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Some Useful Bounds
M. Mignotte, Strasbourg

Abstract

Some fundamental inequalities for the following values are listed: the determinant of a matrix, the
absolute value of the roots of a polynomial, the coefficients of divisors of polynomials, and the minimal
distance between the roots of a polynomial. These inequalities are useful for the analysis of algorithms in
various areas of computer algebra.

I. Hadamard’s Inequality
Hadamard’s theorem on determinants can be stated as follows:

Theorem 1. If the elements of the determinant

are arbitrary complex numbers, then
ID|*> < H < Z |ahj|2>
h=1 \j=1
and equality holds if and only if

n
Y ayaw =0  for 1<j<k<n,
h=1

where ay is the conjugate of ay.

We do not give a proof of this classical result, it can be found in many textbooks on
linear algebra (for example: H. Minc and M. Marcus, Introduction to Linear
Algebra, Macmillan, New York, 1965).

I1. Cauchy’s Inequality

The following result gives an upper bound for the modulus of the roots of a
polynomial in terms of the coefficients of this polynomial.

Theorem 2. Let
PX)=aoX+a; X '+ - +a;, ag#0, d=>1, (%)

17+
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be a polynomial with complex coefficients. Then any root z of P satisfies

Max{lay|,. .., la|}

lzl <1+
|ao

Proof. Let z be a root of P. If |z| < 1 the theorem is trivially true so we suppose
|z| > 1. Put

H = max{a,|,...,|a}.
By hypothesis z satisfies
apz® = —a 2 ' — - —ay,
so that
d
laol 121 < H(lz4 ™Y + -+ + 1) <}Z1|{|_j|1’
and

laol(lzl — 1) < H.
This proves the result. W

Corollary. Let P be given by () and a, # 0. Then any root z of P satisfies

|aal
lagl + Max{lag|, la;l, ..., las— 1|}

|z| >

Proof. If z is a root of P then z~! is a root of the polynomial
adXd + ad_le_l + -+ ao.
Applying the theorem to this polynomial gives the result. W

There are many other known bounds for the modulus of the roots of a polynomial,
most of which can be found in the book of Marden [3].

III. Landaw’s Inequality

Cauchy’s inequality gives an upper bound for the modulus of each root of a
polynomial. Landau’s inequality gives an upper bound for the product of the
modulus of all the roots of this polynomial lying outside of the unit circle. Moreover
this second bound is not much greater than Cauchy’s.

Theorem 3. Let P be given by (x). Let z4,...,z, be the roots of P. Put

d
M(P) = |ao| [ Max{l, |z;]}.

i=1

Then
M(P) < (laol® + la; > + -+ + |ag "2



Some Useful Bounds 261

To prove this theorem a lemma will be useful. If R = ) " ¢, X* is a polynomial we

put
m 1/2
(IRl =< > |Ck|2) -
k

=0
Lemma. If Q is a polynomial and z is any complex number then

IX + QX)) = lIZX + DOX)I.
Proof. Suppose

m

oX) = Z aX®

k=0
The square of the left hand side member is equal to

Y (ck-1 + 28) (k-1 +20) = (1 + ZPNQOIP + Y, (zexbi—1 + Zekci-1)
k=0 k=0

where c_; = 0.

It is easily verified that the square of the right hand side admits the same
expansion. H

Proof of the Theorem. Let zy, . . ., z; be the roots of P lying outside of the unit circle.
Then M(P) = |ao||z; - - - zi/. Put
k d
R(X)=aon(Z‘JX— 1) n (X—ZJ)=b0Xd+ +bd
j=1 j=k+1
Applying k times the lemma shows that ||P|| = ||R]||. But
IRII? = |bol* = M(P)>. B

IV. Bounds for the Coefficients of Divisors of Polynomials
1. An Inequality
Theorem 4. Let
Q=boX?+ b X" 4o, by#0
be a divisor of the polynomial P given by (x). Then
bo| + b1l + - -+ + |byl < bo/ao|27)|P]l.
Proof. 1t is easily verified that
bol + + -+ + Ibgl < 2°M(Q).
But
M(Q) < |bo/ao|M(P)
and, by Landau’s inequality,
MP)<|P|. =
Another inequality is proved in [4], Theorem 2.
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2. An Example

The following example shows that the inequality in Theorem 4 cannot be much
improved.

Let g be any positive integer and
Q(X) =(X* l)q: bOXq +b1X‘1"1 4+ - 4+ bq;

then it is proved in [4] that there exists a polynomial P with integer coefficients
which is a multiple of Q and satisfies

IPIl < Cq(Logg)''?,
where C is an absolute constant.
Notice that in this case

lbol + - -+ + |by| = 29.
This shows that the term 2¢in Theorem 3 cannot be replaced by (2 — ¢)¢, where ¢is a
fixed positive number.

V. Isolating Roots of Polynomials

If zy,...,z, are the roots of a polynomial P we define

sep(P) = min |z; — zj.

zi#zj
For reasons of simplicity we consider only polynomials with simple zeros (i.e.
square-free polynomials); for the general case see Giiting’s paper [1].

The best known lower bound for sep(P) seems to be the following.
Theorem 5. Let P be a square-free polynomial of degree d and discriminant D. Then
sep(P) > \/3d ™+ V2| D|\2|| ||t =4,

Proof. Using essentially Hadamard’s inequality, Mahler [2] proved the lower
bound

sep(P) > \/3d ™+ 12DV M(P) 4,
The conclusion follows from Theorem 3. W
Corollary. When P is a square-free integral polynomial sep(P) satisfies
sep(P) > \/3d 4+ D12||p|1 =4,

Other results are contained in [4], Theorem 5. It is possible to construct monic
irreducible polynomials with integer coefficients for which sep(P) is “‘rather” small.
Let d > 3 and a > 3 be integers. Consider the following polynomial

P(X) = X — 2(aX — 1)%

Eisenstein’s criterion shows that P is irreducible over the integers (consider the
prime number 2). The polynomial P has two real roots close to 1/a: clearly

P(l/a) > 0
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and if h = a~ 1+ 22
P(lja+ h) <2a % —2a%a"%"2=0,
so that P has two real roots in the interval (1/a — h, 1/a + h). Thus
sep(P) < 2h = 2a~1* /2,
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