Chapter 27
Irreducible Polynomials

We find a formula for the number of irreducible polynomials of degree n in IF)[x]

for any p and n, and use it to show that in some sense, almost every polynomial in
Z[x] is irreducible in Q[x].

A. Irreducible Polynomials in IF , [x]

We begin by showing

Theorem 1. xP" — x is the product of all monic irreducible polynomials in Fp[x] of
degree d, for all d dividing n.

We prove this in two parts.

Theorem 2. If q(x) is an irreducible polynomial of degree d and d divides n, then
q(x) divides xP" — x.

Proof. Let F =TFpx]/(q(x)) = Fpla], where & = [x]4(y)- Then g(x) is the mini-
mal polynomial over [F, of a.. Now F is a field with p? elements. So by Fermat’s
theorem, a” = a. Since de = n for some integer e,

5o a is a root of x”" — x.
Now g(x) is irreducible in IF,[x], so either g(x) divides x”" — x or (by Bezout’s
identity),
s(x)g(x) +1(x) (" —x) =1

for some polynomials s(x), #(x) in F,[x]. But if the second condition held, then
setting x = o would yield 0 = 1, impossible. Hence g(x) divides x”" —x, as
claimed. o
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Theorem 3. If g(x) is an irreducible factor of x*" —x and has degree d, then d
divides n.

Proof. This proof uses the Isomorphism Theorem of Section 24A.

Let K be a splitting field over [F, of xP" —x, and let F be the subfield consisting
of all of the p" roots of x”" — x described in Theorem 6 of Section 24C. Since g(x)
divides x”" — x, there is a root B of g(x) in F. Since g(x) is irreducible, g(x) is the
minimal polynomial of 8 over IF),.

Let ¢ : Fp[x] — F be the “evaluation at 3~ homomorphism. Since g(x) is the
minimal polynomial of 8, the homomorphism ¢g induces a 1-1 homomorphism ¢
from E =Fp[x]/(g(x)) to F by sending [x] to 3.

Let L be the image of E in F; L is then a subfield of F isomorphic to E.

Let o be a primitive element of F. Let s(x) be the minimal polynomial of o over
L. Then the evaluation homomorphism ¢, from L[x] to F sending x to ¢ induces a
1-1 homomorphism ¢’ from L[x]/s(x) to F, which is onto because every non-zero
element of F is a power of . So ¢’ is an isomorphism from L[x]/(s(x)) onto F. So
L[x]/(s(x)) and F have the same number of elements.

How many elements are in L[x]/(s(x))? If s(x) has degree e, and L has g elements,
then L[x]/(s(x)) has ¢° elements. But ¢ = p? and F has p" elements. So (p?)¢ = p".
So de = n, and d, the degree of g(x), divides n. That completes the proof. O

Let N,(p) be the number of irreducible polynomials of degree n in IF,[x]. We’ll
write N, if the prime p is understood.

Using Theorem 1, we will find an explicit formula for N,(p).

To obtain such a formula, we use the Mobius function, a classical tool in number
theory and combinatorics.

Definition. The Mobius function p(n) is defined for n > 1 by
lifn=1,

u(n) = 4 0if n is not squarefree
(—1)" if n is the product of r distinct primes.

The formula we want is
1 n
N,, = —2” (—) pd.
n dln d

This formula is a special case of the Mobius inversion formula, which we now de-
rive. We begin with two facts about the Mobius function.
Proposition 4. If (m,n) = 1, then p(mn) = p(m)u(n).

This is easy to verify.
A function such as 1 that satisfies Proposition 4 is called multiplicative. Another
example of a multiplicative function is Euler’s ¢ function.

Proposition 5. 34, tt(d) =0 unless n= 1.
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The proof of this is an exercise in manipulating sums. Before doing the proof in
general we illustrate with 7 = 36 = 2232: then the divisors of n are 1,2, 4, 3, 6, 12,
9, 18 and 36, and we have

%6u(d) = [u(1) +p1(2) +1(2)]
+[u(3) +u(2-3)+p(2%-3)]
+[(3%) +p(2-3%) +p(22-3%)
= p(D)[1+p(2)+p(2%)]
+HE)1+(2) +1(2)]
+p(3) [+ p(2) +p(2%)
Now (d) = 0 if d is divisible by the square of a prime, and p(1) = 1, so this sum
reduces to
= (D)) +p@)]+p@)u(1) + 1)
= [ (1) + )] [k (1) +1(2)]-

Now u(1) =1, u(3) = —1,s0 u(1) + p(3) = 0. Hence Y436 1(d) = 0.
The proof in general works in a similar way.

Proof. Write n = p®q with (p,q) = 1. Then

>ud) = iZu(p’b)

d|n r=0p|q

= 3 Y ().

r=0b|q
Since p(p") = 0 for r > 2, this reduces to

=Y u()pb) + Y u(p)u(d)

blq blq

= p(1) Y p1(b) +u(p) 1 (b)

blq blq

= [u(1)+u(p)]§|‘,u(b)=0
blg

since p(1) +p(p) =0. O
With Proposition 5 we can prove the useful

Proposition 6 (Mobius Inversion Formula). Let f be a function defined on the
natural numbers. If we set

F(n) =Y f(d) for everyn> 1,
d|n
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then

f(n) = T R(F)F(d) = Y u(F (7).

d|n eln

Proof. If we substitute e = n/d,d = n/e, then as d runs through all divisors of r, so
does e. Hence the last two sums are equal.

Now by definition of F,
SHEOFC) =ZuE( T f@)=3 3, ((e)fd).
eln eln d|(n/e) elnd|(n/e)

Interchanging the order of summation (if d|(n/e), then de|n so e|(n/d)), we get
n
Yu(e)F (=) =2, ( > u(e)) f(d). 27.1)
eln d|n \e|(n/d)

Now by Proposition 5, for each m > 1,

> u(e)=0.

elm

So the coefficient of f(d) is O unless n/d = 1, that is, d = n. Hence the sum (1)
reduces to the single term f(n), as was to be shown. O

With these generalities out of the way, we can get the desired formula for Nj . We
shall write N? as N,, if p is understood.

Theorem 7. Let N, be the number of irreducible polynomials of degree n in Fp[x].
Then {
n
Ny = —ZH (_) pd-
n d|n d

Proof. Theorem 1 describes the complete factorization of x”" —xin IF,, for any n.
Since x”" — x is the product of all the N, irreducible polynomials of degree d for all
d dividing n, we obtain the formula

pn = Zde
d|n

by summing the degrees of all the irreducible factors of ;tp" — x. Now apply the
Mobius inversion formula with F(n) = p", f(d) = dN,. We get

o3 (3)7

dln

Dividing both sides by # yields the desired formula. O
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With that formula we can give another proof of Corollary 7 of Chapter 24, that
for every prime p and every n > 0 there is an irreducible polynomial in IFp[x] of

degree n.

Proposition 8. For every prime p and every n >0, N, > 0.

Proof. Since p(n/n) =1and u(n/d) > —1 for all d|n, d < n, we have that

1 1 n
Ny=-p"+- ), #(E)Pd
G nd|n,d<n
1 1
> _ph_Z d
- np n z #

dlnd<n

n—1

Now
n—lpd _ pn —1 < p"’
d=0 p—1
SO
1 n—1
- (p"— Zpd> > 0.
n d=0
Hence N, > 0. O
The number N, (p) of irreducible monic polynomials over IF,, of degree n for n =
1,...,10 is given by the following formulas
n Ny (P) N,,(Z) N (3) N,,(S) Ny (7)
1 p 2 3 5 7
2 (p*—p)/2 1 3 10 21
3 (p®-p)/3 2 8 40 112
4 (p* —p?) /4 3 18 150 588
5 (p>—p)/5 6 48 624 3360
6 | (p°—p*>—p*+p)/6 9 116 | 2580 19544
7 (p"—p)/7 18 312 | 11160 | 117648
8 (p®—p*)/8 30 810 | 48750 | 720300
9 (»°-p*/9 56 | 2184 | 217000 | 4483696
10 | (p'©—p°>—p*+p)/10| 99 | 5880 | 976248 | 28245840

Every irreducible polynomial in F7[x] of degree n gives rise to infinitely many
different irreducible polynomials of degree n in Q[x]. So there are many irreducible
polynomials in Q[x]. We’ll get an idea of how many in the next section.

For more discussion on Mobius inversion, see Bender and Goldman (1975).



562 27 Irreducible Polynomials

Exercises.

1. If F is a function defined on natural numbers and f is defined by

f(n) =Y, u(d)F (n/d),

d|n
prove that
F(n) =Y f(d).

din

2. If f is a multiplicative function defined on natural numbers and F (n) = ¥4}, f (),
prove that F is multiplicative.

Prove Proposition 4.
What are the 8 monic irreducible polynomials of degree 3 in F3[x]?

Find the formula for Ny2(p). Find Ni2(2).

AU

Find the formula for N3o(p).

7. If n is divisible by g distinct primes, how many different powers of p appear in
the formula for N,(p)?

8. Show that . .
<-’L) (1—-g)<N, < Z
n n

for some quantity € = £(n) where € — 0 as n — 0. Conclude that for n large, ap-
proximately one of every n monic polynomials in IF,[x] of degree n is irreducible.
(Asking about the size of N, for n large is the analogue in IF [x] of the Prime Number
Theorem discussed in Section 4C.)

9. If d divides n, prove that every irreducible polynomial of degree d in IF,[x] has a
root in every field F with p" elements.

10. Show that if g(x) in IF,[x] is irreducible and has degree d, and F is a field with
p" elements, where d|n, then F is a splitting field of g(x).

11. Factor x'® — x in F»[x].
12. Factor x° —x in F3[x].
13. Factor x*° — x in Fs[x].

14. Show that if p,q are primes, then x?* — x = (x” — x)h(x) in F,[x], where h(x) is
the product of all monic irreducible polynomials in IF, [x] of degree g.

15. Show that Fi¢ is a splitting field for x* —x in F,[x]. If Fi¢ = Fo[ar] where
o* + a4+ 1 =0 (as in Table 2 of Chapter 25A), what are the roots in ;¢ of x—x?
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16. Prove Rabin’s irreducibility test [Rabin (1980b)] for polynomials m(x) of de-
gree n in Fp[x]: m(x) is irreducible if

(i) m(x) divides xP" —x; and

(ii) for any prime divisor  of n, the greatest common divisor of m(x) and "y
is L.

17. Suppose m(x) in IFp[x] has degree d. Call m(x) Carmichael if m(x) is composite,
and for every polynomial a(x) in FF,[x], coprime to m(x),

d

a(x)?" =a(x) (mod m(x)).
(i) Show that if m(x) is irreducible, then for every a(x) coprime to m(x),
a(x)? =a(x) (mod m(x)).

(ii) Prove that the following are equivalent:

(a) m(x) is Carmichael;

(b) m(x) divides ' —x;

(c) m(x) = q1(x)---gg(x), a product of distinct irreducible polynomials, where
for each i, if d; is the degree of g;(x), then p% — 1 divides p? — 1;

(d) m(x) = qi(x)---qg(x), a product of distinct irreducible polynomials, where
for each i, if d; is the degree of g;(x), then d; divides d.

B. Most Polynomials in Z|x] are Irreducible

In the last section, we computed the number N, (p) of monic irreducible polynomials
of degree n in Z x| for any n and p. We showed that

_lsu(n
Na(p) = 2 S (5) "

where [1(e) is the Mobius function. Thus we have

Lemma 9. i

p

N, iy
(p) > o

Proof. Since yt(n/d) is either 1, —1 or 0, and p(1) = 1, the formula
| n
Ny(p) = ‘z.u - %
L d|n (d)

yields

nNu(p) =p"— Y, p*
d|nd<n
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Since every proper divisor of n is <n/2, we have

z PdS 2 pd<p|_n/2j+l
d|nd<n d<n/2

where | a| denotes the greatest integer <a. Hence
nNa(p) > (p" — p"/2I*1).

Ifn>2,then |n/2|+1<n—1,s0

1 _ p" 1 "1
N,, (" — = 2 == )>2 (=),
(p)>—(p"=p"") =~ < p) = (2)

Forn =2,

0O

Using this lower bound for Nf we will show that almost all monic polynomials
in Z[x] of degree n > 1 are irreducible. The main idea of the argument is that if f(x)
is a monic polynomial in Z[x] whose image in [F,[x] is irreducible for some prime
p, then f(x) is irreducible in Z[x].

What do we mean by “almost all”?

The way we will interpret this is as follows.

Pick a bound M. Consider the set P,(M) of all monic polynomials f(x) in Zx],

F) =x"+a, X" . ax aix+ao,

so that each coefficient ay, satisfies —M < a, < M. This is a finite set of polynomials:
the number of such polynomials is (2M)", since there are 2M possibilities for each
of the n coefficients a,,_1, ... ,ap.

We will find a lower bound on the number of irreducible polynomials in the set
P,(M), and show that for a suitable increasing sequence of numbers M, the propor-
tion of irreducible polynomials goes to 1. More precisely,

Theorem 10. For every n > 2 and every g > 1 let My be the product of the first g
odd primes. Let

I(Mg) = {f(x) in Py(My)|f(x) is irreducible}.

Then

LM,
lim [ M)l _
g== | Pa(Mp)]

Proof. Forevery M > 2, if

fx) =x"+a,_x"! +...+a® +ayx+ag,
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is in P,(M), then each coefficient a; satisfies —M < a; < M for0 < k <n—1. Since
the integers a with —M < a < M is a complete set of representatives for Z/(2M)Z,
we have a one-to-one correspondence between P,(M) and monic polynomials of
degree n with coefficients in the ring Z/(2M)Z.

Now assume M = M, = 3-5--- p, is the product of the first g odd primes.

By the Chinese remainder theorem, there is an isomorphism

Z)(2M)Z) 2 Z)2Z X ZJ3Z. x - -- % L] p, .

given by mapping [a]au to the (g + 1)-tuple ([a]2,[a]3,- - -, [a]p, ). This map induces
a one-to-one correspondence between polynomials in P,(M) and (g + 1)-tuples
([f ]2, [f (®)]35-- -, [f(x)] p¢) of monic polynomials of degree 7 in

Z]2Z[x) X Z/3Z[x] x --- X Z] pgZ|x].

Here if f(x) is in P,(M), then [f(x)], denotes the image of f(x) in Z/pZ|x| obtained
by replacing the coefficients of f(x) by their congruence classes modulo p.
Under this correspondence between P, (M) and

Z[2Z[x] X Z]3Z[x] X - X Z] pgZ|x].

a polynomial f(x) is irreducible in Z[x] if for some prime p among 2,3,..., p,, the
image [f(x)]p of f(x) in Z/pZ[x] is irreducible.

Thus |[,(M)| > the number of (g + 1)-tuples of monic polynomials of degree
n, (ho(x),h1(x),...,he(x)), with ho(x) in Z/2Z[x], h\(x) in Z/3Z[x], ..., hg(x) in
Z/ poZ|x], such that at least one of hg(x),...,hg(x) is irreducible.

How many (g + 1)-tuples of polynomials

(ho(x),h1(x),...,hg(x)) in Z/2Z[x] X Z/3Z[x] X - -- X Z] poZ|x]

have the property that none of them is irreducible?

By Lemma 9 above, the number N, of monic irreducible polynomials of degree n
in Z/pZ|x] satisfies Ni > p"/2n. Thus the number of monic polynomials of degree
nin Z/pZx] that are not irreducible is less than

n p" n 1
——= l—— .
P 2n p( 2n

Hence the number of (g + 1)-tuples of monic degree n polynomials in Z/2Z[x] x
Z/3Z[x] x --- x Z/ pgZ[x] such that none of the (g + 1)-polynomials is irreducible,

is at most i 1 1
2" 1—=— 3" (1 ——|---p (1 ——
( Zn) ( Zn) pg< 2n>

= (2my" (1 - i)gﬂ.
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Thus the number of (g + 1)-tuples of monic degree n polynomials such that at least
one of the g + 1 polynomials is irreducible is at least

(2m)" — (2m)" (1 _ i)gﬂ — (2m)" (1 - (1 - i)w) .

But then, since |B,(M)| = (2M)", we have

g+l
2n

Letting the number g of primes py, pa, - .., pg increase (recall that M = My = p p2 -

... Dg), We have
L,(M
g |Py(M)|

>1-1 l—— .
21 (1-3)

Since the degree n is fixed while g (hence M) goes off to infinity,

1\ &+!
li - =0,
glgl’ (1 2n> 0

Hence
1 g+l
Iml—{1—— =1.
gﬂ ( 2n>
and so i
i OO
g |Py(M)]
as we wished to show. O

As a numerical example, if we consider monic polynomials of degree 5 and let M
be the product of the first 30 odd primes, then among the (2M )® such polynomials
with coefficients ay, satisfying —M < a; < M, at least 95.7% of them are irreducible.
Here M is slightly larger than 3 x 10°2.

We noted in Section 16C that there are monic irreducible polynomials in Z[x]
that factor modulo every prime. Thus

|l (M)
|Pu(M))]

is closer to 1 than the estimate of Theorem 2 indicates.
Theorem 2 is a special case of a theorem of Van der Waerden (1934).
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Exercises.

18. LetM =3-5=15and n=2. Let . be the set consisting of the 900 = 30? monic
polynomials x? + bx + ¢ in Z[x] with coefficients satisfying —14 < b,c¢ < 15. How
many polynomials in . are irreducible? (A polynomial of degree 2 is irreducible
if and only if it has no roots, so count the number of polynomials in .% that have a
root in Z.)

19. Same question with n = 3.



