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Some Useful Bounds 

M. Mignotte, Strasbourg 

Abstract 

Some fundamental inequalities for the following values are listed: the determinant of a matrix, the 
absolute value of the roots of a polynomial, the coefficients of divisors of polynomials, and the minimal 
distance between the roots of a polynomial. These inequalities are useful for the analysis of algorithms in 
various areas of computer algebra. 

I. Hadamard's Inequality 

Hadamard's theorem on determinants can be stated as follows: 

Theorem 1. If the elements of the determinant 

D= 

are arbitrary complex numbers, then 

IDI2 ,,; h01 (tl lahjl2 ) 

and equality holds if and only if 
n 

L ahjiihk = 0 
h= 1 

where iihk is the conjugate of ahk' 

for 1 ,,; j < k ,,; n, 

We do not give a proof of this classical result, it can be found in many textbooks on 
linear algebra (for example: H. Minc and M. Marcus, Introduction to Linear 
Algebra, Macmillan, New York, 1965). 

II. Cauchy's Inequality 

The following result gives an upper bound for the modulus of the roots of a 
polynomial in terms of the coefficients of this polynomial. 

Theorem 2. Let 

ao =1= 0, 1, 

17· 
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he a polynomial with complex coefficients. Then any root z of P satisfies 

Proof Let z be a root of P. If Izl ::::; 1 the theorem is trivially true so we suppose 
Izl> 1. Put 

H = max{ad,.··, ladl}. 

By hypothesis z satisfies 

so that 

and 

laol<lzl - 1) < H. 

This proves the result. • 

Corollary. Let P be given by (*) and ad 'I- o. Then any root z of P satisfies 

Izl> ladl 
ladl + Max{laol,lall, ... ,lad-ll} 

Proof If z is a root of P then z - 1 is a root of the polynomial 

adXd + ad_l Xd - 1 + ... + ao· 

Applying the theorem to this polynomial gives the result. • 

There are many other known bounds for the modulus of the roots of a polynomial, 
most of which can be found in the book of Marden [3]. 

III. Landau's Inequality 

Cauchy's inequality gives an upper bound for the modulus of each root of a 
polynomial. Landau's inequality gives an upper bound for the product of the 
modulus of all the roots of this polynomial lying outside of the unit circle. Moreover 
this second bound if> not much greater than Cauchy's. 

Theorem 3. Let P be given by (*). Let z 1, .•. , Zd be the roots of P. Put 

d 

M(P) = laol TI Max{l, IZjl}· 
j= 1 

Then 
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To prove this theorem a lemma will be useful. If R = CkXk is a polynomial we 
put 

IIRII = Ct ICkI 2YI
2. 

Lemma. If Q is a polynomial and Z is any complex number then 

II(X + z)Q(X)11 = II(zX + I)Q(X)II· 
Proof Suppose 

m 

k=O 
The square of the left hand side member is equal to 

m m 

I (Ck-l + ZCk)(Ck-l + ZCk) = (1 + Iz12)IIQ112 + L (ZCkCk-l + ZCkCk-d 
k=O k=O 

where C-l = O. 

It is easily verified that the square of the right hand side admits the same 
expansion .• 

Proof of the Theorem. Let Z 1, ... , Zk be the roots of P lying outside of the unit circle. 
Then M(P) = laollzl ... zkl. Put 

k d 

R(X) = ao n (ZjX - 1) n (X - Zj) = boXd + ... + bd. 
j=l j=k+l 

Applying k times the lemma shows that IIPII = IIRII. But 

IIRI12 Ibol2 = M(p)2. • 

IV. Bounds for the Coefficients of Divisors of Polynomials 

1. An Inequality 

Theorem 4. Let 
Q = boXq + b1Xq-l + ... , 

be a divisor of the polynomial P given by (*). Then 

Ibol + Ib11 + ... + Ibql Ibo/aoI2qIIPII· 

Proof It is easily verified that 

Ibol + ... + Ibql 2q M(Q). 
But 

M(Q) Ibo/aoIM(P) 
and, by Landau's inequality, 

M(P) IIPII. • 
Another inequality is proved in [4], Theorem 2. 
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2. An Example 

The following example shows that the inequality in Theorem 4 cannot be much 
improved. 

Let q be any positive integer and 

Q(X) = (X - I)q = boXq + b1Xq-l + ... + bq; 

then it is proved in [4] that there exists a polynomial P with integer coefficients 
which is a multiple of Q and satisfies 

IIPII ,,:; Cq(Logq)l!2, 

where C is an absolute constant. 

Notice that in this case 

Ibol + ... + Ibql = 2q. 

This shows that the term 2q in Theorem 3 cannot be replaced by (2 - e)q, where e is a 
fixed positive number. 

V. Isolating Roots of Polynomials 

If Z 1, ... ,Zd are the roots of a polynomial P we define 

sep(P) = min IZi - zJ 

For reasons of simplicity we consider only polynomials with simple zeros (i.e. 
square-free polynomials); for the general case see Giiting's paper [I]. 

The best known lower bound for sep(P) seems to be the following. 

Theorem 5. Let P be a square-free polynomial of degree d and discriminant D. Then 

sep(P) > J3 d-(d+ 1)/2IDI1/21IPI1 1 - d• 

Proof Using essentially Hadamard's inequality, Mahler [2] proved the lower 
bound 

sep(P) > j3d-(d+2)/2IDII/2M(P)I-d. 

The conclusion follows from Theorem 3. • 

Corollary. When P is a square-free integral polynomial sep(P) satisfies 

sep(P) > j3 d-(d+ 2)/21IPI11- d. 

Other results are contained in [4], Theorem 5. It is possible to construct monic 
irreducible polynomials with integer coefficients for which sep(P) is "rather" small. 
Let d 3 and a 3 be integers. Consider the following polynomial 

P(X) = X d - 2(aX - 1)2. 

Eisenstein's criterion shows that P is irreducible over the integers (consider the 
prime number 2). The polynomial P has two real roots close to I/a: clearly 

P(l/a) > 0 
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and if h = a-(d+2)/2 

P(1/a ± h) < 2a- d - 2a2a-d- 2 = 0, 

so that P has two real roots in the interval (l/a - h, l/a + h). Thus 

sep(P) < 2h = 2a-(d+2)/2. 
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