Evaluation-interpolation, its elegance and utility notwithstanding, does suffer
from one notable disadvantage: it is largely unable to exploit sparseness (= many
zero-coefficient terms) in polynomial data. For example consider the multiplication
of 3x'% + 2 by 4x%” + 5x?°, Only four coefficient multiplications are required using
the obvious direct method, whereas evaluation-interpolation would require many
more (in the thousands). It is precisely this phenomenon that makes ‘“direct”
methods—methods that operate on polynomial data using classical algorithms—an
attractive alternative to evaluation-interpolation. The use of specially tailored Gaus-
sian elimination schemes for integer and polynomial systems of linear equations i§
the topic of E. H. Bareiss [Math. Comp. 22 (1968), 565-578; J. Inst. Math. Applic.
10 (1972), 68—104] and J. D. Lipson [in R. G. Tobey (ed.), Proc. 1968 Summer
Institute on Symbolic Mathematical Computation, IBM Programming Laboratory
Report FSC69-0312, June 1969, 235-303]. The issue of sparseness in the develop-
ment and analysis of polynomial matrix algorithms (determinant calculation, linear
equations solution) is the central topic of E. Horowitz and S. Sahni, J. ACM 22
(1975), 38—50; W. M. Gentleman and S. C. Johnson, ACM Trans. Math. Software 2
(1976), 232-241; M. L. Griss, ACM Trans. Math. Software 2 (1976), 31-49.

For one efficient such algorithm C(A4,F), see Danilevsky’s Method in V. N,
Fadeeva, Computational Methods of Linear Algebra (New York: Dover, 1959),
Section 24. This method computes the characteristic polynomial of an n X n matrix
A in O(n?) field operations.

O

PTER

X

THE FAST FOURIER TRANSFORM:
ITS ROLE IN COMPUTER ALGEBRA

An algorithm may be appreciated on a number of m_.,ocnamu on Sogo_om_ow_
grounds because it efficiently solves an important practical problem, on aesthetic
grounds because it is elegant, or even on dramatic maocn.am because it opens up
new and unexpected areas of application. The fast ms::mw transform (popularly
referred to as the “FFT”), perhaps because it is strong in all of Em.\ma aov.w_.?
ments, has emerged as one of the “super” w_molg of OoEmEaa Science since
its discovery in the mid sixties. This oObo_caEm o_.umvan is ao<on.o& to this
remarkable algorithm and some of its major applications to algebraic comput-
ing.

1. WHAT IS THE FAST FOURIER TRANSFORM?

Recall our application of evaluation-interpolation to vo_v&onmm_ B:Ev:;omsou..“
to compute the product c¢(x) over F[x] of a(x) = Z]_ea;x' and b(x) = M.....o@._.x ,
evaluation-interpolation requires that we choose (at _owmc 2 =2n+ 1 distinct
points &, € F and then proceeds according to the mapping diagram below.

John D. Lipson, Elements of Algebra and Algebraic Computing. ISBN 0-201-04115-4.

Copyright © 1981 by Addison-Wesley Publishing Company, Inc., >&<E.~o& woww Program. All
rights reserved. No part of this publication may be _.a?.oacooa,. stored in a 3.52& wv.mﬂ.onr or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the publisher.

293

(polynomial multiplication)

(a(x),b(x)) ~e(x) = U(x)
(multipoint (interpolation:
evaluation) deg U(x) < N; U(a,) = Cy)
:_»Hn?:ﬂv, w»HvAQ»vvw»_ (pointwise {Ce=A4,By),
multiplication)

As we discovered, this application was far from successful. Although
evaluation-interpolation yields an O(n?) algorithm, the constant is considerably
larger than that of the school method. But we did lay open the tantalizing
prospect of performing the evaluation and interpolation steps proper in time
< O(n?), which would then yield a superior algorithm (at least asymptotically—
for large n). This is the departure point for this chapter.

How can such a speedup be achieved? The key idea, the one that lies at the
heart of the FFT, is simply this: the evaluation-interpolation points (the a,’s),
though they must be distinct, are otherwise completely arbitrary. So let us choose
them wisely.

1.1 The Forward Transform: Fast Multipoint Evaluation

L]
The forward transform of evaluation-interpolation is multipoint pelynomial

evaluation over a field F. We shall focus our attention on the following

Problem Py, of “size” N: Evaluate a polynomial a(x) =3 'a,x’
of “length” N (length = degree + 1) at each of a set E, = {a,)Y,

of N distinct points «, € F (the “evaluation points”).

The solution to P, is the collection of polynomial values 4, =a(a,) (k=
0,...,N—1).

To analyze and compare algorithms for solving P,,, we shall count M(N),
the required number of multiplications over F. (M(N)is a valid figure of merit,
since multiplications dominate the arithmetic work of the algorithms to be
discussed.)

To show off our more inspired solutions to P,, we record the pedestrian

Proposition 1. For arbitrary evaluation points, P, can be solved in
M(N)=N?+ O(N).

Proof. Compute each a(eoy) (k=0,...,N — 1) by Horner’s rule.]

The idea now is to impose some structure on the evaluation points that can
be exploited to speedup the solution to Py.

Definition. Let N =2n be even. A collection of N distinct points Ejy =
{a ¥ =4 is said to have Property S if Ey can be written as

n—1

Ey={*a};-o
(‘S’ thus stands for symmetry of sign; if B is in Ejy, then so is —f.)

Let E, have Property S. Then, since (—B)* = (+B)* we see Eﬁ only N/2
of the squares of points in E, are distinct. This little observation is the key to

speeding up multipoint evaluation.

Proposition 2. Let N be even, N = 2n, and let Ey = {a, }, have property S.
Then P, can be solved in M(N)=N?/2+ O(N).

Proof. We can decompose a(x) = =N o'a;x" according to
(%) a(x)=b(y) + xc(y)
n—1) n—1 :
where y=x2, b(y)=3 ayy’, c(¥y)=2 a1y
i=0 i=0

[Example (N = 4):
a(x) = ay+ a;x + a,x* + azx’
=(ay+a,y)+x(a, +a,y) wherey=x2]

b(y) c(»)
Thus 4, = a(ay), A_, = a(—a,;) can be evaluated according to

Algorithm 1 (Binary splitting scheme).
Step 1. Compute 8, =aZ (k=0,...,n—1).
Step 2. With b(y),c(y) given by (*), use Horner’s rule to compute
B =b(Bs),
C.=c(B) (k=0,...,n—1).
Step 3. Return 4, =B, +o,C,,
A_,=B;—a,C, (k=0,...,n—1).

Steps 1 and 3 require O(n) multiplications while step 2 requires the
evaluation of two polynomials at n points, which using Horner’s rule requires
2n? + O(n) multiplications (Proposition 1). Thus the overall number of multipli-
cations is M(2n) = 2n*+ O(n), or M(N)=N?/2+ O(N). [

Thus, by exploiting the small amount of structure of points Ey enjoying
Property S, we have achieved a speedup of a factor of two over the solution of
Proposition 1—a solid improvement even though the asymptotic character of
the solution to our size N multipoint evaluation problem still remains O(N 4

We note that the above algorithm has essentially solved the original
problem Py of size N in terms of two problems P, /2 Of half the size. Since the
evaluation points for these two subproblems are not special (in particular they
will not in general have Property S), Algorithm 1 must be content to use the
Horner’s rule solution of Proposition 1 to solve these two subproblems. Now
wouldn’t it be nice (we muse) if we could speed up the solution to these two
subproblems as well? To this end we make the leap to a very special class of
evaluation points.

In field theory, we refer to a field element w that has multiplicative order N
as a primitive Nth root of unity: an Nth root of unity in that w satisfies
x¥—1=0; a primitive Nth root of unity in that satisfies x* — 1 =0 for no
positive k < N. (Thus a primitive element in a field of order (Section VI2)isa
primitive (7 — 1)st root of unity.)

Example 1. In C, e*"/" is a primitive Nth root of unity (Example 3 of Section
N1.3.4). In Z,5, 8 is a primitive 4-th root of unity. (Check: 82=12, 83 =5,
84=1). O

We refer to the N distinct integral powers of a primitive Nth root of unity ,
[wl={1,w,...,0" "'},

as a set of N Fourier points. These are the points that we shall choose for our
multipoint evaluation problem. (We shall shortly elucidate their connection with
Fourier transforms.) Let us call a multipoint evaluation problem P,, at N Fourier
points a Fourier evaluation problem F)y, (of size N).

Lemma 1. Let N=2n, w a primitive Nth root of unity. Then the N
Fourier points [w] have Property S, with w**" = — * (k=0,...,n—1).

Proof. First we note that
A8»+=v~ = AS»vnsz = AS»VN,

using only that « is an Nth root of unity. But x>=y2 in a field implies that
x = *y. Since w**" = ¥ (otherwise we would have " = 1 contradicting the fact
that w is a primitive Nth root of unity), it must be the case that w**" = —w*, as
required. []

Consequence. We can apply the binary splitting scheme of Algorithm 1 to
solve a Fourier evaluation problem F},.

Now for the crucial additional property of Fourier points that will let us
speed up the solution to the subproblems arising in step 2 of Algorithm 1.

Lemma 2. Let N=2n, & a primitive Nth root of unity. Then «? is a
primitive (N /2)th root of unity.

Proof. Since (w?)"=w" =1, @’ is an nth root of unity. But (w?)/ % 1 for
0 <j < n, otherwise we would have w* = 1 with 0 < k < 2n = N in contradiction
to w being a primitive Nth root of unity. Thus «? is a primitive nth root of unity,
as required. []

Consequence. Provided n=N/2 is even, we can apply the binary splitting
scheme of Algorithm 1 not only to solve a given Fourier evaluation problem F),
at N Fourier points [w] but also to solve the two subproblems P, arising in step 2 of
Algorithm 1. For these two subproblems each involve the multipoint evaluation
of a length n polynomial at the 7 points {1,w?, ..., AGNVTJ. By Lemma 2, Eo.mn
points are a set [w?] of n Fourier points. Hence the two subproblems P, are in
fact Fourier evaluation problems F,, so that Lemma 1 and its consequence
applies to these subproblems.

Moreover, the same argument applies to the sub-subproblems that arise,
and so on, inductively, for as long as the number of evaluation points remains
even. Thus, if we choose N = 2™, then the binary splitting scheme can be carried
out (through m levels of recursion) until a trivial problem is reached: the
evaluation of a polynomial of length one at one point.

These considerations lead to the abstract recursive FFT procedure of
Algorithm 2 for evaluating a polynomial of length N at N Fourier points. By
“abstract” we mean that the procedure is operational over any field having the
requisite N =2"th root of unity.

Algorithm 2 (FFT—fast Fourier transform).

Input arguments.
integer N = 2", 1
polynomial a(x) = =N 'a,x’,
primitive Nth root of unity w.

Output argument.
array A = (A,,...,Ay_,) where 4, = a(«").

Auxiliary data.
integer n=N/2, ! ;
polynomials b(x) = 2720b,x", c(x) = ZI_gc;x’,
arrays B=(B,,...,B,_;), C=(Cp,...,C,_)).

Procedure FFT is displayed in Fig. 1. (Of course the procedure assumes a
data type corresponding to the field over which it is to operate.)

The following correctness proof for procedure FFT makes explicit the
intuitive inductive argument that we used in its derivation.

procedure FFT(N, a(x), w, A);
ifN=1
then
{Basis.} A,:=a,
else
begin
{Binary split.}
n=N/2;
b(x) =27 ga,x";
(X = By ok
{Recursive calls.}
FFT(n, b(x), w* B);
FFT(n, c¢(x), w?, C);

{Combine.}
for k=0 until » — 1 do
begin

A, =B+ "X C;
Aon=B,— "X C,
end
end

Fig. 1 FFT procedure.

Theorem 3 (Procedure FFT works). If
N=2",
a(x)=3""gda,x' € F[x]is a polynomial of length N,
w is a primitive Nth root of unity over F,

then FFT(N, a(x), w, A) returns A4, = a(w*) for k=0,... N—1.

Proof. Let p(m) be the assertion of Theorem 3. Then the correctness proof of
FFT is tantamount to the proof of p(m) for all m €N.
Basis (m = 0). For this case, N = 1, FFT returns 4, = a, = a(«°), the latter
equality holding because a(x) is the constant polynomial a,. Thus p(0) holds.
Induction. Assume p(m) where m is an arbitrary natural number. We now
o.ma&:mw p(m+1). If N=2"*! then N> I, and the “binary split” step of FFT
gives n, b(x), c(x) such that n = N/2 and

(*) a(x) =b(x?) + xc(x?).

By _LQE.dm 2, &? is a primitive nth root of unity. Moreover b(x) and c(x)
are _uo_.vﬁonzm_m of length n=2". Hence by the induction hypothesis, the
“recursive calls” step of FFT returns

(% *) ﬁmﬂ b(w?**), C =c(w?) (k=0,...,n—1).

i

The “combine” step of FFT then yields, for k=0,...,n—1,

A, = B, + o*C,
= b((0*)?) + W*e((«*)?) by (* *)
=a(w¥) by (%),
Apsn= B~ & C,
= b(w?*) — wFe(w®*) by (* *)
= vQS»Ivnv + 8»+=«.Q8»+=v~v by Lemma 1
= a(**") by (*).

Thus FFT(N =2"*',a(x),w,A) returns A4, =a(v*) (k=0,....,N—1),
which establishes p(m + 1) and completes the proof by induction of the correct-
ness of procedure FFT.]

We now show that our FFT is indeed a fast Fourier transform.

Theorem 4. Procedure FFT requires
M(N)=(N/2)log, N
field multiplications to solve a Fourier evaluation problem Fj.

Proof. According to the “else” clause of procedure FFT, M(N) satisfies
M(N)=2M(N/2)+ N/2

(the “2M(N/2)” term due to the two recursive calls, the “N/2” term due to the
“combine” step), which for N = 2™ becomes

MQ2™)y=2MQ2™" ")+ 2" 1,
Iterating this relationship m times gives
M2™)=m2"" '+ M(1)2™.

But M(1) =0, in accordance with the “then” clause (basis) of FFT. Thus we
have M(2™)=m2™" !, or M(N)=(N/2)log, N as required.]

Take, for example, N = 1000. Then classical multipoint evaluation requires
10® multiplications, whereas the FFT requires only about 10* multiplications. In
more global terms, the FFT has the pleasing quasilinear property that doubling
the problem size roughly doubles the computation time (more precisely,
MQ@2N)/M(N)—2 for large N). This is in contrast with the classical O(N)
algorithm, which has the distressing property that doubling the problem size
quadruples the required computation time.

So our FFT procedure is indeed fast. The factor of two speedup of the
binary splitting scheme (Proposition 2 vs. Proposition 1) has been enjoyed at
every level of the FFT’s recursion, resulting in an asymptotic speedup from

300 THE FAST FOURIER TRANSFORM 1X.1.2

O(N?) to O(N log N'). This, then, is what the Jast Fourier transform is all about
(Note 1).

We now turn to the companion problem of interpolation with respect to
Fourier points.

1.2 The Inverse Transform: Fast Interpolation

Let ay,...,ay_,; be N points in a field F, to be used for evaluation and
interpolation. Our size N multipoint evaluation problem (with respect to these
points) is the problem of computing, for a given polynomial a(x) =S¥ la,x' €
F[x], the values b, =a(ay) (k=0,...,N—1). Our size N interpolation prob-
lem, on the other hand, is the inverse problem of computing, for given b, € F
(k=0,...,N—1), the coefficients of the (unique) interpolating polynomial
a(x) = 2/'a,x’ which satisfies b, = a(ay). In brief: with respect to the relation-
ship b, = a(a,) (k=0,...,N— 1), evaluation determines the b,’s from the a;’s,
interpolation determines the a;’s from the b,’s.

This inverse relationship between (multipoint) evaluation and interpolation
becomes especially transparent when examined in matrix terms. To this end we

introduce the N XN Vandermonde matrix W(ag,...,ay_,) associated with
Oy wre o5 Wppeny’
1« al R
1 o oo gl
Plags...,apy_)=
2 N—1
Ioay oy, - aN-1
Let a=(ay,...,ay_,), b=(by,...,by_,). The definition of matrix-vector

multiplication immediately gives
Proposition 1. For a(x) =3¥'a,x and V' = Wag,...,ay_,),
Va=b o b,=a(a,).

In Proposition 1, interpolation theory guarantees that if the a,’s are distinct
then the coefficients a; of a(x) can be uniquely determined from the b,’s, which
by Proposition 1 is to say that Va=b can be solved uniquely for a. But by
elementary matrix theory this means that V is nonsingular (invertible). Thus we

have shown that the Vandermonde matrix V(ag,...,ay_,) for distinct a.’s is
nonsingular, which allows us to embellish Proposition 1 to

Proposition 1. For a(x)=3¥{'a,x' and V= Wa,...,ay_)) (a)’s dis-
tinct),

Va=b o a=V"'b o b, =a(a,).

Example 1. In Z,, let ay =5, o, =2, a, =3, and let a(x) =2 + 6x + x2. Then

1IX.1.2 THE INVERSE TRANSFORM 301

with V' = V(5, 2, 3) we have

1 5 52=4|[2 1 a(5)
Va=|1 2 22=4(l6|=|4|=]a(2)].
1 3 32=2]|1 1 a(3)

And if by =1, b; =4, b, = 1, then the solution to Va=b is a, =2, a,=6a,=1
—the coefficients of a(x) satisfying a(a,) =b, (k=0,1,2).]

So, in the light of Proposition 1’ we conclude: :

(1) Multipoint evaluation (the forward transform) corresponds to a matrix
product of the form Va where V is a Vandermonde matrix. Thus the FFT can vn
regarded as a fast algorithm for computing ¥a when V is a Vandermonde matrix
V(l,w,...,0" ") associated with a set of N Fourier points—O(Nlog N) for
V(l,w,...,0" ") vs. O(N?) for an arbitrary Vandermonde matrix. i

(2) Interpolation (the inverse transform) corresponds to a matrix product
of the form ¥ ~'b where V is a Vandermonde matrix. Thus Newton’s Interpola-
tion Algorithm can be regarded as a fast algorithm for solving a system of :.:2:
equations Va=b for a= ¥ ~'b when V is a Vandermonde matrix Ammmo.o_mag
with any set of distinct points, not necessarily Fourier points)—O(N 2) in the
Vandermonde case versus O(N?>) for an arbitrary linear system.

But (2) is not what we are after (noteworthy though it might be). We ,S:.: a
faster than O(N?) interpolation algorithm, which exploits the case where V is a
Vandermonde matrix associated with Fourier points.

Notation. If w is a primitive Nth root of unity, then we write V([w]) for
ﬁ\Cvs,..:ezlv.

Theorem 2. Let w be a primitive Nth root of unity in a field F in which

N~'[=(N-1)""] exists. Then

V(w) ™' =N~V (o).
Proof. First, it is trivially shown (do it) that w™!, like w, is a primitive N H.r
root of unity. Thus V([w™']) denotes the (N XN) Vandermonde matrix
V(l,o™ ..., (@ H¥). If we show that
N 0
V{wDV([w™')=NI= ,

then we are done.
So let W= V([w])V([w™']). Then

N-1
wy= D ke % (0<ij<N).
ke ()

] TR rAST FUUHIER THANSFORM 1X.1.2

CASE 1. i=,. Then w,=3r_01=N.

h.&mm 2. . iskj, Then w;; = 3¥_(w')X, Since 0<|i—=j| <N, it follows that
w1, Eroj.smo we would have a contradiction to o(w) = N. Hence we can
apply the identity ¥~ \x* = (xV - 1) /(x — 1) (x # 1) to obtain

@1 (@) -

W, —~ —— =0.
/ o7 —1 w7 —1 =
Example 2. In Z,;, 8 is a primitive 4th root of unity, with 87! =5, Here we
have
1 1 1 1 1 1 1 1
vasp=|1 8 12 5 visn= |1 5 12 8
1 12 1 12 ©D 1 12 15 120
1 5 12 8 1 8 12 5
and
4 0 0 O
0 4 0 o0
w\ =
@VasD= g 5 9 9,
0 0 0 4

in accordance with Theorem 2. O

Finally, let us consider the “Fourier interpolation” problem of size N, that
of computing the (unique) interpolating polynomial a(x) =X 'a,x’ that satis-
fies a(w*) = b, for arbitrarily specified by (k=0,...,N—1), where [w] is a set
of N Fourier points.

Denote V([w]) by V and V([w™']) by V. The coefficients a, of a(x) are
then given by

a=V~p
=N"pp

Proposition 1’
Theorem 2.

Let ¢ = V'b. Since V'’ = (lw™ "] is a Vandermonde matrix, Proposition 1 tells us
that ¢, is the value of b(x)=3"'b,x" at x = (w™1*, which is to say that the
¢x’s can be computed by Fourier evaluation of b(x) at the N Fourier points
[@~"]. For this latter problem we have an efficient algorithm—the FFT. Thus
the problem of Fourier interpolation can be essentially solved by Fourier
evaluation in accordance with

Algorithm 1 (Fast Fourier interpolation—FFI).

Input.
integer N = 2™,
primitive Nth root of unity w,
sample values b = (b,, ... b).

Output. a(x) =3 la,x* where a(w*) = by (k=0,...,N—1).

IX.1.3 FEASIBILITY OF MOD p FFTs 303

The following procedure uses the FFT procedure of Algorithm 2, Section

1.1.
procedure FFI(N, b, w, a(x));

begin
L. b(x)=3N,'b,x";
2. FFT(N,b(x), 0™ !, ¢);
3. a(x) =3 Nl)x’
end]
Clearly the above Fourier interpolation algorithm operates in FFT time
O(Nlog N)—i.e,, it really is a fast Fourier interpolation algorithm as advertised.
This we record as the companion to Theorem 4 of Section 1.1.

Theorem 3. The solution to a Fourier interpolation problem of size N can
be computed in time O(NlogN) (assuming O(1) time for operations over
the underlying field).

Example 3. Let us use Algorithm 1 to compute the solution a(x) = S¥;'a,x’ to

the following N = 4 point Fourier interpolation problem over Z,, with respect to
the Fourier points [w = 8].

k o, = 8% b, =a(a,)
0 1 7
1 8 5
2 12 10
3 5 12

Line 1 of Algorithm 1 forms the polynomial b(x) =7 + 5x + 10x2 + 12x3.
Line 2 evaluates b(x) via the FFT at the Fourier points [@~!=5], returning
co=b(1)=8,¢c;,=b(5)=1, c,=5b(12)=0, ¢3=>b(8) =6. Line 3 then multiplies
these ¢;’s by 47! = 10, returning a(x) =2 + 10x + 8x° as the required interpolat-
ing polynomial. []

1.3 Feasibllity of mod p FFTs

To compute the solution of a Fourier evaluation-interpolation problem of size
N =2" over a field F, the FFT requires that F have a primitive Nth root of
unity w. Over the complex field (the field of traditional “analytic” applications
—see Note 1), this requirement can always be satisfied: for any N, e2™/V is a
primitive N'th root of unity in C. Over finite (modular) fields Z,, on the other
hand, the situation is not nearly so cut and dry, but as we intend to show, it is
still quite favorable: modp FFTs are indeed computationally feasible. In appli-
cations to algebraic computing we are interested in primes p near computer
wordsize, with a view to using the Chinese remainder and evaluation-
interpolation techniques of Chapter VIII. Thus we are interested in very large
primes, say on the order of 10°.

This section, then, is devoted to answering two questions in the affirmative:

. Do fields Z, exist (p very large) having primitive N =2"th roots of
unity (m in the 10-20 range, say)? Indeed, do such fields exist in abundance?

2. Given a field Z, having a primitive Nth root of unity, can we find it
efficiently (keeping in mind that Z, may have billions of elements)?

A key result towards answering both of these questions is

Theorem 1. Z, has a primitive Nth root of unity if and only if N|(p — 1).

Proof. By Lagrange’s Theorem, the order of a group element divides the order
of the group (as proved explicitly in Corollary 2 of Theorem 3, Section III.3.4).
Since Z; has order p — 1, we obtain the “only if” direction.

As for the “if” direction, let N|(p —1). Now Z, contains a primitive

P
element (Theorem 2 of Section VI.2.1), call it a. It is trivially verified (do it) that

B=alP=V/N
has order N in Z}, making 8 a primitive Nth root of unity. []

Thus to compute mod p FFTs of size N = 2™, we require primes p such that
2™|(p — 1), i.e., primes of the form p = 2° + 1 (e > m). We call a prime p of the
form

p=2k+1 (k odd)
a. Fourier prime having (binary) exponent e. Evidently any such prime can be
used to compute FFTs of size N =2" for m < e.

The assurance that Fourier primes exist in abundance rests on a result from
analytic number theory (Note 2):

Generalized Prime Number Theorem (Cf. the “ordinary” Prime Number
Theorem of Appendix 1 to Section VIIL.3). Let integers @ and b be
relatively prime. The number of primes < x in the arithmetic progression
ak+b (k=1,2,...) is approximately (and somewhat greater than)

(x/logx)/¢(a) (¢ = Euler’s phi function).
Consequence. The number of Fourier primes p =2’k + 1 < x is approximately
(*) (x/logx)/2/ 1.

This, then, is our assurance that Fourier primes exist in reasonable abun-
dance.

Example 1. Let us take x=2%' (corresponding to the wordsize of a certain
popular class of machines) and f=20 in (*). We conclude that there are
approximately 180 Fourier primes p = 2°k + 1 (k odd) with exponent e > f= 20.
Any such Fourier prime could be used to compute FFTs of size 2%° (very large
transforms indeed). []

Now for the second question that we posed: Can we efficiently determine
primitive Nth roots of unity in a very large finite field Z,?

-

In the proof of Theorem 1, we noted that if a is primitive in Z, then
B =a?~ YV is a primitive Nth root of unity. Even if the exponent (p — 1)/N is
very large (as it may well be), the powering of a can still be efficiently carried
out (in log exponent time) using the fast algorithm developed in Example 2 of
the Appendix to Chapter VIIL. So our problem of finding primitive Nth roots of
unity boils down to that of finding a primitive element in large finite fields Z,,.

What proportion of elements in Z, are primitive? (Are we looking for a
needle in a haystack?) From finite field theory (Theorem 3 of Section VI.2.1) the
number of primitive elements in Z, is given by ¢(p—1) (¢ =Euler’s phi
function). Analytic number theory tells us that the average value of ¢(n) over all
integers n is 6n/7?; it is readily argued that its average value over even integers
is greater than 3n/7* (Note 3). We conclude, therefore, that primitive elements
abound in finite fields; on the average (over p) we would expect better than
three of every 72 elements to be primitive, or, in probabilistic terms, we would
expect an element drawn at random from Z, to be primitive with probability
greater than 3 /7% ~0.3.

Thus we propose to find a primitive element of Z, by testing the elements
2,3,... in turn until a primitive one is found, armed with the above probabilistic
assurance that even for very large values of p we should not have to test many
elements.

But how should we test an element a of Z, for primitivity? We momentarily
consider the obvious method of raising a to successive powers, checking whether
or not a”"# 1 for 1 <n<p — 1. Thankfully enough, the need for carrying out
this terribly inefficient test is obviated by the following elegant and completely
algebraic result:

Theorem 2. a €Z, is primitive < [a”?""/9%1 in Z, for any prime
factor q of p — 1].

Proof. (=) Trivial.

(<) Assume a has order n <p — 1. Then n divides p — 1 by Lagrange, so
that p — 1 = kn. Let k = gr, where g is a prime in k’s prime factorization. But
then p — 1 = grn, so that g is also a prime in (p — 1)’s (unique) prime factoriza-
tion. We then have

aP~ D/l =g = (™)' =1.0

Example 2. Let us use Theorem 2 to find a primitive element in Z,,. Here we
have p — 1 =40 = 235, so that a € Z,,, is primitive if and only if a®’, a® 1.

Computing over Z,,, we see that 2°= 1,38 =1,4°=(2¥)’=1,5* =1, s0
none of 2,3,4,5 are primitive. But 6° = 10 and 6 = 40, so that 6 is the smallest
primitive element of Z,, (“smallest” in the usual integer ordering sense, of
course). []

We propose the following algorithm, based on Theorem 2, for computing a
list of Fourier primes.

306 THE FAST FOUHIEH THANDrURm

Algorithm 1 (Computing a list of Fourier primes).

Input.
List L of primes < W (where W is typically our computer’s wordsize);
Auxiliary list L’ of primes < VW (if the sieve method of Appendix 1 to
Section VIIL3 is used to compute L, then this list L’ is already available);
Positive integer f.
Output.
List of Fourier primes of the form p=2%+1 (k odd) with e > f,
together with a primitive element of Z,.

For each prime p in L:

Step 1 {Is p a Fourier prime of required exponent?}
Determine the exponent e of 2 in the prime factorization of p — 1. If
e < f, then discard p.

Step 2 {Prime power factorization of p—1}.
Determine the distinct primes a; in the prime power factorization of
r—1
pP— 1 "Q%_QMN. oo Qw\v
by cancelling out powers of primes in the auxiliary table L’ (Note 4).

Step 3 {Find a primitive element}.
Test a =2,3,... for primitivity, using Theorem 2: « is primitive <
aP~V/a £ 1 for all a,. (Use fast powering for the computation alP=/a)

O

In Fig. 2 are presented the results of executing Algorithm 1 to find the 10
largest Fourier primes < 231 — 1 having exponent e > f= 20. (Such Fourier

a = least primitive

P e element of Z,
2130706433 24 3
2114977793 20 3
2113929217 25 5
2099249153 21 3
2095054849 21 11
2088763393 23 5
2077229057 20 3
2070937601 20 6
2047868929 20 13
2035286017 20 10

Fig. 2. Fourier primesp =2k +1 < 2311 (e > 20).

e A

primes could be used to compute FF'Ts of size 2%0 > 10° using a 32 bit word (31
bits + sign) machine. Perhaps we should call these primes “IBM Fourier primes.”)

From the results of this section, we conclude that mod p FFTs are computa-
tionally viable: Fourier primes—primes p for which FFTs over Z, are possible
—exist in plenty. Moreover, we have a reasonably efficient algorithm (Algo-
rithm 1) for determining such primes along with primitive elements in the
associated fields. From these primitive elements, the required primitive roots of
unity can be efficiently computed.

2. FAST ALGORITHMS FOR MULTIPLYING POLYNOMIALS AND INTEGERS

With the FFT in hand, it is an easy matter to give a faster than O(n?) algorithm
for multiplying degree n polynomials (faster = faster in an asymptotic sense, i.e.,
for sufficiently large problems). With a little more effort, we can derive a faster
than O(n?) algorithm for multiplying n digit integers. In view of the venerable
character of the classical O(n?) integer and polynomial multiplication algo-
rithms (“school algorithms™), perhaps the reader will agree that the new FFT-
based algorithms deserve to be called “surprisingly fast.” In any case, if the
results of this section make the reader question the tried and true (at least in
algorithm design), then fine.

2.1 Fast Polynomial Multiplication

We return to our polynomial multiplication algorithm by evaluation-interpolation
(Example 1 of Section VIIL3.2). There we failed to do better than O(n?) time
due to the time required by classical multipoint evaluation and interpolation.
But now we have the FFT.

Algorithm 1 (FFT multiplication over F[x)).

Input. Polynomials a(x),b(x) EF [x] having degrees < n.
Output. c(x) = a(x)b(x).

Choose N = 2™ to be > 2n. Let w be a primitive Nth root of unity in F.
(The following algorithm requires the existence of such an element w.)
Step 1 {Evaluation via FFT}.
(a) Invoke FFT(N, a(x), w, A),
FFT(N, b(x), w, B);
(b) Compute C, = A, B, (k=0,...,N— 1).

Step 2 {Fourier interpolation— Algorithm 1 of Section 1.2}.
Invoke FFI(N, C, 0™, U(x)).

Step 3.
Return c(x) = U(x). O

Since w has been chosen to be a primitive N = 2" th root of unity, the use of
procedures FFT and FFI for solving the N-point evaluation and interpolation
problem of steps 1(a) and 2 is valid. The overall validity of Algorithm 1— that
¢(x) returned in step 3 is in fact a(x)b(x)— is then a consequence of our choice
of N to be >2n, appealing only to the validity of the general evaluation-
interpolation scheme for polynomial multiplications over F[x] (Example 1 of
Section VIIL.3.2).

The computing time required by Algorithm 1 is clearly dominated by the
FFT steps 1(a) and 2, hence is O(N log N), assuming as always that operations
over F require O(1) time. If N is chosen to be the least power of 2 that is > 2n,
then N is < 4n. Thus in terms of the original size parameter n, the computing
time required by Algorithm 1 is O(4nlog4n) = O(nlogn). This we record as

Theorem 1. Multiplication of two polynomials of degree n over F[x] can
be carried out in time O(nlogn) (provided F has the requisite primitive root
of unity).

Thus over the complex field Theorem 1 holds unconditionally, since C
contains primitive Nth roots of unity for any N. Over subfields of C, notably R
and Q, Theorem 1 does not hold, strictly speaking, unless we are willing to
perform Algorithm 1 over C. For example, FFTs involving real polynomials
generate complex values, because the Fourier points are necessarily complex.
Over finite fields Z,, Theorem 1 holds provided p is a Fourier prime p = 2% + 1
with 2° > 2n. (In applications of finite fields, we would of course restrict our
attention to Fourier primes of high exponents as discussed in Section 1.3.)

Some concluding remarks about the relative speeds of FFT-based and
classical multiplication algorithms as a function of the possibly different degrees
of the operands. If a(x) and b(x) have degrees m and n, with m < n say, then
our FFT-based multiplication algorithm requires O(nlogn) time while classical
multiplication requires O(mn) time. For m~n, the FFT-based algorithm is
clearly at its best relative to the classical algorithm: O(nlogn) versus O(n?). For
m<n, on the other hand, the performance of the FFT-based algorithm becomes
relatively poor due to the fact that it cannot effectively exploit the smallness of
m relative to n. As an extreme case in point, let m = 1. Then the FFT-based
algorithm is still O(nlogn), whereas the classical algorithm becomes O(n).

Out of this simple analysis emerges the following balancing principle which
transcends the details of successful applications of fast (FFT-based) polynomial
multiplication: polynomial multiplication, wherever it occurs, should involve
polynomials of roughly the same size (degree). We shall encounter this principle
at work in Section 3.

2.2 Fast Integer Multiplication

We have already exploited the observation that the conventional positional
notation for integers is essentially a polynomial-based representation (see Exam-

wi

ple 4 of Section VIILI.1): If a=(a, ,*+*a,)y is a base B integer, then a
represents the value of its associated polynomial a(x)=3"_Ja,x" at x = B; i.e.,
a=a(B). In this section we exploit that same observation, this time to achieve
an integer multiplication algorithm that works in faster than the O(n?) time
required by the venerable school algorithm.

Let us consider a sample product ¢ = ab of decimal (B = 10) integers:

a=329
b =617

¢ =202993.

This result can also be achieved by the polynomial multiplication c¢(x) =
a(x)b(x) followed by the evaluation ¢(10). For ¢(10)=a(10)b6(10), because
polynomial evaluation (in this case at x = 10) is a morphism for multiplication.
Thus ¢ = ¢(10) yields the product a(10)56(10) = ab. To illustrate with a = 329,
b=617:

a(x)=3x*+2x+9
b(x)=6x*+ x+7
c(x) =18x*+ 15x3 + 77x* + 23x + 63.

Then ¢(10) = 202993 = 329 X 617.

Now for a computer implementation of this polynomial multiplication-
evaluation algorithm for multiplying two n-digit base B integersa = (a,_;...ag)p
and b= (b,_,...by)z, where B is chosen to be < W =the wordsize of our
computer. An especially convenient choice for B, assuming that the multi-
plicands are presented to the computer as decimal integers, is the largest power
of ten < W. Then the base B digits of the multiplicands are obtained by simply
grouping consecutive decimal digits (e.g., the base 10% digits of 46709834 are
046, 709, 834); moreover these base B digits, which constitute the coefficients of
the associated polynomials [a = (a,_, ...aq)<>27_ga;x'], are all single-precision.

We now propose to compute the polynomial product c(x) = a(x)b(x) by
our polynomial MHI scheme of Section VIIL.3.3; i.e., we propose to compute
c¢®(x) = a(x)b(x) mod p, for a sufficient number K of large,but less than word-
size, primes p, (B < p, < W) in order to obtain ¢(x) by the CRA. Choosing
these p,’s to be Fourier primes of the form p =2+ 1 for sufficiently large
exponent e, we can use FFT-based polynomial multiplication to compute the
c¢®(x)’s. This, then, is the crux of our proposed algorithm: the replacement of
the O(n?) base B digit calculations of classical long multiplication by a number
(K) of fast polynomial multiplications.

For reasons that will become clear in the analysis phase of our develop-
ment, we call the resulting algorithm the “three primes” algorithm.

Algorithm 1 (“Three primes™ algorithm for integer multiplication).

Input. a=(a,_,...a9)g, b=(b,_;...bp)p.
Output. ¢ =ab.

.;o algorithm requires K Fourier primes p=2¢/+1< W with
sufficiently large exponent e (K to be determined).

Step 1 {Multiplication of associated polynomials a(x) = ="~ Ja,x’, b(x) =
3729b;x' by the MHI scheme for Z[x] (Algorithm 1 of Section VIII.3.3)}.

1.1 For K Fourier primes p, (B < p, < W): compute ¢*)(x) = a(x)b(x)
over Z, [x] using FFT-based polynomial multiplication.
1.2 Solve the polynomial CRP

u(x) =c®(x) (modp,) (k=0,...,K—1)

for the least-positive coefficient solution U(x).
1.3 Return c¢(x) = U(x).

Step 2 {Evaluation at radix}. Return ¢ = c¢(B). [

The algorithm and its analysis hinge on the determination of K (how big
must K be?). Each coefficient ¢, =3,,,_,a;b; of c(x) is seen to be < nB?
Hence step 1 correctly computes ¢(x) provided

(*) ﬁo\....hklN:ﬁﬁ

Since each p, is > B, () is satisfied provided BX is > nB?, i.e., provided K is
> (logg n) + 2. Therefore over the range n < B, three primes are sufficient (thus the
name “three primes” algorithm).

Choosing K = 3, we now have a tacit restriction on the size of problem our
algorithm can handle: n must be < B. But keeping in mind that B is a huge
F\amov on the order of 10° say, we can regard this restriction as being totally
innocuous.

We have one other restriction on the size of problem our algorithm can
handle. Step 1.1 requires three Fourier primes p =2°/+ 1 (B <p < W) with 2¢ >
length of ¢®®)(x) =2n—1 (recall: length = degree + 1). Thus if E is the largest
integer for which we can find three Fourier primes each having exponent e > E,
then n must satisfy 2n — 1 < 2%, which will be the case if nis < 2E-1,

Nﬂ_ _szBmJn our algorithm imposes two constraints on n: n< B and
n<2 .

As for the computing time analysis of our algorithm, step 1.1 requires
O(nlogn) time, while step 1.2 requires O(n) time (2n — 1 CRPs each involving
three integer congruences). Thus step 1 requires O(nlogn) time overall. We
leave it as a not too difficult exercise to show that the polynomial evaluation of

step 2 requires O(nlogn) time (Exercise 4). This gives the following

Theorem 1. Let our computer have (fixed) wordsize W, so that modp
operations for p < W can be carried out in O(1) time. Then this computer
can multiply two n digit base B integers, B< W, in O(nlogn) time
provided:

1. n<B;
2. n <2E7! where three Fourier primes p =2¢/+ 1 (B <p < W) can be
found with e > E, E the largest such integer.

Algorithm 1 thus has a curious subasymptotic property: Although it multi-
plies n-digit numbers in O(nlogn) time (versus the O(n?) time required by the
classical method), it is operational only over a finite range of n. Of course this
range can in principle be extended by increasing W, the computer wordsize. But
W cannot be extended indefinitely with increasing n, for then the assumption
that modp operations can be carried out in O(l) time—time bounded by a
constant independent of n—would become untenable. This, then, is why Algo-
rithm 1 is subasymptotic in character.

With such an algorithm it is obligatory to ask what kind of range of
application it has. After all, if the algorithm turns out to be applicable only for
small n (say n < 100), then it would have to be dismissed as uninteresting; table
lookup would provide a much better subasymptotic algorithm. But as we now
show, Algorithm 1 is “practically asymptotic”; for all intents and purposes its
range of application for n is effectively infinite.

To establish this result we confine our attention to a specific “typical” word-
size, namely W =23'— 1 (corresponding to the same 31 bit + sign wordsize
that we used for illustrative purposes in Section 1.3).

With W =23 — 1, we choose B = 10°, the largest power of ten < 23! —1.
The “n < B” constraint means that in Algorithm 1, » must be < 10°.

From Fig. 3 we see that there are three Fourier primes B < p < W having
exponents > 24. Thus E in the “n < 2%7!” constraint can be taken as 24 (the
largest possible value, as it turns out, for this particular word size), which means
that » must be <22 ~~8.38 X 10°. The latter, therefore, is the determining
constraint.

p=2°k+1 a = least primitive
(k odd) 4 element of Z,
2013265921 27 31
2113929217 25 5
2130706433 24 3

Fig. 3 Three Fourier primes having exponent > 24 (for a 32 bit word computer).

Thus Algorithm 1, employed on a 32 bit word machine, is capable of multiply-
ing integers having in excess of eight million decimal digits. (Perhaps the reader
concurs that Algorithm 1 is indeed “practically asymptotic™!)

In Note 1 we have gathered together some mainly historical remarks about
fast integer multiplication algorithms.

3. FAST ALGORITHMS FOR MANIPULATING FORMAL POWER SERIES

Although the FFT will be vital to our achieving fast power series algorithms, it is
Newton’s method—that most venerable of numerical algorithms—that is the
highlight of this concluding section.

3.1 Truncated Power Series Revisited

A (formal) power series a(7) = 22 ,a,t' is in general an infinite mathematical
object (because there are infinitely many coefficients a;), unlike a polynomial or
an integer, but very much like the infinite decimal expansion of a real number.
For computational purposes it is usually both desirable and necessary to
represent a power series a(t) = 32 a,t’ by its first (say) n terms 37 oa;t'. This is
the truncated power series T,[a(t)] = a(t)mod ¢" introduced in Section V.2.2.
(For convenience we are now writing 7, [a(¢)] rather than T,(a(t)).) We regard
T,[a(2)] as a mod t" approximation to a(t) in that T,[a(?)] agrees with a(¢) in its
first n terms, much as we regard 3.14159 as a six figure approximation to .

Let us now review the truncated power series ring F [[£]],, (Example 3 of
Section V.2.2) from the viewpoint of the complexity of its operations. We make
the usual assumption that operations over the coefficient field F require O(1)
time.

Let a(t), b(¢) € F[[¢]],- Then

(1) a(t)®b(t) = T,[a(?) + b(2)]
=a(t)+b(1),
(2) a(t)O b(t) = T,[a(1)b(1)],

where the right-hand side operations +, - are polynomial operations. As for
inversion over F[[¢]],, aﬁv©u we have the general ring morphism result

ian_vue?v@ (Proposition 7 of Section IV.2.1). Here the morphism is
T, : F[[t]]-> F[[]],, so we have

(3) a(t) D= T,[a(t)™"],

which states: to compute QQVQ, compute the first # terms of a(z) ™! over F[[¢]]
(for example, using the algorithm of Theorem 4, Section IV.3.1).
From (1), (2), and (3) we immediately conclude

Proposition 1. Over F[[¢]],:
(1) a(#)® b(¢) can be computed in O(n) time;

(2) a(t)®Ob(t) can be computed
(i) in time O(n?) using classical polynomial multiplication,
(i1) in time O(nlogn) using FFT polynomial multiplication (provided
F supports the FFT);
3) iD@ can be computed in O(n?) time.

Now suppose it is desired to compute 7,[a(t)+ b(t)], T,[a(t)b(1)],
T,[a(z) "] for specified power series a(t), b(t) € F[[t]]—call these operations
T,-addition, T, -multiplication, and 7},-inversion. Since 7}, is a morphism F[[¢]]
— F[[¢]],, we have

T,[a(2) + b(1)] = T,[a(1)]| ® T, [b(1)],
T,[a(£)b(1)] = T,[a()] @ T,[b(1)],
T,[a(t) "] = T,[a()]OD.

These equations tell us that to compute 7,-sums, products, or inverses, the power
series operands need only be specified mod ¢”, and these operations can then be
interpreted over F[[¢]],; i.e., mod ¢". Henceforth we do not distinguish between
mod " operations and 7, -operations.

* k¥

The gap between multiplication time and inversion time begs the question,
can we find a faster inversion algorithm? For an affirmative answer to this
question we look to numerical computing.

3.2 Fast Power Serles Inversion; Newton’s Method

Our objective is to derive a fast algorithm for power series inversion. Newton’s
method, of numerical computing fame, provides just the tool we need. (This
section, together with the next, might well have been entitled “Newton’s method:
a great algebraic algorithm”—Note 1.)

Let us briefly review Newton’s method in its familiar numerical setting, as
an algorithm for solving f(x) = O for an approximation to a numerical (say real)
root x. The method consists of computing a sequence of so-called iterates
X1, X,,... (approximants to x) according to Newton’s iteration,

(1) X1 =X —f(x) /f (x5
starting from some specified initial approximation x, to the desired root x.

The geometry of Newton’s method is illustrated in Fig. 4. The tangent to
the curve at (x,,f(x;)), where x, is the current iterate, is seen to intercept the
x-axis at a point that provides a closer approximation to the root x. This point,
then, is taken to be the next iterate x,,,. The forementioned tangent has the
equation

Yy —f(x)
X — X,

=f"(x)

