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The basic form of the structure theorem given above has been extended in a2 number
of ways, see for instance: [4]. The essential result is not disturbed if two additional
modes of extension are admitted:

((in X) Dz =f
with the integral non-elementary over F;_,
({in A) z, satisfies p(z;) = 0,
where p is a polynomial vs‘fith coefficients in F,_;.

The Liouvillian extensions X cause no problems at all provided the non-elementary
nature of the integral of f; can be tested. The algebraic case 4 does not change the
statement of the structure theorem but does make some difference to the mechanics
of testing the conditions that it imposes. This means that in general it will not be
possible to apply the results when several X and A type extensions coexist.
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Computing in Algebraic Extensions

R. Loos, Karlsruhe

Abstract

The aim of this chapter is an introduction to elementary algorithms in algebraic extensions, mainly over
@ and, to some extent, over GF(p), We will talk about arithmetic in Q (e} and GF(p") in Section 1 and
some polynomial algorithms with coefficients from these domains in Section 2. Then, we will consider
the field X of all algebraic numbers over (0 and show constructively that X indeed is a field, that multiple
extensions can be replaced by single ones and that K is algebraically clesed, i.e. that zeros of algebraic
number polynomials will be clements of K (Section 4 —6). For this purposc we dovelop a simple resultant
calculus which reduees all operations on algebraic numbers to polynomizl arithmetic on long integers
together with some auxiliary arithmotic on rational intervals (Section 3}, Finally, we present soms
auxiliary algebraic number algorithms used in other chapters of this volume (Section 7). This chapter
does not include-any special algorithins of algebraic number theory. For an introduction and survey with
an extensive bibliography the reader is referred to Zimmer [15].

0. Introduction

The problem type of this chapter is the task of extending exact operations in a given
domain to new domains generated by adjunction of new elements. To solve this
problem by algebraic algorithms means to search for exact operations in the
extended domains. In most cases the representation of elements in the extension will
have a more algebraic part and a more numerical part. Since the full information is
always available, the general strategy is to keep the numerical precision as low as
possible — just high enough to avoid ambiguities. The process of extension is a
powerful method to generate new algebraic structures from given ones: in
particular, the process can beiterated leading to telescopic towers of extensions. We
hope that the restriction to @ and GF(p) will not hide the generality of this problem
solving strategy.

1. Algorithms in ((x) and GF(p*)
1.1 Representation

The elements of () (see the chapter on arithmetic) are represented as 0-or as pairs of
integers (g, b) with b > 0 and ged(a, &) = 1. The algebraic number « is defined as a
zero of a rational polynomial M ¢ Q[ x] of positive degree. We will normalize M to
be monic and squarefree so that we deal only with separable extensions. In the
following we will also assume A to be minimal in order to have a canonical
representation of a. From a mathematical point of view things are only slightly
more complicated if the minimality assumption is dropped. It would have the
computational advantage that only polynomial time algorithms are needed for
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arithmetic in X, the field of all algebraic numbers over 0. In practice, however,
complete factorization algorithms are fast enough that their exponential worst case
computing time can be ignored*. Also, the advantage of working with a defining
polynomial of minimal degree is computationally very attractive, since in many
applications the speed of arithmetic in () is the limiting factor. Also, practical
considerations suggest the use of a rational polynomial instead of the similar
primitive integral polynomial defining «. Otherwise, one would need a mixed
integral and rational polynomial arithmetic,

Elements f§ of (){x) are represented with rational coefficients 4, in the integral base
1,a,...,¢" " of the vector space Q(x) of dimension m, which is the degree of the
rmmmal polynomial M of o We use therefore the isomorphism tI;D(oc)
Qx]/(M(x)).

Algebraically, & has not to be distinguished from its conjugates. However, if o is
real, for example, the sign of o or its size may be of interest. For this reason we
indicate which root of M(x) is & by an isolating interval (¥, 5] such that r < « < #,
r,5eQ and a¢ @ or by the point interval [r,#] if & = r. Computationally, the
interval endpoints can be required to have only denominators of the form 2% in
order to simplify the ged-calculations greatly. Also, it is wise to let the degree of ¢ be
greater than 1 in order to avoid overhead, This can be easily achieved by real root
calculations (see the chapter on this topic) or by special algorithms for ratienal root
finding [11]. The algorithms to follow will also work for m = 1. Incase ais not real,
the isolating interval is an isolating rectangle in the complex plane with (binary)
rational endpoints.

Elements in GF(g), ¢ = p™, m = 1, p a rational prime, are m-dimensional vectors
over GF(p). In fact, the isomorphism GF(p") = GF(p)[x]/(M(x)} is used for the
arithmetic in GF(g). Here M(x) is any irreducible polynomial of degree m over
GF(p). Such defining polynomials can quickly be found by probabilistic methods
[3, 13]. For definiteness we assume M to be monic again.

1.2 Arithmetic

The operations of negation, addition and subtraction in Q(x) are operations in

€ x]; only after multiplication is a reduction mod M{(x) sometimes necessary. Let d
be the maximal seminorm of the representing polynomials of £, ve Q(x) and of
M(x). Then, the time for +, — is at most O(mL{d)*) and for multiplication
O(msL(d)z) Similarly, in GF(g) the times are O(mL(p)*) and O(m*L({p)*) at most;
in the most frequently implemented case, L{p) = 1 holds.

The inverse §71 is computed in @(x) by the extended Euclidean algorithm for the
representing polynomial B and M mod M.,

UB+ VM=1.
Therefore
/= B " 'mod M. .
Using the modular ged-algorithm this can be done in O(m® L{(d) -+ m* L(d)?) steps.
Here the first time the assumption A being minimal is crucial.

* Qee “Note added in proof”, p. 187.
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The same method applied in GF{p)[x] yields a maximal computing time of
O(m?®).

1.3 The Sign of a Real Algebraic Number

Given ¢ by the minimal polynomial M and its isolating interval I = {r, ¢] and given
furthermore fie Q(x) by its representing polynomial B, then the following
algorithm computes s = sign(f).

(1) [B rational.] If B = 0 then {5 « 0; return};
If deg B = 0 then {s « sign(ic(B)); return}.

(2) Compute B* and b such that (1/h)B* = B, B*e Z[x] and b @ — {0}.
Set B to the greatest squarefree divisor of B*.

(3) Obtain from anisolatinginterval 7* of ¢ containing no roots of B* by counting
the roots of B it I* and bisection.

repeat {n « # of roots of B in I*;
if # =0 then {s < sign{p) *s;gn(B*(t*)) return};
W (7* + 1¥)/2;
if MFEFM(w) < 0 then t* —welse r* < w}. B
The correctness of the algorithm depends on the fact that Bis reduced mod M and

M is minimal. Therefore, B and M are relatively prime and the desired interval 7#
for o exists. Then sign(f) = sign(B(«)) = sign{B(1*)).

How close can the roots ay,..., 0, of M and the roots vy, ...y, # <m, of Blie
together? We will see in Section 7 that

1
min |og; — yj|>dm,
15i€m
1=5j€n

where d is the maximal seminorm of M and B. Since max|e;| < 4, we have |I] < d at
the beginning and the number & of bisections required is such that d/2* < d~™, or
k = OmL{d)).

With the results of the chapter on root isolation the analysis can be completed.

2. Polynomial Algorithms

Having available the arithmetic in Q(x) and GF(g), it is straightforward to realize
polynomial arithmetic in Q(e)[x,...,x.] and GF(g)[x,...,x.]. The ged-
algorithm for univariate polynomials can easily be implemented by Euclid’s natural
remainder sequence, For efficiency reasons it is advisable to use the monic natural
p.r.s. Recently, A, K, Lenstra [107 has given a modular ged algorithm for monic
univariate polynomials in @{e)[x]. He suggests applying the EZGCD algorithm
(see chapter on polynomial remainder sequences in this volume) for (3(e)[x]. After
this extension, the modified Uspensky algorithm or any other real root isolation
algorithm can be extended to polynomials over ({x) for real algebraic numbers «.
Root finding over GF(q) can be done by interesting probabilistic methods
[13, 21.
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3. Resultant Caleulus

Let A =Y" ax'and B = 3" bx' be two polynomials over a commutative ring
R with identity. The Sylvester matrix of 4 and B is the m + » by m 4+ n matrix

y Oy e ~do
I G —1 e o
a Bip—1 R /1
M — " n 0
by bu-i by by
bn b.(j
bn bO

The upper part of M consists of # rows of elements of 4, the lower part of mrows of
clements of B, where all entries not shown are zero. The resultant of A and B is
defined by

res{A, B) = det(Ad).

Clearly the resultant is an element of R and we have

res(4, B) = (— 1" res(B, 4), 0

res{ad, B) = a"res(A4, B), aeR. _ 2)
- By definition

res(a, B) = a", aeR,

res(a, by =1, a,beR. 3)

With m indeterminates o;, 1 < 7 < m, we conslruct

m m
Auxy=[]x—a) =3 a™x.

i=1 i=0
Clearly, we will be interested mainly in the case where the roots of A4,(x) are
substituted for the indeterminates «;. But all resultant relations in this section will be
derived without the assumption of the existence of roots, thus with the weaker
assumption that the ¢, are indeterminates. The coefficients g, are related to the
indeterminates a; by

am =g, =1,

—a™ =S =yt
a;(.;nlz = Sp—o = U103 + oly + -+ Ol — 100y

(— I)magn) =8 =0yl """ Ky,

where the 5; are the elementary symmetrical polynomials,
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The coefficients a™ are linear in a,,. Let us define 4, _;(x) = 4,,(x)/(x — a,,).
Between the coefficients of 4,, and A4,,_, considerad as polynomials in the a’s the
relation

a?f—il)(ocls"'namfl) = agm}(ala'--aam—l’o): 1 S .E"SI‘H (4)

holds.
We are now ready to prove the

Lemma. Let B(x) be a pelyrnomial over an infegral domain R, deg(B} > 0, and let
m>1 be an integer. With m indeterminates o; let A, (x) =1L, (x — o) and
Am—- l(x) = Am(x)/(x * mm)- Then

res(A,, BY = B(a,)res(A,,— 1, B).

Proof. For 1 < i < m + n add to the last column of the Sylvester matrix M of 4,
and B off™"7% times the ith column. For the resulting matrix M, we have
det(M) = det(M) and the elements of the last column from top to bottom are
o A (), s O A (), € LBy, . -, 00 Bloty,). Since Ay(s,) = 0 we take the

factor B{e,) out of the last column resulting in & matrix M, with the last column
0,...,0,am .. .,a2 and

res{A,,, B) = det(M) = det(M) = Ba,,) det(M ). (5)

Let us consider both sides of {5) as polynomials in s,. Since M has »n rows of
coefficients of A(a,,), which are at most linear in ¢, the left-hand side is of degree n
or less in @,,, On the right-hand side the factor B(a,,) is already of degree n. Since R is
an integral domain det(M,) is of degree 0 in a,,. Taking det(44,) at o, = 0 the last
column becomes now 0,...,0,0,...,1 and the coefficients of 4,, are transformed
into the coefficients of 4, , according to (4). Expansion of det(M,)|,, o with
respect to the last column results in the m +»n — 1 by m +rn — 1 matrix with
det{M ) = det(M,) = res(4,,_ 1, B) which together with (2) proves the lemma. H

Theorem 1 immediately follows; which represents the resultant as symmetrical
polynomial in the indeterminates ¢; [14].

Theorem 1. Ler A(x) = a, ||/t (x — o) and B(x) = b,[[I-, (x — B} be poly-

nomials over an integral domain R with indeterminateso,,. .. ,0,and By,.. ., b, Then
res(4, B) = (— 1™ | | A(B)), (6
i=1 !
res(A, By = a" [ ] B(w), N
i=1
res(A, By = arp™ [T T] (o — 8- (8)
{=1j=1

Proof. The theorem holds for m = 0 or n = 0 with the convention [ |{_, f; = 1, for
[ < ¥. Eq. (6) follows from (7) by (1), also (8) follows from (7) immediately. We
prove (7) by induction on m. res(4,, B) = B(x), where 4;(x) = x — a,, follows
from the expansion of the determinant with respect to the last row. Now by (2),
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res(4, B) = aj, res(A,, B) and an inductive application of the Lemma results in
(. n

We state now some resultant relations in which the indeterminates «; do not occur.

Theorem 2. Let A(x) and B(x) be polynomials of positive degree over a commutative
ring R with identity. Then there exist polynomials S(x) and T(x) over R with
deg(S) < deg(B) and deg(T) < deg(A) such that

AS + BT = res(4, B). (9)

Theorem 2 is a special instance of (1) in the chapter on polynomial remainder
seq|Lences,

Theorem 3. Let A, By and B, be polynomials over an integral domain. Then
res(4, B B,) = res(A, By)res(A, B,). (10)
Proof. '

res(d, BiBy) = ap ™" [ (Bi(o)Ba()) = res(4, By)res(4, B,). W
: =1

Theorem 4. Let A, B, Q be polynomiais over an integral domain and let deg(A4) = m,
le(A) = a,,, deg(B) = n, deg(AQ + B) = L. Then

res(4, AQ + B) = ' "res(4, B). (ty
Proof. Again we use (7). |

res(4, B) = a,, [ | B(a) = a, [ (A()Q(e) + Bw)) = @' 'res(4,4Q -+ B). W
=1 i=1
Theorem 3 may be used to increase the efficiency of the resultant calculation
whenever a factorization of one of the polynomials is known, For example by (10)
res(4, x*B) = res(4, B) | | F_  res(4, x) and by (6) '

res(d, x) = (= 1)"4(0) = (- 11",
Therefore
res(A, x*B) = {— 1y gk res(A, B). (12)

Letdeg(4) — deg(B) = k = 0. Then Eq. (12) together with (1) shows also that there
is no loss of generality in the assumption that the polynomials of the resultant are of
a specific degree as we stated in the chapter on polynomial remainder sequences.

Theorem 4 suggests an alternative way to calculate the value of the resultant,
Moreover, it provides a proof of the next theorem, sometimes called the standard
theorem on resultants [9], which follows immediately from (8), without any
reference to the indeterminates «; and f; in (8).

Theorem 5. Let A and B be non-zero polynomials over an integral domain R. Then
res(A4, B) = 0 if and only if deg(ged(4, B)) > 0. :

Computing in Algcbraic Bxtensions 179

Proof. The theorem holds if A or B is constant. Assume deg(4) = deg(B) > 0.
Working over the quotient field Q of Rlet 4 = P, B= Py, P; = QP11 + Piya,
1 <i<k—2, k>3, be a polynomial remainder sequence, thus

deg(P1) = deg(P;) > -+ > deg(Py) 2 0, Py =0
Let n; = deg(P)and set A = P, ,, B = P;,, and Q0 = (;in (11). Using also (1) we
obtain

res(Py, Py ) = (— 1) Qe( Py ) "+ 2res(Piy 1, Piya), (13)
Qr
k=2
res(Py, Py) = res(Pyo g, Py) [ (— 1y tle(Pyy )72, (14

=i
where lc denotes the leading coefficient.

If deg(P;) = deglged(4, B)) = 0 then res(P,_y, Py) = le(P)" ! 7 0 by (3.
Otherwise we apply (11) again and since P,,; = 0 the resultant vanishes. W
In [5] efficient algorithms for resultant calculation are given which are finally based
on Eq. (14). They are superior to an evaluation of the determinant of the Sylvester
matrix. In fact, the maximum computing time to calculate the resu!tant of tw.o
r-variate polynomials of maximal degrec » and maximal seminorm d is
O@* "1 L(d) + n* L(d)).

4. Arithmetic in the Field K of All Algebraic Numbers over @}

First we consider arithmetical operations on algebraic numbers, The following
theorem gives the arithmetic in the field K of all algebraic numbers over (b:

Theorem 6 (Loos 1973). Let A(x) = a, | |7, (x — o) and B(x) =b, |1 (x = 8)
be polynomials of positive degree over an integral domain R with roots ay, . .., o, and
Bi,. .., B respectively. Then the polynomial

H{x) = (— 1)"1“9“:,5::1 n l_[ (x — )
i=1j=1

has the m - n roots, not necessarily distinct, such that

(a) 7(x) = res(4(x — y), B(y)), =+ B8y g=1
(b) r(x) = res(A(x + »), B(y), vi=wu— By g=1
{c) r(x) = res(y"A(x/y), B(y)), vi=oifp g=1

(d) r(x) = res(A(xy), B(Y)), vy = o/ BO)#0,

g = (= 1y"BO)"/b).
Proof. The proof is based on relation (6) in all four cases.
(a) res(A(x — »), B()) = (= 1™by [[ AGx — £))
i=1

= (= Uy™appy TT 1] G — (o = B7))-

i=1j=1¢
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(b) res(Alx + ), B = (— 1y [T AGx + )

i=1

= (= Dmapor [T 1] G — = B

i=1j=1

(© res(AGy), B = (= )b H BrACS)

— D)™a by ﬂ ﬂ (x — o).

i=1j=1

@ res(AG). BOY) = (— 1™br ] A8
i=1

= (= vy 1] T 6oty = )

n

)mn . 1:_[ bﬂ( H ) I:[ (‘x l'/ﬁj)

i ]

=(=1yab? [ ][] (x - oc/ﬁj) mit by £20. W
i=1j=1
Theorem 6 constructs explicit polynomials and we see that, except in case (d) the
polynomial #(x), to within a sign, is monic if 4 and B are. We have therefore

Corollary 1. All algebraic integers over R form a ring.

We denote the ring by R,,.

Corollary 2. All algebraic numbers over R form a field. -

We denote the field by K, where ( is the quotient field of R.

Since the degree of r(x) is m - n, the resultants are linear in the particular case the
given polynomials are. We conclude that the rational numbers over R form a
subfield  of K and that R forms a subring of R,,. We convince ourselves that R, is
an integral domain by considering Theorem 6, case (c) with A(0) =0,
r(0) = res(y"A4(0), B(»)). By (1), (2), (3) and (12), we find r(0) = A(0)"s™. Since R
has no zero divisors the same holds for R.

Theorem 6 is the base of Algorithm 1. Obviously, it is sufficient to consider only
addition and multiplication of algebraic numbers. For if the number « is defined by
the polynomial A(x), then the polynomial A(— x) defines — a and x"A(1/x),
m = deg(A), defines 1/x if « # 0.

Algorithm 1 (Algebraic number arithmetic).

Inpui: Let R be an Archimedian ordered integral domain. o, § are algebraic
numbers Fepresented by two isolating intervals 7, J having endpoints in @ and by
two defining polynomials 4 and B of positive degree over R.
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Ouiput: An isolating interval K and a defining primitive squarefree polynomial
C(x) representing y = o + f§ (or y = o+ f for multiplication).

(1) [Resuitant]

r(x) = res(A(x — p), B()))
(r(x) = res(p™A(x/y), B(») for multiplication).

(2) [Squarefree factorization] #(x) = Dy(x)Dy(x)* -+ Dy(x)/.

(3) [Rootisolation] Generateisolating intervals or rectangles £y, ..., Jig .-+, 1y,
such that every root of D, is contained in exactly one I;; and 7;; I,d =@ 1<
k<f,1<j<g, 1 €I1<g, G5 # & D).

(4) [Interval arithmetic] Set K =1I-+J (I»J for multiplication) using exact
interval arithmetic over Q.

(5) [Refinement] If there is more than one [;; such that K~ I,; # 0, bisect [ and J
and go back to step (4). Otherwise, return K and C(x) = Dy(x). M

Note that the computing time of the algotithm is a polynomial function of the
degrees and seminorms of & and f. In practical implementation it may be preferable
to replace in step 2 the squarefree factorization by a complete factorization, which
would give the algorithm an exponential maximum computing time.*

The effectivencss of siep (3) depends essentially on a non-algebraic property of the
underlying ring R, its Archimedean order, A ring is Archimedean ordered if there
exists for every element 4 a natural number (i.c. a multiple of the identity of the
ring) A such that N — 4 > 0. Let us for example take the non-Archimedean
ordered ring of polynomials over the rationals, [ x], where an element is called
positive if the leading coefficient is positive. Thus the element x is greater than any
ratiohal number and there is no assurance that an interval or rectangle containing x
can be made arbitrarily small by bisection. It is still possible to count the zeros in
intervals over non-Archimedean rings by Sturm’s theorem, bul root isolation
requires Archimedean order.

The loop in step (4) and step (5) is only executed a finite number of times, since by
Theorem 6 exactly one isolating interval contains the sum « + § (or the product
a+ f) and bisection decreases the length of the interval K, computed by exact
interval arithmetic, under any bound. Therefore, the input assumption of the
Archimedean order enforces the termination of the algorithm.

The proof of the theorem is based on the relation (6) which in turn follows
immediately from Lemma 1. We will show, using the equivalent relation (7), how
similar constructions of defining polynomials for algebraic numbers can be
established. If  is defined by A, we consider the norm N, = res,(4(¢), *) as a
polynomial operator with indeterminate «. In-order to compute any function g{«)
composed finally by ring operations on o only, we have to apply the operator N, to
x = glo) vielding

Nt — g6) = resa(A(@), x — g(o)) =, [ ] (x — glow)

i=1
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which shows that N,(x — g()) is a polynomial having g(«) as root. By iteration, the
method can be extended to any pelynomial function of several algebraic numbers.
Let «, § be defined by A and B respectively. In order to compute, say
Sl ) = o 4 3, we form

No(Ng(x — f(o, B))) = res,(A(a}, resg(B(f), x — (x + B)Y)
= 1e8, (A(a), b, ﬁ (x — (a0 + ﬁj)))

=aby T 1] 0~ + )
i=1j=1

which is up to a sign the defining polynomial of Theorem 6, (). In fact, the method
can still be further generalized. All that is required is that the relation x = f(x, f)
may be transformed into a polynomial relation, say F(x,«, ). The following
theorem gives an application. Let us consider fractional powers of algebraic
numbers. Since the reciprocal of an algebraic number can be computed trivially we
restrict ourselves to positive exponents.

Theorem 7 (Fractional powers of algebraic numbers). Let 4 be a polynomial of
positive degree m over an integral domain R with roois ay, . .., o,. Let p, q be positive
integers. Then

r(x) = res(A(y), x* - »*)
has the roots of'%, i=1,...,m.

Proof.

x)=al [[(x"— o). W
i=1
We can base on Theorem 7 an algorithm for the computation of fractional powers
of algebraic numbers, which would be quite similar to Algorithm 1.

Another application of our algebraic number calculus allows a transformation of
the algebraic number representation in Q(x) as a polynomial # = B(a) to a defining
polynomial for §. We get N,(x — B(«)) as defining polynomial for 8.

~Theorem 8. Let o be an algebraic number over R and A its defining polynomial of

degree m > 0. Let § = Y "2 bio' = B(w}, where b;e Q, deg(B) = n < m. Then f is
algebraic over R and a root of

r(x) = res(x — B(y), A(y)).
If o is an algebraic integer then so is §, provided b;e R.
Proof. By Theorem 1, Eq. (6), r(x) = (— 1y [, (x — B(z)). M

Corollary 3. If' 4 of Theorem 8 is the minimal polynomial of o then B is uniquely
determined.

Proof. Suppose f§ = B*(«), deg(B*) < m and B* # B. Blo) — B¥() =~ f = 0.

Compulting in Algebraic Extensjons 183

This is a polynomial, not identically vanishing, of degree < m, a contradiction to
the minimal property deg(4) =m. A

Theorem 8 can be used to compute the sign of a real algebraic number differently
from the approach in Section 1, Given f = B(at), we construct #(x) from the theorem
and compute f; = B(Z,) by interval arithmetic such that 7, is isolating with respect
to r(x). The position of I, in relation to 0 gives the sign of §. The position in relation
to 7, made disjoint from I, gives an algorithm for real algebraic number
comparison.

Historical Note. The resultant res,(4{((x — »)/2), A((x + y)/2)) was considered by
Houscholder in [8] and stimulated our interest in resultants.

A special case of Theorem 6 is the resultant res,(A(x + »), A())), a polynomial
having the roots »; — ¢;. The task of obtaining lower bounds on min, ; ¢, — ;| is
reduced by it to the problem of a lower bound for the roots of r(x)/x™. By this
approach Collins [6] improved Cauchy’s [4] lower bound for the minimum root
separation.

5. Constroeting Primitive Elements

The representation f = B(x) allows the construction of extensions of R and Q as
shown by the next two theorems.

Theorem 9. et o be an algebraic integer over R and A ils defining polynomial of
degree m>1. Then the set of all algebraic numbers represented by
B =Yg bo' = Bla), where b;e R, forms a ring of algebraic integers.

We call the ring a simple extension of R and denote it by R[«].

Proof, Since C{x) = O(x)A(x) + B(x), where B = 0 or deg(B) < m, and A(z) = 0
we have B(a)} = C{a). Hence, there is an isomorphism between R[«] and
R[x]/(A(x)), the ring of residue classes of 4. W :

Theorem 10, Let o be an algebraic number over a field Q and A its defining polynomial
of degree m>0. Then the set of all algebraic numbers represented by
B =115 bt = B(w), where be Q, forms a field.

We call the field a simple algebraic extension of Q and denote it by Q(x).

Proof. We have to show that every non-zero element f§ of Q{x) has a multiplicative
inverse. First, assume deg(gcd(A4(x), B(x))) =0. By Theorem 35, res(4, B) # 0.
Theorem 2 gives, for x = o, B{a)T(e) = res(A, B with deg{T) < m. Therefore,
T(e)/res(4, B) is the inverse of B(x). Now, let C(x) = ged{4, B), deg(C) > 0, and
A = CA*. Clearly, C(a) # 0, otherwise fi = B(a) =0. Therefore, A*(x)=0.
Replace 4 by A* and appiy the first argument of the proof, observing that
deg(ged(4*, By =0. A

Extensions Q{a) are called separable, if the defining polynomial for « is squarefree.

Clearly, R < R[a] = R,,. Since R_, was shown to be an integral domain the same
holds for R[a]. Also @ = Q(«) = K. All previous results remain valid with R[«] and
Q(x) in place of R and @ respectively. In particular R[«][ 8] is a ring and Q{a)(5) a
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tield again. We call Q(oc)(ﬁ) O(o, /) a double extension of (. Of central
importance is

Theorem 11. Every separable multiple extension is a simple extension.
We give the proof constructively by an algorithm:
Algorithm 2 (SIMPLE),

Inputs: A(x)and B(x}, two primitive squarefree polynomials of positive degree over
R, an Archimedean ordered integral domain, and J two isolating intervals over Q
such that « is represented by 7 and 4 and § by J and B.

Qutputs: An isolating interval K, a defining primitive squarefree polynomial Cy(x)
over R, representing v, and two polynomials over ¢}, C(x) and C,(x), such that

a=Ci(y), = G

1) [Resultant] #(x, ) = res(A(x — 3, B(})).
[Here, by (6), r(x, £) has root y;; = a; + 1,.]

(2) [Squarefree] Compute the smallest positive integer ¢, such that
deg(ged(r(x, 1), r'(x, 1)) = 0. Set Co(x) = r(x,1,).
[This implies that all v,;, 1 < /< m, 1 <j < n, are different, so by (1)

o — Oy, # t(B; — B)

for all pairs (i, /) and (k, H) with { # k and j # /. Since there are only finitely many
pairs but infinitely many positive integers, a ¢, can always be found.]

(3} [Interval arithmetic] By repeated bisection of I and J construct X such that
K =1+ t; Jand Kis anisolating interval for Cy(x). [Obviously Q(y) = Q(x, §)
for y.=y:1.]

{4) [ged] Using arithmetic in Q(y) compute B*(x) = ged(A(y — ¢,x), B(x)). [By the
construction f;is a root of B*(x) and there is only one such § according to (2).
Therefore deg(B*) = 1 and B*(x) = x - f, where B* is monic by convention.]

(5) [Exit] Set Cy(x) = — trailing coefficient of B¥*(x), Ci(x) = x — ; Co(x). [We
obtain f=C(¥)and a = — 1, C(¥).] M

We have used a modification of Theorem 6 (a) in step (1). Similarly, (b) —(d) of
Theorem 6 may be used for constructing primitive elements y. The given algorithm
occurs under the name SIMPLE in Collin’s quantifier elimination algorithm (see
the chapter of this name in this volume). As algorithm 1, this algorithm has also
polynomial computing time. If n is the maximal degree of « and f and d is its
maximal seminorm then the seminorm of Cis O(d>"). Empirically, it furns out that
the most expensive operation of SIMPLE is the division in step (4) to make B*
monic; up to 80% of the total time can be saved if @ and fneed not to be represented
in Q(y). Note that the degree of y isin general n?, which indicates the computational
limitations of this approach.
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6. The Algorithm NORMAL

A last application of the algebraic number calculus allows to represent roots of
algebraic number polynomials as roots of integral polynomials. It gives a
constructive proof that K is algebraically closed.

Using Theorem 11 we can show that the roots of a polynomial w1th algebraic
number coefficients are algebraic numbers. Let B¥(x) = }'}_ o Bx! be such a
polynomial. First we compute Q) = Q(Bo, . . ., f) and express fi; = Bj{«), i.e. by
polynomials over ¢} according to the constructmn of the last proof. By the next
theorem we obtain a construction for a polynomial #(x) over R having among its
roots the roots of B*(x).

Theorem 12. Let A(y) = ayt = an | |iiy (v — w) be a primitive squarefree
polynomial over an mtegml domam R.

Let B(y,x)=3"_ o B{()x! be a bivariate polynomial over R such that

deg(gcd(A(y) B(y))) = 0. Let k = deg(B(y, x)) and r(x) = res(A(y), B(y, x)). Then
r(x) = @ []r, Balo} [15=, (x — Byy), where the By; are defined by

Ban®) — Buon) [ (v — B 1<i<m.

j=1

Proof. By Theorem 1 (7),
) = ﬁ Ba ) = & 1 B.@) H B ®

Corollary 4. The roots of a polynomial with a[gebram number coefficients are
algebraic numbers.

The algorithm NORMAL that occurs with SIMPLE in Collins’ quantifier
elimination algorithm is based on this theorem.

Algorithm 3 (NORMAL),

Input: A polynomial B*(x) of degree n over Q(fq, . . ., fi,), where the f§; are given by
defining primitive squarefree polynomials Bf(x) over R, an integral Archimedean
ordered domain, and isolating intervals f(f;), B < i< n.

Output: A polynomial C(x) over R having among its roots the roots of 8*(x). By an
obvious modification, isolating intervals of B*(x) over Q may also be computed.

(1) [O() = O(Bos - -, Bay] By répeated application of Algorithm 2 computs a
primitive squarefree polynomial A having the root « such that
0(a) = Q(f, . . ., B,) and rational polynomials B,(y) such ﬁhat B; = Bj(e) and
deg(B)) <m = deg(A)

(2) Compute de R such that B; = a’BjeR[x] 0 < j < n, and set
B(y,x) = 27— o By, S

(3) [ged] Set D(y) = ged(A(y), B(y)). Here deg(D) < deg(B,) < m.

(4) [Reduction?] If deg(D) > 0, go to step (6).

C A
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(5) Set C(x) = res(A(y), B(y, x)) and exit, By the preceeding Theorem 12 C(x) # 0
and every root of B* is a root of C(x).

(6) [Reduce] Set A = 4/D. Now A(«) = 0, since B,(«) # 0 and hence D(«) # 0. Set
B;=bymod 4, for 0 < /< n Compute de R such that B; = dB;e R[x], for
0 <j<n Now deg(ged(4, B,)) = 0 since 4 is squarefree. Go back to siep
(5). W ' :

Again, the computing time is a pelynomial function.

7. Some Applications

Suppose we know that two polynomials are relatively prime. How close can the
roots ¢; and #; be? We look for min|x; — f,|. Using our approach, we construct a
polynomial C(x) having all «; — §; as roots and determine the radius of the circle
around the origin, in which ne roots of C(x) are located, C is given by
res,(A(x + »), B())) according to Theorem 6 (b) and has seminorm < d2" by
Hadamard’s inequality (sec the chapter on useful bounds). Then we get
minle; — ;| > d 2. We need this result to prove termination of algorithms
isolating the roots of two relatively prime polynomials “away™ from each other.

Next, suppose that a polynomial A(x) is squarefree. How small can 4(f,) be at ahy
zero f3; of the derivative? The answer is given by res,(A'(f), x — A(f)) = C(x). The
lower root bound of C'is of the same order as the previous one.

If we do not require A to be squarefree, then the polynomial C(x)is of order & > 0,
where k gives the degree of ged(4, A", Since ¢y, ¢1, . . ., ¢, . can be expressed by the
coefficients of A, the fact that degged(4,4) =k is expressible as ¢, =
0,...,¢,—1 = 0in the coefficients of 4 only. This is an alternative to Collins’ psc-
theorem used for quantifier elimination.

The last two observations give termination bounds in the Collins-Loos real root
isolation algorithm {see the chapter on root isolation in this volume).

Let A(x) and B(x) be integral polynomials of the form 4 = 4,4, and B= B, B,
such that there exists k e Q with B,{x) = 4,(x — k), which we call shifted factors. In
order to detect such shifted factors we use again Theorem 6 (b) and compute
Cx) = resy(A(x + 1), B(Y) = €ovm|];(x — (@ — ). If 4 and B have a shifted
factor & then there is some root pair «;, §; with «; — §; = & which can be detected as
rational root of the polynomial C(x). This idea is used in step 3 of Gosper’s
algorithm (see the chapter on summation). In a similar manner “rotated’ factors
Bi(x) = 4,(x - k) can be detected using part (¢) of Theorem 6.

With a rational root finder all pairs o; + o; = ¢;; and a;0; = ;; can be formed from
the resultants (a) and (c) of Theorem 6 with B = A. Then, one can form trial divisors
x? — ¢;x + dy; for finding quadratic factors of A [11].

The construction of powers of algebraic numbers used in root-squaring algorithms
can be expressed by Theorem 7. Hence, the polynomials entering Graeffe’s method
are resultants.
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Note added in proof: Tn the meantime A. K. Lenstra, H. W. Lenstra and L. Lovacs discovered a
palynomial time bounded factorization algorithm for integral polynomials. Therefore, there is no
computationa! objection against the use of minimal polynomials anymore.
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