irreducible

factors of the denominator, all we need to be able to do is compute each ci. But
ci is B(x) evaluated at any root of fi(x, γ). The resultant(B(x),fi(x, γ),x) is the
product of B(x) evaluated at each of the roots of f and thus equals cki where k
is the degree of f. Therefore g(y) = resultant(y-B(x),fi(x, γ),x) is (y− ci)k, and
y − ci is g(x)/ gcd(g(x), g′(x)).

algorithm ratint

input: T(x) a square free polynomial, S(x) a polynomial of lower degree than
T(x)

output: R(x) the minimal polynomial for the splitting field of the residues, γ
such that R(γ) = 0, and I(x,γ) the integral expressed in terms of γ.

(1) (A,B) = Extended Euclidean(T(x),T’(x),S(x))

(2) R(x) = split field (resultant(x-B(y),T(y),y))

(3) L = alg factor(T(x),R(x),γ)

(4) L = map(Int log,L) [applies function Int log to each element in L]

(5) Return(R(x),γ,sum(L)) 2

algorithm Int log

input: D(x,γ) an irreducible polynomial over k(γ)

output: c log D(x,γ)

23

(1) c(y) = resultant(y-B(x),D(x,γ),x)

(2) c = linsolve(c(y)/ gcd(c(y), c′(y))) [common residue expressed in terms of
γ.]

(3) return (c log D(x,γ)) 2

On page III-10 of his thesis, Tobey presents a rational function which he
demonstrates is integrable over Q(

√
2). He asks how one determines a priori

the extension of least degree in which the integral can be expressed. Using the
MACSYMA [13] system and the ideas presented in this section, we solve his
problem below:

(C1) ’INTEGRATE(N(X)/D(X),X); /* THIS IS THE PROBLEM TO BE SOLVED.

N(X) AND D(X) ARE RESPECTIVELY THE NUMERATOR AND DENOMINATOR

OF TOBEY’S RATIONAL FUNCTION. */

/ 13 8 7 6 3 2

[7 X + 10 X + 4 X - 7 X - 4 X - 4 X + 3 X + 3

(D1) I --- DX

] 14 8 7 4 3 2

/ X - 2 X - 2 X - 2 X - 4 X - X + 2 X + 1

(C2) D1(X):=’’(DIFF(D(X),X));

13 7 6 3 2

(D2) D1(X) := 14 X - 16 X - 14 X - 8 X - 12 X - 2 X + 2

(C3) (ALGEBRAIC:RATALGDENOM:TRUE,TELLRAT(D(C)))$

/* LET C BE A ROOT OF D(X) */

(C5) B(C):=’’(RATSIMP(N(C)/D1(C)));

/* B(X) IS THE POLY COMPUTED IN STEP 1 OF RATINT */

12 11 10 9 8 7 6 2

C - C + C - C + C - C - C - 2 C - 2 C + 2

(D5) B(C) := --

2

(C6) RESULTANT(Y-B(X),D(X),X);

14 13 12 11 10 9

(D6) 16384 Y - 114688 Y + 315392 Y - 401408 Y + 164864 Y + 121856 Y

8 7 6 5 4 3 2

- 109312 Y - 23552 Y + 27328 Y + 7616 Y - 2576 Y - 1568 Y - 308 Y

- 28 Y - 1

(C7) SQFR(%); /* SQUARE FREE DECOMPOSITION IS NOT NECESSARY BUT

MAKES THE STRUCTURE MORE EVIDENT IN THIS EXAMPLE. */

24

2 7

(D7) (4 Y - 4 Y - 1)

(C8) PART(%,1);

/* ALREADY WE HAVE FOUND THE MINIMAL POLY. FOR THE INTEGRAL */

2

(D8) 4 Y - 4 Y - 1

(C10) MP(X):=’’(SUBST(X/2,Y,%));

/* MINIMAL POLYNOMIALS ARE REQUIRED TO BE MONIC FOR EFFICIENCY */

2

(D10) MP(X) := X - 2 X - 1

(C11) FACTOR(D(X),MP(ALG));

7 2 7 2

(D11) (X + (1 - ALG) X - ALG X - 1) (X + (ALG - 1) X + (ALG - 2) X - 1)

(C12) (F1:PART(%,1),F2:PART(%,2))$ /* F1 AND F2 ARE THE FACTORS OF THE

DENOMINATOR */

(C14) TELLRAT(MP(ALG))$ /* NEXT WE CALCULATE RESIDUES OVER k(ALG) */

(C16) ALGNORM(Y-B(X),F1,X);

7 6 5 4

(D16)/R/ (128 Y - 448 ALG Y + (1344 ALG + 672) Y + (- 2800 ALG - 1120) Y

3 2

+ (3360 ALG + 1400) Y + (- 2436 ALG - 1008) Y + (980 ALG + 406) Y - 169 ALG

- 70)/128

(C17) SQFR(%);

7

(2 Y - ALG)

(D17) ------------

128

(C18) SOLVE(%,Y);

SOLUTION

ALG

(E18) Y = ---

2

MULTIPLICITY 7

(D18) [E18]

(C19) C1:RHS(E18); /* C1 IS THE RESIDUE AT ANY ROOT OF F1 */

25

ALG

(D19) ---

2

(C20) ALGNORM(Y-B(X),F2,X);

7 6 5

(D20)/R/ (128 Y + (448 ALG - 896) Y + (- 1344 ALG + 3360) Y

4 3 2

+ (2800 ALG - 6720) Y + (- 3360 ALG + 8120) Y + (2436 ALG - 5880) Y

+ (- 980 ALG + 2366) Y + 169 ALG - 408)/128

(C21) SQFR(%);

7

(2 Y + ALG - 2)

(D21) ----------------

128

(C22) SOLVE(%,Y);

SOLUTION

ALG - 2

(E22) Y = - -------

2

MULTIPLICITY 7

(D22) [E22]

(C23) C2:RHS(E22); /* C2 IS RESIDUE AT ANY ROOT OF F2 */

ALG - 2

(D23) - -------

2

(C24) C1*LOG(F1)+C2*LOG(F2); /* FINALLY WE CAN EXPRESS THE INTEGRAL */

7 2

ALG LOG(X + (1 - ALG) X - ALG X - 1)

(D24) --------------------------------------

2

7 2

(ALG - 2) LOG(X + (ALG - 1) X + (ALG - 2) X - 1)

- --

2

(C28) /* WE CAN ALSO EXPRESS THE ANSWER IN RADICALS SINCE MP(X)

IS QUADRATIC */

26

(ALGEBRAIC:FALSE,SOLVE(MP(ALG)));

SOLUTION

(E28) ALG = 1 - SQRT(2)

(E29) ALG = SQRT(2) + 1

(D29) [E28, E29]

(C31) EV(D24,E29);

7 2

(SQRT(2) + 1) LOG(X - SQRT(2) X - (SQRT(2) + 1) X - 1)

(D31) --

2

7 2

(SQRT(2) - 1) LOG(X + SQRT(2) X + (SQRT(2) - 1) X - 1)

- --

2

27

Chapter 5

Integration of a Class of
Algebraic Functions

In this chapter we investigate the problem of integrating algebraic functions.
We define K = k(x, y) to be an algebraic function field if it is a finite extension
of k(x) the field of rational functions in x. Any element of K is an algebraic
function and satisfies a polynomial over k(x) whose degree divides that of the
extension.

By Liouville’s Theorem, if z ∈ K has an elementary integral, it can be ex-
pressed as the sum of an element of K and constant multiples of logs of such
elements. This permits us to construct a general form for the integral. If the
derivative of this form cannot be made to match the integrand, then the origi-
nal problem was not integrable. Hardy [5] conjectured that there was no effec-
tive general procedure for determining the integrability of algebraic functions
if log terms were present. In 1969, Risch [18] gave an algorithmic procedure
for determining the integrability of functions constructed using exponential and
logarithmic as well as algebraic operations. Risch constructed the pattern from
local information at the singularities of the integrand and was able to reduce
the problem of integration to a problem in algebraic geometry, determining a
bound on the order of the torsion subgroup of the divisor class group, which
he called the Points of Finite Order Problem. In 1970, he outlined a procedure
for computing this bound [19], but an efficient, practical implementation is still
lacking. One problem with Risch’s algorithm is that the need to calculate power
series expansions forces one to operate in a splitting field of very high degree
even when the integral can be expressed in a field of much lower degree. The
author is currently investigating methods for constructing the integral avoiding
the costs of Risch’s intermediate steps.

We restrict ourselves here to the class of algebraic functions which can be
expressed using only a single radical. By this we mean that the function field

28

can be expressed as k(x,y) where yn = p(x) for some polynomial P over k whose
roots have multiplicities less than n. For this class of functions we will present
an algorithm for obtaining the algebraic part of the integral while operating
completely in the field of definition for the integrand. Although this is a very
special case of the general problem addressed by Risch, it encompasses elliptic
and hyperelliptic functions and represents the most frequently encountered class
of algebraic integrals.

The first obstacle to integrating algebraic functions is their multivalued na-
ture. Instead of trying to pick a particular branch of the function, we will
consider the entire function on its Riemann surface. This surface can be viewed
as an n-fold covering of the extended complex plane. For our restricted class of
functions, whenever p(x) 6= 0, the sheets are all distinct over x. Over a simple
root of p(x) all n sheets coalesce to form an n sheeted branch point, i.e. any path
on the surface must circle this point n times before closing. If γ is a root of p of
multiplicity m and d=gcd(m,n) then over γ there are d distinct branch points,
each composed of n/d sheets. One of the principal advantages of considering
functions on their Riemann surface is that they become single valued and mero-
morphic there. Thus for any particular algebraic funtion the only singularities
we must contend with are poles, and these are finite in number.

We shall use the local properties of functions and their integrals as a key to
their global behavior. Our principal localization technique will be power series
computation. The expansion of an algebraic function at an unramified point on
the surface has integer exponents and is simply a Laurent expansion. However,
if we want to expand at branch points, we must permit fractional exponents.
In fact if x0 is a k-sheeted branch point, an expansion at x0 will be in terms of
(x− x0)1/k. These expansions with fractional exponents are known as Puiseux
expansions [1]. To get a consistent definition of order for Puiseux expansions,
we will express our series in terms of a uniformizing parameter. Instead of
expanding in (x − x0)1/k, we let x = tk + x0 and expand in terms of t. The
parameter t is only determined up to a kth root of unity, ω, so we define two
expansions to be equivalent if one transforms into the other by substituting ωt
for t. The order of an algebraic function at a place (point on the Riemann
surface) pis the degree of the first non-zero term in its power series expansion
(in t). We define Ordp(y) to be the order of y at pand the branch index to be
the number of sheets which coalesce at p.

Every neighborhood of a Riemann surface is locally homeomorphic to a
neighborhood in the complex plane. The uniformizing parameter supplies this
mapping and thus a local coordinate system, but we have no single global coordi-
nate system for the Riemann surface. The integral must contain the information
necessary to transform between local coordinate systems along our path of inte-
gration. This is done by considering the integrand to be a differential and not a
simple algebraic function. A differential is a form f dx where f is an algebraic
function, and the order of the form at a place pwith uniformizing parameter t
is defined to be Ordp(f)+Ordp(dx/dt). Since x is locally a rational function in

29

t, its derivative, dx/dt, is also rational and thus has a well defined order. At a
finite k-sheeted branch point dx/dt is ktk−1 and so Ord(f dx) = Ord(f) +k−1.

Algebraic functions on their Riemann surface have many properties in com-
mon with rational functions in the extended complex plane. In particular, the
following is true in both domains:

1. Ordp(f) is nonzero for only a finite set of places.

2.
∑

Ordp(f) = 0 if the sum is taken over all the places on the surface. This
is another way of saying an algebraic function has the same number of
poles and zeroes, counting multiplicities.

3.
∑
Resp(fdx) = 0 with the sum again taken over all places on the surface.

Resp(fdx) is the residue of fdx and is defined to be the coefficient of t−1

in the series for f dx/dt.

The differentials on a Riemann surface are placed in three categories on the
basis of their singularities. A differential of the first kind has no singularities
on the entire Riemann surface. Differentials of the second kind have poles, but
always with zero residue. Differentials of the third kind have only simple poles
and thus non-zero residue.

We define a divisor on a Riemann surface to be an element of the free abelian
group generated by the points of the surface, i.e. a divisor is a formal sum

∑
npp

where np is a rational integer and is non-zero for only a finite number of points
p. The degree of a divisor is

∑
np. The divisor of an algebraic function f is

defined to be
∑

Ordp(f)p and is denoted by (f). Since any algebraic function
has the same number of poles and zeros, its divisor is of degree 0. There is
a bijection between divisors of degree 0 over the extended plane and rational
functions, determined up to constant multiple. On the other hand, given a
divisor of degree 0 on a Riemann surface, there may be no algebraic function
with precisely those poles and zeros. If there is such a function the divisor is
called a principal divisor.

The operation of computing Puiseux expansions at a place provides us with
a differential isomorphism from our function field into the field of power series
over C. This means that computing power series commutes with differentiation,
i.e. the series for the derivative of f is the derivative of the series for f. Therefore,
to obtain local information about the integral, we merely compute the power
series expansion of the integrand and integrate the series termwise. If a power
series has negative order, the operation of integration increases its order by one,
or equivalently decreases the order of the pole by one. Integration of a power
series with non-negative order produces a series with non-negative order. Thus
we see that integration will never create a pole, and always decreases the order
of the pole of the integrand by one.

By Liouville’s theorem,
∫
f dx = w0+

∑
ci log(wi) where f, wj ∈ C(x, y), i.e.

algebraic functions, and ci ∈ C. After differentiating we get f = w′0+
∑
ciw
′
i/wi.

30

We will now examine w′i/wi locally to see how f decomposes. Let pbe an
arbitrary place on the Riemann surface. If Ordp(wi) = n 6= 0, then Ordp(w′i) =
n − 1 and thus Ord(w′i/wi) = −1. If Ord(wi) = 0, then Ord(w′i) ≥ 0 and
Ord(w′i/wi) ≥ 0. Since Ord(f + g) ≥ min(Ord(f),Ord(g)), Ord(

∑
ciw
′
i/wi) ≥

−1 everywhere on the Riemann surface.
We define the principal part of a function at a place to be the sum of all

terms with negative degree in the power series expansion at that place. The
principal part of a differential at a place is the sum of all terms of degree less
than -1 in its expansion. Thus termwise integration of the principal part of a
differential produces the principal part of the integral.

The main result of this chapter is that for our restricted class of algebraic
functions, we can get a very complete description of the form of the algebraic
part of the integral. In general the algebraic part would involve all powers of y
less than n. By considering only function fields defined by yn = p(x), we were
able to prove the following key theorem.

Theorem 11 5.1 The algebraic part of
∫
R(x)ydx, where yn = p(x) and R(x)

is a rational function in x, is of the form yA(x) where A(x) is a rational function
in x.

Although the statement seems very intuitive, the proof is fairly long and we
will prove it in several stages. The proof is based on the relationship between the
series expansions for y at all the places above a given x value. By examining the
formula for computing nth roots of power series [28], we see that if p(x0) 6= 0
then the n distinct expansions for y can be generated by taking any one of
them and multiplying it successively by the nth roots of unity. We make the
conventions that if p(x0) 6= 0, we call x0 a root of multiplicity 0 and define
gcd(0, n) = n. Now in general, if x0 is a root of p(x) of multiplicity m and
d = gcd(m,n) then there are d distinct places over x0, each with branch index
n/d. Two expansions of y over x0 are equivalent if their quotient is an (n/d)th
root of unity. Again starting with any particular expansion over x0, we can
generate n different expansions by multiplying by all the nth roots of unity.
These n expansions can be grouped into d sets each with n/d elements, such
that all the elements within a given set are equivalent, but any two expansions
from distinct sets are inequivalent. This gives us a coset decomposition of the
group of nth roots of unity; we consider two nth roots equivalent if their quotient
is an (n/d)th root of unity. If ω is a primitive nth root of unity, we can let ω0, ω1,
. . . , ωd−1 be our canonical representatives of the equivalence classes. Now we
can form d inequivalent expansions of y, over x0, by multiplying any particular
expansion by these d representative elements. The exponents in the terms of
these expansions are all congruent to m/d modulo n/d. We summarize these
results in the following lemma:

Lemma 12 5.1 Let x0 be a root of p(x) of multiplicity m, g(t) be the power series
expansion of y at some place over x0, d = gcd(m,n). Then d inequivalent series

31

expansions of y over x0 are g(t), ωg(t), . . . , ωd−1g(t) where ω is a primitive nth
root of unity. The exponents in the expansions are all congruent to m/d modulo
n/d.

In order to be able to compare the expansion of y with that of a rational
function in x and y at a place, we assume the series for the rational function
is computed by formal arithmetic operations on the series for y and x, as in
[28]. Since a rational function of x, R(x), has the same expansion at all places
over x0, we can multiply by R(x) without changing the coefficient relationship
among the different sheets. At an n/d sheeted branch point, the series for R(x)
is a series in tn/d, thus multiplying by R(x) won’t change the congruency class,
modulo n/d, of the exponents of a power series. Since the expansion for yk is
the kth power of the expansion for y, with the same assumptions as in Lemma
5.1 above, we get the following analogous result at the corresponding sheets.

Lemma 13 5.2 Let R(x) be a rational function in x and h(t) be the power series
expansion for R(x)yk at the same place as g(t) in Lemma 5.1. Then d inequiva-
lent series expansions of R(x)yk over x0 are h(t), ωkh(t), ..., ω(d−1)kh(t), where
ω is a primitive nth root of unity. The exponents in these expansions are all
congruent to km/d modulo n/d.

The main step in the proof of Theorem 5.1 is the following Lemma:

Lemma 14 5.3 Let f ∈ k(x, y), f = a0 + a1y + · · · + an−1y
n−1. If for every x

value the ratios of the principal parts of the expansions of f at any two places
over x are constants which are equal to the ratios of the expansions of y at those
places, and if the exponents in the expansions of f are congruent, modulo the
branch index, to the exponents in the expansions of y then f − a1y is constant,
i.e. a2 = · · · = an−1 = 0 and a0 ∈ k.

Proof:Examine the expansions over a particular point, x0, where we assume t
is a uniformizing parameter. We will first consider the case when there are no
branch points over x0 and determine what the constraints are on the coefficients
of a particular term, e.g. t−s, in the expansions of the ajy

j . Let bj be the
coefficient of t−s in ajy

j and let c be its coefficient in the expansion of f at
the first sheet. Then their respective coefficients at the (k+1)st sheet will be
ωjkbj and ωkc. Thus we get a system of n linear equations in the b′js. The
coefficients of this system form a van der Monde matrix whose determinant is
thus

∏
/(ωi − ωj) for i 6= j and i, j < n. But since ω is a primitive nth root of

unity, each term in the product is non-zero and so is the determinant. Therefore
there must be a unique solution. But by inspection we can find a solution where
b1 = c and all the other bj ’s are 0, and it must be the only solution. Since this
is true for an arbitrary term in the principal part of f, we see that the principal
parts of ajy

j for j 6= 1 must be zero at any unramified point.

32

Now assume there are d distinct branch places above x0, each with branch
index r = n/d. Again examine the coefficients of the t−s term in all the expan-
sions. Let m be the multiplicity of x0 as a root of p(x). Then d = gcd(m,n),
and, by assumption, the exponents of all the terms of the principal part of the
expansions of f at x0 are congruent to m/d modulo r. By lemma 5.2 the ex-
ponents in the expansions of ajy

j are congruent to jm/d. For a particular s
there will be d values of j such that jm/d will be congruent to s, thus there
are at most d monomials ajy

j whose expansions can include a term in t−s. At
each of the d places over x0 we can equate the sum of these d coefficients to
the coefficient of t−s in f. This gives us d linear equations in d of the bj ’s. If
we examine the coefficient matrix and factor out the first element of each row,
then the matrix we have left is van der Monde with determinant

∏
(ωrj − ωrk)

with j,k¡d. Since ω is a primitive nth root of unity, ωr is a primitive dth root of
unity, and just as in the previous paragraph, the determinant is non-zero. If s
is congruent to m/d then we have the unique solution that the coefficient of t−s

in f is b1 and the d− 1 other b’s congruent to 1 mod r are all zero. If s is not
congruent to m/d then the obvious unique solution is to let the d bj ’s be zero.
Since this is true for all terms in the principal part of f, we have shown that the
principal parts of ajy

j for j 6= 1 are zero at all branch places. Together with the
previous paragraph, this shows that their principal parts are zero everywhere,
including at infinity. But this means that they have no poles, and the only
algebraic functions with no poles are constants. Thus we have shown that if f
is algebraic, it can differ from a1y by at most a constant. 2

With this last lemma under our belt, we are now ready to finish the proof
of theorem 5.1.
Proof:We must show that the algebraic part of

∫
R(x)y dx satisfies the hy-

potheses of lemma 5.3. By lemma 5.2, the integrand R(x)y has the required
coefficient and exponent properties. It remains to show that these properties are
preserved after multiplication by dx and termwise integration of the principal
parts of the differential.

Since dx/dt is the same at all sheets above a given x value, multiplication by
dx/dt does not disturb the coefficient relationships. The subsequent termwise
integration will divide the coefficient of ts by s + 1 on all the sheets over x0,
thus again preserving the ratios between sheets. If x0 is a branch point of index
k, then dx/dt = ktk−1 and multiplication by dx/dt will change the congruency
class of the exponents modulo k. But the subsequent integration will increase
all the exponents by 1. Thus we have a net effect of increasing them by k and
leaving their congruency class unchanged. Therefore the hypotheses of lemma
5.3 are satisfied and the algebraic part of the integral must differ from yA(x)
by at most a constant. 2

33

Note that the principal part of the integral is generated by the terms of
degree ¡ -1 in the expansion of the integrand while the logs arise from the
rest of the expansion. Thus by concentrating on the principal parts we were
able to determine the structure of the algebraic part without the possibility of
interference from the log terms.

Corollary 15 The derivative of the transcendental part of the
∫
R(x)y dx is

of the form yB(x) where B(x) is a rational function in x.

Proof:If the algebraic part is yA(x), then its derivative is (P ′(x)A(x)/(nP (x))+
A′(x))y and thus still of the form y times a rational function in x. Subtracting
this from the integrand gives the desired result. 2

By theorem 5.1 and its corollary we have shown that if
∫
R(x)y dx is express-

ible in elementary functions, then it can be written as A(x)y+
∫
B(x)y dx, where

the second term has no algebraic part, i.e. integrates completely into logs. Now
we must investigate what the restrictions are on the rational functions A(x) and
B(x). All the poles of the algebraic part are derived from poles in the original
integrand with their order increased by one. The differential y dx has no finite
poles, so all the finite poles of R(x)y dx arise from poles of R(x). At each of
these poles we have that Ordp(A(x)y) = Ordp(R(x)ydx)+1. Since the order of
a product is the sum of the orders, this reduces to Ordp(A) = Ordp(Rdx) + 1.
Now let A(x) be S(x)/T (x) and R(x) be U(x)/V (x) where S, T, U, and V are
polynomials over k. If p is a root of V (x) of multiplicity r, it must be a root of
T (x) of multiplicity r − 1. Let

∏
V ii be a square free decomposition of V , i.e.

each Vi has no multiple roots and they are pairwise relatively prime. Then T (x)
can be expressed as a similar product with each of the exponents decreased by
one, i.e. T (x) =

∏
V i−1i .

Next we determine the denominator of B(x). The order of the differential
B(x)y dx is ≥ −1 everywhere on the Riemann surface. If p is not a zero of
P (x), then Ordp(ydx) = 0. Thus at an unramified place B(x) can have at most
a simple pole. If p has branch index r and is a zero of P (x) of multiplicity
m, then Ordp(ydx) = (m/n + 1)r − 1. Thus Ord(B(x)) ≥ −(m/n + 1)r. Let
B(x) be C(x)/D(x) where C and D are polynomials and let Multp(D(x)) be
the multiplicity of pas a root of D(x). Then Ordp(B(x)) = r(Multp(C(x)) −
Multp(D(x))). Since we are interested in the case where Multp(D(x)) 6= 0, we
can assume that Multp(C(x)) = 0. Thus we have −r(Multp(D(x))) ≥ −(m/n+
1)r or equivalently Multp(D(x)) ≤ 1 + m/n. But m¡n and the multiplicity is
always an integer, so again pcan only be a simple root of D(x). The differential
B(x)y dx can only have poles where the original integrand had poles, thus all
the zeros of D(x) were zeros of T (x). Since D(x) is square free we have that
D(x) =

∏
Vi(x).

At this point we have determined all of the algebraic part except its numer-
ator, S(x). Using the integral equation for the algebraic and transcendental

34

parts, we shall derive a system of linear equations which the coefficients of the
numerator polynomials, S(x) and C(x), must satisfy. We start with the equa-
tion: ∫

U(x)y

V (x)
dx =

S(x)y

T (x)
+

∫
C(x)y

D(x)
dx

Then we differentiate both sides yielding:

U(x)y

V (x)
=
S′(x)y

T (x)
− S(x)T ′(x)y

T (x)2
+
S(x)P ′(x)y/n

T (x)P (x)
+
C(x)y

D(x)

Now we see the power of theorem 5.1. The radical, y, can be divided out
from both sides of the equation leaving us with only rational functions. We also
multiply through by V (x) = T (x)D(x) and put the right side over a common
denominator. To simplify the derivation, we suppress the functional notation
for our polynomials.

U =
S′TPD − ST ′PD + STP ′D/n+ CT 2P

TP

Our next goal is to completely eliminate the denominator. We could do this
by merely multiplying out both sides, but notice that T (x) divides each term
on the right side except the second. We now examine more closely the structure
of T , D, and T ′.

T =

k∏
i=1

V i−1i

T ′ =

(
k∏
i=3

V i−2i

)(
k∑
i=1

(i− 1)V2 · · ·Vi−1V ′i Vi+1 · · ·Vk

)

D =

k∏
i=1

Vi

Now we see that we can divide T into T ′D. We define W (x) to be the
quotient.

W =
T ′D

T
=

k∑
i=1

(i− 1)V1V2 · · ·Vi−1V ′i Vi+1 · · ·Vk

Using this definition, the computation of W appears to require both a polyno-
mial multiplication and a polynomial division. But we can give another deriva-
tion of W which eliminates the multiplication in favor of a subtraction. Starting
with the definition V = TD we have:

35

V ′

T
=
T ′D

T
+D′

W =
T ′D

T
=
V ′

T
−D′

The other factor of the denominator, P (x), will not, in general, divide out
completely, but we can cancel the gcd(P (x), P ′(x)) from the numerator and
denominator. If we let E = P/ gcd(P, P ′) and F = P ′/ gcd(P, P ′) then we can
muliply both sides of the equation by E(x) yielding the following polynomial
equation:

U(x)E(x) = S′(x)E(x)D(x)+S(x) (F (x)D(x)/n− E(x)W (x))+C(x)T (x)E(x)

The only unknowns in this equation are S(x), S′(x), and C(x). If we let S(x)
and C(x) be polynomials with undetermined coefficients, then we get a system
of linear equations in the coefficients. All that remains is to get degree bounds
on S(x) and C(x). We do this by examining our original integral equation at a
place above ∞.

Ord∞((trans.part)′) = Ord∞(C(x)ydx/D(x)) ≥ −1

=⇒ deg(C) ≤ deg(D)− deg(P)/n− 1

Ord∞(Algebraicpart) ≥ min(Ord∞(integrand) + 1, 0)

=⇒ Ord∞(S(x)y/T (x)) ≥ min(Ord∞(U(x)ydx/V (x)) + 1, 0)

=⇒ deg(S) ≤ max(1 + deg(U)− deg(D),deg(T)− deg(P)/n)

These degree bounds complete the specification of our integration algorithm.
If the linear system is inconsistent, then the original problem was not integrable.
If we happen to know that our integrand has zero residue everywhere, then we
can set the polynomial D(x) to zero since there will be no log terms. In this case
our linear system is triangular and can be solved very easily. It is interesting to
note that our procedure for integrating algebraic functions reduces to Horowitz’s
algorithm for rational function integration if we set P (x) to one.

36

Chapter 6

Suggestions for Future
Work

The algorithms specified in chapters two and three provide a very complete nu-
cleus for extending current algebraic manipulation systems to handle algebraic
numbers and functions. The splitting field routines can be used to extend the
domain of applicability of many procedures, such as Laplace transforms and
definite integration as well as our application in chapter four to rational func-
tion integration. Moreover, algebraists and number theorists will find splitting
field calculations an aid in determining the structure of the Galois groups of
polynomials. Efficient procedures for computing these groups is a very difficult
research problem. Another associated problem, is the question of whether a
polynomial is solvable in radicals. Even when the structure of the Galois group
is known, e.g. cyclotomic polynomials, this is a non-trivial problem.

The rational function integration algorithms in chapter four could be ex-
tended to always give real solutions by converting complex logs to arctans and
arcsins. If the minimal polynomial for the result has odd degree, then the logs
are already real, otherwise we can adjoin a root of x2 + 1 to our splitting field
so we can recognize complex conjugates.

The algebraic integration algorithm would be more useful, if it could be
accompanied by a procedure for computing the log terms. This is a very difficult
problem, since the integrand only contains partial information for reconstructing
the logs. The author is currently investigating the possibility of finding efficient
alternatives to Risch’s proposed solution to this problem.

Finally, precise computing time analyses of all the algorithms presented here
would be very useful. Not only would this be a way of comparing our algorithms
with others, but also would provide a measure of the true costs of computing
with algebraic expressions, and thus their feasibility for specific computational
applications.

37

Bibliography

[1] Bliss, G.A., Algebraic Functions, American Mathematical Society Collo-
quium Publications XVI, 1933, reprinted Dover Pub. Inc., N.Y., 1966.

[2] Collins, G.E., “The Calculation of Multivariate Polynomial Resultants”,
JACM, vol. 18, no. 4, Oct. 1971, pp. 515-532.

[3] Eichler, M., Introduction to the Theory of Algebraic Numbers and Func-
tions, tr. George Striker, Academic Press, N.Y., 1966.

[4] Gaal, L., Classical Galois Theory with Examples, Markham, Chicago, 1971,
reprinted by Chelsea, New York.

[5] Hardy, G.H., The Integration of Functions of a Single Variable, Cambridge
U. Press, Cambridge, England, 1916.

[6] Herstein, I.N., Topics in Algebra, Blaisdell, 1964.

[7] Horowitz, E.,Algorithms for Symbolic Integration of Rational Functions,
Ph.D. Thesis, U. of Wisconsin, 1970.

[8] Knuth, D.E., The Art of Computer Programming, vol II, Addison-Wesley,
New York, 1971.

[9] Lang, S.,Algebra, Addison-Wesley,Reading, MA.

[10] Loos, R. G. K., “A Constructive Approach to Algebraic Numbers”, Com-
puter Science Dept., Stanford University, Palo Alto, Calif.

[11] MacDuffee, C.C., An Introduction to Abstract Algebra, Dover, New York,
1966.

[12] Mack, D., On Rational Integration, Computer Science Dept., Utah Univ.,
UCP-38, 1975.

[13] MACSYMA Reference Manual, Mathlab Group, Project MAC, M.I.T.,
Cambridge, Mass., November 1975.

38

[14] Manove, M., Bloom, S., and Engelman, C., “Rational functions in MATH-
LAB”, Proc. IFIP Conf. on Symbolic Manipulation Languages, Pisa, Italy,
1968.

[15] Moses, J., “Symbolic Integration: The Stormy Decade”, Communications
of the ACM, vol 14, no 8, pp. 548-560, 1971.

[16] Rauch, H.E. and Lebowitz, A., Elliptic Functions, Theta Functions, and
Riemann Surfaces, Williams and Wilkins Co., Baltimore Md., 1973.

[17] Risch, R.H., “The Problem of Integration in Finite Terms”, Trans. Amer.
Math. Soc., Vol. 139, pp. 167-189, 1969.

[18] Risch, R.H., “On the Integration of Elementary Functions which are built
up using Algebraic Operations”, Rep. SP-2801/002/00, System Develop-
ment Corp., Santa Monica, Calif., June 1968.

[19] Risch, R.H., “The Solution of the Problem of Integration in Finite Terms”,
Bull. Amer. Math. Soc., vol. 76, pp 605-608, 1970.

[20] Ritt, J.R., Integration in Finite Terms, Columbia U. Press, N.Y., 1948.

[21] Slagle, J., A heuristic program that solves symbolic integration problems in
freshman calculus, Ph.D. diss., MIT, May 1961.

[22] Tobey, R.G., Algorithms for Antidifferentiation of Rational Functions,
Ph.D. Thesis, Harvard, 1967.

[23] van der Waerden, B.L., Modern Algebra, vol 1, tr. Fred Blum, Frederick
Ungar Publishing Co., New York, 1953.

[24] Wang, P.S. and Rothschild, L.P., “Factoring Multivariate Polynomials Over
the Intgers,” Mathematics of Computation, vol 29, no. 131, pp 935-950,
1975.

[25] Wang, P.S., “Factoring Multivariate Polynomials over Algebraic Number
Fields”, Mathematics of Computation, vol. 30, no. 134, April 1976.

[26] Weyl, Hermann, Algebraic Theory of Numbers, Princeton University Press,
1940.

[27] Yun, D.Y.Y., The Hensel Lemma in Symbolic Manipulation, Ph.D. Thesis,
M.I.T., MAC TR-138, 1974.

[28] Zippel, R. E., “Univariate Power Series Expansions in Algebraic Manipu-
lation”, Proceedings of SYMSAC 76, ACM N.Y., 1976.

39

