Chapter 27

Irreducible Polynomials

We find a formula for the number of irreducible polynomials of degree n in $\mathbb{F}_p[x]$ for any p and n, and use it to show that in some sense, almost every polynomial in $\mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$.

A. Irreducible Polynomials in $\mathbb{F}_p[x]$

We begin by showing

Theorem 1. $x^{p^n} - x$ is the product of all monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree d, for all d dividing n.

We prove this in two parts.

Theorem 2. If q(x) is an irreducible polynomial of degree d and d divides n, then q(x) divides $x^{p^n} - x$.

Proof. Let $F = \mathbb{F}_p[x]/(q(x)) = \mathbb{F}_p[\alpha]$, where $\alpha = [x]_{q(x)}$. Then q(x) is the minimal polynomial over \mathbb{F}_p of α . Now F is a field with p^d elements. So by Fermat's theorem, $\alpha^{p^d} = \alpha$. Since de = n for some integer e,

$$\alpha^{p^n} = \alpha^{p^{de}} = \alpha,$$

so α is a root of $x^{p^n} - x$.

Now q(x) is irreducible in $\mathbb{F}_p[x]$, so either q(x) divides $x^{p^n} - x$ or (by Bezout's identity),

$$s(x)q(x) + t(x)(x^{p^n} - x) = 1$$

for some polynomials s(x), t(x) in $\mathbb{F}_p[x]$. But if the second condition held, then setting $x = \alpha$ would yield 0 = 1, impossible. Hence q(x) divides $x^{p^n} - x$, as claimed.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts in Mathematics, © Springer Science+Business Media LLC 2009

Theorem 3. If q(x) is an irreducible factor of $x^{p^n} - x$ and has degree d, then d divides n.

Proof. This proof uses the Isomorphism Theorem of Section 24A.

Let K be a splitting field over \mathbb{F}_p of $x^{p^n} - x$, and let F be the subfield consisting of all of the p^n roots of $x^{p^n} - x$ described in Theorem 6 of Section 24C. Since q(x) divides $x^{p^n} - x$, there is a root β of q(x) in F. Since q(x) is irreducible, q(x) is the minimal polynomial of β over \mathbb{F}_p .

Let $\phi_{\beta}: \mathbb{F}_p[x] \to F$ be the "evaluation at β " homomorphism. Since q(x) is the minimal polynomial of β , the homomorphism ϕ_{β} induces a 1-1 homomorphism $\overline{\phi}$ from $E = \mathbb{F}_p[x]/(q(x))$ to F by sending [x] to β .

Let L be the image of E in F; L is then a subfield of F isomorphic to E.

Let α be a primitive element of F. Let s(x) be the minimal polynomial of α over L. Then the evaluation homomorphism ϕ_{α} from L[x] to F sending x to α induces a 1-1 homomorphism ϕ' from L[x]/s(x) to F, which is onto because every non-zero element of F is a power of α . So ϕ' is an isomorphism from L[x]/(s(x)) onto F. So L[x]/(s(x)) and F have the same number of elements.

How many elements are in L[x]/(s(x))? If s(x) has degree e, and L has q elements, then L[x]/(s(x)) has q^e elements. But $q = p^d$ and F has p^n elements. So $(p^d)^e = p^n$. So de = n, and d, the degree of q(x), divides n. That completes the proof.

Let $N_n(p)$ be the number of irreducible polynomials of degree n in $\mathbb{F}_p[x]$. We'll write N_n if the prime p is understood.

Using Theorem 1, we will find an explicit formula for $N_n(p)$.

To obtain such a formula, we use the Mobius function, a classical tool in number theory and combinatorics.

Definition. The Mobius function $\mu(n)$ is defined for $n \ge 1$ by

$$\mu(n) = \begin{cases} 1 \text{ if } n = 1, \\ 0 \text{ if } n \text{ is not squarefree} \\ (-1)^r \text{ if } n \text{ is the product of } r \text{ distinct primes.} \end{cases}$$

The formula we want is

$$N_n = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d.$$

This formula is a special case of the Mobius inversion formula, which we now derive. We begin with two facts about the Mobius function.

Proposition 4. If
$$(m,n) = 1$$
, then $\mu(mn) = \mu(m)\mu(n)$.

This is easy to verify.

A function such as μ that satisfies Proposition 4 is called *multiplicative*. Another example of a multiplicative function is Euler's ϕ function.

Proposition 5. $\sum_{d|n} \mu(d) = 0$ unless n = 1.

The proof of this is an exercise in manipulating sums. Before doing the proof in general we illustrate with $n = 36 = 2^2 3^2$: then the divisors of n are 1, 2, 4, 3, 6, 12, 9, 18 and 36, and we have

$$\begin{split} \sum_{d|36} \mu(d) &= [\mu(1) + \mu(2) + \mu(2^2)] \\ &+ [\mu(3) + \mu(2 \cdot 3) + \mu(2^2 \cdot 3)] \\ &+ [\mu(3^2) + \mu(2 \cdot 3^2) + \mu(2^2 \cdot 3^2)] \\ &= \mu(1)[1 + \mu(2) + \mu(2^2)] \\ &+ \mu(3)[1 + \mu(2) + \mu(2^2)] \\ &+ \mu(3^2)[1 + \mu(2) + \mu(2^2)]. \end{split}$$

Now $\mu(d) = 0$ if d is divisible by the square of a prime, and $\mu(1) = 1$, so this sum reduces to

=
$$\mu(1)[\mu(1) + \mu(2)] + \mu(3)[\mu(1) + \mu(2)]$$

= $[\mu(1) + \mu(3)][\mu(1) + \mu(2)].$

Now $\mu(1) = 1$, $\mu(3) = -1$, so $\mu(1) + \mu(3) = 0$. Hence $\sum_{d|36} \mu(d) = 0$. The proof in general works in a similar way.

Proof. Write $n = p^e q$ with (p,q) = 1. Then

$$\sum_{d|n} \mu(d) = \sum_{r=0}^{e} \sum_{b|q} \mu(p^r b)$$
$$= \sum_{r=0}^{e} \sum_{b|q} \mu(p^r) \mu(b).$$

Since $\mu(p^r) = 0$ for $r \ge 2$, this reduces to

$$= \sum_{b|q} \mu(1)\mu(b) + \sum_{b|q} \mu(p)\mu(b)$$

$$= \mu(1) \sum_{b|q} \mu(b) + \mu(p) \sum_{b|q} \mu(b)$$

$$= [\mu(1) + \mu(p)] \sum_{b|q} \mu(b) = 0$$

since
$$\mu(1) + \mu(p) = 0$$
.

With Proposition 5 we can prove the useful

Proposition 6 (Mobius Inversion Formula). Let f be a function defined on the natural numbers. If we set

$$F(n) = \sum_{d|n} f(d) \text{ for every } n \ge 1,$$

560

then

$$f(n) = \sum_{d|n} \mu(\frac{n}{d}) F(d) = \sum_{e|n} \mu(e) F(\frac{n}{e}).$$

Proof. If we substitute e = n/d, d = n/e, then as d runs through all divisors of n, so does e. Hence the last two sums are equal.

Now by definition of F,

$$\sum_{e|n} \mu(e) F(\frac{n}{e}) = \sum_{e|n} \mu(e) (\sum_{d|(n/e)} f(d)) = \sum_{e|n} \sum_{d|(n/e)} (\mu(e) f(d).$$

Interchanging the order of summation (if d|(n/e), then de|n so e|(n/d)), we get

$$\sum_{e|n} \mu(e) F\left(\frac{n}{e}\right) = \sum_{d|n} \left(\sum_{e|(n/d)} \mu(e)\right) f(d). \tag{27.1}$$

Now by Proposition 5, for each m > 1,

$$\sum_{e|m}\mu(e)=0.$$

So the coefficient of f(d) is 0 unless n/d = 1, that is, d = n. Hence the sum (1) reduces to the single term f(n), as was to be shown.

With these generalities out of the way, we can get the desired formula for N_n^p . We shall write N_n^p as N_n if p is understood.

Theorem 7. Let N_n be the number of irreducible polynomials of degree n in $\mathbb{F}_p[x]$. Then

$$N_n = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d.$$

Proof. Theorem 1 describes the complete factorization of $x^{p^n} - x$ in \mathbb{F}_p for any n. Since $x^{p^n} - x$ is the product of all the N_d irreducible polynomials of degree d for all d dividing n, we obtain the formula

$$p^n = \sum_{d|n} dN_d$$

by summing the degrees of all the irreducible factors of $x^{p^n} - x$. Now apply the Mobius inversion formula with $F(n) = p^n$, $f(d) = dN_d$. We get

$$nN_n = \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d.$$

Dividing both sides by n yields the desired formula.

With that formula we can give another proof of Corollary 7 of Chapter 24, that for every prime p and every n > 0 there is an irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.

Proposition 8. For every prime p and every n > 0, $N_n > 0$.

Proof. Since $\mu(n/n) = 1$ and $\mu(n/d) \ge -1$ for all d|n, d < n, we have that

$$N_n = \frac{1}{n}p^n + \frac{1}{n} \sum_{d|n,d < n} \mu(\frac{n}{d})p^d$$

$$\geq \frac{1}{n}p^n - \frac{1}{n} \sum_{d|n,d < n} p^d$$

$$\geq \frac{1}{n} \left(p^n - \sum_{d=0}^{n-1} p^d\right)$$

Now

$$\sum_{d=0}^{n-1} p^d = \frac{p^n - 1}{p - 1} < p^n,$$

so

$$\frac{1}{n}\left(p^n - \sum_{d=0}^{n-1} p^d\right) > 0.$$

Hence $N_n > 0$.

The number $N_n(p)$ of irreducible monic polynomials over \mathbb{F}_p of degree n for n = 1, ..., 10 is given by the following formulas

n	$N_n(p)$	$N_n(2)$	$N_n(3)$	$N_n(5)$	$N_n(7)$
1	p	2	3	5	7
2	$(p^2 - p)/2$	1	3	10	21
3	$(p^3 - p)/3$	2	8	40	112
4	$(p^4 - p^2)/4$	3	18	150	588
5	$(p^5 - p)/5$	6	48	624	3360
6	$(p^6 - p^2 - p^3 + p)/6$	9	116	2580	19544
7	$(p^7 - p)/7$	18	312	11160	117648
8	$(p^8 - p^4)/8$	30	810	48750	720300
9	$(p^9 - p^3)/9$	56	2184	217000	4483696
10	$(p^{10}-p^5-p^2+p)/10$	99	5880	976248	28245840

Every irreducible polynomial in $\mathbb{F}_7[x]$ of degree n gives rise to infinitely many different irreducible polynomials of degree n in $\mathbb{Q}[x]$. So there are many irreducible polynomials in $\mathbb{Q}[x]$. We'll get an idea of how many in the next section.

For more discussion on Mobius inversion, see Bender and Goldman (1975).

Exercises.

1. If F is a function defined on natural numbers and f is defined by

$$f(n) = \sum_{d|n} \mu(d) F(n/d),$$

prove that

$$F(n) = \sum_{d|n} f(d).$$

- 2. If f is a multiplicative function defined on natural numbers and $F(n) = \sum_{d|n} f(d)$, prove that F is multiplicative.
- 3. Prove Proposition 4.
- **4.** What are the 8 monic irreducible polynomials of degree 3 in $\mathbb{F}_3[x]$?
- 5. Find the formula for $N_{12}(p)$. Find $N_{12}(2)$.
- **6.** Find the formula for $N_{30}(p)$.
- 7. If n is divisible by g distinct primes, how many different powers of p appear in the formula for $N_n(p)$?
- 8. Show that

$$\left(\frac{p^n}{n}\right)(1-\varepsilon) < N_n < \frac{p^n}{n}$$

for some quantity $\varepsilon = \varepsilon(n)$ where $\varepsilon \to 0$ as $n \to \infty$. Conclude that for n large, approximately one of every n monic polynomials in $\mathbb{F}_p[x]$ of degree n is irreducible. (Asking about the size of N_n for n large is the analogue in $\mathbb{F}_p[x]$ of the Prime Number Theorem discussed in Section 4C.)

- 9. If d divides n, prove that every irreducible polynomial of degree d in $\mathbb{F}_p[x]$ has a root in every field F with p^n elements.
- 10. Show that if q(x) in $\mathbb{F}_p[x]$ is irreducible and has degree d, and F is a field with p^n elements, where d|n, then F is a splitting field of q(x).
- 11. Factor $x^{16} x$ in $\mathbb{F}_2[x]$.
- 12. Factor $x^9 x$ in $\mathbb{F}_3[x]$.
- 13. Factor $x^{25} x$ in $\mathbb{F}_5[x]$.
- **14.** Show that if p, q are primes, then $x^{p^q} x = (x^p x)h(x)$ in $\mathbb{F}_p[x]$, where h(x) is the product of all monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree q.
- **15.** Show that \mathbb{F}_{16} is a splitting field for $x^4 x$ in $\mathbb{F}_2[x]$. If $\mathbb{F}_{16} = \mathbb{F}_2[\alpha]$ where $\alpha^4 + \alpha + 1 = 0$ (as in Table 2 of Chapter 25A), what are the roots in \mathbb{F}_{16} of $x^4 x$?

16. Prove Rabin's irreducibility test [Rabin (1980b)] for polynomials m(x) of degree n in $\mathbb{F}_p[x]$: m(x) is irreducible if

(i) m(x) divides $x^{p^n} - x$; and

(ii) for any prime divisor d of n, the greatest common divisor of m(x) and $x^{p^{n/d}} - x$ is 1.

17. Suppose m(x) in $\mathbb{F}_p[x]$ has degree d. Call m(x) Carmichael if m(x) is composite, and for every polynomial a(x) in $\mathbb{F}_p[x]$, coprime to m(x),

$$a(x)^{p^d} = a(x) \pmod{m(x)}.$$

(i) Show that if m(x) is irreducible, then for every a(x) coprime to m(x),

$$a(x)^{p^d} = a(x) \pmod{m(x)}.$$

- (ii) Prove that the following are equivalent:
- (a) m(x) is Carmichael;
- (b) m(x) divides $x^{p^d} x$;

(c) $m(x) = q_1(x) \cdots q_g(x)$, a product of distinct irreducible polynomials, where for each i, if d_i is the degree of $q_i(x)$, then $p^{d_i} - 1$ divides $p^d - 1$;

(d) $m(x) = q_1(x) \cdots q_g(x)$, a product of distinct irreducible polynomials, where for each i, if d_i is the degree of $q_i(x)$, then d_i divides d.

B. Most Polynomials in $\mathbb{Z}[x]$ are Irreducible

In the last section, we computed the number $N_n(p)$ of monic irreducible polynomials of degree n in $\mathbb{Z}_p[x]$ for any n and p. We showed that

$$N_n(p) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d,$$

where $\mu(e)$ is the Mobius function. Thus we have

Lemma 9.

$$N_n(p) > \frac{p^n}{2n}$$
.

Proof. Since $\mu(n/d)$ is either 1, -1 or 0, and $\mu(1) = 1$, the formula

$$N_n(p) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d,$$

yields

$$nN_n(p) = p^n - \sum_{d|n,d < n} p^d.$$

Since every proper divisor of n is < n/2, we have

$$\sum_{d \mid n, d < n} p^d \le \sum_{d \le n/2} p^d < p^{\lfloor n/2 \rfloor + 1}$$

where $\lfloor a \rfloor$ denotes the greatest integer $\langle a \rangle$. Hence

$$nN_n(p) > (p^n - p^{\lfloor n/2 \rfloor + 1}).$$

If n > 2, then $\lfloor n/2 \rfloor + 1 \le n - 1$, so

$$N_n(p) > \frac{1}{n}(p^n - p^{n-1}) = \frac{p^n}{n}\left(1 - \frac{1}{p}\right) \ge \frac{p^n}{n}\left(\frac{1}{2}\right).$$

For n=2,

$$N_2(p) = \frac{1}{2}(p^2 - p) = \frac{p^2}{2}\left(1 - \frac{1}{p}\right) \ge \frac{p^2}{2}\left(\frac{1}{2}\right).$$

Using this lower bound for N_n^p we will show that almost all monic polynomials in $\mathbb{Z}[x]$ of degree $n \ge 1$ are irreducible. The main idea of the argument is that if f(x) is a monic polynomial in $\mathbb{Z}[x]$ whose image in $\mathbb{F}_p[x]$ is irreducible for some prime p, then f(x) is irreducible in $\mathbb{Z}[x]$.

What do we mean by "almost all"?

The way we will interpret this is as follows.

Pick a bound M. Consider the set $P_n(M)$ of all monic polynomials f(x) in $\mathbb{Z}[x]$,

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0$$

so that each coefficient a_k satisfies $-M < a_k \le M$. This is a finite set of polynomials: the number of such polynomials is $(2M)^n$, since there are 2M possibilities for each of the n coefficients a_{n-1}, \ldots, a_0 .

We will find a lower bound on the number of irreducible polynomials in the set $P_n(M)$, and show that for a suitable increasing sequence of numbers M, the proportion of irreducible polynomials goes to 1. More precisely,

Theorem 10. For every $n \ge 2$ and every $g \ge 1$ let M_g be the product of the first g odd primes. Let

$$I_n(M_g) = \{f(x) \text{ in } P_n(M_g) | f(x) \text{ is irreducible} \}.$$

Then

$$\lim_{g\to\infty}\frac{|I_n(M_g)|}{|P_n(M_g)|}=1.$$

Proof. For every $M \ge 2$, if

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0},$$

is in $P_n(M)$, then each coefficient a_k satisfies $-M < a_k \le M$ for $0 \le k \le n-1$. Since the integers a with $-M < a \le M$ is a complete set of representatives for $\mathbb{Z}/(2M)\mathbb{Z}$, we have a one-to-one correspondence between $P_n(M)$ and monic polynomials of degree n with coefficients in the ring $\mathbb{Z}/(2M)\mathbb{Z}$.

Now assume $M = M_g = 3 \cdot 5 \cdots p_g$ is the product of the first g odd primes. By the Chinese remainder theorem, there is an isomorphism

$$\mathbb{Z}/(2M)\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \cdots \times \mathbb{Z}/p_g\mathbb{Z}$$

given by mapping $[a]_{2M}$ to the (g+1)-tuple $([a]_2, [a]_3, \ldots, [a]_{p_g})$. This map induces a one-to-one correspondence between polynomials in $P_n(M)$ and (g+1)-tuples $([f(x)]_2, [f(x)]_3, \ldots, [f(x)]_{p^g})$ of monic polynomials of degree n in

$$\mathbb{Z}/2\mathbb{Z}[x] \times \mathbb{Z}/3\mathbb{Z}[x] \times \cdots \times \mathbb{Z}/p_{\mathfrak{g}}\mathbb{Z}[x].$$

Here if f(x) is in $P_n(M)$, then $[f(x)]_p$ denotes the image of f(x) in $\mathbb{Z}/p\mathbb{Z}[x]$ obtained by replacing the coefficients of f(x) by their congruence classes modulo p.

Under this correspondence between $P_n(M)$ and

$$\mathbb{Z}/2\mathbb{Z}[x] \times \mathbb{Z}/3\mathbb{Z}[x] \times \cdots \times \mathbb{Z}/p_{\varrho}\mathbb{Z}[x].$$

a polynomial f(x) is irreducible in $\mathbb{Z}[x]$ if for some prime p among $2, 3, \ldots, p_g$, the image $[f(x)]_p$ of f(x) in $\mathbb{Z}/p\mathbb{Z}[x]$ is irreducible.

Thus $|I_n(M)| \ge$ the number of (g+1)-tuples of monic polynomials of degree n, $(h_0(x), h_1(x), \ldots, h_g(x))$, with $h_0(x)$ in $\mathbb{Z}/2\mathbb{Z}[x]$, $h_1(x)$ in $\mathbb{Z}/3\mathbb{Z}[x]$, ..., $h_g(x)$ in $\mathbb{Z}/p_g\mathbb{Z}[x]$, such that at least one of $h_0(x), \ldots, h_g(x)$ is irreducible.

How many (g+1)-tuples of polynomials

$$(h_0(x), h_1(x), \dots, h_g(x))$$
 in $\mathbb{Z}/2\mathbb{Z}[x] \times \mathbb{Z}/3\mathbb{Z}[x] \times \dots \times \mathbb{Z}/p_g\mathbb{Z}[x]$

have the property that none of them is irreducible?

By Lemma 9 above, the number N_n of monic irreducible polynomials of degree n in $\mathbb{Z}/p\mathbb{Z}[x]$ satisfies $N_n^p > p^n/2n$. Thus the number of monic polynomials of degree n in $\mathbb{Z}/p\mathbb{Z}[x]$ that are not irreducible is less than

$$p^n - \frac{p^n}{2n} = p^n \left(1 - \frac{1}{2n} \right).$$

Hence the number of (g+1)-tuples of monic degree n polynomials in $\mathbb{Z}/2\mathbb{Z}[x] \times \mathbb{Z}/3\mathbb{Z}[x] \times \cdots \times \mathbb{Z}/p_g\mathbb{Z}[x]$ such that none of the (g+1)-polynomials is irreducible, is at most

$$2^{n}\left(1-\frac{1}{2n}\right)3^{n}\left(1-\frac{1}{2n}\right)\cdots p_{g}^{n}\left(1-\frac{1}{2n}\right)$$
$$=(2M)^{n}\left(1-\frac{1}{2n}\right)^{g+1}.$$

Thus the number of (g+1)-tuples of monic degree n polynomials such that at least one of the g+1 polynomials is irreducible is at least

$$(2M)^n - (2M)^n \left(1 - \frac{1}{2n}\right)^{g+1} = (2M)^n \left(1 - \left(1 - \frac{1}{2n}\right)^{g+1}\right).$$

But then, since $|P_n(M)| = (2M)^n$, we have

$$\frac{|I_n(M)|}{|P_n(M)|} \ge 1 - \left(1 - \frac{1}{2n}\right)^{g+1}.$$

Letting the number g of primes $p_1, p_2, ..., p_g$ increase (recall that $M = M_g = p_1 p_2 \cdot ... \cdot p_g$), we have

$$1 \ge \lim_{g \to \infty} \frac{|I_n(M)|}{|P_n(M)|}$$
$$\ge 1 - \lim_{g \to \infty} \left(1 - \frac{1}{2n}\right)^{g+1}.$$

Since the degree n is fixed while g (hence M) goes off to infinity,

$$\lim_{g\to\infty}\left(1-\frac{1}{2n}\right)^{g+1}=0.$$

Hence

$$\lim_{g \to \infty} 1 - \left(1 - \frac{1}{2n}\right)^{g+1} = 1.$$

and so

$$\lim_{g\to\infty}\frac{|I_n(M)|}{|P_n(M)|}=1,$$

as we wished to show.

As a numerical example, if we consider monic polynomials of degree 5 and let M be the product of the first 30 odd primes, then among the $(2M)^5$ such polynomials with coefficients a_k satisfying $-M < a_k \le M$, at least 95.7% of them are irreducible. Here M is slightly larger than 3×10^{52} .

We noted in Section 16C that there are monic irreducible polynomials in $\mathbb{Z}[x]$ that factor modulo every prime. Thus

$$\frac{|I_n(M)|}{|P_n(M)|}$$

is closer to 1 than the estimate of Theorem 2 indicates.

Theorem 2 is a special case of a theorem of Van der Waerden (1934).

Exercises.

- **18.** Let $M = 3 \cdot 5 = 15$ and n = 2. Let \mathscr{S} be the set consisting of the $900 = 30^2$ monic polynomials $x^2 + bx + c$ in $\mathbb{Z}[x]$ with coefficients satisfying $-14 \le b, c \le 15$. How many polynomials in \mathscr{S} are irreducible? (A polynomial of degree 2 is irreducible if and only if it has no roots, so count the number of polynomials in \mathscr{S} that have a root in \mathbb{Z} .)
- 19. Same question with n = 3.