
3. Noether Normalization and Applications

Integral extension of a ring means adjoining roots of monic polynomials over
the ring. This is an important tool for studying affine rings, and it is used
in many places, for example, in dimension theory, ring normalization and
primary decomposition. Integral extensions are closely related to finite maps
which, geometrically, can be thought of as projections with finite fibres plus
some algebraic conditions. We shall give a constructive introduction with
explicit algorithms to these subjects.

3.1 Finite and Integral Extensions

This section contains the basic algebraic theory of finite and algebraic exten-
sions and their relationship. Moreover, important criteria for integral depen-
dence (Proposition 3.1.3) and finiteness (Proposition 3.1.5) are proven.

Definition 3.1.1. Let A ⊂ B be rings.

(1) b ∈ B is called integral over A if there is a monic polynomial f ∈ A[x]
satisfying f(b) = 0, that is, b satisfies a relation of degree p,

bp + a1b
p−1 + · · · + ap = 0, ai ∈ A ,

for some p > 0.
(2) B is called integral over A or an integral extension of A if every b ∈ B is

integral over A.
(3) B is called a finite extension of A if B is a finitely generated A–module.
(4) If ϕ : A→ B is a ring map then ϕ is called an integral, respectively finite,

extension if this holds for the subring ϕ(A) ⊂ B.

If there is no doubt about ϕ, we say also, in this situation, that B is integral,
respectively finite, over A. Often we omit ϕ in the notation, for example we
write IM instead of ϕ(I)M if I ⊂ A is an ideal and M a B–module.
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Proposition 3.1.2. Let A, B be rings.

(1) If ϕ : A → B is a finite extension, then it is integral. More generally, if
I ⊂ A is an ideal and M a finitely generated B–module then any b ∈ B
with bM ⊂ IM satisfies a relation

bp + a1b
p−1 + · · · + ap = 0 , ai ∈ Ii ⊂ A .

(2) If B is a finitely generated A–algebra of the form B = A[b1, . . . , bn] with
bi ∈ B integral over A then B is finite over A.

Proof. (1) Replacing A by the image of A, we may assume that A ⊂ B. Any
b ∈ B defines an endomorphism of the finitely generated A–module B. The
characteristic polynomial of this endomorphism defines an integral relation
for b, by the Cayley–Hamilton Theorem (this is sometimes called the “deter-
minantal trick”).

In concrete terms, let b1, . . . , bk be a system of generators for B as A–
module, then b · bi =

∑k
j=1 aijbj , 1 ≤ i ≤ k, for suitable aij ∈ A. This implies

(
b · Ek − (aij)

)
⎛

⎜⎝
b1
...
bk

⎞

⎟⎠ = 0 ,

therefore, by Cramer’s rule, det
(
b · Ek − (aij)

)
· bi = 0 for i = 1, . . . , k.1 But,

since 1 =
∑

i eibi ∈ B for suitable e1, . . . , ek, we obtain det
(
bEk − (aij)

)
= 0,

which is the required integral relation for b.
In the general case, let b1, . . . , bk be a system of generators of M as A–

module. Then we can choose the aij from I and it follows that the coefficient
of bk−i in det(bEk −

(
aij)

)
is a sum of i× i–minors of (aij) and, therefore,

contained in Ii.
(2) We proceed by induction on n. If b1 satisfies an integral relation of degree
p, then bp

1 and hence, any power bq
1, q ≥ p, can be expressed as an A–linear

combination of b0
1, . . . , b

p−1
1 . That is, the A–module B = A[b1] is generated

by b0
1, . . . , b

p−1
1 , in particular, it is finite over A.

For n > 1 we may assume, by induction, that A[b1, . . . , bn−1] is finite over
A. Since taking finite extension is clearly transitive, (A[b1, . . . bn−1])[bn] is
finite over A.

Let K be a field, I ⊂ K[x] := K[x1, . . . , xn] an ideal and f1, . . . , fk ∈ K[x].
The residue classes f̄i = fi mod I generate a subring

A := K[f̄1, . . . , f̄k] ⊂ B := K[x]/I .

We want to check whether a given b ∈ K[x] is integral over K[f1, . . . , fk] mod
I, that is, whether b̄ is integral over A.
1 Here En denotes the n × n unit matrix.
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The following two results are the basis for an algorithm to check for
integral dependence respectively finiteness.

Proposition 3.1.3 (Criterion for integral dependence).
Let b, f1, . . . , fk ∈ K[x], I = ⟨g1, . . . , gs⟩ ⊂ K[x] an ideal and t, y1, . . . , yk new
variables. Consider the ideal

M = ⟨t− b, y1−f1, . . . , yk−fk, g1, . . . , gs⟩ ⊂ K[x1, . . . , xn, t, y1, . . . , yk] .

Let > be an ordering on K[x, t, y] with x≫ t≫ y,2 and let G be a standard
basis of M with respect to this ordering.

Then b is integral over K[f ] = K[f1, . . . , fk] mod I if and only if G con-
tains an element g with leading monomial LM(g) = tp for some p > 0. More-
over, any such g defines an integral relation for b over K[f ] mod I.

Proof. If LM(g) = tp then g must have the form

g(t, y) = a0t
p + a1(y)tp−1 + · · · + ap(y) ∈ K[t, y], a0 ∈ K ! {0} .

We may assume that a0 = 1. Since g ∈M we have g(b, f) ∈ I. Thus, g defines
an integral relation for b over K[f ] mod I.

Conversely, if b is integral, then there exists a g ∈ K[t, y] as above. By
Taylor’s formula, g(t, y) = g(b, f) + b0 · (t− b) +

∑k
i=1 bi · (yi − fi) for some

bi ∈ K[t, y], i = 0, . . . , k. Hence, g ∈M and, therefore, tp = LM(g) ∈ L(M).
Since G is a standard basis, tp is divisible by the leading monomial of some
element of G which implies the result.

SINGULAR Example 3.1.4 (integral elements).
Let K = Q, the field of rational numbers, I = ⟨x2

1 − x3
2⟩ ⊂ A = K[x1, . . . , x4],

let f1 = x2
3 − 1 and f2 = x2

1x2. We want to check whether the elements b = x3

(respectively x4) are integral over K[f1, f2] mod I.

ring A = 0,(x(1..4),t,y(1..2)),lp;
//For complicated examples the ordering (dp(n),dp(1),dp(k))
//is preferable.

ideal I =x(1)^2-x(2)^3;
poly f1,f2=x(3)^2-1,x(1)^2*x(2);
poly b =x(3);
ideal M =t-b,y(1)-f1,y(2)-f2,I;

groebner(M);
//-> _[1]=t^2-y(1)-1 _[2]=x(3)-t
//-> _[3]=x(2)^4-y(2) _[4]=x(1)^2-x(2)^3

2 Recall that x ≫ y refers to a block ordering where terms in x = (x1, . . . , xn) are
always greater than terms in y = (y1, . . . , yk).
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b =x(4);
M =t-b,y(1)-f1,y(2)-f2,I;

groebner(M);
//-> _[1]=x(4)-t _[2]=x(3)^2-y(1)-1
//-> _[3]=x(2)^4-y(2) _[4]=x(1)^2-x(2)^3

We see that in the first case t2 is one of the leading monomials of the standard
basis of M and, therefore, x3 is integral over K[f̄1, f̄2] with integral relation
x2

3 − f̄1 − 1. In the second case we see that x4 is not integral over K[f̄1, f̄2].

Proposition 3.1.5 (Criterion for finiteness). Let K be a field, and
let x = (x1, . . . , xn), y = (y1, . . . , ym) be two sets of variables. Moreover, let
I ⊂ K[x], J = ⟨h1, . . . , hs⟩ ⊂ K[y] be ideals and ϕ : K[x]/I → K[y]/J a mor-
phism, defined by ϕ(xi) := fi. Set

M := ⟨x1−f1, . . . , xn−fn, h1, . . . , hs⟩ ⊂ K[x, y] ,

and let > be a block ordering on K[x, y] such that > is the lexicographical
ordering for y, y1 > · · · > ym, and y ≫ x. Let G = {g1, . . . , gt} be a standard
basis of M with respect to this ordering.

Then ϕ is finite if and only if for each j ∈ {1, . . . , m} there exists some
g ∈ G such that LM(g) = y

νj

j for some νj > 0.

Proof. If gsj = y
νj

j +
∑νj−1

ν=0 ajν(x, yj+1, . . . , ym) · yνj ∈ M then

gsj

∣∣
x=f

:= gsj

(
f1(y), . . . , fn(y), yj+1, . . . , ym

)
∈ J

for j = 1, . . . , m. Therefore, ym mod J is integral over K[x]/I. Using induc-
tion and the transitivity of integrality, we obtain that yj mod J is integral
over K[x]/I, hence K[y]/J is finite over K[x]/I by Proposition 3.1.2 (2).

Conversely, the finiteness of ϕ guarantees, again by 3.1.2, an integral rela-
tion y

νj

j +
∑νj−1

ν=0 ajν

(
f1(y), . . . , fn(y)

)
· yνj ∈ J for suitable ajν ∈ K[x]. Using

Taylor’s formula, as in the proof of Proposition 3.1.3, we obtain

y
νj

j +
νj−1∑

ν=0

ajν(x1, . . . , xn) · yνj ∈M ,

and, therefore, its leading monomial, y
νj

j , is an element of L(M).

SINGULAR Example 3.1.6 (finite maps).
Let ϕ : K[a, b, c]→ K[x, y, z]/⟨xy⟩ be given by a (→ (xy)3+ x2+ z, b (→ y2− 1,
c (→ z3. To check whether ϕ is finite we have to compute a standard basis of
the ideal
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M := ⟨a− (xy)3− x2− z, b− y2+ 1, c− z3, xy⟩ ⊂ K[a, b, c, x, y, z]

with respect to a block ordering x≫ y ≫ z ≫ a, b, c. We choose the lexico-
graphical ordering x > y > z > a > b > c.

ring A =0,(x,y,z,a,b,c),lp;
ideal M =a-(xy)^3-x2-z,b-y2+1,c-z3,xy;
ideal SM=std(M);
lead(SM); //get leading terms of SM
//-> -[1]=a3b _[2]=zb _[3]=z3
//-> _[4]=ya3 _[5]=yz _[6]=y2
//-> _[7]=xb _[8]=xy _[9]=x2
kill A;

We see that the map is finite because z3, y2, x2 appear as leading terms in the
standard basis. We could also have used the built–in procedure mapIsFinite,
which checks for finiteness (cf. below).

Remark 3.1.7. Usually the above method is not the fastest. In most cases
it appears to be faster, first to eliminate the xi from M (notations from
Proposition 3.1.5) and then to compute a standard basis of M ∩K[t, y] for
an ordering with t≫ yi, see also Exercise 3.1.3.

Remark 3.1.8. For a finite map ϕ : A→ B and M ⊂ A a maximal ideal,
B/MB is a finite dimensional (A/M)–vector space. This implies that the
fibres of closed points of the induced map φ : MaxB → MaxA (cf. Appendix
A) are finite sets. To be specific, let A = K[x]/I and B = K[y]/J (K an
algebraically closed field), and let

Am ⊃ V (J) φ−→ V (I) ⊂ An

be the induced map. If M = ⟨x1 − p1, . . . , xn − pn⟩ ⊂ K[x] is the maxi-
mal ideal of the point p = (p1, . . . , pn) ∈ V (I) then MB = (J + N)/J with
N := ⟨ϕ(x1)− p1, . . . ,ϕ(xn)− pn⟩ ⊂ K[y]. V (J + N) = φ−1(p) is the fibre of
φ over p, which is a finite set, since dimK

(
K[y]/(J + N)

)
< ∞.

The converse, however, is not true, not even for local rings (cf. Exercise
3.1.7). But, if ϕ : A → B is a map between local analytic K–algebras, then
ϕ is finite if and only if dimK B/ϕ(mA)B < ∞ (cf. Corollary 6.2.14).

We illustrate a finite and a non–finite map of varieties by a picture (cf. Figure
3.1), which is created by the following Singular session:

ring B = 0,(x,y,z),dp;
ideal I = x-zy;
LIB"surf.lib";
plot(I); // cf. Fig. 3.1
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Fig. 3.1. The “blown up” (x, y)–plane.

We see that the projection φ1 to the (x, y)–plane cannot be finite, since the
preimage of 0 is a line. However, all fibres of the projection φ2 to the (y, z)–
plane consist of just one point, φ−1

2 (b, c) = (bc, b, c). Indeed, we can check
that φ2 is finite by using mapIsFinite from the library algebra.lib:

LIB"algebra.lib";
ring A = 0,(u,v),dp;
setring B;
map phi1 = A,x,y; //projection to (x,y)-plane
mapIsFinite(phi1,A,I);
// -> 0
map phi2 = A,y,z; //projection to (y,z)-plane
mapIsFinite(phi2,A,I);
// -> 1

Lemma 3.1.9. Let ϕ : A → B be a ring map.

(1) If P ⊂ B is a prime ideal, then ϕ−1(P ) ⊂ A is a prime ideal.
(2) If ϕ is an integral extension, and if ϕ(x) is a unit in B, then ϕ(x) is a

unit in the ring ϕ(A), too.
(3) Let ϕ be an integral extension, B an integral domain. Then B is a field

if and only if A/ Ker(ϕ) is a field.
(4) If ϕ is an integral extension and M ⊂ B a maximal ideal, then ϕ−1(M)

is a maximal ideal in A.

For a ring map ϕ : A→ B and an ideal I ⊂ B the ideal ϕ−1(I) ⊂ A is called
the contraction of I; for A ⊂ B the contraction of I is I ∩A.

Proof. (1) is obvious. To prove (2) let ϕ(x) · y = 1 for some y ∈ B. Since B
is integral over A, we can choose a0, . . . , an−1 ∈ A such that

yn + ϕ(an−1)yn−1 + · · · + ϕ(a0) = 0 .

Multiplication with ϕ(x)n−1 gives

y = ynϕ(x)n−1 = −ϕ(an−1 + an−2x + · · · + a0x
n−1) ∈ ϕ(A) .
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(3) is a consequence of (2). For the if–direction, choose an integral relation
as in (2) of minimal degree and use that B is integral.

Finally, (4) is a consequence of (3) because A/ϕ−1(M) ⊂ B/M is again
an integral extension.

Proposition 3.1.10 (lying over, going up). Let ϕ : A→ B be an integral
extension.

(1) If P ⊂ A is a prime ideal, then there is a prime ideal Q ⊂ B such that
ϕ−1(Q) = P ( lying over–property) .

(2) Let P ⊂ P ′ ⊂ A and Q ⊂ B be prime ideals, with ϕ−1(Q) = P . Then
there exists a prime ideal Q′ ⊂ B such that Q ⊂ Q′ and ϕ−1(Q′) = P ′

( going up–property).

Proof. Let S = A ! P and consider ϕP : S−1A = AP → S−1B := ϕ(S)−1B.
AP is a local ring and, therefore, for any maximal ideal M ⊂ ϕ(S)−1B we
have ϕ−1

P (M) = PAP (Lemma 3.1.9 (4), Exercise 3.1.2 (3)).
Now P = ϕ−1

A (M) ∩A = ϕ−1(M ∩B) and Q = M ∩B is prime (Lemma
3.1.9 (1), Exercise 3.1.2 (2)). This proves (1).

To prove (2) consider the integral extension A/P =: Ā ⊂ B/Q =: B̄. We
apply (1) to this extension and the prime ideal P̄ ′ ⊂ Ā to obtain a prime ideal
Q̄′ ⊂ B̄ such that Q̄′ ∩ Ā = P̄ ′. We set Q′ := {q ∈ B | q̄ ∈ Q̄′}. Then Q′ ⊂ B
is a prime ideal which has the required properties.

Remark 3.1.11. The meaning of “lying over” and “going up” is best explained
geometrically. Let ϕ# : Spec B → Spec A denote the induced map (cf. A.3).
Then lying over just means that ϕ# is surjective, that is, over each point of
Spec A lies a point of SpecB.

Going up means that for any point P ′ ∈ V (P ) and any Q ∈ (ϕ#)−1(P )
there exists a point Q′ ∈ V (Q) such that ϕ#(Q′) = P ′, that is, the induced
map ϕ# : V (P )→ V (Q) is surjective, and we can “go up” from V (Q) to
V (P ).

Exercises

3.1.1. Let A ⊂ B be rings. Show that C := {b ∈ B | b is integral over A}, is
a subring of B.
(Hint: consider A[b1, b2] to show that b1−b2, b1b2 ∈ C.)

3.1.2. Check the following properties of integral dependence. Let A ⊂ B ⊂ C
be rings.

(1) (Transitivity) If B is integral over A and C integral over B, then C is
integral over A.

(2) (Compatibility with passing to quotient rings) If I ⊂ B is an ideal and
B integral over A, then B/I is integral over A/(I ∩A).
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(3) (Compatibility with localization) If S is a multiplicatively closed set in
A and B is integral over A, then S−1B is integral over S−1A.

(4) Let A ⊂ B be integral, N ⊂ B a maximal ideal and M = N ∩ A.
Is BN integral over AM? Study the case A = K[x2− 1], B = K[x] and
N = ⟨x− 1⟩.

3.1.3. Prove that the method for checking finiteness proposed in Remark
3.1.7 is correct. Implement both methods (that of the Proposition and of the
Remark) and compare their performance.

3.1.4. (1) Let f = x3− y6, g = x5+ y3 ∈ K[x, y]. Show that K[x, y] is finite
over K[f, g] (hence, F = (f, g) : A2 → A2 is a finite morphism of vari-
eties).

(2) To find the integral relations for x and y in (1) is already difficult without
a computer. Compute the first three terms of an integral relation of x
over K[f, g] in Example (1) by hand.

(3) Use Singular to find the integral relations for x and y in (2).

3.1.5. Let ϕ : A→ B be an integral extension, and let ψ : A→ K be a ho-
momorphism to an algebraically closed field K. Prove that there exists an
extension λ : B → K such that λ ◦ ϕ = ψ.

3.1.6. Let A ⊂ Bi be integral extensions of rings, i = 1, . . . , s. Prove that
A ⊂

⊕s
i=1 Bi is integral.

3.1.7. Let ϕ : A→ B be a ring map of Noetherian rings and ϕ# : Spec(B) →
Spec(A) the induced map.

(1) Prove that for ϕ finite, ϕ# has finite fibres, that is, (ϕ∗)−1(P ) is a finite
set for each prime ideal P ⊂ A.

(2) Show that the converse of (1) is not true in general, not even if A and
B are local (consider the hyperbola and A = K[x]⟨x⟩ where x is one
variable).

3.1.8. Let K be a field and f = y2 + 2y − x2 ∈ K[x, y]. Prove that

(1) the canonical map K[x]→ K[x, y]/⟨f⟩ is injective and finite,
(2) the induced map between local rings K[x]⟨x⟩ → K[x, y]⟨x,y⟩/⟨f⟩ is injec-

tive but not finite.
(Hint: R = K[x]⟨x⟩[y]/⟨f⟩ is a semi–local ring with maximal ideals ⟨x, y⟩
and ⟨x, y+2⟩. Show that R ⊂ Ry+2 is not finite, that is, 1

y+2 is not inte-
gral over R.)

3.2 The Integral Closure

We explain the notion of integral closure by an example. Assume we have
a parametrization of an affine plane curve which is given by a polynomial


