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3.2.7. Let A ⊂ B be integral and B ! A be multiplicatively closed in B.
Prove that A is integrally closed in B.

3.2.8. Let A ⊂ B be integral domains and C = C(A, B). Let f, g ∈ B[x] be
monic polynomials such that f · g ∈ C[x]. Prove that f, g ∈ C[x].

3.2.9. Let A =
⊕∞

i=0 Ai be a Noetherian graded ring, d ≥ 1 an integer, and
let A(d) =

⊕∞
i=0 Aid. Prove that A is integral over A(d).

3.2.10. Prove that a normal local ring is an integral domain.

3.3 Dimension

In this section we shall use chains of prime ideals to define the dimension
of a ring. This is one possibility to define the dimension. It is called the
Krull dimension. We shall show that the dimension of the polynomial ring
K[x1, . . . , xn] in the variables x1, . . . , xn over a field K equals n, given by the
chain ⟨0⟩ ⊂ ⟨x1⟩ ⊂ ⟨x1, x2⟩ ⊂ · · · ⊂ ⟨x1, . . . , xn⟩.

Definition 3.3.1. Let A be a ring

(1) Let C(A) denote the set of all chains of prime ideals in A, that is,

C(A) :=
{
℘ = (P0 " · · · " Pm " A)

∣∣ Pi prime ideal
}

.

(2) If ℘ = (P0 " · · · " Pm " A) ∈ C(A) then length(℘) := m.
(3) The dimension of A is defined as dim(A) = sup{length(℘) | ℘ ∈ C(A)}.
(4) For P ⊂ A a prime ideal, let

C(A, P ) =
{
℘ = (P0 " · · · " Pm) ∈ C(A)

∣∣ Pm = P
}

denote the set of prime ideal chains ending in P . We define the height of
P as ht(P ) = sup{length(℘) | ℘ ∈ C(A, P )}.

(5) For an arbitrary ideal I ⊂ A, ht(I) = inf{ht(P ) | P ⊃ I prime} is called
the height of I and dim(I) := dim(A/I) is called the dimension of I.

Example 3.3.2.

(1) We shall see in Section 3.5 that in the polynomial ring K[x1, . . . , xn] over
a field K all maximal chains of prime ideals have the same length n. Here
a chain of prime ideals is called maximal if it cannot be refined.

(2) Let A = K[x](x)[y] then (0) ⊂ (xy − 1) and (0) ⊂ (x) ⊂ (x, y) are two
maximal chains of different length.

(3) Let A = K[x, y, z]/⟨xz, yz⟩, then dim(A) = 2. Let P = ⟨x, y, z − 1⟩, then
dim(AP ) = 1 (cf. Figure 3.5 on page 227).

Corollary 3.3.3. Let A ⊂ B be an integral extension, then Q (→ Q ∩A de-
fines a surjection C(B) → C(A) preserving the length of chains, in particular,
dim(A) = dim(B).
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Proof. Using Proposition 3.1.10 we see that the map is surjective. We have
to prove that the length is also preserved. Let Q ! Q′ be prime ideals in B,
assume Q ∩A = Q′ ∩A = P .

Now AP ⊂ BP is an integral extension, and AP is local with maximal ideal
PAP . Moreover, QBP ⊂ Q′BP are prime ideals in BP , with the property
QBP ∩AP = Q′BP ∩AP = PAP . Because of Lemma 3.1.9 (3), QBP and
Q′BP are maximal and, therefore, QBP = Q′BP . This implies Q = Q′.

Definition 3.3.4. Let A be a ring and I ⊂ A an ideal. A prime ideal P with
I ⊂ P is called minimal associated prime ideal of I, if, for any prime ideal
Q ⊂ A with I ⊂ Q ⊂ P we have Q = P . The set of minimal associated prime
ideals of I is denoted by minAss(I).

Proposition 3.3.5. Let A be a Noetherian ring and I ⊂ A be an ideal. Then
minAss(I) = {P1, . . . , Pn} is finite and

√
I = P1 ∩ · · · ∩ Pn .

In particular,
√

I is the intersection of all prime ideals containing I. 3

Proof. Obviously we have minAss(I) = minAss(
√

I) and, therefore, we may
assume that I =

√
I.

If I is prime, the statement is trivial. Hence, we assume that there exist
a, b ̸∈ I with ab ∈ I. We show that

√
I : ⟨a⟩ = I : ⟨a⟩ = I : ⟨a2⟩ " I. Namely,

f ∈
√

I : ⟨a⟩ implies fρ ∈ I : ⟨a⟩ for a suitable ρ. Therefore, afρ ∈ I and
(af)ρ ∈ I, which implies af ∈

√
I = I, that is, f ∈ I : ⟨a⟩. On the other hand,

f ∈ I : ⟨a2⟩ implies a2f ∈ I and (af)2 ∈ I, that is, af ∈
√

I = I and, there-
fore, f ∈ I : ⟨a⟩. Finally, b ∈ I : ⟨a⟩ but b ̸∈ I. Now, because of Lemma 3.3.6
below, we obtain I = (I : ⟨a⟩) ∩ ⟨I, a⟩. In particular, we obtain

I =
√

I =
√

(I : ⟨a⟩) ∩
√
⟨I, a⟩ = (I : ⟨a⟩) ∩

√
⟨I, a⟩ .

If I : ⟨a⟩ or
√
⟨I, a⟩ are not prime, we can continue with these ideals as we

did with I. This process has to stop because A is Noetherian and, finally, we
obtain I =

⋂n
i=1 Pi with Pi prime. We may assume that Pi ̸⊂ Pj for i ̸= j by

deleting unnecessary primes. In this case we have minAss(I) = {P1, . . . , Pn}.
For, if P ⊃ I is a prime ideal, then P ⊃

⋂n
i=1 Pi, and, therefore, there exist

j such that P ⊃ Pj by Lemma 1.3.12. This proves the proposition.

Lemma 3.3.6. (Splitting tool) Let A be a ring, I ⊂ A an ideal, and let
I : ⟨a⟩ = I : ⟨a2⟩ for some a ∈ A. Then I = (I : ⟨a⟩) ∩ ⟨I, a⟩.

Proof. Let f ∈ (I : ⟨a⟩) ∩ ⟨I, a⟩, and let f = g + xa for some g ∈ I. Then
af = ag + xa2 ∈ I and, therefore, xa2 ∈ I. That is, x ∈ I : ⟨a2⟩ = I : ⟨a⟩,
which implies xa ∈ I and, consequently, f ∈ I.
3 The latter statement is also true for not necessarily Noetherian rings, see also

Exercise 3.3.1.
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Example 3.3.7.

(1) Let I = ⟨wx, wy, wz, vx, vy, vz, ux, uy, uz, y3− x2⟩ ⊂K[v, w, x, y, z]. Then
I = ⟨x, y, z⟩ ∩ ⟨u, v, w, x2− y3⟩, minAss(I) = {⟨x, y, z⟩, ⟨u, v, w, x2− y3⟩}.

(2) Let I = ⟨x2, xy⟩ ⊂ K[x, y] then I = ⟨x⟩ ∩ ⟨x2, y⟩,
√

I = ⟨x⟩ and, hence,
minAss(I) = {⟨x⟩}.

The minimal associated primes can be computed (with two different algo-
rithms) using the Singular library primdec.lib:

SINGULAR Example 3.3.8 (minimal associated primes).

ring A=0,(u,v,w,x,y,z),dp;
ideal I=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;
LIB"primdec.lib";
minAssGTZ(I);
//-> [1]: [2]:
//-> _[1]=z _[1]=-y3+x2
//-> _[2]=y _[2]=w
//-> _[3]=x _[3]=v
//-> _[4]=u
ring B=0,(x,y,z),dp;
ideal I=zx,zy;
minAssChar(I);
//-> [1]: [2]:
//-> _[1]=y _[1]=z
//-> _[2]=x

Fig. 3.5. The variety V (xz, yz).

The minimal associated primes of ⟨zx, zy⟩ are ⟨z⟩ and ⟨x, y⟩ which correspond
to two components of dimension 2, respectively 1, that is, to the plane, re-
spectively the line, in Figure 3.5.
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The following lemma is easy to prove and left as an exercise.

Lemma 3.3.9. Let A be a ring and Ared := A/
√
⟨0⟩ the reduction of A,

then
dim(A) = dim(Ared) = max

P∈minAss(⟨0⟩)
{dim(A/P )} .

Remark 3.3.10. It is possible for a Noetherian integral domain to have in-
finite dimension: let K be a field and let A = k[x1, x2, . . . ] be a polynomial
ring in countably many indeterminates. Let (νj)j≥1 be a strictly increasing se-
quence of positive integers such that (νj+1 − νj)j≥1 is also strictly increasing.
Let Pi := ⟨xνi+1 , . . . , xνi+1⟩ and S = A !

⋃
i Pi. Then S−1A is a Noetherian

integral domain (using Exercise 3.3.3). But ht(S−1Pi) = νi+1 − νi implies
dim(S−1A) = ∞.

Remark 3.3.11. Notice that the ring in the previous remark is not local. We
shall see in Chapter 5 that local Noetherian rings have finite dimension. In
particular, this implies (using localization) that in a Noetherian ring the
height of an ideal is always finite.

Remark 3.3.12. For graded rings, we shall obtain in Chapter 5 another de-
scription of the dimension as the degree of the Hilbert polynomial. This will
be the basis to compute the dimension due to the fact that for an ideal
I ⊂ K[x1, . . . , xn]

dim(K[x1, . . . , xn]/I) = dim(K[x1, . . . , xn]/L(I)) ,

where L(I) is the leading ideal of I (cf. Corollary 5.3.14).

Thus, after a Gröbner basis computation, the computation of the dimension
is reduced to a pure combinatorial problem.

SINGULAR Example 3.3.13 (computation of the dimension).
Let I be the ideal of Example 3.3.7 (1). We want to compute the dimension:

ring A=0,(u,v,w,x,y,z),dp;
ideal I=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;
I=std(I);
dim(I);
//-> 3

The next lemmas prepare applications of the Noether normalization theorem
(see Section 3.4).

Lemma 3.3.14. Let A be a ring such that for each prime ideal P ⊂ A there
exists a normal Noetherian integral domain C ⊂ A with C ⊂ A/P being finite.
Then the following holds:

If A ⊂ B is a finite ring extension then the map C(B)→ C(A) induced by
the contraction P '→ P ∩A maps maximal chains to maximal chains.
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Proof. Let ⟨0⟩ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn be a maximal chain of prime ide-
als in B and consider ⟨0⟩ = Q0 ∩A ⊂ Q1 ∩A ⊂ · · · ⊂ Qn ∩A. We have to
prove that this chain is maximal. Assume Q ⊂ Q′ ⊂ B are two prime ide-
als and there exists a prime ideal P ⊂ A such that Q ∩A ! P ! Q′ ∩A.
We choose for Q ∩A an integrally closed, Noetherian integral domain A′

such that A′ ⊂ A/(Q ∩A) is finite. Note that the ideals ⟨0⟩, P/(Q ∩A) ∩A′,
Q′/(Q ∩A) ∩A′ are pairwise different as A′ ⊂ A/(Q ∩A) is finite (Corol-
lary 3.3.3). Moreover, B/Q is also finite over A′, and we can apply the
going down theorem to find a prime ideal P̄ ′ ̸= ⟨0⟩ in B/Q, P̄ ′ ⊂ Q′/Q
such that P̄ ′ ∩A′ = P ∩A′. Therefore, P̄ ′ ! Q′/Q. This implies the exis-
tence of a prime ideal P ′, Q ! P ′ ! Q′ and proves the lemma, because the
case Q′ ∩A ! P , can be handled similarly.

Remark 3.3.15. It is a consequence of the Noether normalization theorem
(cf. Section 3.4) that all rings of finite type over a field K have the property
required in the assumption of the lemma.

Lemma 3.3.16. Let A, B satisfy the assumptions of the going down theorem
(Theorem 3.2.9). If Q ⊂ B is a prime ideal then ht(Q) = ht(Q ∩A).

Proof. Due to Corollary 3.3.3, the map C(B) → C(A) induced by P '→ P ∩A
induces a map C(B, Q)→ C(A, Q ∩A), preserving the length of prime ideal
chains. To see that this map is surjective, let Q ∩A = Ps " Ps−1 " · · · " P0

be a chain of prime ideals in A. Starting with Ps−1, and using s times the
going down theorem, we obtain a chain Q = Qs " Qs−1 " · · · " Q0 of prime
ideals in B. This proves the lemma.

Exercises

3.3.1. Let A be a ring and I ! A a proper ideal. Prove that
√

I is the
intersection of all prime ideals containing I.
(Hint: reduce the statement to the case I = ⟨0⟩ and consider, for f ∈ A not
nilpotent, the set of all ideals not containing any power of f . Show that this
set contains a prime ideal by using Zorn’s lemma.)

3.3.2. Prove Lemma 3.3.9.

3.3.3. Let A be a ring such that

(1) for each maximal ideal M of A, the localization AM is Noetherian;
(2) for each x ̸= 0 in A the set of maximal ideals of A which contain x is

finite.

Prove that A is Noetherian.
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3.3.4. Check the statement of Example 3.3.2 (2), (3). Moreover, draw the
zero–set in R3 of the ideal

I := ⟨x · (x2+ y2+ z2− 1), y · (x2+ y2+ z2− 1)⟩ ⊂ R[x, y, z]

to see the phenomena occurring in (3).

3.3.5. Use Singular to compute

(1) the minimal associated primes of the ideal

I = ⟨t−b−d, x+y+z+ t−a−c−d, xz+yz+xt+zt−ac−ad−cd,

xzt−acd⟩ ⊂ Q[a, b, c, d, t, x, y, z] ,

(2) the intersection of the minimal associated primes, and
(3) the radical of I,

and verify the statement of Proposition 3.3.5.

3.3.6. Let P ⊂ K[x1, . . . , xs] be a homogeneous prime ideal of height r. Prove
that there exists a chain P0 ! P1 ! · · · ! Pr = P of homogeneous prime ide-
als.

3.3.7. Prove that a principal ideal domain has dimension at most 1.

3.3.8. Let A be a Noetherian ring. Prove that dim(A[x]) = dim(A) + 1.

3.3.9. Let A be a Noetherian ring. Use the previous Exercise 3.3.8 to prove
that dim(A[x, x−1]) = dim(A) + 1.

3.3.10. Let A be a Noetherian ring, and let P ∈ minAss(⟨0⟩). Prove that
AP = Q(A)PQ(A).

3.3.11. Let K be a field and A = K[x, y]⟨x,y⟩/⟨x2, xy⟩. Prove that A is equal
to its total ring of fractions, A = Q(A), and dim(A) = 1.

3.3.12. Show that A := Q[x, y, z]/⟨xy, xz, yz, (x−y)(x+1), z3⟩ has dimension
0. Compute the Q–vector space dimension of A and compare it to the Q–
vector space dimension of the localization of A in ⟨x, y, z⟩.

3.3.13. Let K be a field and A = K[x, y]. Prove that Lemma 3.3.14 does not
hold for B = K[x, y, z]/⟨xz, z2− yz⟩.

3.4 Noether Normalization

Let K be a field, A = K[x1, . . . , xn] be the polynomial ring and I ⊂ A an
ideal.

Noether normalization is a basic tool in the theory of affine K–algebras,
that is, algebras of type A/I. It is the basis for many applications of the
theorems of the previous chapters, because it provides us with a polynomial
ring K[xs+1, . . . , xn] ⊂ A/I such that the extension is finite.



3.4 Noether Normalization 231

Theorem 3.4.1 (Noether normalization). Let K be a field, and let
I ⊂ K[x1, . . . , xn] be an ideal. Then there exist an integer s ≤ n and an iso-
morphism

ϕ : K[x1, . . . , xn]→ A := K[y1, . . . , yn] ,

such that:

(1) the canonical map K[ys+1, . . . , yn]→ A/ϕ(I), yi $→ yi mod ϕ(I) is injec-
tive and finite.

(2) Moreover, ϕ can be chosen such that, for j = 1, . . . , s, there exist polyno-
mials

gj = y
ej

j +
ej−1∑

k=0

ξj,k(yj+1, . . . , yn) · yk
j ∈ ϕ(I)

satisfying ej ≥ deg(ξj,k) + k for k = 0, . . . , ej − 1.
(3) If I is homogeneous then the gj can be chosen to be homogeneous, too. If

I is a prime ideal, the gj can be chosen to be irreducible.
(4) If K is perfect and if I is prime, then the morphism ϕ can be chosen

such that, additionally, Q
(
A/ϕ(I)

)
⊃ Q(K[ys+1, . . . , yn]) is a separable

field extension and, moreover, if K is infinite then

Q
(
A/ϕ(I)

)
= Q(K[ys+1, . . . , yn])[ys]/⟨gs⟩ .

(5) If K is infinite then ϕ can be chosen to be linear, ϕ(xi) =
∑

j mijyj with
M = (mij) ∈ GL(n, K).

Definition 3.4.2. Let I ⊂ A = K[y1, . . . , yn] be an ideal. A finite and injec-
tive map K[ys+1, . . . , yn]→ A/I is called a Noether normalization of A/I.
If, moreover, I contains g1, . . . , gs as in Theorem 3.4.1 (2), then it is called a
general Noether normalization.

Example 3.4.3. K[x] ⊂ K[x, y]/⟨x3− y2⟩ is a Noether normalization, but not
a general Noether normalization, while K[y] ⊂ K[x, y]/⟨x3− y2⟩ is a general
Noether normalization.

Proof of Theorem 3.4.1. We prove the theorem for infinite fields, while the
proof for finite fields is left as Exercise 3.4.1. The case I = ⟨0⟩ being trivial,
we can suppose I ̸= ⟨0⟩. We proceed by induction on n. Let n = 1, and let
I = ⟨f⟩, f a polynomial of degree d. Then K[x1]/I = K + x1K + · · · + xd−1

1 K
is a finite dimensional K–vector space, and the theorem holds with s = 1.

Assume now that the theorem is proved for n− 1 ≥ 1, and let f ∈ I be
a polynomial of degree d ≥ 1. If I is homogeneous we choose f to be ho-
mogeneous. Let f =

∑d
ν=0 fν be the decomposition of f into homogeneous

parts fν of degree ν. To keep notations short in the following construction
of the morphism ϕ, we identify the xi (resp. the yj) with their images in
K[y1, . . . , yn] (resp. in K[z2, . . . , zn]). Let M1 = (mij) ∈ GL(n, K),
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M1 ·
( y1

...
yn

)
=

(
x1

...
xn

)
.

Then we obtain

fd(x1, . . . , xn) = fd

⎛

⎝
n∑

j=1

m1jyj , . . . ,
n∑

j=1

mnjyj

⎞

⎠

= fd

(
m11, . . . , mn1

)
· yd

1 + lower terms in y1 .

Now the condition for M1 becomes fd(m11, . . . , mn1) ̸= 0, which can be sat-
isfied as K is infinite. Then, obviously, K[y2, . . . , yn] → A/⟨f⟩ is injective
and finite by Proposition 3.1.2, since y1 satisfies an integral relation, and
g̃1 := f(M1y) has, after normalizing, the property required in (2).

Note that K[y2, . . . , yn]/(I ∩K[y2, . . . , yn])→ A/I is injective and still
finite (we write I instead of ϕ(I)). If I ∩K[y2, . . . , yn] = ⟨0⟩ then there is
nothing to show.

Otherwise, let I0 := I ∩K[y2, . . . , yn]. By the induction hypothesis there
is some matrix M0 ∈ GL(n− 1, K) such that, for

M0 ·
(

z2

...
zn

)
=

( y2

...
yn

)

and some s ≤ n, the map K[zs+1, . . . , zn]→ K[y2, . . . , yn]/I0 is injective and
finite. Moreover, for j = 2, . . . , s there exist polynomials

gj = z
ej

j +
ej−1∑

k=0

ξj,k(zj+1, . . . , zn) · zk
j ∈ I

such that ej ≥ deg(ξj,k) + k for k = 0, . . . , ej − 1. Again, the gj can be chosen
to be homogeneous if I is homogeneous.

This implies that K[zs+1, . . . , zn]→ A/I is injective and finite. The the-
orem is proved for

M = M1 ·

⎛

⎜⎜⎜⎝

1 0 . . . 0
0
.
.
. M0
0

⎞

⎟⎟⎟⎠

and g1 := g̃1 (y1, M0z), g2, . . . , gs ∈ K[y1, z2, . . . , zn].
If I is prime and if a gj splits into irreducible factors then already one of

the factors must be in I. We take this factor which has the desired shape.
The proof of (4) in the case of characteristic zero is left as Exercise 3.4.4.

For the general case, we refer to [66, 159]. (5) was already proved in (1).

Remark 3.4.4. The proof of Theorem 3.4.1 shows that

(1) the theorem holds for M arbitrarily chosen in
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• some open dense subset U ⊂ GL(n, K), respectively
• some open dense subset U ′ in the set of all lower triangular matrices

with entries 1 on the diagonal;
(2) the theorem holds also for finite fields if the characteristic is large;
(3) for a finite field of small characteristic the theorem also holds, when

replacing the linear coordinate change M · y = x by a coordinate change
of type xi = yi + hi(y), deg(hi) ≥ 2, see Exercises 3.4.1 and 3.4.2.

The general Noether normalization is necessary in the theory of Hilbert func-
tions, as we shall see in Chapter 5.

Analyzing the proof we obtain the following algorithm to compute a Noether
normalization, which is correct and works well for characteristic 0 and large
characteristic:

Algorithm 3.4.5 (NoetherNormalization(I)).

Input: I := ⟨f1, . . . , fk⟩ ⊂ K[x], x = (x1, . . . , xn).
Output: A set of variables {xs+1, . . . , xn} and a map ϕ : K[x]→ K[x] such

that K[xs+1, . . . , xn] ⊂ K[x]/ϕ(I) is a Noether normalization.

• perform a random lower triangular linear coordinate change

ϕ(x) =
(

1 0. . .
∗ 1

)
·
( x1...

xn

)
;

• compute a reduced standard basis {f1, . . . , fr} of ϕ(I) with respect to the
lexicographical ordering with x1 > · · · > xn, and order the fi such that
LM(fr) > · · · > LM(f1);

• choose s maximal such that {f1, . . . , fr} ∩K[xs+1, . . . , xn] = ∅;
• for each i = 1, . . . , s, test whether {f1, . . . , fr} contains polynomials with

leading monomial xρi
i for some ρi;

• if the test is true for all i then return ϕ and xs+1, . . . , xn (note that in this
case K[xs+1, . . . , xn] ⊂ K[x1, . . . , xn]/ϕ(I) is finite);

• return NoetherNormalization(I).

Let us try an example:

SINGULAR Example 3.4.6 (Noether normalization).

LIB"random.lib";
ring R=0,(x,y,z),lp;
ideal I=xy,xz;
dim(std(I));
//-> 2
ideal M=ideal(sparsetriag(3,3,0,100)

*transpose(maxideal(1)));
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M;
//-> M[1]=x M[2]=65x+y M[3]=85x+82y+z

map phi=R,M;
ideal J=phi(I); //the random coordinate change
J;
//-> J[1]=65x2+xy J[2]=85x2+82xy+xz

//dim(I)=2 implies R/J <--Q[y,z] is a Noether normalization

The algorithm in the Singular programming language can be found in Sec-
tion 3.7 at the end of this chapter.

Exercises

3.4.1. (Noether normalization over finite fields).
Let K be a finite field, and let f ∈ K[x1, . . . , xn] \ K. Prove that there ex-
ist y2, . . . , yn ∈ K[x1, . . . , xn] such that K[y2, . . . , yn] ⊂ K[x1, . . . , xn]/⟨f⟩ is
finite. For any sufficiently large e one can choose yi = xi − xei

1 .
If f is homogeneous then y2, . . . , yn can be chosen to be homogeneous.

3.4.2. Use Exercise 3.4.1 to prove the Noether normalization theorem 3.4.1
in the case of a finite field, replacing the linear coordinate change M · y = x
by a coordinate change of the form xi = yi + hi(y1, . . . , yi−1), i = 1, . . . , n,
h1 = 0.

3.4.3. Write a Singular procedure to compute a Noether normalization
over finite fields.

3.4.4. With the notations and assumptions of Theorem 3.4.1 prove that if
I is a prime ideal and the characteristic of K is zero, then gs can be chosen
such that Q(A/I) = Q(K[ys+1, . . . , yn])[ys]/⟨gs⟩.

3.4.5. Compute a general Noether normalization for the ideal

I = ⟨x3+ xy − z, y3− t + z, x2y + xy2− u⟩ ⊂ Q[x, y, z, t, u].

Prove that I is a prime ideal. Check this using Singular. Check whether
your Noether normalization has the properties of Exercise 3.4.4.

3.4.6. (Noether normalization for local rings).
Let K be a field. Then f ∈ K[x1, . . . , xn]⟨x1,...,xn⟩ is called a Weierstraß poly-
nomial of degree s with respect to xn if f = xs

n + as−1xs−1
n + · · · + a0, with

ai ∈ ⟨x1, . . . , xn−1⟩ · K[x1, . . . , xn−1]⟨x1,...,xn−1⟩. Prove that

K[x1, . . . , xn−1]⟨x1,...,xn−1⟩ ⊂ K[x1, . . . , xn]⟨x1,...,xn⟩/⟨g⟩
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is finite and injective for g ∈ K[x1, . . . , xn]⟨x1,...,xn⟩ if and only if u · g is a
Weierstraß polynomial of degree ≥ 1 with respect to xn for a suitable unit u.
(Hint: prove that the extension above is finite if and only if the localization
S−1K[x1, . . . , xn]/⟨g⟩ w.r.t. S := {g ∈ K[x1, . . . , xn−1] | g(0) ̸= 0} is a local
ring.)

3.4.7. Let f = x4+ y4+ x3+ y3+ x2+ y2+ x + y ∈ K[x, y]. Prove that there
exists no linear automorphism ϕ : K[x, y]⟨x,y⟩ → K[x, y]⟨x,y⟩ such that ϕ(f)
is a product of a unit and a Weierstraß polynomial (cf. Exercise 3.4.6). This
proves that, in general, Noether normalization as in Theorem 3.4.1 does not
hold for localizations of polynomial rings.
(Hint: use the fact that the polynomial ring is a unique factorization domain
and that f is irreducible to prove that ϕ(f) = ug, u a unit, g a Weierstraß
polynomial, implies that ϕ(f) is already a Weierstraß polynomial.)

3.4.8. Formulate and prove Theorem 3.4.1 for ideals generated by homoge-
neous polynomials in K[x1, . . . , xn]⟨x1,...,xn⟩.

3.5 Applications

In this section we shall use the Noether normalization to develop the dimen-
sion theory for the polynomial ring K[x1, . . . , xn] and, more generally, affine
algebras K[x1, . . . , xn]/I. We shall prove Hilbert’s Nullstellensatz and give an
algorithm to compute the dimension of an affine algebra. Finally, we prove
that the normalization of an affine algebra R, being an integral domain, is
finite over R and, therefore, again an affine algebra.

Theorem 3.5.1. Let K be a field and A = K[x], x = {x1, . . . , xn}. Then

(1) dim(A) = n, moreover, all maximal chains in C(A) have length n.
(2) If f ∈ A, deg(f) ≥ 1, then dim

(
A/⟨f⟩

)
= n− 1 (Krull’s principal ideal

theorem).
(3) If P ⊂ A is a prime ideal then ht(P ) + dim(A/P ) = dim(A) = n.
(4) If P ⊂ A is a prime ideal then dim(A/P ) = trdegK Q(A/P ), the tran-

scendence degree of the field extension K ⊂ Q(A/P ). Moreover, all max-
imal chains in C(A/P ) have the length dim(A/P ).

(5) If M ⊂ A is a maximal ideal, then A/M ⊃ K is finite (Hilbert’s Nullstel-
lensatz)4.

(6) Let I ⊂ A be an ideal and u ⊂ x be a subset such that I ∩K[u] = 0, then
dim(A/I) ≥ #u. Furthermore, there exists some u ⊂ x with I ∩K[u] = 0
and dim(A/I) = #u.5

4 This is a weak form of Hilbert’s Nullstellensatz. For K algebraically closed we
obtain A/M = K, hence, the maximal ideals are of type ⟨x1 − a1, . . . , xn − an⟩.

5 Note that u is allowed to be empty, that is, #u = 0.
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(7) Let I ! A be an ideal, and let S be a standard basis of I with respect to
any global ordering > on Mon(x1, . . . , xn). Then dim(I) = 0 if and only
if L(I) contains suitable powers of each variable xi, i = 1, . . . , n. This is
the case if and only if S contains, for each variable xi, an element whose
leading monomial is xai

i for some ai.

Proof. We use induction on n, the case n = 0 being trivial. To prove (1), let
⟨0⟩ = P0 ! · · · ! Pm ! A be a maximal chain in C(A). Choose an irreducible
f ∈ P1 and coordinates y1, . . . , yn−1 (Theorem 3.4.1 and Exercise 3.4.2) such
that K[x1, . . . , xn]/⟨f⟩ ⊃ K[y1, . . . , yn−1] is finite. Then, clearly, the chain

⟨0⟩ = P1/⟨f⟩ ! P1/⟨f⟩ ! · · · ! Pm/⟨f⟩

is maximal, too. Using Lemma 3.3.14 and the Noether normalization theorem,
this chain induces a maximal chain in K[y1, . . . , yn−1] which, due to the
induction hypothesis, has length n− 1.

(3), (2) are immediate consequences of (1), respectively its proof. To prove
(4), we may assume, again, that A/P ⊃ K[y1, . . . , ys] is finite. Then Corollary
3.3.3 implies dim(A/P ) = dim(K[y1, . . . , ys]), which equals s due to (1). On
the other hand, trdegK Q(A/P ) = trdegK Q(K[y1, . . . , ys]) = s.

Moreover, each maximal chain P̄m " · · · " P̄0 = ⟨0⟩ of primes in A/P lifts
to a maximal chain Pm " · · · " P0 = P " · · · " ⟨0⟩ of prime ideals in A.

(5) is a consequence of Theorem 3.4.1 and the fact that M is maximal: if
K[y1, . . . , ys] ⊂ A/M is finite, then, because A/M is a field and by Lemma
3.1.9, K[y1, . . . , ys] is also a field, hence, s = 0.

(6) Let u ⊂ x be a subset such that I ∩K[u] = ⟨0⟩. In particular, we have√
I ∩K[u] = ⟨0⟩, hence,

⋂
P∈minAss(I)(P ∩K[u]) = ⟨0⟩ (Proposition 3.3.5).

This implies P ∩K[u] = ⟨0⟩ for some P ∈ minAss(I) (Lemma 1.3.12) and,
therefore, K(u) ⊂ Q(K[x]/P ). We obtain

dim(K[x]/I) ≥ dim(K[x]/P ) = trdegK Q(K[x]/P ) ≥ #u .

Now let P ∈ minAss(I) with d = dim(K[x]/I) = dim(K[x]/P ). Then, due to
(4), we may choose xi1 , . . . , xid being algebraically independent modulo P .
Then P ∩K[u] = ⟨0⟩ for u := {xi1 , . . . , xid} and, therefore, I ∩K[u] = ⟨0⟩.

(7) We use (6) to see that I ∩K[xi] ̸= ⟨0⟩ for all i because I is zero–
dimensional. Let f ∈ I ∩K[xi], f ̸= 0, then LM(f) = xai

i for a suitable ai > 0
(f is not constant and > is a well–ordering). By definition of a standard basis
there exist g ∈ S and LM(g) | LM(f). This proves the “only if”–direction.

For the “if”–direction, we show that under our assumption on S, K[x]/I
is, indeed, a finite dimensional K–vector space. Let p ∈ K[x] be any polyno-
mial, and consider NF(p | S), the reduced normal form of p with respect to
S. Then, clearly NF(p | S) =

∑
β cβxβ , where cβ ̸= 0 implies βi < ai for all i.

In particular, the images of the monomials xβ with βi < ai for all i generate
K[x]/I as K–vector space.
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Theorem 3.5.2 (Hilbert’s Nullstellensatz). Assume that K = K is an
algebraically closed field. Let I ⊂ K[x] = K[x1, . . . , xn] be an ideal, and let

V (I) =
{
x ∈ Kn

∣∣ f(x) = 0 for all f ∈ I
}

.

If, for some g ∈ K[x], g(x) = 0 for all x ∈ V (I) then g ∈
√

I.

Proof. We consider the ideal J := IK[x, t] + ⟨1 − tg⟩ in the polynomial ring
K[x, t] = K[x1, . . . , xn, t].

If J = K[x, t] then there exist g1, . . . , gs ∈ I and h, h1, . . . , hs ∈ K[x, t]
such that 1 =

∑s
i=1 gihi + h(1− tg). Setting t := 1

g ∈ K[x]g, this implies

1 =
s∑

i=1

gi · hi

(
x,

1
g

)
∈ K[x]g .

Clearing denominators, we obtain gρ =
∑

i gih′
i for some ρ > 0, h′

i ∈ K[x],
and, therefore, g ∈

√
I.

Now assume that J ! K[x, t]. We choose a maximal ideal M ⊂ K[x, t]
such that J ⊂ M . Using Theorem 3.5.1 (5) we know (since K is algebraically
closed) that K[x, t]/M ∼= K, and, hence, M = ⟨x1− a1, . . . , xn− an, t− a⟩,
for some ai, a ∈ K. Now J ⊂ M implies (a1, . . . , an, a) ∈ V

(
J
)
.

If (a1, . . . , an) ∈ V (I) then g(a1, . . . , an) = 0. Hence, 1− tg ∈ J does not
vanish at (a1, . . . , an), contradicting the assumption (a1, . . . , an, a) ∈ V

(
J
)
.

If (a1, . . . , an) /∈ V
(
I
)

then there is some h ∈ I such that h(a1, . . . , an) ̸= 0,
in particular (as h does not depend on t) h(a1, . . . , an, a) ̸= 0 and, therefore,
(a1, . . . , an, a) /∈ V (J), again contradicting our assumption.

Definition 3.5.3. Let I ⊂ K[x1, . . . , xn] be an ideal. Then a subset

u ⊂ x = {x1, . . . , xn}

is called an independent set (with respect to I) if I ∩K[u] = 0. An indepen-
dent set u ⊂ x (with respect to I) is called maximal if dim(K[x]/I) = #u.

Example 3.5.4. Let I = ⟨xz, yz⟩ ⊂ K[x, y, z], then {x, y} ⊂ {x, y, z} is a max-
imal independent set. Notice that {z} ⊂ {x, y, z} is independent and non–
extendable (that is, cannot be enlarged) but it is not a maximal independent
set.

Note that all maximal (resp. all non–extendable) independent sets of the lead-
ing ideal L(I) are computed by the Singular commands indepSet(std(I))
(respectively by indepSet(std(I),1)). Thus, using these commands, we ob-
tain independent sets of I but maybe not all. Exercises 3.5.1 and 3.5.2 show
how to compute independent sets.
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SINGULAR Example 3.5.5 (independent set).

ring R=0,(x,y,z),dp;
ideal I=yz,xz;
indepSet(std(I));
//-> 1,1,0

This means, {x, y} is a maximal independent set for I.

indepSet(std(I),1);
//-> [1]: [2]:

1,1,0 0,0,1

This means, the only independent sets which cannot be enlarged are {x, y}
and {z}.

The geometrical meaning of u ⊂ x being an independent set for I is that the
projection of V (I) to the affine space of the variables in u is surjective, since
V (I ∩K[u]) = V (⟨0⟩) is the whole affine space.

ring A = 0,(x,y,t),dp;
ideal I = y2-x3-3t2x2;
indepSet(std(I),1);
//-> [1]: [2]:

1,1,0 0,1,1

Hence, {x, y} and {y, t} are the only non–extendable independent sets for
the leading ideal L(I) = ⟨t2x2⟩ . However, the ideal I itself has, additionally,
{x, t} as a non–extendable independent set. The difference is seen in the
pictures in Figure 3.6, which are generated by the following Singular session:

LIB"surf.lib";
plot(lead(I),"clip=cube;");
plot(I,"rot_x=1.4; rot_y=3.0; rot_z=1.44;"); //see Fig. 3.6

The first surface is V
(
L(I)

)
and the second V (I). The projection of V

(
L(I)

)

to the {x, t}–plane is not dominant, but the projection of V (I) is.

Next we want to compute the dimension of monomial ideals.

Definition 3.5.6. Let I = ⟨m1, . . . , ms⟩ ⊂ K[x] = K[x1, . . . , xn] be a mono-
mial ideal (with mi ∈ Mon(x1, . . . , xn) for i = 1, . . . , s). Then we define an
integer d(I, K[x]) by the recursive formula: d(⟨0⟩, K[x]) := n and

d(I, K[x]) := max
{
d
(
I
∣∣
xi=0

, K[x ! xi]
) ∣∣∣ xi divides m1

}
,

where x ! xi = (x1, . . . , xi−1, xi+1, . . . , xn).
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Fig. 3.6. The zero–sets of t2x2, respectively y2− x3− 3t2x2.

Example 3.5.7. Let I = ⟨xz, yz⟩ ⊂ K[x, y, z] then

d(I, K[x, y, z]) = max
{
d(⟨yz⟩, K[y, z])︸ ︷︷ ︸

=1

, d(⟨0⟩, K[x, y])︸ ︷︷ ︸
= 2

}
= 2.

Proposition 3.5.8. Let I = ⟨m1, . . . , ms⟩ ⊂ K[x] be a monomial ideal, then

dim(K[x]/I) = d(I, K[x]) .

Proof. Let P ⊃ I be a prime ideal, then for all i one factor of mi has to
be in P . In particular, for every P ∈ minAss(I) there exists some ρ, such
that xρ ∈ P divides m1. In particular, we have I|xρ=0 ⊂ P |xρ=0 ⊂ K[x ! xρ].
Using the induction hypothesis we may assume that

d
(
I
∣∣
xρ=0

, K[x ! xρ]
)

= dim
(
K[x ! xρ]

/(
I
∣∣
xρ=0

))

≥ dim
(
K[x ! xρ]

/(
P
∣∣
xρ=0

))
= dim

(
K[x]/P

)
.

This implies that d(I, K[x]) ≥ maxP∈minAss(I) dim(K[x]/P ) = dim(K[x]/I).
Let us assume that d(I, K[x]) > dim(K[x]/I). Then there would exist some
i such that xi divides m1 and

dim
(
K[x]/I

)
< d

(
I
∣∣
xi=0

, K[x ! xi]
)

= dim
(
K[x ! xi]

/(
I
∣∣
xi=0

))
,

the latter equality being implied by the induction hypothesis. But

dim
(
K[x ! xi]

/(
I
∣∣
xi=0

))
= dim

(
K[x]/⟨I, xi⟩

)
≤ dim

(
K[x]/I

)
,

whence a contradiction.
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SINGULAR Example 3.5.9 (computation of d(I, K[x])).
We give a procedure to compute the function d(I, K[x]) of Definition 3.5.6:

proc d(ideal I)
{

int n=nvars(basering);
int j,b,a;
I=simplify(I,2); //cancels zeros in the generators of I
if(size(I)==0) {return(n);} //size counts generators

//not equal to 0
for(j=1;j<=n;j++)
{
if(I[1]/var(j)!=0)
{

a=d(subst(I,var(j),0))-1;
//we need -1 here because we stay in the basering
if(a>b) {b=a;}

}
}
return(b);

}

Let us test the procedure:

ring R=0,(x,y,z),dp;
ideal I=yz,xz;

d(I);
//-> 2
dim(std(I));
//-> 2

We shall prove later that for any ideal I ⊂ K[x],

dim(K[x]/I) = dim
(
K[x]/L(I)

)
.

Hence, dim(K[x]/I) = d
(
L(I), K[x]

)
is very easy to compute once we know

generators for L(I), which are the leading terms of a standard basis of I.

Now we prove the finiteness of the normalization.

Theorem 3.5.10 (E. Noether). Let P ⊂ K[x1, . . . , xn] be a prime ideal,
and let A = K[x1, . . . , xn]/P , then the normalization A ⊃ A is a finite A–
module.

Remark 3.5.11. In general, that is, for an arbitrary Noetherian integral do-
main, Theorem 3.5.10 is incorrect, as discovered by Nagata [183, Ex. 5,
p. 207]. The polynomial ring K[x1, . . . , xn] and, more generally, each affine al-
gebra R = K[x1, . . . , xn]/I satisfy the following stronger6 condition: for each
6 Strictly speaking, this is only a stronger condition if K has characteristic p > 0.
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prime ideal P ⊂ R and for each finite extension field L of Q(R/P ), the in-
tegral closure of R/P in L is a finite R/P–module. A Noetherian ring with
this property is called universally Japanese (in honour of Nagata).

To prove Theorem 3.5.10 we need an additional lemma. We shall give a proof
for the case that K is a perfect field (for example, char(K) = 0, or K is finite,
or K is algebraically closed, cf. Exercise 1.1.6). For a proof in the general case,
see [66, Corollary 13.15].

Lemma 3.5.12. Let A be a normal Noetherian integral domain, L ⊃ Q(A) a
finite separable field extension and B the integral closure of A in L. Let α ∈ B
be a primitive element of the field extension, F the minimal polynomial of α
and ∆ the discriminant of F .7 Then B ⊂ 1

∆A[α]. In particular, B is a finite
A–module.

Proof of Theorem 3.5.10. We use the Noether normalization theorem and
choose y1, . . . , ys such that K[y1, . . . , ys] ↪→ K[x1, . . . , xn]/P is finite. We ob-
tain a commutative diagram

K[x1, . . . , xn]/P
!"

!!

# $

""!!!!!!!

K[y1, . . . , ys]% !finite##

!"

!!

A & '

$$"""""""

Q(K[x1, . . . , xn]/P ) Q(K[y1, . . . , ys]) .% !finite##

Notice that A is also the integral closure of K[y1, . . . , ys] in the quotient field
Q(K[x1, . . . , xn]/P ), which is a finite separable extension of Q(K[y1, . . . , ys]).
Since K[y1, . . . , ys] is a normal Noetherian integral domain, we obtain the
assumption of Lemma 3.5.12, which proves the theorem.

Proof of Lemma 3.5.12. Let L0 be the splitting field of F , and let α = α1,
α2, . . . ,αn ∈ L0 be the roots of F . Further, let B0 be the integral closure of
A in L0. Then α1, . . . ,αn ∈ B0 (since F is monic), and we have the following
diagram

A ⊂ B ⊂ B0

∩ ∩ ∩
Q(A) ⊂ L ⊂ L0,

where L0 ⊃ Q(A) is Galois. We consider the matrix
7 The discriminant of a univariate polynomial F ∈ K[x] is defined to be the resul-

tant of F and its derivative F ′. If α1, . . . , αn are the roots of F in the algebraic
closure K of K then the discriminant equals

∏
i̸=j(αi − αj), see, e.g., [162].


